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This paper announces initial results of studies on partially observed linear 

quadratic Gaussian (LQG) models where the stochastic disturbances depend 

on both states and controls and the measurements may be bilinear in the noise 

and the states/controls. While the Separation Theorem of standard LQG design 

does not apply in any strict sense, suboptimal linear state estimate feedback 

laws are derived based on certain linearizations. The controllers may well be 

useful for nonlinear stochastic systems where linearized models which include 

terms bilinear in the noise and states/controls are significantly more accurate 

for arbitrary values of the coupling parameter a. 
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than if these terms are set to zero. These controllers are calculated by solving 
a generalized discrete time Riccati equation. The properties of this equation 
relating to well posedness of the associated LQG problem are discussed. 

1 INTRODUCTION 

The classical linear quadratic Gaussian (LQG) control theory for stochastic 
linear systems assumes that the stochastic disturbances are additive and not 
control or state dependent [2, 3]. Relaxing this assumption to allow linear state 
and control dependence in noise leads to a much broader class of stochastic mod­
els, which have applications in real-world systems (see [6] for more details). On 
the other hand, working with this class allows improved approximation by lin­
earization of nonlinear stochastic systems than if the bilinear terms involving 
the noise are excluded. Recently, LQG theory has been generalized for such a 
class of linear/bilinear stochastic systems in continuous time [6, 7]. Optimal 
state feedback control laws are linear and are calculated by solving a so-called 
stochastic matrix Riccati equation which specializes the familiar conventional 
LQG Riccati equations when the disturbances are independent of the states and 
controls. The stochastic Riccati equations are by no means as well understood 
as in the standard case, at least in the continuous time setting. There remains 
open questions concerning existence and uniqueness of the solutions of these 
equations. There is also an intriguing property that the control weighting ma­
trix R in a standard quadratic integral cost term need not be positive definite, 
even in the continuous time case. This property reveals some deep nature of 
uncertainty. For details see [6, 7]. 

What is the situation then for the partially observed case? To what extent 
does the standard LQG methodology [2] with its Separation Theorem apply? 
Can we achieve useful linear state estimate feedback laws? 

In this paper the above questions are addressed for discrete time case and 
some initial thoughts and results are presented. The expectation is that since 
the models are bilinear in the state and the noise as well as in the control 
and the noise, some of the virtues of a standard linear Gaussian theory will be 
lost. Certainly, even if the noise signals are Gaussian, the states and control 
signals will be generally non-Gaussian. Consequently, optimal (information) 
state estimators will be infinite dimensional, in general, see for example [4]. 
Even so, since a conditional linear minimum square error (LMSE) covariance 
state estimator is known for the models of interest, and is finite dimensional, 
it makes sense from an implementation point of view to work with such a 
state estimator and a linear state estimate feedback law, even if such a law is 
suboptimal. 

The conditional LMSE filter has the structure of a Kalman filter, see [2], but 
with a Kalman gain which is state estimate and control dependent. Likewise, 
the quadratic state cost, when expressed in terms of state estimates instead 
of true states, is nonlinear. Appropriate linearizations of the filter equations 
and cost terms, neglecting higher order terms but allowing terms bilinear in 
the noise and controls/state estimates in the filter, allows then application of a 
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discrete-time analogy of the recently studied LQG theory in [6]. This leads to 
an 'optimal' linear state estimate feedback law under assumptions of negligible 
higher order terms. In practise, this law has some degree of sub-optimality 
because the neglected higher order terms may be significant to some extent. 
However, the neglected terms do not include terms bilinear in the innovations 
(prediction errors) and the state estimates/control, so there is a chance for 
improved performance over the standard LQG approach which neglects these 
terms as well as higher order terms. 

The paper is organized as follows. In Section 2 an optimal feedback con­
troller is derived for a completely observed discrete time LQG with state and 
control dependent noise. As in the standard case, solving a discrete time Ric­
cati equation is a key step in calculating the optimal controller. In fact, the 
associated Riccati equation is a generalization of the standard discrete time 
Riccati equation. The existence properties of this equation and its relationship 
to the well posedness of the control problem is discussed in Section 3. Section 4 
is concerned with an approximate Kalman filter for the partially observed LQG 
model. Finally, suboptimal linear state estimate feedback laws are obtained in 
Section 5 by combining the results in Sections 2 and 4. 

2 DISCRETE TIME lQG RESUlTS 

In this section, we derive discrete time versions of those in [6] which will be 
useful in a later section. 

Consider the discrete time stochastic signal model 

(1) 

where Xk E Rn is the state, Uk E Rm is the control, and wt, E R 1 are 
noise terms, assumed here to be martingale increments on {h_ 1 , where 9k-1 
is the O"-algebra generated by past noise terms up to wt_ 1, w{;_ 1, Wk-1· The 
covariances are assumed to be 

and 

Generalizations of the dependent noise terms wt LlAk and LlBk to the case 
of non-scalar noise is immediate by working with terms wt; and 

N B; i 
Li=l wk LlBk · 

The performance index of the problem is given by the standard quadratic 
sum cost 

(2) 



250 

In this model, all the Ak, dAk, etc.. are (deterministic) matrices with 
appropriate dimensions, Qk and Q are non-negative definite matrices, and Rk 
are symmetric matrices (could be indefinite, as in standard discrete time LQG 
theory). 

Let us solve the above stochastic optimal control problem in two different 
cases. The results derived below will be applied in Section 4 for partially ob­
served models. 

Case I: p: :::: p: :::: 0. 
Let us consider first the case when Wk ..L w:, w:, so that p: :::: p: :::: 0. In 

this case, the optimal control takes the form 

(3) 

where 

KZ -(nk+l)-1 L/;+1• 

L/;+1 B£Sk+1Ak + p:B dB£ Sk+l dAk, 

0/;+1 B£ Sk+l Bk +dB£ Sk+l dBk + Rk+l· 

Here, Sk is the solution of a backward matrix Riccati equation 

{ Sk ::::A;, Sk+l Ak- Lk+l' (nk+l)- 1 Lk+l + (Qk + dAk Sk+l dAk), (4) 
ST:::: Qf. 

By standard completion of squares arguements, it can be shown that (1)-(2) 
is well posed if nk+l is positive definite. In this case, the control law (2)-(4) is 
the unique optimal control. 

In continuous time LQG theory, it is generally required that R is strictly 
positive definite for the problem to be well posed. Recent results by Chen, Li 
and Zhou [6) for the continuous time problem show that R can have negative 
eigenvalues if the diffusion term in the system equations depend on the control. 
It is interesting to note therefore that in the discrete time problem, the control 
weighting matrices Rk can have negative eigenvalues and the problem remain 
well posed, even if the bilinear terms dAk and dBk are all zero! 

Case II: p: i 0, p: i 0. 
In the event that Wk and ( w:, w:) are correlated so that p:, p: i 0, then 

the optimal control requires not only the state feedback term as in (3) but also 
an external input as 

uk::::KZxk+bk, (5) 
where bk is calculated by linear backward recursions. For details, the reader 
should consult [5). 

3 DISCRETE TIME RICCATI EQUATION 

In the continuous time LQG problem, a standard assumption is that R(t) is 
strictly positive definite. In the paper by Chen, Li and Zhou [6), it is shown 
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that this assumption is not necessary when the diffusion term depends on the 
control. In this section, we examine the effect of the terms and on 
the well posedness of the LQG problem (1)-(2). 

Recall that the LQG problem (1 )-(2) is well posed if and only if !J'k 2:: 0 for 
every k. Note once again that it is possible for the standard LQG problem (ie. 

= 0 and = 0) to be well posed with either Qk < 0 or Rk < 0 (but 
obviously not both). We show in this section that if =1- 0 or =1- 0, 
then Qk and Rk can be made 'more negative' and with the associated problem 
still remaining well posed. Bounds on the allowable decrease are also derived 
for certain special cases. 

Before doing this however, we need to introduce some notation. Let K = 
{(So,···, ST)ISj E Rnxn, symmetric}, Q = {(Qo, · · ·, QT )IQj E Rnxn,symmetric} 
and P = {(R1,···,RT)IRj E Rmxm,symmetric}. Given a sequence f?c = 
(R]_, .. ·,Rr) E P of control weights and Qc = (Q0, .. ·,Qr) E Q of state 
weights, the standard discrete time Riccati equation 

{ Sk + BI.Sk+lBk)- 1 BloSk+lAk + Q'k 
ST QT 

(6) 
gives rise to a sequence (So, .. ·, ST) E K. Hence, we can define a mapping 
1/J : P x Q -t K which maps a sequence of control weights f?c = (RI, · · ·, Rr) E 
P and state weights Qc = ( Q0, · · ·, QT) E Q to the solution 1/;( Qc, f?c) = 
(1/Jo(Qc, f?c), ... '1/JT(Qc, f?c)) E K of (6). 

Suppose now that Qc = Qc E Q is given (and fixed) while f?c is the variable. 
In this case, we shall write 1/J(Qc,f?c) simply as 1/;(Rc). It follows that the 
associated (standard) LQG problem is solvable if and only if 

(7) 

Our result for the case = 0 is as follows: 

Theorem 1 Let ( Q'k, Rk) be given. If = 0, then the problem (1}-(2) 
corresponding to ( Q'k, R'k) is well posed if and only if 

(8} 

for some R'k such that ( Q'k, Rk) satisfies (6}-(7). 

Note in particular that if =1- 0, then the control weighting matrices R'k can 
be made 'more negative' and the problem (1)-(2) still remains well posed. The 
bound on this change is given by (8). 

In Theorem 1, we assume that Qc is given and fixed. However, it can be 
shown that Q'k can be made 'more negative' if = 0 and =1- 0 [5]. The 
allowable bounds on this change is still an open question. 

Consider now the case when =1- 0 but = 0. Let f?c = Rc E P 
be fixed. Let 1/J : Q -t K be a mapping such that 1/J(Qc) = 1/J(Qc, Rc) is the 
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solution of the standard discrete time Riccati equation 

+ + Qk 

(9) 
In this case, the associated (standard) LQG problem is solvable if and only if 

(10) 

In much the same way as the case = 0, # 0, the following result can 
be shown. 

Theorem 2 Let (Qk, Rk) be given. If = 0, then the problem (1}-(2} 
corresponding to ( Qk, Rk) is well posed if and only if 

Qk 2: Qk-

for some Qk such that (Rk, Qk) satisfies {9}-{10}. 

{11} 

As in the case of Theorem 1, Theorem 2 shows how much 'more negative' the 
matrices Qk can be made when # 0 and = 0. It can also be shown 
that if # 0 and = 0, Rk can be made 'more negative' [5]. The 
allowable bounds on this change is still an open question. Similarly, the effect 
of both # 0 and # 0 is still unresolved. 

4 STATE ESTIMATION 

In this section, we first define a partially observed signal model. Next, we 
apply the known Kalman filter theory to yield a linear minimum variance state 
estimator, which is then linearized further so that the filter is linear in the 
states and control, and bilinear in the innovations (prediction errors) and the 
states/controls. 

Consider the following partially observed model: 

(Ak + wt Xk + (Bk + wf Uk + Wk, 
(Ck + wk Xk + vk, 

(12) 

where Yk E RP. Here wk, Vk are martingale increments, each orthogonal to wt, 
wf, Wk, and E[vk = Rk· 
Linear conditional minimum variance state estimator: Applying stan­
dard filtering results [2] yields the estimator 

{ 
.Xk+l = Akxk+Bkuk+Kk(.Xk,uk)vk, 

vk = Yk- Ck xk, 
(13) 

where the gain Kk(.Xk, uk) is given in terms of a coupled matrix Riccati equation 
as follows 

(14) 
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with 
Ak I:k Cf., 
Ck I:k Cf. + Rk + ll.Ck (I:k + xk xU ll.Cf., (15) 

and 

{ 
I:k+1 = Ak I:k Lk O(xk, uk)- 1 + Qk + ll.Ak (I:k + Xk 

+ll.Bk Uk 
I:o = E[xo 

(16) 

Here Xk is the best linear estimate conditioned on Yk- 1 , the u-algebra gen­
erated by yo, · · ·, Yk-1, where best is in a minimum error variance sense. The 
associated conditional error covariance is I:k = E[(xk- xk)(Xk- xk)'IYk- 1]. 
Notice that the dependence of the noise on states and controls in our model 
(12) leads to an error covariance which depends on the past measurements (and 
controls), and in turn leads to a filter gain Kk ( · , · ) which is dependent on the 
past measurements (and controls). Now this dependency of Kk(·, ·)on Xk, Uk 
is by no means affine, but in order to proceed to a control law based on the 
LQG theory of Section 2, we must linearize Kk( ·,·)in Xk and Uk· 
A filter bilinear in the innovations: Consider a linearization of Kk( ·, · ), 
via a Taylor expansion, for simplicity in the p = 1 case 

Neglecting the quadratic and higher order terms in Xk, Uk leads to an approx­
imate filter 

Xk+1 Ak Xk + Bk Uk + (Kk + K'k Xk + Ki: Uk)Vk 
= (Ak + K'kvk)Xk + (Bk + Ki:vk)uk + Kkvk. 

5 STATE ESTIMATE FEEDBACK 

(17) 

The approach taken in an LQG control design is taken here, namely to consider 
the state estimator (13) (or in our case the approximation (17)) as a state space 
signal model with state Xk, and to re-organize the control performance index 
h of (2) in terms of xk, rather than Xk. Noting (13) and the definition for I:k, 
we have a re-organization of JT as 

T-1 

h = Qk xk + Rk+l uk + tr(Qk I:k)]. (18) 
k=O 

Actually, I;k is perhaps best written as I:k(Xk Uk since it is dependent 
on Xk and Uk Now a Taylor Series expansion leads to 

(19) 
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being linear in Xk and uk Thus (18) under (19) becomes 

T-1 

Jr R::i (QZ + i:k + uURZ+l + uk + tr(QZ (20) 
k=O 

Now the optimization of (20) under (17) can be tackled using the optimal LQG 
results of Section 2 with wA = wB = w. Thus 

(21) 

where Xk is derived from the filter (17). Also Kk are derived from an approx­
imate specialization of (3)-(4) in which = Kk, = Ki:. The term bk 
is derived by solving backward recursions for br, br_ 1 , · · ·, bo (5]. 
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