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ABSTRACT: Cellulose nanofibrils (CNFs) in the form of hydrogels stand out as
a platform biomaterial in bioink formulation for 3D printing because of their low
cytotoxicity and structural similarity to extracellular matrices. In the present study,
3D scaffolds were successfully printed with low-concentration inks formulated by 1
w/v % 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized CNF with
less than 1 w/v % gelatin methacrylate (GelMA). Quartz crystal microbalance with
dissipation monitoring (QCM-D) measurements showed strong interaction
between the two biopolymers. The UV cross-linking ability of GelMA (≤1 w/v
%) was enhanced in the presence of TEMPO-oxidized CNFs. Multiple factors
including strong physical interaction between CNF and GelMA, in situ cross-
linking of CNF by Ca2+, and UV cross-linking of GelMA enabled successful 3D
printing of low-concentration inks of CNF/GelMA into scaffolds possessing good
structural stability. The mechanical strength of the scaffolds was tuned in the range
of 2.5 to 5 kPa. The cell culture with 3T3 fibroblasts revealed noncytotoxic and
biocompatible features for the formulated inks and printed scaffolds. More importantly, the incorporated GelMA in the CNF
hydrogel promoted the proliferation of fibroblasts. The developed low-concentration CNF/GelMA formulations with a facile
yet effective approach to fabricate scaffolds showed great potential in 3D printing for wound healing application.

KEYWORDS: Low-concentration ink formulation, Cellulose nanofibrils (CNFs), Gelatin methacrylate (GelMA), UV cross-linking,
3D printing, Wound healing

■ INTRODUCTION

Three-dimensional (3D) printing allows the patterning of soft
biocompatible hydrogels into 3D tissue that mimic constructs,
generating intricately structured scaffolds that permit research-
ers to study cell−cell and cell−matrix interactions.1,2 Cellulose
nanomaterials, including cellulose nanocrystals (CNCs)3−7

and cellulose nanofibrils (CNFs), have attracted increasing
attention as bioink constituents for 3D bioprinting.8,9 This is
attributable to their low cytotoxicity, structural similarity to
extracellular matrices (ECM), and favorable rheological
properties. As the pioneer in this field, Gatenholm’s group
has largely contributed to the development of nanocellulose-
based bioinks from 2015 for different applications including
cartilage regeneration, human chondrocytes redifferentiation,
and adipose tissue engineering.10−16

As required in extrusion-based hydrogel printing, the
rheological property (i.e., flow behavior) of a well-defined
bioink must show shear thinning and thixotropic behaviors,
which is consistent with the nature of nanocellulose.3,17−19

Still, the most challenging aspect is to achieve good structural
stability of the printed constructs, particularly for the
fabrication of objects with complex geometries. Therefore, an
auxiliary material is preferable to be incorporated in CNF-
based bioink formulation, which imposes functionalities to aid
printability and good fidelity, as well as to increase ink
bioactivity.8,9 Common strategies include direct or indirect
solidification of printed objects by cross-linking either
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nanocellulose20,21 or the incorporated auxiliary materials. The
auxiliary materials can be natural or synthetic polymers that are
amenable to ionic cross-linking,16 photochemical cross-link-
ing,4 thermal cross-linking,13 or as a sacrificial supporter.22

Gelatin, a derivative of collagen, resembles the biological
structure of collagen in the native ECM tissues. Gelatin retains
its natural cell binding motifs, such as RGD peptides, which
improve cell responses such as cell adhesion, proliferation,
migration, and differentiation.23,24 Gelatin together with other
biopolymers such as alginate,25 collagen,26 and hyaluronic
acid27 has been formulated into hydrogel bioinks for
assessment in various biomedical applications. Moreover, the
methacrylated gelatin (GelMA) with favorable thermal
sensitivity and photo-cross-linking ability has been broadly
evaluated in bioink formulations.28−30 Low-concentration
GelMA (i.e., ≤5 %) bioinks are attractive because of their
relatively loose polymer network that can encourage cell−cell
interaction, migration, and more efficient metabolism.
Recently, Yin et al. successfully established a two-step cross-
linking strategy for bioprinting of 5−30 w/v % GelMA assisted
with thermal-sensitive gelatin.31 Shin et al. have reported 3D
printing of 5 w/v % GelMA by tuning its rheological property
with different concentrations of mechanically grinded CNF
suspensions. The interconnected pore network established by
such hydrogels benefits the cell viability and supports cell
proliferation as well.32

The approach used in the present study employs an
extremely low concentration of GelMA (≤1 w/v %) as the
auxiliary material for the TEMPO-mediated oxidized CNF
based bioink. Herein, the interaction between negatively
charged CNF and GelMA could not only regulate the viscosity
of the formulated bioinks but also facilitate the cross-linking of
low-concentration GelMA (≤1 w/v %). First, the bioinks of
CNFs and GelMA were formulated and optimized through
rheological studies and QCM-D measurements. Well-defined
and freestanding 3D hydrogel scaffolds of CNF/GelMA in
high resolutions were successfully fabricated via an extrusion-
based printing technique. Finally, the cytotoxicity and
bioactivity of the CNF/GelMA bioinks were assessed by cell
viability and cell proliferation of 3T3 fibroblasts.

■ MATERIALS AND METHODS

Materials. TEMPO-oxidized CNF (CNF) (1.0 w/v %) with
moderate charge density (1.14 ± 0.07 mmol/g) was produced by
TEMPO/NaClO/NaBr oxidation according to Liu et al.33 Gelatin
(porcine skin, type A, bloom number 300) was purchased from
Sigma-Aldrich. GelMA (DS 70 ± 8%) was produced from a reaction
with methacrylic anhydride.24,34 CaCl2 and 2-hydroxy-1-(4-(2-
hydroxyethoxy)phenyl)-2-methyl-1-propanone (Irgacure 2959) were
purchased from Sigma-Aldrich. PBS with 0.9 mM CaCl2 and 0.5 mM
MgCl2 was purchased from Sigma-Aldrich and used in all the studies
except cell studies.
Bioink Formulation. Bioink formulation was prepared using two

methods. In the first method, dried GelMA powder was mixed with
the CNF hydrogel (1.0 w/v %) at 50 °C using a vortex mixer
(FINEPCR, Korea) until GelMA was completely dissolved to produce
a homogeneous ink. Scheme 1 illustrates the procedure. The
compositional ratios between CNF and GelMA were 5:1 and 2:1
w/w (Table 1). The second method involved loading of 1 mL of 10
w/v % GelMA solution into 9 mL of CNF hydrogel to form
homogeneous ink CNF:GelMA=9:10. Irgacure 2959 was selected as
the photoinitiator and added to each ink with a final concentration of
0.5 w/v %.
Scaffold Fabrication. Scaffolds were fabricated with a customized

extrusion-based 3D printer KIMM SPS1000 Bioplotter (Machtronics

4 Technology, Korea). The KIMM Bioplotter software was used to
produce a G-code file for printing. A 3D scaffold model with
dimensions of 10 mm wide, 10 mm long, and 2 or 3 mm high was
designed with a 1 mm filament grid and 0.2 mm layer thickness. The
formulated bioinks were transferred to a 5 cc EFD syringe (Optimum
by Nordson EFD, USA), which was controlled by a pneumatic
dispensing head with a pressure regulator (AD 3000C, Iwashita
Engineering, Japan). Precision tips (25 and 30 GA, Nordson EFD,
USA) were used as the dispensing nozzles. 5% CaCl2 solution was
added dropwise on the substrate to stabilize the printed structure. UV
(365 nm) irradiation with an intensity of 10 mW/cm2 for 5 min was
applied to cross-link GelMA. The investigated printing parameters of
pressure and speed are listed in Table 1.

Characterization. Rheology. Rheology studies were carried out
on a Physica MCR 301 rheometer (Anton-Paar, Austria) with a cone-
plate geometry (ø 50 mm and 1°). The viscosity property was
recorded with shear rates of 0.01−100 s−1 at room temperature.
Oscillation measurements were performed on the inks under a
temperature linear ramp of 40 to 4 °C with constant strain at 1% and
sweep at 1.5 Hz. Yield stress of the inks was tested with varying shear
stress from 1 to 100 Pa. Storage and loss modulus during UV gelation
were tested under UV intensity at 10 mW/cm2.

Quartz Crystal Microbalance with Dissipation Monitoring
(QCM-D). The adsorption of GelMA on CNF was studied by
QCM-D using a Q-Sense E4 instrument (Q-sense, Vas̈tra Frölunda,
Sweden) according to the modified method from Österberg et al.,35,36

CNF dispersion was prepared by diluting the CNF hydrogel (1.0 w/v
% dry matter content) with Milli-Q water followed by ultrasonication
at 25% amplitude for 5 min using a Branson Digital Sonifier 450
(Branson Corporation, Danbury, CT). The diluted CNF dispersion
was then centrifuged at 8000 rpm for 30 min at room temperature
with a PrO-Research centrifuge (Centurion Scientific Ltd.) to
separate CNF fibrils from larger fibril bundles. The supernatant
fraction with the finest CNF fibrils (about 1.25 mg/mL dry matter
content) was collected for further use.

In order to enhance retention of CNF, polyethylene imine (PEI)
was preadsorbed on the surface of the gold-coated quartz crystals by
passing an aqueous PEI solution with a concentration of 0.2 mg/mL
through the QCM-D measurement chamber for 20 min, followed by
rinsing with DI water. Diluted CNF dispersion was then injected into
the QCM-D chamber for adsorption of the CNF layer onto the PEI-
modified QCM-D sensor for 20 min followed by rinsing with DI
water. Thereafter, the CNF-modified sensors were exposed to GelMA
solutions with gradient concentrations (based on weight ratios of 1:2,
1:5, and 10:9 relative to dry content of CNF). The adsorption of a 0.5
w/v % gelatin solution was also tested. The flow rate through the

Scheme 1. Schematic Illustration of Bioink Formulation and
Scaffold Printingaa

aFrom left to right: images of GelMA and CNF hydrogel and their
formulation process; simple illustration of direct ink writing (DIW)
printing working principle; optical microscopic images of printed
hydrogel scaffolds.
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QCM-D chambers was set to 40 μL/min and kept constant during
measurements.
Both the frequency and dissipation parameters were recorded

during the adsorption of material to the QCM-D sensor surface. The
significant positive shift in the dissipation parameter, relative to the
frequency, on adsorption of GelMA and gelatin to the sensor surface
is representative of the adsorption of a soft viscoelastic surface layer,
and therefore, a viscoelastic model is required to appropriately
characterize the material properties. Therefore, the Voigt model was
applied to the QCM-D data set using the Q-Sense QTools analysis
software Version 3.0.10.286 (Biolin Scientific AB). All experiments
were run in triplicate. The following input parameters within the
model provided the best fit for the layer density (1150 kg/m3), fluid
density (1020 kg/m3), layer viscosity (10−6 ≤ 10−2 kg/ms), layer
shear modulus (104 ≤ 108 Pa), and mass (1.15 ≤ 1.155 ng/cm2). The
third, fifth, and seventh overtones were used for modeling
calculations. According to the Sauerbrey equation (eq 1), the change
in frequency (Δf) is proportional to the mass adsorbed per unit
surface (Δm)

m
C f

n
Δ =

− Δ

(1)

where C is the sensitivity constant (here, C = 0.177 mg/m2) and n is
the overtone number (here, n = 3). Equation 1 is valid for thin, rigid,
and uniform films, but it underestimates mass for viscoelastic films,
when dissipation ΔD is >1.37 Therefore, the calculated mass values
presented are estimations and should not be considered as absolute
values.
Mechanical Tests. Compressive strength of the printed scaffolds

was measured with a Shimadzu EZ-L universal testing machine with a
10 N load cell controlled by the TRAPEZIUMX software. The
compression speed was set with a constant rate of 0.5 mm/min.
Compressive Young’s modulus was calculated using eq 2

E
F L

A L

0
=

×

× Δ (2)

where F (N) is the recorded compressive force, L0 (mm) is the
original height of the scaffold, A is the area of the scaffold in contact
with the upper compression plate (here, the scaffold with solid surface
of 10 × 10 mm was used), and ΔL is set with a constant displacement
of 2 mm.
Cast disc samples were also prepared for compression tests. The

uniform discs were cast by first injecting formulated inks into an 8.0
mm disc mold followed by adding CaCl2 solution for ionic cross-
linking; the cross-linked discs were then exposed to 5 min of UV
irradiation. The cast discs were stored in PBS/Ca2+ overnight prior to
compression tests.
AFM Surface Young’s Modulus Measurements. The surface

Young’s moduli of 3D printed scaffolds of either CNF or CNF/
GelMA scaffolds were measured using a JPK Nanowizard II AFM
(JPK Instruments AG, Berlin, Germany). Force measurements were
performed in PBS using a DNP-S10 silicon nitride cantilever (spring
constant ∼0.06 N m−1) with a 10 nm round tip. The spring constant
of each cantilever was calibrated using the thermal method, and the
deflection sensitivity was determined by performing a force
measurement on a clean glass slide in PBS prior to undertaking
measurements on the scaffolds. Force measurements were performed

at a minimum of three different locations on each scaffold, with five
separate measurements taken at each location and averaged. Three
separate scaffolds were analyzed for each material.

Swelling Tests. The printed hydrogel scaffolds were washed with
Milli-Q water to remove the excess Ca2+ and then frozen by liquid N2

prior to freeze-drying. When the freeze-dried scaffolds were
rehydrated with Milli-Q water, the gravimetrical water uptake was
measured after the excess water on the surface was carefully removed
with tissue paper. Then, the swelling ratio was calculated according to
eq 3.

m m

m
swelling ratio (g/g)

wet dry

dry

=
−

(3)

Optical Microscopy and Scanning Electron Microscopy. The
microscopic images of the printed scaffolds were observed using a
LEICA M205A optical microscope. The filament diameter was
calculated on the average of 20 filaments among the printed scaffolds.
Morphological features of the scaffold strut were characterized by
scanning electron microscopy (SEM) after freeze-drying.

Quantitative Cell Viability MTT Assay and Cell Attachment
Assay. 3T3 fibroblast cells, which were isolated from E12 SVJ129
mouse embryos to establish 3T3 cells in the lab, were maintained with
DMEM (4.5 mM glucose) supplemented with 2 mM L-glutamine, 100
IU/mL penicillin and streptomycin, and 10% heat-inactivated FBS
(Invitrogen) and were incubated with 5% CO2 at 37 °C and 95%
humidity. The 2D control cells are the cells growing on coverslips.
After splitting, the initial cell seeding density was 1 × 105 cells/1.9
cm2, and once the cell suspension had been in contact with the matrix
for 12 h, nonadherent cells were washed off and the plate were frozen
for 30 min at −70 °C. The 24 well plates were then thawed, and cells
were stained in 0.5% crystal violet dye for 20 min. After washing,
samples were fixed with methanol for 20 min, and then the optical
density of each well was determined at 570 nm (OD570) with the
microplate reader. Similarly, cytotoxicity evaluation of the 3D matrix
was performed after 24 h of cell incubation using the MTT kit
(Sigma) according to the supplier’s manual. The optical density of
each well in 24 well plates was immediately measured at 570 nm using
the microplate reader and with wavelength higher than 650 nm to
subtract the background.

Confocal Image Analysis of Cells on the Scaffolds. Cells were
incubated with the 3D matrix in the cell culture medium for 72 h.
Then, cell samples were fixed with 3.7% paraformaldehyde for 30 min
followed by a mixture of acetone and methanol (1:1) for 5 min in ice.
Triton X (0.2%) in PBS was used to permeabilize the cell membranes,
and 10% FBS in Triton X-100 and PBS was used for blocking for 2 h.
The cells were stained with Phalloidin conjugated with Alexa Fluor
546 for 3 h and counterstained with DAPI blue for 5 min before being
mounted onto the glass slides. Confocal images were acquired at
room temperature using Zeiss Zen software on a Zeiss LSM780
confocal laser scanning microscope (Carl Zeiss, Inc.) with Plan-
Apochromat 20×. The following fluorochromes were used: Alexa
Fluor 546 and 405.

Statistical Analysis. The results are expressed as mean ± STDEV.
Comparisons between two groups were analyzed by two-tailed t tests.
Comparisons between multiple groups were analyzed by one-way
ANOVA. P < 0.05 was considered significant. Statistical differences

Table 1. Formulation and Printing Parameters for CNF/GelMA Bioinks

ink code CNF, w/v % GelMA, w/v % pressure, kPa speed, mm min−1 theoretical diameter, mm real diameter, mm

CNFa 1 70 1000 0.25 0.59 ± 0.05

CNF:GelMA=5:1b 1 0.2 65 2000 0.24 0.45 ± 0.03

CNF:GelMA=2:1b 1 0.5 70 2000 0.26 0.57 ± 0.07

CNF:GelMA=9:10c 0.9 1 80 2000 0.25 0.60 ± 0.04
aPrinting tips with 27 G were used. bDry powder of GelMA was mixed with 1 w/v % CNF hydrogel, resulting in 0.2 and 0.5 w/v % final GelMA
concentrations, respectively, and printing tips with 30 G were used. c10 w/v % GelMA solution added to 1 w/v % CNF, resulting in 1 w/v %
GelMA final concentration and 0.9 w/v% CNF final concentration, and printing tips with 30 G were used.
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were calculated with the two-tailed unpaired t test, and differences
were considered significant at p ≤ 0.05.

■ RESULTS AND DISCUSSION

Bioink Formulation: Molecular Interaction Charac-
terized by QCM-D and Ink Rheological Property. To
achieve good printability, the formulated inks are required to
be homogeneous and extrudable with a consistent flow without
clogging while printing. CNFs in this study were produced by
the pretreatment of TEMPO-mediated oxidation followed by
high-pressure homogenization. Thus, the dominating nano-
fibers in the inks had narrow size distribution in terms of fiber
length,33 which resulted in a successful printing process
without needle clogging. The density of charge introduced
by TEMPO-mediated oxidation plays a decisive role in the
disintegration of fibers to prepare nanodimensional fibrils.
However, it was found out that a relatively lower surface charge
density could better facilitate cell growth and proliferation.38

Thus, a negative surface charge in a density of 1.14 ± 0.07
mmol/g was introduced on the fiber surface with −COO−

during the TEMPO-mediated oxidation. Meanwhile, the
GelMA is positively charged when the ink is formulated
under neutral conditions (pKa around 9).39−41 Thus, the ionic

interaction between two biopolymers is anticipated. To achieve
ink homogeneity, the concentration of GelMA was screened
from 5 w/v % down to a maximum of 1 w/v % to avoid phase
separation caused by ionic interaction between CNF and
GelMA.
It is crucial to understand the macromolecular interactions

between CNF and GelMA in order to study the physiochem-
ical properties of the formulated bioink. Therefore, the
interaction between GelMA and the CNF layer was studied
in situ with the QCM-D technique in aqueous media. As
indicated by the adsorption kinetics of various concentrations
of GelMA on CNF (presented in Figure 1a), the GelMA was
strongly adsorbed onto the CNF layer. As estimated from the
Sauerbrey equation, the absorption mass of GelMA went up
from 100 to 150 mg/m2 when the concentration of GelMA
increased from 0.2 to 0.5 w/v %. As shown in Figure 1b, the
adsorption amount became less significant with further
increases in the GelMA concentration, suggesting that the
CNF layer became saturated with GelMA. This is correlated
with the findings that the formulation of bionks using
concentrations of GelMA of less than 1 w/v % could avoid
phase separation. As previously studied in the adsorption of
various biopolymers on CNFs,36,42,43 strong hydrogen bonding

Figure 1. QCM-D analysis: (a) adsorption of GelMA onto CNF model layer with GelMA concentration from 0.2 to 1.0 w/v % followed by
desorption of free GelMA with rinsing DI water and the adsorption of a 0.5 w/v% gelatin solution was also tested; (b) amounts of adsorbed CNF
on the crystal and adsorbed GelMA on the CNF layer. Rheological analysis: (c) shear-thinning property of the formulated bioinks of CNF hydrogel
(1.0 w/v %) and CNF/GelMA hydrogels with weight compositional ratios of 5:1, 2:1, and 9:10. (d) Change of storage moduli of the formulated
bioinks after UV irradiation under oscillatory analysis indicating efficient and effective UV cross-linking; UV was switched on at 120 s and
continued for 6 min.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.8b21268
ACS Appl. Mater. Interfaces 2019, 11, 8838−8848

8841

http://dx.doi.org/10.1021/acsami.8b21268


and physical entanglement mainly contribute to the
adsorption. In this case, the high adsorption mass amount
and strong affinity of GelMA to CNF are probably associated
with ionic interactions in addition to hydrogen bonding
between both macromolecules.39 Moreover, 0.5 w/v % gelatin
was also used in the QCM-D measurement as a comparison
with GelMA. It showed much less adsorption compared with
GelMA solutions (Figure 1a,b), which indicated that the
methacryloylation of gelatin had an impact in an interactive
manner between the gelatin molecule and the CNF surface,
possibly due to the hydrophobic nature and steric effect of the
grafted methacryloyls.
The rheological behaviors of the formulated bioinks were

assessed to validate their feasibility for 3D printing. The
viscosity properties of CNF/GelMA bioinks as investigated are
shown in Figure 1c. Also studied by other researchers,16,20

CNF itself showed a shear-thinning behavior, which is required
for the extrusion-based printing process. By incorporating
GelMA into the CNF hydrogel, similar yield-flow behaviors
were registered for all the formulated inks. However, the zero-
shear viscosity plateau was prolonged with the addition of
more GelMA, as it might require a longer time for the polymer
chains to orient in the formulated bioinks. Meanwhile, the
zero-shear viscosity of the ink decreased with the incorporation
of GelMA because of the physiochemical interactions between
the two macromolecules, which is consistent with the QCM-D
data. Thus, the formulated inks became easier to flow when
GelMA was incorporated. This was consistent with employing
lower printing pressure in printing the formulated CNF/
GelMA ink compared with CNF itself, which will be discussed
later.
The decreased storage modulus of the inks (Figure 1d) with

more GelMA was also revealed when the oscillation measure-
ments were performed on the formulated bioinks. The bioink
viscoelasticity was recorded for 12 min with UV turning on at
120 s. Immediately after UV irradiation was turned on, the
storage modulus increased rapidly for all the ink formulations
of CNF/GelMA followed by a level-off plateau, referred to the
required cross-linking time. As shown in Figure 1d, the
required time for all the formulated inks to reach full cross-
linking was as short as within 30 s. The rate of cross-linking is
important for biofabrication that requires gelation during a
very short time window, such as for in situ gelation during
extrusion.44 For controls, measurements were also performed
on CNF and 1.0% GelMA solution, and their viscoelasticity
did not change upon UV irradiation, yet even the bioink of
CNF:GelMA=5:1 containing only 0.2 w/v % GelMA displayed
an apparent cross-linking phenomenon, as shown in Figure 1d.
According to a recent study by O’Connell et al., no clear cross-
linking phenomenon was observed when GelMA concentration
was below 2.5 w/v %.44 This indirectly revealed that the
presence of TEMPO-oxidized CNF could play a key role in
facilitating cross-linking of low-concentration GelMA. As well,
the gelation time for low-concentration GelMA in the presence
of TEMPO-oxidized CNF is comparable with that of high
concentration of GelMA solutions (>5 w/v %) in O’Connell et
al.’s study44 when both 0.5 w/v % concentration of
photoinitiator Irgacure 2959 and 10 mW/cm2 UV intensity
were applied. Therefore, it is hypothesized that the CNF fibers
that supplied the matrix for the GelMA oriented in a more
entangled fashion with the methacryloyls locally concentrated
to facilitate the UV cross-linking, even at a rather low
concentration of GelMA.

It is worth noting the different ink behaviors regarding the
variety of starting CNFs. For example, in the previous studies
by Markstedt et al,16,43 enzymatically and mechanically
produced CNFs were used without supplying surface charge
like in the case of TEMPO-oxidized CNF. First, the
consistency of enzymatically and mechanically produced
CNF can be a few times higher than that of TEMPO-oxidized
CNF, and the shape fidelity can be enhanced by the high
matter load of the inks. Meanwhile, TEMPO-oxidized CNF
prepared in our approach is only present at a comparatively
low consistency, and this, to some extent, limits the matter
load in the bioinks. However, in terms of printing resolution,
TEMPO-oxidized CNF was superior with being successfully
printed using the cylindrical steel tip (200 μm), compared to a
conical tip (420 μm) for noncharged CNFs.16,43 More
importantly, in the present study, the negatively charged
CNF by TEMPO-mediated oxidation facilitated the UV cross-
linking of low-concentration GelMA (less than 1.0 w/v %),
possibly due to surface ionic interaction between CNF and
GelMA, whereas in another study using mechanically grinded
CNF as a rheology modifier and structural builder, 2 w/v %
CNF was required for 5 w/v % GelMA printing.32

Bioink Printability. The printability and shape fidelity of
the formulated bioinks were investigated by an extrusion-based
3D printer with a pneumatic dispensing system and cylindrical
stainless-steel tips. The printed strut diameters are determined
by three parameters: printing speed, extrusion pressure, and tip
diameter. However, when the viscoelasticity of the bioinks
changes, the printing parameters need to be adjusted
accordingly. In order to reduce the complexity to standardize
the printing parameter, the same printing speed of 2000 mm/
min was applied throughout this study. A uniform and
reproducible strut diameter of printed scaffolds was achieved
by choosing appropriate dispensing tip diameters and tuning
extrusion pressure in a limited range. Dispensing tips of 27 G
(ø 0.2 mm) were used for the CNF bioink, and tips of 30 G (ø
0.15 mm) were used for CNF/GelMA bioinks. By tuning the
pneumatic pressure between 60 and 80 kPa, the extruded strut
diameter was controlled at 0.25 ± 0.01 mm. The screened
parameters are listed in Table 1. Moreover, the diameter of
dispensing tips was adjusted from 0.2 to 0.15 mm when the ink
was changed from CNF to CNF/GelMA inks, which was
consistent with the decreased storage modulus of CNF/
GelMA inks as discussed previously. This is because the
adsorption of GelMA on CNF has an impact on the
viscoelasticity of the formulated ink hydrogel and makes the
flow through the needle easier for the CNF/GelMA ink, as the
decreased zero-shear viscosity indicated in Figure 1c.
Printability and shape fidelity are not only dependent on the

printing parameters but also determined by the solid content
of the bioinks, as well as cross-linking treatments during and
after printing. The incorporated GelMA increased the solid
content in the bioinks and supplied the secondary cross-linking
network, which improved the shape fidelity. In the current
study, the carboxylic groups on the CNF surface were utilized
to supply instant ionic cross-linking by adding 5% CaCl2
solution dropwise during printing. While the printed object
was completed, the whole scaffold was subjected to UV
irradiation to cross-link GelMA. Afterward, the scaffolds were
stored in PBS/Ca2+ solution for further study. Ca2+ ions
temporally maintain the structural integrity of the printed
constructs, avoiding collapse before UV cross-linking. This
enabled the TEMPO-oxidized CNF to maintain the scaffold
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integrity at a low concentration of 1 w/v % instead of using a
high concentration, that is, above 2.5 wt % dry consistency for
the mechanically grinded CNF.43 Meanwhile, as a facile
approach, the rapid cross-linking (as shown in Figure 1d) upon
UV irradiation works more conveniently compared with
introducing a high dosage of chemicals for cross-linking.32

Scaffold Morphology. One of the goals of this study was to
develop printable inks, which could be printed with excellent
3D shape fidelity and long shelf-time stability. Therefore, the
shape fidelity of the printed scaffolds under physiological
conditions was assessed with optical microscopy imaging in
PBS/Ca2+ buffer. As shown in Figure 2, scaffolds in high
resolution were observed with an excellent dimensional
stability. Adding GelMA into ink formulations made the
printed struts with clear and smooth boundaries when
compared with CNF only, as shown in the second column
of Figure 2. The well-defined struts benefited from the
possibility of using extra fine tip diameters due to the excellent
rheological behaviors of these low-concentration bioinks. In
addition, the surface charge of CNF made it possible for
instantaneous Ca2+ cross-linking to keep shape fidelity.
Similarly, as shown by the SEM images in Figure 2, the

freeze-dried scaffolds of CNF/GelMA showed different surface
morphologies from the CNF scaffolds. After drying, the CNF
scaffolds did not straightly align in their originally printed form,
and the pores between the struts in the scaffolds became

deformed without keeping the resolution as it is in hydrogel
form. From high-magnification images of the CNF scaffolds
(Figure 2d,e), large CNF fiber bundles and aggregates could be
observed, which is due to the strong hydrogen bonding after
freeze-drying. For the dried scaffolds of CNF/GelMA, the
struts kept the alignments better than the CNF scaffolds. As
shown in the high-magnification images (Figure 2i,n,s,), the
surface of the struts showed a smoother morphology than that
of the CNF scaffolds (Figure 2d). Moreover, the incorporated
GelMA gives more networks with increasing content of
GelMA, as shown in Figure 2j,o,t, which is distinctive from
the CNF scaffolds where only fiber bundles are observed on
the surface (Figure 2e). The adsorption of GelMA onto CNF
hinders the formation of hydrogen bonding between CNF
fibers, which further has a significant impact on guiding the
fiber orientation.32 In the sample of CNF:GelMA=9:10, the
strut surface showed a microporous structure, which is
considered beneficial for cell attachment and proliferation
during in vivo conditions by improving diffusion rates to and
from the scaffolds.45

The average diameter of the printed struts increased by 1-
fold after swelling in PBS buffer compared with each
theoretical diameter as listed in Table 1. The scaffolds printed
with CNF:GelMA=5:1 and 2:1 had average strut diameters
smaller than that of CNF scaffolds, indicating less swelling of
printed struts, which is possibly due to the cross-linked GelMA

Figure 2. Left two columns: optical microscopic images showing morphology of the printed scaffolds from the inks of CNF hydrogel (1.0 w/v %)
(a,b) and CNF/GelMA hydrogels with weight compositional ratios of 5:1 (f,g), 2:1 (k,l), and 9:10 (p,q). Right three columns: SEM images of the
printed scaffolds from the inks of CNF hydrogel (c−e) and CNF/GelMA hydrogels with weight compositional ratios of 5:1 (h−j), 2:1 (m−o), and
9:10 (r−t). The images in the same column have the same scale bar with 2 mm (a,f,k,p), 500 μm (b,g,l,q), 200 μm (c,h,m,r), 100 μm (d,i,n,s), and
20 μm (e,j,o,t) from left to right column.
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restricting the swelling of the strut. However, the strut
diameter increased with increasing GelMA content, with
CNF:GelMA=9:10 reaching approximately 0.6 mm, which is
similar to the strut diameter of CNF. Although this was
contrary to its cross-linking degree, it might be due to the
disruption of GelMA to the alignment and bonding between
CNF fibers, which counteracted the restriction from GelMA
cross-linking.
Rehydration Property. The rehydration kinetics, other-

wise termed swelling ratio, is a crucial factor that needs
consideration for the biomedical application of hydrogel
scaffolds. The rehydration possibility directly refers to their
hydration ability and stability and indirectly reveals their
mechanical stiffness and structural properties.33,46 The swelling
of the freeze-dried scaffolds, maintaining a moist environment,
is beneficial for wound healing.47 The time-dependent swelling
profiles were recorded by immersing the freeze-dried scaffolds
with Milli-Q water, as shown in Figure 3. The CNF aerogels

made of TEMPO-mediated oxidation can uptake water up to
around 90 times its own weight, which is in line with what is
reported in our previous study.38 Overall, the rehydration
equilibrium was restricted by the cross-linking of incorporated
GelMA. Meanwhile, the rehydration kinetics behaved differ-
ently between CNF scaffolds and CNF/GelMA scaffolds. The
CNF/GelMA scaffolds showed rapid rehydration ability within
the first minute, with the scaffolds of CNF:GelMA=9:10
reaching equilibrium within 5 min. The rehydration kinetics of
CNF:GelMA=2:1 and 5:1 scaffolds showed two-step curves:
after rapid rehydration at 1 min, the swelling rate slowed down
and reached equilibrium after 8 h. However, the CNF scaffolds
showed different kinetics. CNF scaffolds had a slow
rehydration rate for the first 5 min; then, a fast swelling rate
resulted in absorption of around 90-fold water compared with
their dry weight, followed by a much slower swelling rate and
reaching equilibrium at around 4 h. The three-step water
adsorption curve of CNF scaffolds can be attributed to the
strong hydrogen bonding between the CNF fibers, and it takes
a longer time for water to penetrate the fiber bundles after
freeze-drying.33,38 However, when a small amount of GelMA

was introduced (CNF:GelMA=5:1 and 2:1), the rehydration
kinetics changed to two-step curves. This likely resulted from
the adsorption of GelMA firmly binding with the surface of
CNF fibers, as QCM-D data indicated, which interrupted the
hydrogen bonding between CNF fibers. This could also explain
the lower rehydration ratio of scaffolds with more GelMA
incorporated, since more hydrogen bonding sites were
occupied by GelMA molecules. However, compared with
CNF scaffolds, the incorporation of GelMA also made the
scaffolds more accessible to water with a high swelling ratio at
1 min. This could be explained by the porous topography of
the GelMA incorporated scaffolds. The rapid rehydration
kinetics could be a beneficial feature in regard to both loading
therapeutic drugs and absorbing wound exudate in the use of
the dried scaffold.

Mechanical Properties. Mechanical strength of scaffolds
plays a significant role in their applications to meet the
bioenvironmental needs. CNF, particularly prepared by
TEMPO-mediated oxidation to introduce carboxylates, under-
goes ionic interaction and even dissociation in aqueous media
possessing high ionic strength. That will threaten the stability
of mechanical properties of scaffolds. In our previous study,
when CNF solely was printed from a relatively lower
concentration (∼0.7 wt %) hydrogel, the printed scaffolds
dissociated into water.21 Thus, higher concentration of CNF
hydrogel was demanded for printing, and a dual-cross-linking
approach was developed to further increase the mechanical
strength of the scaffolds. Here, GelMA was incorporated
together with CNF to form a hydrogel, and its mechanical
strength can be easily tuned by UV cross-linking. Mechanical
properties of the formulated hydrogels were evaluated by the
compression tests on both cast discs (Figure 4a) and printed
scaffolds. As shown in Figure 4b, the compressive Young’s
modulus indicated clearly that UV cross-linked GelMA
condensed the structure and improved the rigidity of the
hydrogel. Figure 4c shows the correlation between compressive
Young’s modulus and GelMA content for cast discs and
printed scaffolds. The compressive Young’s modulus of the
cast discs varied from 2.3 to 4.5 kPa as the content of GelMA
increased. The compressive Young’s modulus of CNF:Gel-
MA=9:10 disc samples increased by 1-fold compared with that
of the CNF discs. This could be attributed to the increased
solid content load48 and cross-linked GelMA network. The
increasing trend of compressive Young’s modulus of the
printed scaffolds followed that of cast discs. This is also
relevant to the result of ink storage modulus after UV
irradiation (Figure 1d): the G′ value of the CNF/GelMA inks
increased with addition of more GelMA, indicating the
increased strength of formulated hydrogels. The difference of
compressive Young’s modulus between the discs and the
scaffolds originated from the fractional porosity from a solid
disc to a porous scaffold. It was reported that fibroblasts start
to respond by spreading with the matrix at a stiffness range
around 3 kPa.49 Thus, the printed scaffolds with mechanical
Young’s modulus in the range of 2.5 to 5 kPa could be suitable
for wound healing application.50 Furthermore, the local surface
stiffness of the printed scaffolds was monitored using AFM, as
shown in Figure 4d. The surface Young’s modulus followed the
same trend as the compressive Young’s modulus of both cast
discs and printed scaffolds. The average surface Young’s
modulus increased from 400 to 700 Pa with increasing GelMA
content. The surface stiffness of the printed scaffolds of CNF/

Figure 3. Water uptake behavior of the freeze-dried scaffolds against
time scale. Swelling ratio of liquid N2 frozen and then freeze-dried
scaffolds printed from the inks of CNF hydrogel and CNF/GelMA
hydrogels with weight compositional ratios of 5:1, 2:1, and 9:10. The
values were recorded within a period of 24 h.
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GelMA mainly corresponds to the cross-linking of various
contents of GelMA incorporated in the scaffolds.
3D CNF Matrix Support Survival, Adhesion, and

Proliferation of Fibroblast Cells. We next assessed the
cytocompatibility of the 3D printed scaffolds of CNF/GelMA,
a prerequisite for the material to be used for an ECM-
mimicking matrix. First, we tested the functionality of the 3D
printed matrix in supporting cell attachment and survival.
Mouse 3T3 fibroblasts, a key cell component involved in
wound healing, were employed in the study. The cell adhesion
capability was measured using a crystal violet assay after 12 h
of cell incubation in the presence of the CNF matrix. It was
found that, in comparison with 2D control coverslip samples,
cells adhered slightly less on the CNF matrix, whereas the
incorporation of GelMA encouraged cell adhesion (Figure 5a).
This is likely due to the incorporated GelMA containing motifs
like arginine-glycine-aspartic acid (RGD) sequences that could
promote cell attachment.24,51 In addition, after 24 h of cell
incubation in the 3D matrix, cell samples were examined with
the MTT colorimetric assay to quantitatively measure the
capability of viable cells in metabolizing a dye [3-(4,5-
dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide].

These results clearly demonstrated that the 3D printed
scaffolds of CNF/GelMA had no adverse effect on cell
viability (Figure 5b). This is consistent with our previous
studies regarding the cytotoxicity test of TEMPO-oxidized
CNF that is well compatible with epithelial-derived HeLa cells
and hematopoietic-derived Jurkat cells.33,38 Meanwhile, the cell
viability tests demonstrated that the current material process
was also friendly to mouse fibroblasts.
Moreover, we found that the 3D matrix supports cell

proliferation in a longer incubation period with the verification
of cell growth into the 3D matrix (Figures S1 and S2). This
agreed with the finding of the positive effect of CNF/GelMA
on cell proliferation as reported by Shin et al.32 The results
showed that after 3 days of post cell seeding, there were twice
the number of cells on samples of CNF:GelMA=5:1 compared
with CNF scaffolds (Figure 6). Interestingly, higher contents
of GelMA in samples of CNF:GelMA=2:1 and CNF:Gel-
MA=9:10 had a weaker effect on enhancing cell proliferation.
This dose-dependent correlation between the proliferative
activity of the fibroblasts and the GelMA content suggests the
importance of controlling GelMA concentration in producing
such a matrix for potent fibroblast proliferation and further

Figure 4. (a) Images of cast discs with formulated inks presenting from (i) to (iv) with hydrogels of CNF, CNF:GelMA=5:1, CNF:GelMA=2:1,
and CNF:GelMA=9:10, respectively; (b) stress−strain plot of the formulated inks; (c) relevantly increased compressive Young’s moduli among the
cast discs (labeled as “Disc”) and printed scaffolds (labeled as “Scaffold”) after UV cross-linking; (d) tunable local surface stiffness with changing
GelMA amounts in ink formulations measured by AFM measurements.
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prompt wound healing (Figure 6). As demonstrated by our
recent research,21 when ink formulations of the CNF single
component were used, the proliferation of fibroblasts was
mainly regulated by the increased mechanical stiffness in the
CNF hydrogel. However, in this study, the incorporation of
GelMA influenced both the ink properties and the formed
hydrogels, including cell adhesion motifs (i.e., RGDs),
modulus, topographical features, and porosity, which have to
be considered overall for cell migration and proliferation. In
particular, the fibroblast proliferation in the matrix of
CNF:GelMA=9:10 was not promoted as much as in the
matrix of CNF:GelMA=5:1, although the matrix of CNF:Gel-
MA=9:10 demonstrated the highest surface stiffness among
these four types of printed constructs. Thus, multiple factors
including both tunable mechanical stiffness and the topo-
graphical morphology of printed CNF/GelMA should be
accounted for regarding the proliferative activity of 3T3
fibroblasts in these biomaterials. As displayed in Figure 2, the

topographical features became more porous on the printed
struts of CNF/GelMA as the content of GelMA increased. The
wall-separated microspores in the network on the strut surface
of CNF:GelMA=9:10 were around 5−20 μm as measured in
the sample after freeze-drying (Figure 2t). After swelling with
water uptake, these pore dimensions are anticipated to be
almost comparable to the size of mouse 3T3 fibroblast cells
(50−150 μm). It is suspected that the wall-like morphology
might interfere with the cell migration if the fibroblasts could
likely be entrapped in the network.52

In summary, the nontoxicity and the promoted proliferative
activity of 3T3 fibroblasts in the CNF/GelMA scaffolds
provide good opportunities for their safe application in wound
healing therapy.

■ CONCLUSIONS

This study presents a novel low-concentration ink formulation
based on 1.0 w/v % TEMPO-oxidized CNF and up to 1.0 w/v
% GelMA for extrusion-based 3D printing of nanocellulose
hydrogel scaffolds. The molecular interaction between these
two biopolymers of TEMPO-oxidized CNF and GelMA
modified the rheological properties of the CNF. More
importantly, the presence of TEMPO-oxidized CNF facilitated
the UV cross-linking of GelMA incorporated in ultralow
concentrations in the formulated bioinks. By direct ink writing
assisted by UV postcuring, high-resolution scaffolds of CNF/
GelMA were successfully printed, and these scaffolds
demonstrated high fidelity and stability. By tuning the
compositional ratio between CNF and GelMA, the compres-
sive Young’s modulus and local surface stiffness could be well
tuned. The developed ink formulations are noncytotoxic and
cytocompatible with mouse 3T3 fibroblasts. Furthermore, ink
formulations of CNF incorporated with GelMA, particularly
with CNF/GelMA ratios of 2:1 and 5:1, promoted the
proliferative activity of 3T3 fibroblasts when compared with
the plain CNF hydrogel. Owing to the influences of both
surface stiffness and topographical features in the biomaterials,
these scaffolds of CNF:GelMA=5:1 showed outstanding
performance on promoting fibroblast proliferation. In sum-
mary, the developed low-concentration ink formulations of
CNF/GelMA present a facile yet effective approach to
fabricate hydrogel scaffolds with tunable mechanical strength
that show great potential toward such applications as wound
healing and soft tissue regeneration.
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K.; Mathew, A. P. 3-Dimensional Porous Nanocomposite Scaffolds
Based on Cellulose Nanofibers for Cartilage Tissue Engineering:
Tailoring of Porosity and Mechanical Performance. RSC Adv. 2016, 6,
5999−6007.
(46) Barbucci, H. Biological Properties and Applications; Springer:
New York, 2009.
(47) Holback, H.; Yeo, Y.; Park, K. Hydrogel Swelling Behavior and
its Biomedical Applications. In Biomedical Hydrogels; Elsevier:
Amsterdam, 2011; pp 3−24.
(48) Leppiniemi, J.; Lahtinen, P.; Paajanen, A.; Mahlberg, R.; Metsa-̈
Kortelainen, S.; Pinomaa, T.; Pajari, H.; Vikholm-Lundin, I.; Pursula,
P.; Hytönen, V. P. 3D-Printable Bioactivated Nanocellulose-Alginate
Hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 21959−21970.
(49) Yeung, T.; Georges, P. C.; Flanagan, L. A.; Marg, B.; Ortiz, M.;
Funaki, M.; Zahir, N.; Ming, W.; Weaver, V.; Janmey, P. A. Effects of
Substrate Stiffness on Cell Morphology, Cytoskeletal Structure, and
Adhesion. Cytoskeleton 2005, 60, 24−34.
(50) Janmey, P. A.; Miller, R. T. Mechanisms of Mechanical
Signaling in Development and Disease. J. Cell. Sci. 2011, 124, 9−18.
(51) Nichol, J. W.; Koshy, S. T.; Bae, H.; Hwang, C. M.; Yamanlar,
S.; Khademhosseini, A. Cell-Laden Microengineered Gelatin Meth-
acrylate Hydrogels. Biomaterials 2010, 31, 5536−5544.
(52) Murphy, C. M.; O’Brien, F. J. Understanding the Effect of
Mean Pore Size on Cell Activity in Collagen-Glycosaminoglycan
Scaffolds. Cell Adhes. Migr. 2010, 4, 377−381.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.8b21268
ACS Appl. Mater. Interfaces 2019, 11, 8838−8848

8848

http://dx.doi.org/10.1021/acsami.8b21268

	On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application
	Recommended Citation

	On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application
	Abstract
	Publication Details
	Authors

	On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application

