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a b s t r a c t

The paper is concerned with the notion of lossless negative imaginary systems and their stabilization
using strictly negative imaginary controllers through positive feedback. Firstly, the concept of lossless
negative imaginary transfer functions is introduced and some properties of such transfer functions
are studied. Secondly, a Lossless Negative Imaginary Lemma is given which establishes conditions on
matrices appearing in a minimal state-space realization that are necessary and sufficient for a transfer
function to be lossless negative imaginary. Thirdly, a necessary and sufficient condition is provided for the
stabilization of a lossless negative imaginary system by a strictly negative imaginary controller. Finally, a
flexible structure example is presented to illustrate the theory.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Positive real systems are systems which have positive real
transfer functions. Such systems could model many practical
systems which dissipate energy, and hence have many uses
in practice. For instance, the use of velocity sensors and force
actuators in mechanical systems often leads to positive real
transfer functions and could be used to implement a control
systemwith a guarantee of closed loop stability (Brogliato, Lozano,
Maschke, & Egeland, 2007). Moreover, positive real systems can be
realized with an electrical circuit using only resistors, inductors
and capacitors (Anderson & Vongpanitlerd, 1973). One major
limitation of positive real systems is that their relative degree
must be zero or one (Brogliato et al., 2007). For example, a lightly
damped flexible structure with collocated velocity sensors and
force actuators can typically be modeled by a sum of second-order

transfer functions as F(s) =


∞

i=0
ψiψ

T
i s

s2+2ζiωis+ω2
i
, where ωi is the

mode frequency, ζi > 0 is the damping coefficient associated
with the ith mode, and ψi is a column vector determined by the
boundary conditions on the partial differential equation. However,
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in some cases (for example, when using piezoelectric sensors),
the sensor output is proportional to position rather than velocity.
So the transfer function F(s) given above is the transfer function
from the actuator input to the derivative of the sensor output.
In the case of a lightly damped flexible structure with collocated
position sensors and force actuators, the transfer function will be

of the form R(s) =


∞

i=0
ψiψ

T
i

s2+2ζiωis+ω2
i
. It can be seen that the

relative degree of R(s) is more than unity. Hence, the standard
positive real theory will not be helpful in establishing closed
loop stability. However, such a transfer function satisfies the
following negative imaginary condition: j[R(jω) − R∗(jω)] ≥ 0
for all ω ∈ (0,∞). Such systems are called negative imaginary
systems in Lanzon and Petersen (2008), Petersen and Lanzon (2010)
and Xiong, Petersen, and Lanzon (2010). Examples of negative
imaginary systems can also be found in positive position feedback
control of active structures (Fanson & Caughey, 1990; Moheimani,
Vautier, & Bhikkaji, 2006).

A state-space characterization of negative imaginary transfer
functions has been successfully established in Lanzon and Petersen
(2008) and Xiong et al. (2010). A necessary and sufficient
condition, expressed as the product of the DC gains (that is, the
gains at zero frequency) being less than unity, has also been
derived to guarantee the internal stability of a positive feedback
interconnection of linear time-invariant multiple-input multiple-
output negative imaginary systems. The stability result in Lanzon
and Petersen (2008) and Xiong et al. (2010) has also been extended
to the case of a string of arbitrarily many coupled strictly negative
imaginary systems (Cai & Hagen, 2010), where the stability
condition is given in terms of a continued fraction of the subsystem
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DC gains. Moreover, the controller synthesis problem for negative
imaginary systems has been explored in Song, Lanzon, Patra, and
Petersen (2010) by reformulating the closed loop systems into
closed loop systems that have bounded gain.

A special and important class of negative imaginary systems
will be further studied in this paper. Such systems are referred to
as lossless negative imaginary systems since their transfer functions
satisfy the lossless negative imaginary condition: j[R(jω) −

R∗(jω)] = 0 for all ω ∈ (0,∞) except values of ω where jω is a
pole. The study of lossless negative imaginary systems is significant
because many applications can be found. For example, an m-
port electrical network consisting of lossless circuit elements such
as capacitors, inductors and transformers is lossless (Anderson
& Vongpanitlerd, 1973). The transfer function of a lossless m-
port network can be lossless negative imaginary. In addition,
undamped flexible structures with collocated position sensors and
force actuators are lossless negative imaginary systems since their

transfer functions are of the form R(s) =


∞

i=0
ψiψ

T
i

s2+ω2
i
, which is

lossless negative imaginary.
The novelties of the paper lie in the introduction of the concept

of lossless negative imaginary systems and the establishment of
a lossless negative imaginary lemma. Some properties of lossless
negative imaginary transfer functions are also developed and the
relationship between lossless negative imaginary transfer function
matrices and lossless positive real transfer function matrices is
derived. The results of the paper draw a nice parallel to the well
understood results on lossless positive real systems.

The organization of the paper is as follows. The notion of lossless
negative imaginary transfer functions is introduced in Section 2.
In Section 3, a Lossless Negative Imaginary Lemma is established
when the transfer functions satisfy the lossless negative imaginary
condition. This lemma can be considered as a modification of
the Negative Imaginary Lemma in Xiong et al. (2010) to the
lossless negative imaginary case. Section 4 studies the stabilization
of a lossless negative imaginary system by a strictly negative
imaginary controller through a positive feedback interconnection.
A necessary and sufficient condition for stabilization is proposed
in terms of the DC loop gain of the systems. This result is a special
case of the main result in Xiong et al. (2010) with the system
being lossless negative imaginary. An undamped flexible structure
example is presented in Section 5 to illustrate the theory and
Section 6 concludes the paper.
Notation: Let Rm×n and Rm×n denote the set ofm× n real matrices
and real-rational proper transfer function matrices, respectively.
λmax(A) denotes the maximum eigenvalue for a square complex
matrix A that has only real eigenvalues. Ā, AT and A∗ denotes
the complex conjugate, the transpose and the complex conjugate
transpose of a complex matrix A, respectively. R∼(s) presents the
adjoint of transfer function matrix R(s) given by RT (−s).

2. Lossless negative imaginary transfer functions

The concept of lossless negative imaginary transfer functions is
introduced in this section and some properties of such functions
are studied.

Definition 1. A real-rational proper transfer function matrix
R(s) ∈ Rm×m is lossless negative imaginary if
(1) R(s) is negative imaginary;
(2) j[R(jω) − R∗(jω)] = 0 for all ω ∈ (0,∞) except values of ω

where jω is a pole of R(s).

Remark 1. The lossless negative imaginary property of a transfer
function is simply defined by replacing the ‘‘≥’’ sign with the
‘‘=’’ sign in the definition of negative imaginary transfer function
matrices; see Definition 1 in Xiong et al. (2010).
Definition 2 (Anderson & Vongpanitlerd, 1973). A real-rational
proper transfer function matrix F(s) ∈ Rm×m is lossless positive
real if

(1) F(s) is positive real;
(2) F(jω) + F∗(jω) = 0 for all real ω except values of ω where jω

is a pole of F(s).

The following lemma provides a relationship between lossless
negative imaginary transfer functions and lossless positive real
transfer functions.

Lemma 1. Given a real-rational strictly proper transfer function
matrix R(s) ∈ Rm×m. Then R(s) is lossless negative imaginary if and
only if

(1) R(s) has no poles at the origin;
(2) F(s) = sR(s) is lossless positive real.

Proof. (Necessity) Suppose R(s) is lossless negative imaginary.
Condition 1 of Definition 1 implies that R(s) is also a negative
imaginary transfer function. In view of Lemma 3 in Xiong et al.
(2010), we have that R(s) has no poles at the origin and F(s) is
positive real.

Now we prove that condition 2 of Definition 2 holds. Note that
F(s) and R(s) have the same set of poles. For anyω ≥ 0 where jω is
not a pole of R(s), we have F(jω)+ F∗(jω) = jω[R(jω)−R∗(jω)] =

0. Also, by taking the complex conjugatewe have F(jω)+F∗(jω) =

0 for ω ≥ 0, which is equivalent to F(−jω) + F∗(−jω) = 0 for
ω ≥ 0. So F(jω) + F∗(jω) = 0 for ω ≤ 0. Finally, we have
F(jω) + F∗(jω) = 0 for all real ω with jω not a pole. According
to Definition 2, F(s) is a lossless positive real transfer function.

(Sufficiency) Suppose F(s) is lossless positive real, and R(s) has
no poles at the origin. Then F(s) is also positive real. In view of
Lemma 3 in Xiong et al. (2010), we have that R(s) is negative
imaginary.

Moreover, for any ω > 0 where jω is not a pole of R(s), condi-
tion 2 of Definition 2 implies condition 2 of Definition 1 in view of
F(s) = sR(s). Therefore, R(s) is lossless negative imaginary. �

Remark 2. Although the relationships stated in Lemma 1 exist
between (lossless) negative imaginary and (lossless) positive
real systems, similar relationships do not exist between strictly
negative imaginary systems and strictly positive real systems. For
example, R(s) =

1
s+1 is strictly negative imaginary, while F(s) =

sR(s) =
s

s+1 is not (weakly) strictly positive real because the
(weakly) strictly positive real frequency condition does not hold
at zero frequency.

Lemma 2. A real-rational strictly proper transfer function matrix
R(s) ∈ Rm×m is lossless negative imaginary if and only if

(1) R(s) has no poles at the origin;
(2) All poles of elements of R(s) are simple poles and purely

imaginary, and the residue matrix of jR(s) at any pole, K0 =

lims→jω0(s − jω0)jR(s), is positive semidefinite Hermitian;
(3) R(s) = R∼(s) for all s such that s is not a pole of R(s).

Proof. (Necessity) Suppose R(s) is lossless negative imaginary.
Then Lemma 1 implies F(s) = sR(s) is lossless positive real and
condition 1 holds. In view of Anderson and Vongpanitlerd (1973,
p. 57), we have F(s) + F∼(s) = 0 for all s such that s is not a pole
of F(s). So sR(s) − sR∼(s) = 0 for all s such that s is not a pole of
R(s). Hence, we have R(s) = R∼(s) for all s such that s is not a pole
of R(s). Here R(0) = R∼(0) is due to the continuity of R(s). Thus
condition 3 holds.

Suppose that a complex number s0 is a pole of R(s). Then it
follows from R(s) = R∼(s) = RT (−s) that −s0 is also a pole
of R(s). On the other hand, R(s) has no poles in the open right
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half plane according to the definition. Therefore, all poles of R(s)
must be purely imaginary. Moreover, condition 3 of Definition 1 in
Xiong et al. (2010) implies that the poles are simple poles and
the residue matrix of jR(s) at any pole is positive semidefinite
Hermitian. Thus condition 2 holds.

(Sufficiency) Suppose conditions 1–3 hold. First, condition 1
together with condition 2 implies condition 1 and condition 3 of
Definition 1 in Xiong et al. (2010). Secondly, from condition 3, we
have R(jω) = R∼(jω) = R∗(jω), so condition 2 of Definition 1 is
also true. Therefore, R(s) is lossless negative imaginary. �

Example 1. As an application of Lemma 1, we can say that R(s) =
1

s2+1
is lossless negative imaginary if and only if F(s) =

s
s2+1

is lossless positive real. This can be actually verified by directly
using Definitions 1 and 2 and Theorem 2.7.2 in Anderson and
Vongpanitlerd (1973).We could also conclude that R(s) is a lossless
negative imaginary transfer function using Lemma 2.

The following lemma characterizes the properties of a sum of
negative imaginary transfer functions.

Lemma 3. Given two lossless negative imaginary transfer functions
R1(s) and R2(s), and a negative imaginary transfer function R(s). Then

(1) R1(s)+ R2(s) is lossless negative imaginary;
(2) R1(s)+ R(s) is negative imaginary.

Proof. The proof follows along similar lines to that of Lemma 6
in Xiong et al. (2010), and is hence omitted. �

3. Lossless negative imaginary lemma

The Lossless Negative Imaginary Lemma proposed in this
section is a modification of the Negative Imaginary Lemma in
Xiong et al. (2010) applied to the case where the transfer functions
being considered are lossless negative imaginary. This Lossless
Negative Imaginary Lemma, which is the main result of this paper,
is analogous to the Lossless Positive Real Lemma (Anderson &
Vongpanitlerd, 1973, pp. 221–222).

Theorem 1 (Lossless Negative Imaginary Lemma). Let (A, B, C,D) be
a minimal state-space realization of a real-rational proper transfer
function R(s) ∈ Rm×m, where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n,
D ∈ Rm×m. Then R(s) is lossless negative imaginary if and only if

(1) det(A) ≠ 0, D = DT ;
(2) there exists a matrix Y = Y T > 0, Y ∈ Rn×n, such that

AY + YAT
= 0, and B + AYCT

= 0.

Proof. (Necessity) Note that a lossless negative imaginary transfer
function R(s) is also negative imaginary. Hence, according to
Lemma 7 in Xiong et al. (2010), condition 1 holds. Furthermore,
it follows from Corollary 1 in Xiong et al. (2010) that there exists a
transfer function matrix

M(s) ∼


A B

LY−1A−1 0


,

where Y = Y T > 0 and L are the solutions of LT L = −AY −YAT and
B+AYCT

= 0.Moreover,M(s) satisfies the spectral-factor property

j[R(jω)− R∗(jω)] = ωM∗(jω)M(jω)

whenever jω is not a pole of R(s).
Since R(s) is lossless, according to Lemma 2, we have R(jω) =

R∼(jω) = R∗(jω) for any real ω with jω not a pole of R(s). That
is, j[R(jω) − R∗(jω)] = 0. Thus M∗(jω)M(jω) = 0, and hence
M(jω) = 0 for all real ω with jω not a pole of M(s). Moreover,
M(0) = 0 due to the continuity of M(s). Therefore, we have
Fig. 1. Positive feedback interconnection.

M(s) = LY−1A−1(sI − A)−1B = 0. By the controllability of the pair
(A, B), we conclude that LY−1A−1

= 0. That is, L = 0. Therefore,
condition 2 holds. This completes the necessity part of the proof.

(Sufficiency) Suppose conditions 1–2 hold.We know that R(s) is
negative imaginary in view of Lemma 7 in Xiong et al. (2010), and
M(s) = 0 in view of Corollary 1 in Xiong et al. (2010). Therefore,
j[R(jω)−R∗(jω)] = ωM∗(jω)M(jω) = 0 whenever jω is not a pole
of R(s). It follows from the definition that R(s) is lossless negative
imaginary. �

Remark 3. The lossless negative imaginary lemma is different
from the negative imaginary lemma in Xiong et al. (2010). Here,
condition (2) contains two equalities while the negative imaginary
lemma inXiong et al. (2010) has one inequality and one equality. As
a result, lossless negative imaginary systems are actually negative
imaginary systems with all poles on the imaginary axis. It is also
noticed that the definition of negative imaginary systems given in
Lanzon and Petersen (2008) requires that all the system poles lie
in the open left half plane, and the same concept was redefined in
Xiong et al. (2010) so that the systems are allowed to have poles on
the imaginary axis. Hence, all the results developed in Xiong et al.
(2010) are valid for lossless negative imaginary systems, and all
the results in Lanzon and Petersen (2008) are not valid for lossless
negative imaginary systems.

4. Stabilization of lossless negative imaginary systems

In this section, we consider the stabilization of lossless negative
imaginary systems via positive feedback as shown in Fig. 1. The
positive feedback interconnection is denoted by [R(s), Rs(s)]. The
results in this section are in fact special cases of the corresponding
results in Xiong et al. (2010) with one system being lossless
negative imaginary, and the proofs are the same as those in
Xiong et al. (2010).

A necessary and sufficient condition is provided for the stability
of the interconnected system given in Fig. 1 in terms of the DC loop
gain.

Theorem 2. Given a lossless negative imaginary transfer function
R(s) and a strictly negative imaginary transfer function Rs(s) that
satisfy R(∞)Rs(∞) = 0 and Rs(∞) ≥ 0. Then the positive
feedback interconnection [R(s), Rs(s)] is internally stable if and only
if λmax(R(0)Rs(0)) < 1.

The following corollaries are a restatement of the above theorem,
written in the same form as the small gain theorem.

Corollary 1. Given γ > 0 and a strictly negative imaginary transfer
function R(s) with R(∞) ≥ 0. Then, the positive feedback
interconnection [∆(s), R(s)] is internally stable for all lossless
negative imaginary transfer functions∆(s) satisfying ∆(∞)R(∞) =

0 and λmax(∆(0)) < γ (respectively ≤ γ ) if and only if
λmax(R(0)) ≤

1
γ
(respectively< 1

γ
).
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Corollary 2. Given γ > 0 and a lossless negative imaginary transfer
function R(s). Then the positive feedback interconnection [∆(s), R(s)]
is internally stable for all strictly negative imaginary transfer functions
∆(s) satisfying ∆(∞)R(∞) = 0, ∆(∞) ≥ 0 and λmax(∆(0)) < γ
(respectively ≤ γ ) if and only if λmax(R(0)) ≤

1
γ
(respectively< 1

γ
).

Remark 4. Theorem 2 cannot be obtained from the stability
results for positive real systems (for example, Lemma 3.37 of
Brogliato et al. (2007)). The reason is that (weakly) strictly positive
real systems need to satisfy the strictly positive real frequency
domain conditions on the whole imaginary axis, while strictly
negative imaginary systems satisfy the strictly negative imaginary
frequency conditions on a punctured imaginary axis excluding
the origin. Actually, Theorem 2 has a mix of both gain conditions
(at zero and infinite frequencies) and phase conditions (at finite
positive frequencies), while Lemma 3.37 of Brogliato et al. (2007)
has pure phase conditions (at all frequencies). The readers are
referred to Lanzon and Petersen (2008), Lanzon, Song, Patra, and
Petersen (2011) and Xiong et al. (2010) for more details about
strictly negative imaginary transfer functions.

Remark 5. The advantages of adopting the negative imaginary
approach, compared to the positive real approach, are twofold:
(1) the relative degrees of negative imaginary systems are between
zero and two while positive real systems must have a relative
degree of zero or one; and (2) the strictly negative imaginary
frequency conditions need not hold at all frequencies while strictly
positive real frequency conditions do.

Remark 6. Theorem 2 could be considered as a generalization of
the positive position control results in Moheimani et al. (2006)
and Fanson and Caughey (1990). In Moheimani et al. (2006) and
Fanson and Caughey (1990), both the plants and the controllers
are described by second-order differential equations, and in
fact strictly negative imaginary systems. For a lossless negative
imaginary system, a strictly negative imaginary controller can be
used to stabilize the system as long as the conditions stated in
Theorem 2 are satisfied. The design of such a strictly negative
imaginary controller will be illustrated in the next section.

5. Illustrative example

To illustrate the main results of this paper, we consider a
robust active vibration control problem. The flexible structure
to be stabilized is an MIMO undamped mass–spring plant as
depicted in Fig. 2. The displacement outputs and the force inputs
are collocated, and denoted by q1, q2, f1 and f2, respectively. The
parameters m1 > 0,m2 > 0, k1 > 0 and k2 > 0 are assumed
to be unknown but belong to known intervals: m1 ∈ [m1,m1],
m2 ∈ [m2,m2], k1 ∈ [k1, k1], k2 ∈ [k2, k2]. Any uncertain
parameters in those intervals are called admissible uncertainties.
A robust stabilizing dynamic controller is to be designed to reduce
the vibration exponentially when the flexible structure suffers
from external impulse disturbances or nonzero initial conditions.

By letting

q =


q1
q2


, f =


f1
f2


, x =


q
q̇


,

M =


m1 0
0 m2


, K =


k1 + k2 −k2
−k2 k2


,

the ordinary differential equations describing the motion of the
uncertain flexible structure in Fig. 2 are given by

Mq̈ + Kq = f .
Fig. 2. An MIMO undamped flexible structure.

These equations represent the general case of Mq̈ + Eq̇ + Kq = f
when the damping matrix E is negligible. Note that the above
equations canmodel a large class of practical systems, such as large
space structures (Fanson & Caughey, 1990) and active structures
(Moheimani et al., 2006).

The corresponding state-space equation is
ẋ = Ax + Bf ,
q = Cx + Df ,

where x is the system state, f is the control force input, and q is the
measured displacement output. The system matrices are given by

A =


0 I

−M−1K 0


, B =


0

M−1


,

C =

I 0


, D = 0.

Note that (A, B, C,D) is aminimal state-space realization, andM >
0, K > 0.

To illustrate the Lossless Negative Imaginary Lemma, we note
firstly that det(A) ≠ 0, and D = DT . That is, condition 1 in
Theorem 1 holds. Secondly, the real positive definite matrix

Y =


K−1 0
0 M−1


is found to satisfy AY + YAT

= 0 and B + AYCT
= 0. That is,

condition 2 in Theorem 1 is satisfied. Applying Theorem 1, we can
conclude that P(s) , C(sI − A)−1B + D is a lossless negative
imaginary transfer function. In other words, the undamped
mass–spring flexible structure is a lossless negative imaginary
system.

In view of Theorem 2, the uncertain flexible structure P(s)
can be robustly stabilized by any controller C(s) which is strictly
negative imaginary and satisfies C(∞) ≥ 0 and λmax(C(0)) <

1
λmax(P(0))

for all admissible parameter uncertainties. Note that
the maximum eigenvalue of P(0) is found to be λmax(P(0)) =

k1+2k2+
√

k21+4k22
2k1k2

, which is upper bounded by
k1+2k2+


k21+4k22

2k1k2
.

To illustrate the use of Theorem 2 in this example, we now
present several simulations. The lower bounds on the uncertain
parameters in the flexible structure are assumed to bem1 = m2 =

k1 = k2 = 0.9 and the upper bounds are assumed to be m1 =

m2 = k1 = k2 = 1.1. A strictly negative imaginary controller
is simply chosen as C(s) =

ϵ
s+α I , where α = 1 and ϵ = 0.2. It

can be verified that λmax(C(0)) <
2k1k2

k1+2k2+

k21+4k22

< 1
λmax(P(0))

for

all admissible parameter uncertainties. The structure parameters
are assumed to be k1 = m2 = 0.9 and k2 = m1 = 1.1. The
initial condition of the structure is given by q1(0) = 2, q̇1(0) = 0,
q2(0) = −2 and q̇2(0) = 0, and the controller is assumed to have
zero initial condition. The initial condition responses of the flexible



J. Xiong et al. / Automatica 48 (2012) 1213–1217 1217
Fig. 3. Initial condition response of the flexible structure without control.

Fig. 4. Initial condition response of the flexible structure with control.

structure without control and with control are shown in Figs. 3
and 4, respectively. It can be seen from the simulations that the
structure vibrations were reduced exponentially by the designed
controller.

6. Conclusions

This paper has studied the lossless negative imaginary proper-
ties of square real-rational proper transfer functions. Dynamical
systems with lossless negative imaginary transfer functions have
applications in the control of lossless electrical circuits and posi-
tive position feedback control of undamped flexible structures. The
Lossless Negative Imaginary Lemmawas derived for transfer func-
tions that are lossless negative imaginary. Moreover, a necessary
and sufficient condition was established for the stabilization of a
lossless negative imaginary system using a strictly negative imag-
inary system. Finally, the developed theory in the paper was illus-
trated by an uncertain flexible structure example.
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