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Abstract It is possible to define an analog of the Rie-
mann tensor for N th order Lovelock gravity, its character-
izing property being that the trace of its Bianchi derivative
yields the corresponding analog of the Einstein tensor. Inter-
estingly there exist two parallel but distinct such analogs and
the main purpose of this note is to reconcile both formula-
tions. In addition we will introduce a simple tensor identity
and use it to show that any pure Lovelock vacuum in odd
d = 2N + 1 dimensions is Lovelock flat, i.e. any vacuum
solution of the theory has vanishing Lovelock–Riemann ten-
sor. Further, in the presence of cosmological constant it is the
Lovelock–Weyl tensor that vanishes.

1 Introduction

In order to write an equation of motion for Einstein gravity,
one has to obtain a divergence free second rank symmetric
tensor constructed solely from the metric and the Riemann
curvature – the Einstein tensor. This is usually done by vary-
ing the Einstein–Hilbert action, the scalar curvature R, rel-
ative to the metric tensor. Alternatively one can obtain the
same result by invoking the differential geometric property
that the Bianchi derivative of the Riemann tensor identically
vanishes – the Bianchi identity. From the trace of this iden-
tity we can then extract the required Einstein tensor. This is
a very neat and elegant purely geometric way to get to the
equation of motion.

The most natural generalization of Einstein gravity in
higher dimensions is Lovelock gravity, whose equation of
motion inherits the basic property of being second order,
though polynomial in curvature. The natural question then
arises, could the same geometric method used for Einstein
gravity also work for Lovelock theories? The answer is yes. In
[1], one of the authors defined an N th order Lovelock analog
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of the Riemann curvature, which is a homogeneous polyno-
mial in the Riemann tensor. Even though this tensor does not
satisfy the Bianchi identity, the trace of its Bianchi deriva-
tive vanishes yielding the N th order Lovelock analog of the
Einstein tensor. This tensor agrees with the one obtained by
varying N th order Lovelock Lagrangian and is divergence
free.

There is an alternative formulation due to Kastor [2] that
also leads to the definition of a different higher order analog of
the Riemann tensor. His construction has a much richer geo-
metric structure as it involves a 4Nth rank tensor as its basic
object. This higher rank tensor does satisfy the Bianchi iden-
tity, i.e. its Bianchi derivative vanishes, and again the trace
of this identity leads to the corresponding Einstein analog.
Interestingly the analog tensors obtained in Dadhich’s and
Kastor’s formulations agree and therefore lead to the same
equation of motion. Both descriptions are dynamically equiv-
alent. This had to be the case as the Lovelock Lagrangian is
unique at each order. The main aim of this note is to reconcile
these two parallel formulations and also to illuminate a uni-
versal property of pure Lovelock gravity that distinguishes
between odd d = 2N + 1 (the critical dimension) and even
2N + 2 (or higher) dimensions. Dadhich et al. [4] consid-
ered pure Lovelock static vacuum solutions and established
that pure Lovelock gravity in odd d = 2N + 1 dimensions
is kinematic, i.e. whenever the Love-lock-Ricci vanishes so
does the corresponding Riemann. That is, pure Lovelock vac-
uum in critical odd dimension is Lovelock flat, as is the case
for N = 1 Einstein gravity in 3 dimension. Based on this
result, Dadhich [5] conjectured that this should be true not
only for static vacuum solutions but in general for all vacuum
spacetimes. It would be a universal gravitational property.
However, it later turned out that this is not true in general for
Dadhich’s Lovelock–Riemann tensor while it actually holds
for Kastor’s analog [2]. This is a purely algebraic property
due to the fact that we can write Kastor’s 4Nth rank ten-
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(N )R

(4N ) (therefore also all its contractions) in terms
of the Lovelock–Ricci (or equivalently the corresponding
Lovelock–Einstein, (N )Ea

b). As we will describe below, in
d = 2N + 1 we can write

(N )R
b1...b2N
a1...a2N

= 1

(2N )!ε
b1...b2N+1 εa1...a2N+1 (N )Ea2N+1

b2N+1
.

(1)

Notice that this also fixes completely the form of (N )R
(4N ) in

the presence of a cosmological constant. Drawing again par-
allels with three dimensional general relativity we will show
that there is also a higher order analog of the Weyl tensor that
vanishes in that case. In order to prove these properties, we
will introduce an interesting set of tensorial identities. These
imply a set of identities previously proposed by Kastor, even
though are implemented in a simpler and more geometrically
transparent way.

Lovelock gravities are a very interesting set of theories and
have been used in many contexts with very diverse applica-
tions (see for instance [3] for a recent review). They can be
viewed as a model of ghost free higher curvature/derivative
gravity as Lovelock gravity captures many of the defining
features of those theories while avoiding some of their prob-
lems, in particular the existence of higher derivative ghosts.
Lovelock gravities have also been instrumental in exploring
the role of higher curvature corrections in the holographic
context.

The paper is organized as follows: we will first review
Kastor’s formulation that can be suitably described in the
language of differential forms. This will be particularly con-
venient for the derivation of the Bianchi identities for the new
higher order tensors, and also to introduce some simple tensor
identities. Using these we will find a much more direct route
to show the kinematicity of pure Lovelock gravity in odd
critical dimensions. Next we reconcile the two formulations
showing their equivalence and we end with a discussion.

2 Kastor’s formulation

The starting point of Kastor’s construction [2] is a (2N , 2N )-
rank tensor product of N Riemann tensors, completely anti-
symmetric, both in its upper and lower indices,

(N )R
b1b2...b2N
a1a2...a2N

= R[b1b2[a1a2
. . . Rb2N−1b2N ]

a2N−1a2N ]. (2)

With all indices lowered, this tensor is also symmetric under
the exchange of both groups of indices, ai ↔ bi . In a similar
way we will denote the contractions of (N )R

(4N ) simply as

1 The lower index indicates the curvature order of the Lovelock term
in the action, whereas the upper index corresponds to the tensor rank.
Thus contractions of (N )R

(4N ) will be denoted (N )R
(2n), for n < 2N .

(N )R
b1b2...bJ
a1a2...aJ = (N )R

b1b2...bJ cJ+1...c2N
a1a2...aJ cJ+1...c2N ; ∀ J < 2N .

(3)

We will use Latin indices generally. When the difference
between tangent space and coordinate frames is needed, the
latter indices will be denoted with Greek letters. In what
follows we will omit the index (N ) indicating the Lovelock
or curvature order except when not clear from the context.

Rather than working with tensors, in some cases it is con-
venient to use the language of differential forms and the exte-
rior algebra. This is particularly useful for Lovelock gravities
as it makes the expressions much more compact and simpli-
fies many manipulations. Recalling the relation between the
curvature 2-form and the Riemann tensor,

Rab = 1

2
Rab

μν dxμ ∧ dxν,

we can use (2) as components of a 2N form which is the
antisymmetrized wedge product of N curvature 2-forms,

R
b1b2...b2K
(N ) = R[b1b2 ∧ · · · ∧ Rb2N−1b2N ]. (4)

From this 2N -form it is trivial to construct both the Lovelock
action and its corresponding equation of motion. We just need
to complete a d-form with vielbeins and contract with the
antisymmetric symbol,

L = 2N

(2N )!(d − 2N )!εa1a2...ad

×R
a1a2···a2N ∧ ea2N+1 ∧ · · · ∧ ead , (5)

Eb
c = 2N (d − 2N )

(2N )!(d − 2N )! εa1a2...ad−1c

×R
a1a2···a2N ∧ ea2N+1 ∧ · · · ∧ ead−1 ∧ eb. (6)

Notice that the antisymmetrization of the upper indices of
R is completely irrelevant for constructing the action or the
equation of motion. We could have defined an analogous
tensor without antisymmetrizing the upper indices and the
above formulas would have remained unchanged. However,
all extra terms introduced this way would be irrelevant as
they are zero upon contraction with the antisymmetric sym-
bol. Thus theR(4N ) tensor encodes all the relevant dynamical
information with the minimal number of independent com-
ponents.

The expressions and derivation of Bianchi identities are
also simpler in differential form language. This will also be
true for the Bianchi identities associated with these new ten-
sors that, due to their high degree of symmetry, have a very
simple form. Let us first step back a bit and explain how
Bianchi identities arise in the case of Einstein–Hilbert grav-
ity. In differential form language, the torsion and curvature
forms are introduced via Cartan’s structure equations,

T a = Dea = dea + ωa
b ∧ eb, (7)

Ra
b = dωa

b + ωa
c ∧ ωc

b ,
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for which we have introduced a covariant exterior derivative,
D, with the corresponding connection 1-form ωa

b, in addi-
tion to the usual exterior operator d. In the Lovelock case,
we may take the usual metric variation of the action to obtain
the equation of motion or, instead, take independent varia-
tions with respect to vielbein and spin connection. The two
approaches yield the exact same result, the equation coming
from the ω-variation being proportional to the torsion and
thus zero by assumption.

From Eq. (7) it is easy to derive the corresponding Bianchi
identities just using the nilpotency of the exterior derivative,
i.e. d2 = 0 identically. Notice, however, that the covariant
derivative D is not nilpotent. The Bianchi identities can be
written simply as

DTa = Ra
b ∧ eb,

DRab = 0. (8)

For vanishing torsion, expressing the above in components,
we recover the well-known expressions

Ra
[bcd] = 0,

Rab
[μν;α] = 0. (9)

These expressions have a very easy generalization for N th
order Lovelock gravity. In the same way as for the curvature
2-form, we can take the exterior covariant derivative of R

and write

DR
a1a2...a2N = NDR[a1a2 ∧ Ra3a4 ∧ · · · ∧ Ra2K−1a2K ] = 0

(10)

or again in components

R
a1a2...a2N
[μ1μ2...μ2N ;ν] = 0. (11)

On taking the trace of this identity we get Ea
b;a = 0 from

where we can then extract the required divergence free
Lovelock–Einstein tensor (6). In terms of contractions of
R

(4N ), namely the Lovelock–Ricci tensorRa
b and the respec-

tive scalar R, it can be written as

Ea
b = −(2N + 1)δ

aa1...a2N
bb1...b2N

R
b1...b2N
a1...a2N

= 2NR
a
b − δabR.

(12)

In order to obtain the other Bianchi identity we need to
contract R(4N ) with a vielbein to get

R
a1a2...a2N ∧ ea1 = 0 (13)

or equivalently in components,

R
a1a2...a2N−1
[a2N b1b2...b2N ] = 0. (14)

These generalized Bianchi identities trivially reduce to the
usual ones for N = 1.

In deriving the form of Ea
b we have made use of a couple

of very handy identities. The first one allows us to rewrite a
contraction of antisymmetric symbols in terms of antisym-
metrized products of δ-functions,

εa1...akck+1...cd εb1...bkck+1...cd = −k!(d − k)!δa1...ak
b1...bk

, (15)

where

δ
a1a2...an
b1b2...bn

= δ
a1[b1

δ
a2
b2

. . . δ
an
bn ] = δ

[a1
b1

δ
a2
b2

. . . δ
an ]
bn

. (16)

Equation (15) is valid for Lorentzian signature, having oppo-
site sign in the Euclidean case. The second useful expression
involves contractions of the latter

δ
aa1...a2N
bb1...b2N

= 1

2N + 1

(
δabδ

a1...a2N
b1...b2N

− 2Nδa[b1
δ
a1...a2N|b|b2...b2N ]

)
.

(17)

This formulas will prove extremely useful to carry out the
computations contained in the rest of this note.

3 Tensor identities and kinematicity

Three dimensional Einstein gravity is kinematic, it does not
have local degrees of freedom. This is due to the fact that in
three dimensions the Riemann tensor is completely fixed by
the Ricci and vice versa. This can already be seen at the level
of the number of independent components, both having six,
and we can explicitly write

Rab
cd = 4δ

[a
[c R

b]
d] − δ

[a
[c δ

b]
d]R. (18)

Equivalently we can just say that the Weyl tensor identically
vanishes in three dimensions, this being also true in the pres-
ence of cosmological constant. The equation of motion in
vacuum thus fixes completely the form of the Riemann cur-
vature that in turn fixes the metric up to diffeomorphism. The
metric itself has to be that of a maximally symmetric space
and no local degrees of freedom can propagate.

Higher order analogs of Eq. (18) have been derived in [2].
There, a new set of dimensional dependent identities has been
used to write the 4Nth rank tensor R in terms of its contrac-
tions in dimensions d < 4N . The way these identities appear
is easy to understand. Notice that the expression of R(4N ) in
Eq. (2) is antisymmetrized over sets of 2N indices. Thus this
tensor vanishes for dimensions d < 2N and that is the reason
for the corresponding Lovelock term to become trivial. We
can now antisymmetrize over bigger sets of indices respect-
ing the symmetry properties of the above tensor, i.e. we may
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define

A
b1b2...b2N
a1a2...a2N

= δ
b1b2...b2N c1c2...c2N
a1a2...a2N d1d2...d2N

Rd1d2
c1c2

. . . Rd2N−1d2N
c2N−1c2N

= δ
[b1[a1

δb2
a2

. . . δb2N
a2N

R
c1...c2N ]
c1···c2N ] (19)

antisymmetrizing over sets of 4N indices. This new tensor,
which can be written explicitly in terms of R(4N ) and its con-
tractions, vanishes for dimensions d < 4N . Interestingly, we
get a way of writing R

(4N ) completely in terms of its con-
tractions below that dimensionality. Further, we can define
similar tensors reducing the number of free indices on each
set,

A
b1b2...b2N−J
a1a2...a2N−J = δ

[b1[a1
δb2
a2

. . . δbJaJ R
c1...c2N ]
c1···c2N ], (20)

for all 0 < J < 2N . This tensor will vanish for d < 4N − J
and will allow us to write the J th contraction of R(4N ) in
terms of lower contractions below that threshold dimen-
sion. These identities were used by Kastor [2] in order to
prove that in all odd d = 2N + 1, the 4Nth rank tensor
R

(4N ) can be written completely in terms of its correspond-
ing Lovelock–Ricci. Therefore whenever the latter vanishes
so does the former. This is, however, not the case in the next
even d = 2N + 2 dimension or higher. Depending on the
number of free indices these tensors (N )A

(2n) correspond to
various structures appearing in Lovelock gravity, for instance
the equations of motion themselves, (N )A

(2), or the tensor
multiplying the linearized Riemann in the linearized equa-
tions of motion, (N−1)A

(6).
The above construction based on identities looks simple,

however, it may become very cumbersome when it comes to
derive explicit expressions. In d = 2N + 1 dimensions, for
example, in writing explicitly the 4Nth rank tensor in terms of
the corresponding Lovelock–Ricci, one has to write down the
explicit expressions of the 2N −1 identities available for that
dimensionality and combine them to get the desired expres-
sion. In the next few paragraphs we will describe a much
more elegant and efficient way of deriving these expressions
based on the use of the Hodge duality. In fact, we will intro-
duce a single tensor identity, basically (��R(4N )��) = R

(4N )

(see details below), that will imply all of those used by Kas-
tor and has lots of potential applications in the context of
Lovelock gravity. In particular, as stated in the introduction,
this will lead directly to our Eq. (1).

Our starting point is the basic observation that antisym-
metric tensors of ranks n and (d − n) have the same num-
ber of independent components. In fact there is a reversible
map between the two equivalent representations, namely the
Hodge duality, which basically amounts to a contraction with
the antisymmetric symbol,

(�T )an+1...ad = 1

n!εa1a2...anan+1...ad T
a1a2...an . (21)

One important advantage of this transformation is that it is
easily reversible. Applying it twice we get, up to sign, the
original tensor,

(��T )a1...an = 1

n!(d − n)!T
b1...bnεb1...bd ε

bn−1...bda1...an

= (−1)1+n(d−n) T a1...an . (22)

In the present case we are also dealing with antisymmetric
sets of indices, the only difference being that the tensor of
interest has two such sets instead of just one. Either way we
can still apply the dual map to each set separately and get an
equivalent (d − 2N , d − 2N )-tensor as

(�R�)
b1b2...bd−2N
a1a2...ad−2N × =

(
1

(2N )!
)2

εb1b2...bd−2N c1c2...c2N

εa1a2...ad−2N d1d2...d2N R
d1d2...d2N
c1c2...c2N

(23)

the new tensor verifying �(�R(4N )�)� = R
(4N ). For d < 4N

the new tensor will be of lower rank as compared to the orig-
inal R(4N ). In fact (�R�)(2d−4N ) will be given by a particular
combination of contractions of R(4N ) in that case. Therefore,
applying the Hodge star again we recover the original tensor
R

(4N ), now expressed in terms of its contractions. This is
precisely the identity we were looking for. In particular we
can recover all of Kastor’s identities from this single one.

Notice that Eq. (23) is very similar in form to the
Lovelock–Einstein tensor (6). In the critical dimension, d =
2N + 1, we actually get

(�R�)ba = 1

(2N )! E
b
a = 1

(2N )!
(
2NR

a
b − δabR

)
(24)

and vice versa,

R
b1...b2N
a1...a2N

= 1

(2N )!ε
b1...b2N+1 εa1...a2N+1Ea2N+1

b2N+1
, (25)

making explicit what we wanted to prove. When the
Lovelock–Ricci tensor vanishes (or equivalently Ea

b) the
whole tensor R(4N ) vanishes as well, along with all its con-
tractions.

In dimensions above the critical one this does not directly
apply. In particular, in d = 2N+2 dimensions in order for the
tensorR(4N ) to be identically zero, not just the corresponding
Ricci has to vanish but also the Lovelock–Riemann has to be
zero. This can easily be guessed as (�R�)(2d−4N ) is a (2,2)-
tensor in this case. More explicitly, we may write

(�R�)abcd = −1

(2N )!
[
2δ

[a
[c δ

b]
d]R − 8Nδ

[a
[cR

b]
d]

+ 2N (2N − 1)Rab
cd

]
, (26)

and the whole tensor R(4N ) is given in terms of its Lovelock–
Riemann and its contractions. The higher we go in dimension,
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the higher the rank of the contractions involved in the expres-
sions for (�R�)(2d−4N ) and R

(4N ). In Kastor’s approach, this
is reflected in the fact that we have less identities to play with.

As a check of our formulas we can compute the rank four
Lovelock–Riemann tensor in terms of its double dual tensor
in d = 2N + 2,

R
ab
cd =−(2N − 2)!

[
δ
[a
[c δ

b]
d](�R�) − 4δ

[a
[c (�R�)

b]
d] + (�R�)abcd

]

(27)

then, plugging in the explicit expression of (�R�)(2d−4N ) and
its contractions, we can see that in fact the right hand side
yields R

ab
cd . We can also check that the Lovelock–Einstein

tensor can be written as

(�R�)ac = (�R�)abcb = 1

(2N )!E
a
c, (28)

a contraction of (�R�)(2d−4N ) in d = 2N + 2 (and also
in higher dimensions). To make again contact with Kastor’s
approach, the non-vanishing tensor (N )A

(2n) with the maxi-
mum number of free indices, n = d − 2N , is proportional
to (�R�)(2d−4N ). From this, lower rank A-tensors can be
obtained taking traces.

The previous discussion can be trivially modified to
include a nonzero cosmological constant, the above equa-
tions being still valid in that case. We just have to modify the
equation of motion as

Ea
b = λδab , (29)

such that, instead of zero, the Lovelock–Ricci tensor is now
proportional to the metric. In odd critical dimensions we can
again use Eq. (25) and verify that the form of the tensor R is
completely fixed to

R
a1...a2N
b1...b2N

= λδ
a1...a2N
b1...b2N

. (30)

Analogously to what happens for Einstein gravity we can
define a Lovelock–Weyl tensor

W
ab
cd = R

ab
cd − 4

d − 2
δ
[a
[cR

b]
d] + 2

(d − 1)(d − 2)
δ
[a
[c δ

b]
d]R

(31)

that then vanishes in odd d = 2N + 1 dimensions whereas
it is completely unconstrained in d = 2N + 2 or higher. In
[6] other higher order analogs of the Weyl tensor have been
constructed that vanish for d < 4N [7]. A key feature of
the Weyl tensor is that under a conformal transformation it
transforms by an overall rescaling, and therefore conformally
flat spacetimes have vanishing Weyl curvature. This property
is also true for the higher order Weyl tensor of [6,7] but not for
our Lovelock–Weyl tensor, even for d = 2N+2 dimensions.
This can be checked simply by taking the double Hodge dual

of Eq. 25 of [7] and realizing that the dual of the second term
of the right hand side is not of a pure trace form, i.e. δ

[a
[c 	̃

b]
d].

To sum up, in any dimension we can always writeR(4N ) =
�(�R(4N )�)� and thus express R(4N ) in terms of (�R�)(2d−4N ).
For low enough dimension, d < 4N , the dual tensor itself
will be a combination of contractions of R(4N ) with the same
number of free indices. In d = 2N , (�R�)(0) ∼ L is just a
scalar, which means that R(4N ) can be written solely in terms
of the Lovelock scalar, in d = 2N + 1 it can be written in
terms of the Lovelock–Ricci and its trace, in d = 2N +2 we
need to include also the rank four contraction and so on.

The above discussion implies that, for pure Lovelock grav-
ity in the critical dimensionality, the vacuum equation of
motion (with or without cosmological constant) Ea

b = λδab
completely fixesR(4N ) and all its contractions. Thus we have
proved in a very direct way that pure Lovelock gravity is
kinematic in all odd d = 2N + 1 dimensions, its Lovelock–
Riemann tensor is completely fixed, generalizing the well-
known three dimensional property. However, unlike in d = 3
this does not fix completely the Riemann curvature, thus our
solutions are not locally maximally symmetric spaces and
we have in general propagating degrees of freedom. For zero
λ we can rephrase this by saying that any solution of pure
Lovelock is Lovelock flat even though the Riemann curva-
ture is not necessarily zero. For nonzeroλ the Lovelock–Weyl
tensor is zero but still the Weyl tensor does not necessarily
vanish. The implications of this for the dynamics of pure
Lovelock theories are still unclear.

4 Kastor–Dadhich reconciliation

As we have described in the previous section, Kastor’s ten-
sors contain all the relevant information from which we can
reconstruct action and equation of motion in any pure Love-
lock theory. In this way, any other formulation that cannot be
obtained from this one would contain more information on
the spacetime that does not enter either the action or the cor-
responding Lovelock–Einstein tensor. In particular, Kastor’s
4Nth rank tensor is totally antisymmetric on each set of 2N
indices and symmetric under exchange of both sets. In addi-
tion, the dualization procedure allowed us to write R

(4N )

in terms of its contractions in low dimensions, d < 4N .
This reduces the information contained in R

(4N ) to the min-
imal possible amount still capturing the whole dynamics.
Any extra information is thus irrelevant from this point of
view. We can rephrase the dynamical information contained
inR(4N ) in terms of its contraction of rank (d−2N , d−2N ),
i.e. the Lovelock–Ricci tensor in the critical d = 2N +1, the
fourth rank Lovelock–Riemann tensor in d = 2N + 2, and
so on.

Dadhich [1] proposed a different set of tensors as a suitable
tool for describing the dynamics of pure Lovelock gravity.
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For it to be equivalent to Kastor’s description, it should be
possible to write everything in terms of R(4N ). We will see
that this is actually not possible and that we will need to add
a new tensor structure to the ones used by Dadhich in order
to recover Kastor’s Lovelock–Riemann. The basic object in
Dadhich’s formulation is a fourth rank Riemann analog ten-
sor which is a N th order homogeneous polynomial in the
Riemann curvature. It is given by

Rabcd = Fabcd − N − 1

N (d − 1)(d − 2)
F (gacgbd − gadgbc)

(32)

where

Fcd
ab =

(
δ
mna1b1...aN−1bN−1
abc1d1...cN−1dN−1

Rc1d1
a1b1

. . . RcN−1dN−1
aN−1bN−1

)
Rcd

mn

= R[c1d1[c1d1
· · · RcN−1dN−1]

cN−1dN−1
Rcd

ab]. (33)

Written in this way the tensor F looks very similar to the
Riemann contraction of R, except that upper indices are not
completely antisymmetrized. The contracted indices can be
considered as antisymmetrized as lower indices are, but not
the whole set. We shall now extract the difference between
the two classes of tensors. Comparing the above F with the
fourth rank Lovelock–Riemann in Kastor’s formulation,

R
cd
ab = R[c1d1[c1d1

· · · RcN−1dN−1
cN−1dN−1

Rcd]
ab], (34)

we can easily see that F is not symmetric under the exchange
of both pairs of indices (when all lowered), whereas this
contraction of R(4N ) is. By repeatedly using Eq. (17), Rcd

ab
can be rewritten as

R
cd
ab = 1

N (2N − 1)

(
[1 + (N − 1)(2N − 3)] Fcd

ab

− 4(N − 1) Rca1[abR
db1
a1b1

· · · RaN−1bN−1
aN−1bN−1]

)
.

(35)

The difference between R
ab
cd and the corresponding F is the

second term in the bracket, which is the only other tensor that
can be written respecting all the relevant symmetries. Both
structures are equal in the trivial case of N = 1. Note that
Lovelock–Ricci tensors arising from F and R are the same,

R
a
b = Fa

b, (36)

but this does not mean that the extra contribution is traceless.
Instead we can write

Rca1[abR
bb1
a1b1

. . . RaN−1bN−1
aN−1bN−1] = −R

cb
ab = −R

c
a, (37)

which clearly leads to (36). The contractions of the other
fourth rank tensor Rabcd are different though because of the
scalar piece in (32),

Ra
b = R

a
b − N − 1

N (d − 2)
Rδab , (38)

giving a different normalization to the corresponding scalar,

R = d − 2N

N (d − 2)
R. (39)

This difference pops up also in the corresponding Lovelock–
Einstein tensors that have different normalizations for their
Ricci and scalar pieces,

Ea
b = 2N

(
Ra

b − 1

2
Rδab

)
= 2NR

a
b − Rδab (40)

and upon contraction we get

Ea
a = −N (d − 2)R = −(d − 2N )R. (41)

Kastor’s parametrisation makes explicit the fact that in d =
2N the Lovelock action (or R) is a topological density (not
necessarily zero) and its variation is therefore zero, Ea

a =
0. In Dadhich’s case, this fact gets obscured by the extra
(d − 2N ) factor in the normalization of R, which vanishes
as well for d = 2N .

4.1 Pure Gauss–Bonnet check

As a check of the above expressions we will analyze the
N = 2 case of pure Gauss–Bonnet (GB) gravity for which
we may compute

R
cd
ab = 1

3

(
Fcd

ab − 2Rca1[abR
db1
a1b1]

)
(42)

and

Fcd
ab = 1

6

(
RRcd

ab + 4Rcd
k[a R

k
b] + Rcd

kl R
kl
ab

)
. (43)

Let us also write the second term explicitly as

2Rca1[abR
db1
a1b1] = 2

3

(
R[c|k|

abR
d]
k − R[c

[a R
d]
b]

+ Rk[c
l[a R

d]l
b]k

)
. (44)

As we have seen in previous sections, in d = 2N + 1
dimensions (d = 5 in this case) the higher rank tensor R(4N )

vanishes for vacuum solutions of pure Lovelock gravity with
zero cosmological constant. This tensor is the double Hodge
dual of the Lovelock–Einstein tensor (see Eq. (25)). It van-
ishes whenever Ea

b = 0 and so does any of its contractions,
namely Kastor’s Lovelock–Riemann tensor. Moreover, we
know that both formulations agree at the Ricci tensor level.
Thus, whenever the Lovelock–Ricci vanishes in d = 2N +1
dimensions, F and the second term in Eq. (42) exactly cancel
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out each other. For spherically symmetric solutions it turns
out that F and the extra term vanish separately in d = 2N+1,
and that is the basis for Dadhich’s conjecture [4,5] for the
kinematicity of pure Lovelock gravity in odd critical dimen-
sions. As an example for which both contributions to the
Lovelock–Riemann are separately nonzero we can consider
a pure GB Kasner vacuum in five dimensions [8]. One such
metric is, for instance,

ds2 = −dt2 + t2p1dx2
1 + t2p2 dx2

2 + t2(3−p1−p2)dx2
3 + dx2

4 ,

(45)

where p1,2 are arbitrary constants. In this case the nonzero
F is canceled by the extra term to give R

ab
cd = R

(4N ) = 0.
In fact, in the context of Kasner type metrics, the different
properties displayed by Kastor’s and Dadhich’s analog Rie-
mann tensors allow for a characterization of this family of
solutions in the context of pure Lovelock, splitting them into
different classes or isotropy types [8].

5 Discussion

It is interesting that there are two parallel but distinct def-
initions of a higher order Lovelock–Riemann tensor lead-
ing to the same equation of motion. That is, the two con-
structions describe precisely the same gravitational dynam-
ics, even though there is a nontrivial difference at a kine-
matic level. This became apparent when a pure GB Kasner
vacuum solution was found in five dimensions [8] for which
Dadhich’s Lovelock–Riemann tensor did not vanish. Besides
this was in contradiction with a previous kinematicity con-
jecture [4,5]. Dadhich’s tensor did indeed vanish for spher-
ically symmetric pure GB vacuum solutions [4], and based
on that it was proposed that any pure Lovelock vacuum in all
odd d = 2N + 1 dimensions would be Lovelock flat. A pre-
cise realization of this kinematicity property was nonetheless
provided by an alternative formulation put forward by Kastor
[2]. Kastor’s Lovelock–Riemann tensor does indeed vanish
for the Kasner vacuum solution in question. In fact this tensor
vanishes in all odd critical dimensions for any vacuum solu-
tion of pure Lovelock gravity, as we discussed. It became thus
pertinent to reconcile both formulations, and this is therefore
the main motivation of this investigation. Both Lovelock–
Riemann tensors differ in a piece that, remarkably, vanishes
in the spherically symmetric case and that is how it was not
noticed at first [4].

We have also revisited the kinematicity property and red-
erived it in a much more direct way by making extensive use
of the properties of the Hodge dual map. This is a unique and
universal distinguishing feature of pure Lovelock gravity in
all odd d = 2N + 1 dimensions which is shared by no other

theory. It stems from the fact that, for that critical dimen-
sionality, we can write the higher rank tensor R(4N ) as the
double Hodge dual of the corresponding Lovelock–Einstein
tensor. Thus R

(4N ) is completely fixed by the equations of
motion. It is important to note that this kinematicity is rela-
tive to the Lovelock–Riemann tensor and not to the Riemann
curvature. That is, the Lovelock–Riemann tensor vanishes
in d = 2N + 1 whenever the corresponding Lovelock–Ricci
vanishes, but the Riemann curvature may be nonzero. In turn,
in d = 2N + 2, the Lovelock–Weyl tensor is a priori unre-
lated to the equation of motion. This is in complete anal-
ogy with the behavior of Einstein gravity in three and four
dimensions and it can also be generalized in the presence
of a nonzero cosmological constant. Pure Lovelock gravity
thus unravels a new universal feature of gravity in higher
dimensions.

The fact that Dadhich’s Riemann analog vanishes, for
instance, for spherically symmetric pure Lovelock solu-
tions seems to indicate that this tensor being zero might
identify special properties of particular classes of solu-
tions. This intuition has been strengthen by the analysis
of pure Lovelock Kasner metrics [8]. These family of vac-
uum solutions can be divided into several classes and turns
out that we can use a set of fourth rank tensors, Rabcd ,
Rabcd and Rabcd , to characterize them. Given a particu-
lar solution in this family, one may identify which class it
belongs to by analyzing which tensors among those in the set
vanish.

Pure Lovelock theories posses many interesting proper-
ties. Besides the ones already mentioned, thermodynamic
parameters of pure Lovelock static black holes bear a univer-
sal relation to the horizon radius [9] and bound orbits exist in
all even d = 2N + 2 dimensions [10] in these spacetimes. It
should be pointed out that for Einstein gravity bound orbits
around a static black hole exist in 4 dimensions only. All this
strongly suggests that pure Lovelock equation is the right
equation to describe the gravitational dynamics in higher
d = 2N + 1, 2N + 2 dimensions [5] such that we preserve
many interesting properties that Einstein gravity has only for
three or four dimensions.
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