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whose seminal work on the homological aspects of abelian group theory continues

to inspire the authors

Abstract. If m and n are non-negative integers, then three new classes
of abelian p-groups are defined and studied: the m,n-simply presented

groups, the m,n-balanced projective groups and the m,n-totally projec-

tive groups. These notions combine and generalize both the theories of
simply presented groups and pω+n-projective groups. If m,n = 0, these
all agree with the class of totally projective groups, but when m+n ≥ 1,
they also include the pω+m+n-projective groups. These classes are related
to the (strongly) n-simply presented and (strongly) n-balanced projective
groups considered in [15] and the n-summable groups considered in [2].
The groups in these classes whose lengths are less than ω2 are character-
ized, and if in addition we have n = 0, they are determined by isometries
of their pm-socles.

0. Introduction, terminology and definitions

By the term “group”, we will mean an abelian p-group, where p is a prime
fixed for the duration of the paper. In addition, throughout, the letters m and
n will denote non-negative integers and we will set k = m+n. Our terminology
and notation will be based upon [3] and [6]. For example, if α is an ordinal,
then a group G will be said to be pα-projective if pαExt(G,X) = {0} for all
groups X .
The totally projective groups have a central position in the study of abelian

p-groups (see Chapter XII of [3] or Chapter VI of [6]). One reason for their
importance is the number of different ways they can be characterized (see
Theorems 81.9, 82.3 and 83.5 of [3]). It is worth pointing out that, unlike the
treatment in [3], we do not require a totally projective group to be reduced. A
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totally projective group of length not exceeding ω1 is a direct sum of countable
groups (hereafter abbreviated as a dsc group; see [3], Theorem 82.4).
We will assume some familiarity with the theory of valuated groups and

valuated vector spaces (see, for example, [20] and [4]). So if V is a group, then a
valuation on V is a function | |V : V → O∞ (whereO∞ is the class of all ordinals
plus the symbol ∞) such that for all x, y ∈ V , |x± y|V ≥ min{|x|V , |y|V } and
|px|V > |x|V . If V is a subgroup of G, then the height function on G, which we
also denote by | |G, restricts to a valuation on V . Of course, a valuated group
is a valuated vector space if it is p-bounded, so that the socle of a group will
be a valuated vector space.
A group will be said to be Σ-cyclic if and only if it is isomorphic to a direct

sum of cyclic groups. The group G is pω+n-projective if and only if there is
a subgroup P ⊆ G[pn] such that G/P is Σ-cyclic ([17]). So a group is pω-
projective if and only if it is Σ-cyclic. If G1 and G2 are pω+n-projectives, then
G1 and G2 are isomorphic if and only if G1[p

n] and G2[p
n] are isometric as

valuated groups (i.e., there exists an isomorphism that preserves the height
functions on the two subgroups; see [5]).
This paper is a continuation of a study, initiated in [15], of ways to combine

these two branches of knowledge. In that paper a group G was defined to be
n-simply presented if it has a subgroup P ⊆ G[pn] such that G/P is simply
presented, and strongly n-simply presented if this P can be chosen to be a nice
subgroup. A short exact sequence

0 → X → Y → G → 0

is defined to be n-balanced exact if it represents an element of pnBext(G,X).
This sequence is strongly n-balanced exact if either n = 0 and it is just plain
balanced, or n is positive and it induces a short exact sequence

0 → X [pn] → Y [pn] → G[pn] → 0

which splits in the category of valuated groups; we denote the collection of
such sequences by Vnext(G,X). It was shown that there are enough (strongly)
n-balanced projectives and that a group satisfies these conditions if and only
if it is a summand of a group that is (strongly) n-simply presented. It was
also verified that if G has length strictly less than ω2, then G is (strongly)
n-balanced projective if and only if it is (strongly) n-simply presented.
In the first section we unify and generalize these two lines of inquiry. We

say a group G is m,n-simply presented if there is a subgroup P of G[pn] such

that H
def
= G/P is strongly m-simply presented. We call P an m,n-simply

representing subgroup of G. Observe that “0, n-simply presented” = “n-simply
presented” and “n, 0-simply presented” = “strongly n-simply presented”. It is
easy to see that if m > 0 and G is m,n-simply presented, then it is m−1, n+1-
simply presented (Proposition 1.1). It follows that if G is strongly k = m+ n-
simply presented, then it is m,n-simply presented, and if it is m,n-simply
presented, it is k-simply presented. In other words, beingm,n-simply presented
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is an intermediate condition between being k-simply presented and strongly k-
simply presented.
We call a short exact sequence m,n-balanced exact if it represents an element

of pnVmext(G,X). It follows that a group is projective with respect to the
m,n-balanced exact sequences if and only if it is a summand of a group that
is m,n-simply presented, and that there are enough m,n-balanced projectives
(Theorem 1.4).
If λ is an ordinal and G is a group, we will write Gλ for G/pλG; in particular,

it is readily checked that if λ = β + γ, then (Gλ)β ∼= Gβ and pβ(Gλ) =
(pβG)/(pλG) = (pβG)γ . We will say that the groups in some class C have the
λ-Nunke property if G is in C if and only if both pλG and Gλ are in C. A classical
result (due to Nunke, [17]) states that for all λ, the totally projective groups
have the λ-Nunke property. Of central importance to the investigations of [15]
were two generalizations of this result: For any ordinal λ, the strongly n-simply
presented groups have the λ+ n-Nunke property ([15], Theorem 3.4), and the
n-simply presented groups have the λ-Nunke property ([15], Theorem 4.4).
Parallel results hold for (strongly) n-balanced projective groups. We generalize
this to the current context by showing that for any ordinal λ, the m,n-simply
presented groups have the λ+ k = λ +m+ n-Nunke property (Theorem 1.8).
Even more satisfactorily, we show that the m,n-balanced projective groups
have the λ+m-Nunke property (Theorem 1.12).
In the second section we generalize Nunke’s homological definition of total

projectivity. We say the group G is n-totally projective if Gλ is pλ+n-projective
for every ordinal λ, and strongly n-totally projective if Gλ+n is pλ+n-projective
for every ordinal λ. Note that if n = 0, these two definitions reduce to the
usual notion of total projectivity.
More generally, we will say the group G is m,n-totally projective if for every

ordinal λ, Gλ+m is pλ+k-projective. A standard argument shows that if this
holds for all limit ordinals λ, then it holds for all other ordinals, as well. As be-
fore, ifm ≥ 1, then “m,n-totally projective” implies “m−1, n+1-totally projec-
tive.” In particular, this means that “strongly k-totally projective” =“m+n, 0-
totally projective” implies “m,n-totally projective” implies “0,m + n-totally
projective” = “k-totally projective”; so again, m,n-total projectivity is an in-
termediate condition between being strongly k-totally projective and k-totally
projective.
It is fairly easy to verify that if G is m,n-balanced projective, then it is

m,n-totally projective (Theorem 2.4). In order to discuss the converse, we
need consider whether, for an ordinal λ, the m,n-totally projective groups
have the λ + m-Nunke property. It is straightforward to show that if G is
m,n-totally projective and λ is any ordinal, then pλG and Gλ must share this
property (Theorem 2.5); so, in particular, this is also true for ordinals of the
form λ+m. The converse is more complicated; we do show that if Gλ+m ism,n-
totally projective and pλ+mG is m,n-balanced projective, then G is m,n-totally
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projective (Theorem 2.6). It is also easy to verify that the strongly n-totally
projective groups actually do have the λ+ n-Nunke property (Corollary 2.8).
In the third section we apply these notions to the class of groups G whose

lengths are strictly less than ω2. In particular, we show that in this case all these
definitions agree, so that G is m,n-simply presented if and only if it is m,n-
balanced projective if and only if it is m,n-totally projective (Theorem 3.2);
these conditions are also shown to be equivalent to requiring that for all ordinals
λ < ω2, (pλG)ω+m = (pλG)/(pλ+ω+mG) is pω+k-projective. In addition, if G
and G′ are strongly n-balanced projective groups of length strictly less than
ω2, then G and G′ are isomorphic if and only if G[pn] and G′[pn] are isometric
(Theorem 3.5).
In the fourth section we relate these notions to the following definition from

[2]: The group G is said to be n-summable if G[pn] (with the usual valuation)
splits into the valuated direct sum of countable valuated groups. Clearly, a
dsc group is both strongly n-totally projective and n-summable. This suggests
the question of whether the converse holds as well. It is shown that G is a
dsc group if and only if it is strongly n-balanced projective and n-summable
(Corollary 4.2). In addition, it is established that if G has countable length,
then G is a dsc group if and only if it is strongly n-totally projective and
n-summable (Theorem 4.6). However, the latter result does not generalize
to groups of length ω1 (Example 4.9); i.e., there are n-summable groups of
length ω1 that are strongly n-totally projective, but not strongly n-balanced
projective.
We close the paper with a list of open problems.

1. m,n-simply presented groups

In this section we generalize the results of [15]. Since the proofs will often
parallel those found in that paper, we will on occasion simply point out how to
make the necessary alterations. We start with the following easy observation.

Proposition 1.1. If m > 0 and G is an m,n-simply presented group, then it

is m− 1, n+ 1-simply presented.

Proof. Suppose P is an m,n-representing subgroup of G, so that pnP = {0}

and A
def
= G/P is strongly m-simply presented. It follows that there is a pm-

bounded nice subgroup N of A such that A/N is simply presented. If P ′

is the subgroup of G determined by the equation P ′/P = N [p], then P ′ is

pn+1-bounded. In addition, N ′ def= N/N [p] is a pm−1-bounded nice subgroup of

A′ def= A/N [p] ∼= (G/P )/(P ′/P ) ∼= G/P ′, and A′/N ′ = (A/N [p])/(N/N [p]) ∼=
A/N is simply presented. Therefore, P ′ is an m− 1, n+ 1-simply representing
subgroup of G, as required. �
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So if G is strongly k = m + n-simply presented, then it is m,n-simply pre-
sented; and if G is m,n-simply presented, then it is k-simply presented. Our
next result characterizes these classes for pω+m-bounded groups.

Proposition 1.2. A pω+m-bounded group G is m,n-simply presented if and

only if it is pω+k-projective.

Proof. Assume G is m,n-simply presented and pω+m-bounded. Let P be a

m,n-representing subgroup of G; so P ⊆ G[pn] and A
def
= G/P is strongly m-

simply presented. If P ′ is the subgroup of G defined by the equation P ′/P =
pω+mA, then it follows that P ′ ⊆ G[pn], and by ([15], Theorem 3.4(a)), G/P ′ ∼=
Aω+m is strongly m-simply presented. Therefore, P ′ is also an m,n-simply
representing subgroup of G. Replacing P by P ′, we may assume pω+mA = {0}.
By ([15], Proposition 2.5), a pω+m-bounded group which is stronglym-simply

presented, such as A, is pω+m-projective. This easily implies that G is pω+k-
projective (see, for example, Lemma 2.1(c’) below).
Conversely, if G is pω+k-projective, then again by ([15], Proposition 2.5), G

is strongly k-simply presented, and hence m,n-simply presented. �

We continue with another straightforward observation.

Lemma 1.3. If A′ is a subgroup of A such that A/A′ is bounded, then A is

m,n-simply presented if and only if A′ is m,n-simply presented.

Proof. Suppose first that n = 0. By ([15], Theorem 3.4), A (and similarly, A′)
is strongly m-simply presented if and only if pω+mA and Aω+m are strongly
m-simply presented. Since pω+mA = pω+mA′, pω+mA is strongly m-simply
presented if and only if pω+mA′ is. And since A′

ω+m embeds as a subgroup of
Aω+m with a bounded cokernel, Aω+m is strongly m-simply presented if and
only if Aω+m is pω+m-projective if and only if A′

ω+m is pω+m-projective if and
only if A′

ω+m strongly m-simply presented.
Using the first part of the proof, any m,n-simply representing subgroup

P ′ ⊆ A′ can easily seen to be an m,n-simply representing subgroup of A. And

conversely, if P is an m,n-simply representing subgroup of A, then P ′ def= P ∩A′

will be an m,n-simply representing subgroup of A′. �

In particular, the group A is strongly m-simply presented if and only if pnA
has this property. A standard argument then shows that G is m,n-simply
presented if and only if there is a strongly m-simply presented group A with a
subgroup Q ⊆ A[pn] such that G ∼= A/Q. This leads us to a characterization of
m,n-balanced projectives. For m = 0, it generalizes ([15], Theorem 2.1); and
for n = 0, it generalizes ([15], Theorem 2.4).

Theorem 1.4. A group is m,n-balanced projective if and only if it is a sum-

mand of a group that is m,n-simply presented. There are enough m,n-balanced
projectives.
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Proof. The proof of ([15], Theorem 2.1) was based upon two facts about simply
presented = balanced projective groups: (1) there are enough balanced projec-
tives, and (2) if A′ is a subgroup of A such that A/A′ is bounded, then A is
simply presented if and only if A′ is simply presented. Since, by Lemma 1.3,
both of these statements are equally true when the condition “simply pre-
sented” is replaced by “strongly m-simply presented”, it follows that the same
proof translates over with essentially no changes. �

The following, then, generalizes ([15], Propositions 2.2 and 2.5).

Corollary 1.5. A pω+m-bounded group G is m,n-simply presented if and only

if it is m,n-balanced projective if and only if it is pω+k-projective.

Proof. This follows from Proposition 1.2 and Theorem 1.4, since a summand
of a pω+m-bounded pω+k-projective group will retain those properties. �

This brings us to another technical observation.

Lemma 1.6. (a) If A is a strongly m-simply presented group, pλA is bounded

and Z is a subgroup of pλA, then A′ def= A/Z is strongly m-simply presented.

(b) If A is a group, pλ+mA is bounded, Z is a subgroup of pλ+mA and

A′ def= A/Z is strongly m-simply presented, then A is also strongly m-simply

presented.

Proof. (a) If Q is a nice pm-bounded subgroup of A such that A/Q is simply
presented, then Q′ = [Q + Z]/Z can easily be seen to be a nice pm-bounded
subgroup of A′. In addition, A′/Q′ ∼= A/[Q + Z] ∼= (A/Q)/([Q + Z]/Q),
pλ(A/Q) is bounded and [Q + Z]/Q ⊆ pλ(A/Q) implies that A′/Q′ is simply
presented, as required.
(b) Note that Aλ+m

∼= A′
λ+m is strongly m-simply presented and pλ+mA is

bounded, and hence stronglym-simply presented. The result, therefore, follows
from ([15], Theorem 3.4(b)). �

The following result and its proof are parallel to ([15], Theorem 3.4(a) and
Proposition 3.5(a)); we will therefore pass quickly over a number of details.

Proposition 1.7. Suppose G is a group and λ is an ordinal. If G is m,n-
simply presented or m,n-balanced projective, then pλG and Gλ = G/pλG share

that property.

Proof. If we can verify this when G is m,n-simply presented, then it imme-
diately follows when it is m,n-balanced projective. So suppose P is an m,n-

simply representing subgroup of G and A
def
= G/P . By ([15], Lemma 3.1(b)),

there is an exact sequence

0 → pλ+nG/(P ∩ pλ+nG) → pλ+nA → B1 → 0,

where B1 is bounded. Since A is strongly m-simply presented, so is pλ+nA.
And since B1 is bounded, by Lemma 1.3, it follows that pλ+nG/(P ∩pλ+nG) is
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strongly m-simply presented. Since pλ+nG/(P ∩ pλ+nG) embeds in pλG/(P ∩
pλG) with a bounded cokernel, it again follows from Lemma 1.3 that pλG/(P ∩
pλG) is strongly m-simply presented. Since P ∩ pλG is pn-bounded, we can
conclude that pλG is m,n-simply presented.
We next turn to G/pλG. By ([15], Lemma 3.1(c)), there is a short exact

sequence

0 → B2 → Aλ+n → G/[pλG+ P ] → 0,

where B2 ⊆ pλ(Aλ+n) is bounded. Since A is strongly m-simply presented, so
is Aλ+n. And by Lemma 1.6(a), G/[pλG+ P ] is strongly m-simply presented.
Therefore,

Gλ/([p
λG+ P ]/pλG) ∼= G/[pλG+ P ]

is also strongly m-simply presented. And since [pλG+P ]/pλG is a pn-bounded
subgroup of Gλ, we can conclude that Gλ is m,n-simply presented, completing
the proof. �

We now consider the converse to Proposition 1.7. The following result gen-
eralizes ([15], Theorem 3.4(b)), and its proof closely parallels that earlier ar-
gument. In fact, it can be thought of as what is obtained if λ is replaced by
λ+m. We therefore again omit a number of details.

Theorem 1.8. If λ is an ordinal, then the m,n-simply presented groups have

the λ+ k-Nunke property.

Proof. Half the result is a direct consequence of Proposition 1.7. Therefore,
suppose that P1 is a subgroup of G containing pλ+kG for which P1/p

λ+kG is
anm,n-simply representing subgroup ofGλ+k. Let Y be a maximal pn-bounded
summand of pλ+mG, so that there is a decomposition pλ+mG = X⊕Y . Let H
be a pλ+k-high subgroup of G containing Y (i.e., H is maximal with respect to
intersecting pλ+kG trivially).
It follows as in [15] that Gλ+k[p

n] = (X ⊕ H [pn])/pλ+kG, so that P1 ⊆
X ⊕H [pn]. Again as in [15], we let

P2 = (X + P1) ∩H [pn] ⊆ G[pn].

It follows that

X + P1 = X + [(X + P1) ∩H [pn]] = X + P2.

We can therefore conclude that pλ+mG+ P1 = pλ+mG+ P2.
Next, if P3 is an m,n-simply representing subgroup of pλ+kG, then we let

P = P2 + P3, so that P ⊆ G[pn]. Let A = G/P , which we want to show is
strongly m-simply presented. Using ([15], Lemma 3.1(b); with λ replaced by
λ+m), there is a short exact sequence

0 → pλ+kA → pλ+kG/P3 → B1 → 0,

where B1 is bounded. By Lemma 1.3, this implies that pλ+kA is strongly
m-simply presented.
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Since pλ+m(G/P1) is bounded, applying Lemma 1.6(a) to G/P1, we can
deduce that

G/[pλ+mG+ P ] = G/[pλ+mG+ P1] ∼= (G/P1)/([p
λ+mG+ P1]/P1)

is strongly m-simply presented. Using ([15], Lemma 3.1(c); again with λ re-
placed by λ+m), there is another exact sequence

0 → B2 → Aλ+k → G/[pλ+mG+ P ] → 0,

where B2 ⊆ pλ+mAλ+k. Therefore, by Lemma 1.6(b), Aλ+k will also be
strongly m-simply presented.
Finally, since λ + k = (λ + n) +m, by ([15], Theorem 3.4(b)), A = G/P is

strongly m-simply presented, as desired. �

The last result has the following consequence, which is proven exactly as in
([15], Proposition 3.5).

Corollary 1.9. If λ is an ordinal, then the m,n-balanced projective groups

have the λ+ k-Nunke property.

Note thatGλ is totally projective if and only if Gλ+k is totally projective, and
pλG is m,n-simply presented or m,n-balanced projective if and only if pλ+kG
has the corresponding property. The following, then, is a direct consequence
of Theorem 1.8 and Corollary 1.9.

Corollary 1.10. If λ is an ordinal, G is a group and Gλ is totally projective,

then G is m,n-simply presented or m,n-balanced projective if and only if pλG
shares that property.

We want to improve on Corollary 1.9 by showing that the m,n-balanced
projective groups have the λ+m-Nunke property; i.e., we want to reduce from
k = m + n to m. The next result is the key step in this reduction. If G is a
group, α is an ordinal and j < ω, let G[pjα] = {x ∈ G : pjx ∈ pαG}; note that
G[pjα]/p

αG = (Gα)[p
j ].

Lemma 1.11. If λ is an ordinal, G is a group, pλ+mG is bounded and Gλ+m

is m,n-balanced projective, then G is m,n-balanced projective.

Proof. The result is easily checked when λ is finite, so assume λ ≥ ω. Let V
be the valuated group G[pmλ+m] = G[pm]+pλG, with the height valuation from
G, and T be a group containing V as a nice subgroups such that the valuation
on V also agrees with the height function on T and T/V is simply presented
of length λ (see [20] for this standard construction).

Claim 1: T is strongly m-simply presented.
Let M be a pλ+m-high subgroup of G. There is a decomposition pλG =

(pλM)⊕X which leads to a valuated decomposition V = M [pm]⊕X . Because
X is bounded, X [pm] is nice in X (as a valuated group), so that V [pm] =
M [pm] ⊕ X [pm] is nice in V = M [pm] ⊕ X . Since V is nice in T , this
implies that V [pm] is nice in T (because niceness is transitive for valuated
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groups even though it is not transitive for non-valuated groups). In addi-
tion, V/V [pm] ∼= X/X [pm] is a bounded subgroup of pλ(T/V [pm]). Since
(T/V [pm])/(V/V [pm]) ∼= T/V is simply presented of length λ, it follows that
V/V [pm] = pλ(T/V [pm]) and T/V [pm] is simply presented. Therefore, T is
strongly m-simply presented, establishing the claim.

The identity map V → G[pmλ+m] extends to a homomorphism φ : T → G;
denote the kernel of φ by K. If m > 0, it is easy to check that φ must be
surjective. If m = 0, then V = pλG, and if necessary, we can replace T by
a direct sum, T ⊕ X , where X is a totally projective group of length λ, and
extend φ to this larger group so that

0 → K → T → G → 0

is balanced exact.
There is a commutative diagram:

0 0
↓ ↓

K[pn] = K[pn]
↓ ↓

0 → K −→ T −→ G → 0
↓ pn ↓ γ ‖

0 → K −→ H −→ G → 0
↓ ↓

K/pnK = K/pnK
↓ ↓
0 0

Let E denote the upper short exact row, so that the lower one is pnE. We will
now break the argument into two parts.

Claim 2: H is m,n-simply presented.

First, T is stronglym-simply presented. This implies thatH ′ def= γ(T ) ism,n-
simply presented. Since H/H ′ is bounded, by Lemma 1.3, we can conclude that
H is m,n-simply presented.

The proof therefore reduces to the next statement.

Claim 3: pnE is splitting exact.
Note that V (λ +m) maps isometrically onto pλ+mG. This induces the top

row of another commutative diagram:

0 → K −→ T/V (λ+m) −→ Gλ+m → 0
↓ pn ↓ ‖

0 → K −→ H ′ −→ Gλ+m → 0

where the bottom row is just a push-out. Let E′ be the upper row of this,
so that pnE′ is its lower row. If m > 0, then since there is an isometry of
V/V (λ + m) with Gλ+m[pm] = G[pmλ+m]/pλ+mG, we can conclude that E′ is
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strongly m-balanced; in other words, E′ ∈ Vmext(Gλ+m,K). If m = 0, the
fact that E is balanced also implies that E′ ∈ Bext(Gλ,K) = Vmext(Gλ,K).
Therefore, in either case, pnE′ ∈ pnVmext(Gλ+m,K) is m,n-balanced. Since
Gλ+m is assumed to be m,n-balanced projective, we can infer that pnE′ splits.
If π : G → Gλ+m is the canonical surjection, then E = π∗(E′), where

π∗ : Vmext(Gλ+m,K) → Vmext(G,K) is the usual functorial homomorphism.
Therefore, pnE = pnπ∗(E′) = π∗(pnE′) = π∗(0) = 0, so that pnE splits, as
required. �

This leads to the following very satisfactory result.

Theorem 1.12. If λ is an ordinal, then the m,n-balanced projectives have the

λ+m-Nunke property.

Proof. One implication is a consequence of Proposition 1.7, so assume Gλ+m

and pλ+mG are m,n-balanced projective. Clearly, if pλ+mG is m,n-balanced
projective, then the same holds for pλ+kG. Next, (Gλ+k)λ+m

∼= Gλ+m is
m,n-balanced projective; and therefore by Lemma 1.11, Gλ+k is m,n-balanced
projective. So by Corollary 1.9, G is m,n-balanced projective. �

For an arbitrary ordinal λ, in ([15], Theorem 4.4) it was shown that n-
simply presented groups have the λ-Nunke property, but the argument was
long and difficult. By way of comparison, using a much simpler argument,
Theorem 1.12 with m = 0 states that the n-balanced projective groups have
the λ-Nunke property. In other words, in verifying the λ-Nunke property, the
n-simply presented groups are much harder to handle than their summands,
the n-balanced projective groups. Of course, in addition, Theorem 1.12 also
applies when m > 0.

2. m,n-totally projective groups

We will find it convenient to denote the torsion product of the groups A
and B by A▽B = Tor(A,B) (this notation - originally suggested by Claudia
Metelli - is not only more compact, but it also better reflects the fact that ▽
is the derived functor of the tensor product, ⊗, as well as better reflecting that
this is actually a product in the category of primary abelian groups).
A short exact sequence

0 → X → Y → G → 0

is pα-pure if it represents an element of pαExt(G,X), and G is pα-projective
if all such sequences split. For the aid of the reader, we state and give quick
proofs of some of the main properties of pα-projective groups, beyond what can
be found in [3] or [6]. Most of these facts are due to Nunke ([17], [18], [19]).
Denote the generalized Prüfer group by Hα (there will be no danger of

confusion with the notation Gα = G/pαG employed elsewhere). For every



ON m,n-BALANCED PROJECTIVE AND m,n-TOTALLY PROJECTIVE GROUPS 317

group G there is a natural homomorphism ∂α
G : Hα ▽ G → G. If α is fi-

nite, then ∂α
G can be identified with the inclusion G[pα] ⊆ G, and G is pα-

projective if and only if it is pα-bounded. If α = λ + ξ, then pλHα can

be identified with Hξ, and ∂ξ
pλG

: Hξ ▽ pλG → pλG can be identified with

∂α
G|pλ(Hα▽G) : p

λHα ▽ pλG → pλG (where we are using [3], Theorem 64.2).

Lemma 2.1. Let G be a group and α = λ+ ξ be an ordinal.

(a) G is pα-projective if and only if ∂α
G has a right inverse ν : G → Hα ▽G

(i.e., ∂α
G ◦ ν = 1G)).

(b) If pαG = {0}, then pαExt(G,X) ⊆ Bext(G,X).
(c) If G is pα-projective and P ⊆ G[pn], then G/P is pα+n-projective.

(c’) If P ⊆ G[pn] and G/P is pα-projective, then G is pα+n-projective.

(d) If G is pα-projective, then pαG = {0}.
(e) If X is a subgroup of Y , and Y/X is isomorphic to a subgroup of a pα-

projective group G, Z is a group and ǫ : X → pαZ is a homomorphism, then ǫ
extends to a homomorphism µ : Y → Z (see [9]).
(f) If G is pα-projective, then pλG is pξ-projective.
(f’) If G is pα-projective, then Gλ is pα-projective.
(g) If G is pα-pure projective, then any pα+1-pure exact sequence E : 0 →

X → G → Y → 0 necessarily splits.

Proof. To begin, (a) and (b) are restatements of ([6], Lemma 85(a) and Theo-
rem 91), and (c) is an obvious extension of ([3], Lemma 82.1), and (c’) follows
from virtually identical reasoning. Turning to (d), if G is pα-projective, then
(a) implies that G is isomorphic to a summand of Hα ▽ G. The result then
follows from the isomorphism pα(Hα▽G) ∼= pαHα▽pαG = {0}▽pαG = {0}.
Considering (e), if D ∼= ⊕IZp∞ is a divisible hull for G, then G is isomorphic

to a summand of Hα ▽ G ⊆ Hα ▽ D ∼= ⊕I(Hα ▽ Zp∞) ∼= ⊕IHα. We may
therefore assume that G is a totally projective group of length α.
The surjectivity of the map Ext(G,X) → Ext(Y/X,X) implies that we can

find a group Y1 containing Y such that Y1/X ∼= G. We can easily construct
another group Y2 containing X such that pαY2 = X and Y2/X = G′ is also
totally projective of length α. We let Y3 be the sum of Y1 and Y2 along X
(i.e., Y3 = (Y1 ⊕ Y2)/{(x,−x) : x ∈ X}). Note that Y ⊆ Y1 ⊆ Y3, p

αY3 = X
and Y3/X ∼= G ⊕ G′ is totally projective of length α. Therefore, by ([3],
Corollary 84.1), ǫ : X → pαZ must extend to a homomorphism Y3 → Z, which
restricts to the desired homomorphism µ : Y → Z.
For (f) and (f’), if π : G → Gλ is the canonical surjection, then sinceHξ▽pλG

can be identified with pλ(Hα ▽G), there is a commutative diagram:

Hξ ▽ pλG
∂ξ

pλG

−→ pλG
↓ ⊆ ↓ ⊆

Hα ▽G
∂α
G−→ G

↓ 1▽π ↓ π

Hα ▽Gλ

∂α
Gλ−→ Gλ
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Since G is pα-projective, there is a right inverse, ν to ∂α
G.

Considering (f), since ν|pλG will be a right inverse of ∂ξ
pλG

, it follows that

pλG is pξ-projective.
Regarding (f’), since pλ(Hα ▽Gλ) = {0}, it follows that (1▽ π)(ν(pλG)) =

{0}, so that (1▽π)◦ ν determines a homomorphism ν′ : Gλ → Hα▽Gλ which
will be a right inverse to ∂α

Gλ
.

Finally, as to (g), for any group Z we have part of a long exact sequence

→ Hom(X,Z)
δ
→ pαExt(Y, Z) → 0 (= pαExt(G,Z)).

Since E is pα+1-pure, the image of δ is contained in pα+1Ext(Y, Z). This implies
that pαExt(Y, Z) = pα+1Ext(Y, Z). Since Y is torsion, by ([3], Lemma 55.3),
Ext(Y, Z) is reduced. It follows that pα+1Ext(Y, Z) = {0}, so that Y is pα+1-
projective. However, this show that E splits, as stated. �

We introduce some new, somewhat ad hoc, terminology. If G is a group and
γ is an ordinal, we will say G is pγ+(n)-projective if there is a group K and a
subgroup P ⊆ (G ⊕ K)[pn] such that (G ⊕ K)/P is pγ-projective. It follows
from Lemma 2.1(c’) that if G is pγ+(n)-projective, then it is pγ+n-projective.
Note that if n = 0 or γ ≤ ω, then G is pγ+(n)-projective if and only if it is
pγ+n-projective.

Lemma 2.2. Suppose λ and ξ are ordinals, ξ ≥ ω and G is a group.

(a) If pλ+mG = {0} and G is strongly m-simply presented, then it is pλ+m-

projective.

(b) If G is m,n-balanced projective, then Gλ+m is pλ+m+(n)-projective.

(c) If Gλ+m is pλ+k-projective and pλ+mG is pξ+m+(n)-projective, then G
will be pλ+ξ+k-projective.

Proof. Denote λ + m by γ. Starting with (a), suppose N ⊆ G[pm] is nice
and G/N is totally projective. So N ′ = N + pλG ⊆ G[pm] and G/N ′ ∼=
(G/N)/([N + pλG]/N) = (G/N)/pλ(G/N) is also totally projective. So G/N ′

is pλ-projective, so that G is pγ-projective.

For (b), suppose G ⊕ K
def
= G′ is m,n-simply presented. Consequently, by

Proposition 1.7, Gγ ⊕ Kγ
∼= G′

γ is m,n-simply presented, so that we may
assume pγG = pγK = {0}. Let P be an m,n-simply representing subgroup of
G′. Now, pγ(G′/P ) ⊆ G′[pn]/P , so let P ′ ⊆ G′[pn] be the subgroup containing
P such that P ′/P = pγ(G′/P ). It follows that G′/P ′ ∼= (G′/P )/pγ(G′/P ) is
stronglym-simply presented and pγ = pλ+m-bounded. Therefore by (a), G′/P ′

is pγ-projective. It follows that G′, and hence G, will be pγ+(n)-projective.
As to (c), denote ξ+m by µ. Since pγG is pµ+(n)-projective, there is a group

K and a subgroup P ⊆ (pγG⊕K)[pn] such that (pγG⊕K)/P is pµ-projective.
Let L be a group such that pγL = K and L/pγL is totally projective. If
we replace G by G ⊕ L, then we may assume P ⊆ (pγG)[pn] and pγG/P is
pµ-projective.
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As we have observed before, since µ is infinite, pγ+nHγ+µ can be identified
with Hµ. Again, this means we can identify pγ+n(Hγ+µ▽G) with Hµ▽pγ+nG;

let ∂ = ∂γ+µ+n
G : Hγ+µ+n ▽ G → G and ∂′ = ∂γ+µ

G : Hγ+µ ▽ G → G which
restricts to ∂′ = ∂µ

pγ+nG : Hµ ▽ pγ+nG → pγ+nG. There is a commutative

diagram:

0 → K → Hγ+µ+n ▽G
∂
→ G → 0

‖ ↓ ↓ pn

0 → K → Hγ+µ ▽G
∂′

−→ G → 0
↑ ⊆ ↑ ⊆ ↑ ⊆

0 → pγ+nK → Hµ ▽ pγ+nG
∂′

−→ pγ+nG → 0

Note that pn : pγG → pγ+nG induces a homomorphism pγG/P → pγ+nG.
Since pγG/P is pµ-projective and the lower row of our diagram is pµ-pure,
there is a homomorphism φ0 : pγG → Hµ ▽ pγ+nG such that ∂′ ◦ φ0 = pn|pγG.
Since Gγ is pγ+n-projective and φ0(p

γG) ⊆ pγ+n(Hγ+µ ▽ G), it follows from
Lemma 2.1(e) that φ0 extends to a homomorphism φ : G → Hγ+µ▽G. Because
(∂′ ◦ φ− pn)(pγG) = {0}, ∂′ ◦ φ− pn induces a homomorphism Gγ → G. Since
Gγ is pγ+n-projective and the middle row of our diagram is pγ+µ-pure, and so
pγ+n-pure, it follows that there is a homomorphism ρ : G → Hγ+µ ▽ G such
that ∂′ ◦ φ− pn = ∂′ ◦ ρ. Since ∂′ ◦ (φ− ρ) = pn, it follows that the upper row
of our diagram splits, so that G is pγ+µ+n-projective, as required. �

By letting m = n = 0 in Lemma 2.2(c) we get another useful theorem of
Nunke.

Corollary 2.3. Suppose λ and ξ are ordinals and G is a group. If Gλ is

pλ-projective and pλG is pξ-projective, then G is pλ+ξ-projective.

Proof. If ξ is infinite, this follows from Lemma 2.2(c), and if ξ is finite, it follows
from Lemma 2.1(c’). �

Returning to our main investigation, we have the following consequence of
Lemma 2.2(b).

Theorem 2.4. If a group G is m,n-balanced projective, then it is m,n-totally
projective.

Proof. If λ is any ordinal, then Gλ+m is pλ+m+(n)-projective, and hence pλ+k-
projective, as required. �

As was the case for m,n-simply presented groups and m,n-balanced projec-
tives, half of the λ-Nunke property for m,n-totally projective groups is easy.

Theorem 2.5. If λ is an ordinal and G is an m,n-totally projective group,

then pλG and Gλ = G/pλG are m,n-totally projective.

Proof. Let µ be any ordinal, so thatGµ+m is pµ+k-projective. If µ+m ≤ λ, then
(Gλ)µ+m

∼= Gµ+m is pµ+k-projective. On the other hand, if µ +m > λ, then
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by Lemma 2.1(f’), (Gλ)µ+m
∼= Gλ

∼= (Gµ+m)λ is pµ+k-projective. Therefore,
Gλ is m,n-totally projective.
In addition, since Gλ+µ+m is pλ+µ+k-projective, by Lemma 2.1(f) we can

conclude (pλG)µ+m = pλ(Gλ+µ+m) is pµ+k-projective, so that pλG is m,n-
totally projective. �

We now consider the converse of Theorem 2.5. The following, which parallels
Theorem 1.12, is slightly unsatisfactory in the sense that it requires that we
strengthen our assumptions regarding pλ+mG.

Theorem 2.6. Suppose G is a group and λ is an ordinal. If pλ+mG is m,n-
balanced projective and Gλ+m = G/pλ+mG is m,n-totally projective, then G is

m,n-totally projective.

Proof. If µ is a limit ordinal, then we need to show Gµ+m is pµ+k-projective.
If µ ≤ λ, then Gµ+m

∼= (Gλ+m)µ+m is pµ+k-projective.
On the other hand, if µ > λ, then let ξ be defined by the equation µ =

λ + ξ, so that ξ is infinite. By Theorem 1.12, pλ+mGµ+m
∼= (Gλ+m)ξ+m is

m,n-balanced projective; it follows from Lemma 2.2(b) that pλ+mGµ+m is

pξ+m+(n)-projective. Since (Gµ+m)λ+m
∼= Gλ+m is m,n-totally projective, it

must be pλ+k-projective. So, by Lemma 2.2(c), we can conclude that Gµ+m is
pλ+ξ+k = pµ+k-projective, as required. �

We now briefly discuss one special case in which a λ-Nunke-type result occurs.

Proposition 2.7. Suppose λ is an ordinal and G is a group such that Gλ

is pλ-projective (e.g., Gλ could be totally projective). Then G is m,n-totally
projective if and only if both pλG and Gλ are m,n-totally projective.

In particular, G is m,n-totally projective if and only if pλG is m,n-totally
projective, provided Gλ is totally projective.

Proof. One implication is a direct consequence of Theorem 2.5, so suppose pλG
and Gλ are m,n-totally projective. Let µ be any ordinal. If µ +m ≤ λ, then
since Gλ is m,n-totally projective, Gµ+m

∼= (Gλ)µ+m is pµ+k-projective.
Next, suppose λ < µ + m < λ + ω and µ + m = λ + j. Since pλ(Gµ+m)

is pj-bounded, and (Gµ+m)λ ∼= Gλ is pλ-projective, it follows that Gµ+m is
pλ+j = pµ+m-projective; and hence pµ+k-projective.
Finally, if λ+ω ≤ µ+m, then let ξ be defined by µ+m = λ+ξ+m. We have

pλ(Gµ+m) = (pλG)ξ+m is pξ+k-projective. In addition, since (Gµ+m)λ ∼= Gλ

is pλ-projective, by Corollary 2.3, Gµ+m is pλ+ξ+k = pµ+k-projective. So G is
m,n-totally projective, as stated.
The final part is immediate. �

The next result, which parallels Theorem 1.12 and ([15], Theorem 3.4(b)),
shows that in one extreme case we get the desired result.

Corollary 2.8. If λ is an ordinal, then the strongly n-totally projective groups

have the λ+ n-Nunke property.
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Proof. Suppose pλ+nG and Gλ+n are strongly n-totally projective. Since Gλ+n

will be pλ+n-projective, by Proposition 2.7 (with m = n, n = 0, λ = λ+ n), G
is strongly n-totally projective. The converse follows from Theorem 2.5. �

3. Groups of length less than ω
2

The following is a key step in discussing groups of length less than ω2. Its
proof is a version of the argument used in ([15], Theorem 4.5); however, since
it only deals with the ordinal ω and Σ-cyclic groups, as opposed to a general
limit ordinal and all totally projective groups, it is substantially simpler.

Lemma 3.1. If G is an m,n-balanced projective group and pω+mG is bounded,

then G is m,n-simply presented.

Proof. If m = 0, this follows from ([15], Corollary 4.7), so we may assume
m > 0. We now induct on n. If n = 0, the result is an immediate consequence
of ([15], Corollary 3.6). So assume n > 0 and the result holds for n− 1.
Since a bounded group, such as pω+mG, is clearly m,n-balanced projective,

by Theorem 1.12 and Corollary 1.5, G is m,n-balanced projective if and only
if Gω+m is pω+k-projective. Since a group A such that pω+mA is bounded is
strongly m-simply presented if and only if Aω+m is pω+m-projective, the result
will follow by induction from the following statement:

Claim 1: There is a subgroup X ⊆ G[p] such that G′ def= G/X is m,n − 1-
balanced projective (i.e., G′

ω+m is pω+k−1-projective).
After separating off a bounded summand, we may assume that G has rank

and final rank equaling some cardinal κ. If κ is countable, then G will be a dsc
group and the result clearly follows; without loss of generality, then, assume
κ is uncountable. Note that G is pω+ℓ-projective for some ℓ < ω, so by ([11],
Corollary 25) it is far from thick. This means that there is a Σ-cyclic group
S and a surjective homomorphism π : G → S such that for all j < ω we have
r(π((pjG)[p])) = κ; let P ′ be the kernel of π. There is a subgroup P ⊆ G[pkω+m]
containing pω+mG such that G/P ∼= Gω+m/(P/pω+mG) is Σ-cyclic. Replacing
P by P ∩ P ′, if necessary, we may assume that pkP ⊆ pω+mG and the above
cardinality condition holds for π : G → G/P = S. Since G/P is separable, we
have pωG ⊆ P .
Fix a decomposition S =

⊕
i∈I Si, where each Si is a cyclic group, and let

πi be the composition G → G/P → Si. If x ∈ G, let supp(x) be the support
of π(x) in this decomposition. If J ⊆ I, let ΣJ =

⊕
i∈J Si.

Let L be the set of limit ordinals in κ and x′
γ for γ ∈ L be a listing of P (ω+

m− 1) = P ∩ pω+m−1G, where we simply repeat terms if |P (ω +m− 1)| < κ.
For each x′

γ ∈ P (ω+m− 1), choose xγ ∈ P (ω) = pωG such that pm−1xγ = x′
γ .

We inductively pick yα ∈ G[p] and zα ∈ G[p1ω] such that
(a) yα ∈ (pjG)[p]− P , where γ ∈ L, j < ω and α = γ + j;

(b) supp(yα) ∩Kα = ∅, where Kα
def
=

⋃
β<α(supp(yβ) ∪ supp(zβ));
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(c) pzα = xγ (where γ ∈ L is as in (a));
(d) |π(yα)|S < |zα|G;
(e) supp(zα) ∩ supp(yα) = ∅.
Basically, one chooses yα ∈ G[p] such that (a) and (b) hold; this can be done

since the projection ΣI → ΣKα
restricted to π((pjG)[p]) → ΣKα

must have a
non-zero kernel. Then choose zα such that pzα = xγ and |πi(yα)|S < |zα|G for
all i ∈ supp(yα).
For all α < κ we now let rα = (yα + zα) − (yα+1 + zα+1). Clearly prα = 0,

so let

X = P [p] + 〈rα : α < κ〉 ⊆ G[p].

If G′ = G/X , then we need to show that G′
ω+m is pω+k−1-projective. To that

end, let

Q = P + 〈yα + zα : α < κ〉,

so that X ⊆ Q. We divide our argument into two statements.

Claim 2: pk−1(Q/X) ⊆ pω+mG′.

Claim 3: G′/(Q/X) ∼= G/Q ∼= S/(Q/P ) is Σ-cyclic.

Regarding Claim 2, we begin with the following:

Subclaim 2’: [P (ω +m− 1) +X ]/X ⊆ pω+mG′.
If γ ∈ L and x′

γ ∈ P (ω +m− 1), then x′
γ = pm(yγ + zγ). For every j < ω,

yγ + zγ = (yγ+j+1 + zγ+j+1) + (rγ+j + · · ·+ rγ+1 + rγ).

Note that by (a) and (d), |yγ+j+1 + zγ+j+1|G > j, and rγ+j + · · ·+ rγ+1+ rγ ∈
X ; it follows that yγ + zγ +X ∈ pωG′. Therefore, x′

γ +X ∈ pω+mG′, as stated.

Since pk−1P ⊆ P (ω + m − 1) + P [p] ⊆ P (ω +m − 1) + X , it follows from
Subclaim 2’ that pk−1([P +X ]/X) ⊆ pω+mG′.
When γ ∈ L, j < ω and α = γ+j, then (yα+zα)+X = (yγ+zγ)+X ∈ pωG′,

which gives pm(yα + zα) + X ∈ pω+mG′. Note also that k − 1 ≥ m, so that
pk−1(yα + zα) +X ∈ pω+mG′. This concludes the proof of Claim 2.

Turning to Claim 3, let π(yα + zα) = sα + tα, where sα ∈ Σ(Kα+1−Kα) and
tα ∈ ΣKα

(In fact, we will have supp(sα) = Kα+1 −Kα). It follows from (b),
(d) and (e) in the construction of yα and zα that |sα|S ≤ |tα|S .
For α ≤ κ, let Sα = ΣKα

and Qα = 〈sν + tν : ν < α〉. Clearly S/(Q/P ) ∼=
(ΣI−Kκ

) ⊕ (Sκ/Qκ), where the first term is certainly Σ-cyclic. To show the
second term is also Σ-cyclic, note that Sκ/Qκ is the direct limit of {Sα/Qα}α<κ.
Claim 3, therefore, follows from the next statement.

Subclaim 3’: For every α < κ we have a split-exact sequence

0 → Sα/Qα → Sα+1/Qα+1 → Σ(Kα+1−Kα)/〈sα〉 → 0,

where the right-hand term is finite, and hence Σ-cyclic.
Since |sα|S ≤ |tα|S , the map sα 7→ tα extends to a homomorphism

φ : Σ(Kα+1−Kα) → ΣKα
= Sα.
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Therefore, (u, v) 7→ (u + φ(v), v) is an automorphism of Sα+1 = ΣKα+1
which

fixes Sα and takes Qα ⊕ 〈sα〉 to Qα+1. In particular, we have

Sα+1/Qα+1
∼= (Sα/Qα)⊕ (Σ(Kα+1−Kα)/〈sα〉).

This establishes Claim 3’; and hence Claim 3; and hence Claim 1; and hence
the lemma. �

This brings us to an extension of ([15], Corollaries 3.6 and 4.7). The new
result applies not only when both m and n are positive, but also includes the
condition of m,n-totally projectivity.

Theorem 3.2. Suppose G is a reduced group of length strictly less than ω2.

The following are equivalent:
(a) G is m,n-simply presented;
(b) G is m,n-balanced projective;
(c) G is m,n-totally projective;
(d) for every λ < ω2, (pλG)ω+m is pω+k-projective.

Proof. Clearly (a) implies (b). By Theorem 2.4, (b) implies (c). Assuming (c),
then to verify (d), let λ < ω2. It follows from Theorem 2.5 that (pλG)ω+m is
m,n-totally projective. However, since this factor is pω+m-bounded, it must
be pω+k-projective.
Finally, we assume (d) is true and verify (a). We induct on ℓ, which we

define to be the smallest non-negative integer such that pω·ℓG = 0. Observe
that pω+kG also satisfies (d), and has a smaller corresponding value of ℓ. It
follows by induction that pω+kG is m,n-simply presented. Next, observe that
pω+m(Gω+k) is bounded (by pn) and (Gω+k)ω+m

∼= Gω+m is pω+k-projective.
It follows from Lemma 3.1 that Gω+k is m,n-simply presented. Therefore, (a)
follows from Theorem 1.8. �

The following is a slight extension of the last result but is its direct conse-
quence.

Corollary 3.3. Suppose G is a group, γ < ω2 and pγG is m,n-simply pre-

sented. Then (a) through (d) of Theorem 3.2 are still equivalent.

Proof. Note that the first paragraph of the last proof applies without change.
Suppose then that pγG is m,n-simply presented and G satisfies (d); we need
to verify that G is m,n-simply presented. Clearly, pγ+kG = pk(pγG) is m,n-
simply presented. A now standard argument shows that Gγ+k also satisfies (d).
However, since γ + k < ω2, by Theorem 3.2, Gγ+k is m,n-simply presented.
Therefore, by Theorem 1.8, G is m,n-simply presented, as required. �

We have the following containments:

“k, 0-balanced projectives” ⊆ “m,n-balanced projectives” ⊆ “m− 1, n+ 1-
balanced projectives”⊆“0, k-balanced projectives”
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Example 3.4. If m > 0, then there is a group G that is m− 1, n+1-balanced
projective, but not m,n-balanced projective.

Proof. Consider any group G of length ω + m which is not pω+k-projective,
but G/pω+m−1G is pω+k-projective. It follows from Theorem 3.2 that such
a group has the specified properties. To be a bit more specific, let B be an
unbounded Σ-cyclic group with torsion completion B and V be the valuated
group B[pk+1]/B[pm], where |x|V = |x|B/B[pm] for all x ∈ V . Next, let G be a

group containing V such that G/V is Σ-cyclic and |x|V = |x|G for all x ∈ V .
We leave it to the reader to verify that this G has the indicated properties. �

This example also shows that the m,n-balanced projective groups do not
have the ω +m− 1-Nunke property, so that Theorem 1.12 is the best possible
result. It also shows that the m,n-simply presented and the m,n-totally pro-
jective groups do not have the ω +m − 1-Nunke property (cf. Theorems 1.8
and 2.6).
Let Sn be the collection of groups G such that for some γ < ω2, Gγ is

strongly n-simply presented and pγG is totally projective. Clearly S0 is just
the totally projective groups. For n > 0, the following shows that the groups
in Sn are determined by their pn-socles.

Theorem 3.5. Suppose n > 0, and G1 and G2 are in Sn. Then G1 and G2

are isomorphic if and only if G1[p
n] and G2[p

n] are isometric.

Proof. Certainly, if G1 and G2 are isomorphic, then they have isometric pn-
socles. For the converse, if ℓ < ω, let Sℓ

n be the collection of G ∈ Sn such that
p(ω·ℓ)+nG is totally projective. Clearly, Sn is the ascending union of the Sℓ

n.
We induct on ℓ to show that the groups in Sℓ

n are determined by the isometry
classes of their pn-socles. Since S0

n is just the simply presented groups, this is
true for ℓ = 0. Suppose now that this holds for ℓ. Since G ∈ Sℓ+1

n if and only if
pω+nG ∈ Sℓ

n and Gω+n is pω+n-projective, it follows from ([14], Theorem 3.16)
that the groups in Sℓ+1

n are also determined by the isometry classes of their
pn-socles. Therefore, by induction, the result follows for Sn = ∪ℓSℓ

n. �

One important and useful property of pω+1-projective groups G is that they
always split into G = S ⊕ T , where S is separable and T is totally projective.
The following shows that a variation on this property generalizes to the groups
in S1. If λ ≤ ω1 is an ordinal, then G is a Cλ group if for every α < λ one
(and hence all) pα-high subgroups of G are dsc groups. If λ is a limit ordinal,
this is equivalent to requiring that Gα is a dsc group for every α < λ (see, for
example, [12], Theorem 8). All groups are Cω groups.

Proposition 3.6. A group G is in S1 if and only if

G ∼= H ⊕ (
⊕

1≤ℓ≤j

Aℓ),

where
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(a) j is a non-negative integer;
(b) H is totally projective;
(c) Aℓ is a p(ω·ℓ)+1-projective Cω·ℓ group with pω·ℓAℓ = {0}.

Proof. It is easy to check that any group of the indicated form is in S1. For the
converse, let j be the smallest non-negative integer such that pω·jG is simply
presented. If j = 0, the result is obvious, so assume it holds for all groups
in S1 with a smaller corresponding value of j. Note that pω+1G satisfies the
hypothesis with j − 1, so there is a corresponding decomposition pω+1G ∼=
H ′ ⊕ (

⊕
1≤ℓ≤j−1 A

′
ℓ).

Let Y be a pω+1-high subgroup of G. Since Y embeds in Gω+1, it is pω+1-
projective. In particular, Y must be C-decomposable, so that Y ∼= A1⊕C⊕T ,
where A1 is a separable pω+1-projective, T is simply presented of length ω + 1
and C is a Σ-cyclic group whose final rank is at least as large as r(pωG).
Note thatG[p] is isometric to Y [p]⊕(pω+1G)[p]. A simple (but rather tedious)

computation in valuated vector spaces, which we omit, then shows that G[p]
is isometric to the socle of a group of the form H ⊕ (

⊕
1≤ℓ≤j Aℓ), where H is

simply presented with pω+1H ∼= H ′ and for 2 ≤ ℓ ≤ j, pω+1Aℓ
∼= A′

ℓ−1 and

Aℓ/p
ω+1Aℓ is a dsc group.

By Theorem 3.5, then, G is isomorphic to this direct sum. �

4. n-summable groups

Throughout this section we will assume n is positive. We now consider
groups of length not exceeding ω1. The following definition appeared in [2]: A
group G is n-summable if the valuated group G[pn] is isometric to the valuated
direct sum of a collection of countable valuated groups. In particular, a group
is 1-summable if and only if it is summable in the usual sense of the term. For
more detailed information about summable and n-summable groups, see [2],
[3], [9] and [10].
We now relate this to our current discussions. Recall from [15] that for a

group G, a group H(G) is defined such that H(G) has a nice subgroup V which
is isometric to G[pn] and such that H(G)/V is simply presented. We identify V
with G[pn]. This group was used to construct a strongly n-balanced projective
resolution, 0 → K(G) → H(G) → G → 0, of G.

Theorem 4.1. A group G is n-summable if and only if H(G) is a dsc group.

Proof. Suppose first that G is n-summable. By ([2], Theorem 2.1), G[pn], as
a valuated group, has a nice composition series, {Ni}i<α. It is readily checked
that eachNi is also nice in H(G). Since H(G)/G[pn] is totally projective, it has
a nice composition series {Mj}j<β . If M

′
j is the subgroup of H(G) containing

G[pn] such that M ′
j/G[pn] = Mj, then the Ns together with the M ′s form a

nice composition series for G.
Conversely, if H(G) is a dsc group, where V = G[pn], then the proof of ([2],

Theorem 2.1) it is clearly n-summable. Since G[pn] is a valuated summand of



326 PATRICK W. KEEF AND PETER V. DANCHEV

H(G)[pn], it will also be a direct sum of countable valuated groups. Therefore,
G is n-summable. �

Corollary 4.2. A group G is a dsc group if and only if it is strongly n-balanced
projective and n-summable.

Proof. Certainly, we know that a dsc group is strongly n-balanced projective
and n-summable. Conversely, if G is n-summable, it follows from Theorem 4.1
that H(G) is a dsc group. And if G is also strongly n-balanced projective, then
it is isomorphic to a summand of H(G), so that it, too, is a dsc group. �

Theorem 4.1 allows us to derive properties of n-summable groups from the
corresponding classical results for dsc groups. We present a couple of examples.

Corollary 4.3. If G = ∪i<ωGi, where Gi ⊆ Gi+1 are n-summable isotype

subgroups of G, then G is n-summable.

Proof. Note that H(G) will be the ascending union of the isotype subgroups
H(Gi). If the latter are all dsc groups, then by a result of Hill ([7]), so is H(G),
which implies that G is n-summable, as required. �

Proposition 4.4. Let G be an isotype subgroup of the n-summable group A.
If G is summable, then it is n-summable.

Proof. The result being trivial if n = 1, we assume that n > 1. Again, H(G)
will be an isotype subgroup of H(A), and since A is n-summable, H(A) is a dsc
group. We next show that H(G) is summable: There is a valuated decomposi-

tion H(G)[pn] ∼= (K(G)[pn])⊕(G[pn]). Therefore, if H ′ def= H(G)/G[pn−1], then

(pn−1G)[p] ∼= G[pn]/G[pn−1]
def
= V ′ is a nice subgroup of H ′ such that H ′/V ′ ∼=

H(G)/G[pn] is a dsc group. It follows that 0 → K(G) → H ′ → pn−1G → 0
is a strongly 1-balanced projective resolution of pn−1G. However, since G is
summable, so is pn−1G; and this implies that H ′ is actually a dsc group. Since
H ′[p] is isometric to (K(G)[p])⊕V ′, K(G) is summable. And since H(G)[p] is
isometric to (K(G)[p])⊕ (G[p]), we have that H(G) is also summable.
Therefore, again by a result of Hill ([8]), H(G) (as an isotype and summable

subgroup of a dsc group) is also a dsc group. However, in view of Theorem 4.1,
this gives that G is n-summable, as stated. �

We want to consider what happens in Corollary 4.2 when the condition
“strongly n-balanced projective” is replaced with the possibly weaker condition
“strongly n-totally projective.” To that end, we have the following intermediate
step.

Lemma 4.5. If G is a strongly n-totally projective group, α is a countable

ordinal and X is pα+n−1-high in G, then X is also strongly n-totally projective.

Proof. By ([6], Theorem 92), X is pα+n-pure in G. Let λ be an ordinal. If
λ + n ≤ α + n, then by ([6], Proposition 87), we can infer that Xλ+n embeds



ON m,n-BALANCED PROJECTIVE AND m,n-TOTALLY PROJECTIVE GROUPS 327

as a pλ+n-pure subgroup of Gλ+n. Since Gλ+n is pλ+n-projective and λ+ n is
countable, it follows that Xλ+n is also pλ+n-projective (see, for example, [17]).
If λ+n > α+n, then we already know that X ∼= Xλ+n will be pα+n-projective,
and hence pλ+n-projective. This shows, therefore, that X is strongly n-totally
projective. �

This brings us to one of the main results of this section.

Theorem 4.6. Suppose G is a group of countable length. Then G is a dsc

group if and only if it is strongly n-totally projective and n-summable.

Proof. Certainly if G is a dsc group, then it satisfies these two conditions. For
the converse, we induct on the length of G, which we denote by µ; so suppose
that the result holds for all groups of shorter length. If µ < ω, the result is
trivial, so we may assume µ is infinite.

Case 1: µ = α + n for some α < µ. Let X be pα+n−1-high in G. By ([2],
Corollary 3.1(c)), X is n-summable and by Lemma 4.5, it is strongly n-totally
projective; so by induction on lengths, X must be a dsc. It follows that G is a
pµ-projective Cµ group. By ([13], Proposition 2), this implies that G is a dsc
group.

Case 2: λ ≤ µ ≤ λ + n − 1, where λ is a limit ordinal. If α < λ and X
is a pα+n−1-high subgroup of G, it follows as above that X is a dsc group.
Therefore, G is a Cλ group.
Since G is n-summable and of countable length, it follows from ([2], Theo-

rem 2.2) that G[pn] is the ascending union of a sequence of subgroup {Sℓ}ℓ<ω,
such that each |Sℓ|G = {|x|G : x ∈ Sℓ} is finite. Since pn−1(pλG) = 0, it follows
that Gλ[p] ⊆ (G[pn])/pλG = ∪ℓ<ω(Sℓ + pλG). Since |Sℓ + pλG|G/pλG ⊆ |Sℓ|G
is finite, we can conclude from ([3], Theorem 84.1) that Gλ is summable. So
by Megibben’s result on summable Cλ groups (see [16]), Gλ is a dsc group.
However, since pλG is bounded (and hence Σ-cyclic), it follows that G is also
a dsc group. �

Corollary 4.7. If G is an n-summable strongly n-totally projective group, then

G is a Cω1
group.

Proof. If α < ω1, it follows from [2] that being an isotype subgroup any pα+n−1-
high subgroup X of G is n-summable, and by Lemma 4.5, strongly n-totally
projective. So by Theorem 4.6, X must be a dsc group. Since this is valid for
all countable α, G must be a Cω1

group (see [12]), as claimed. �

We finish with a couple of examples. The first shows that in Corollary 4.2
and Theorem 4.6, we cannot drop the word “strongly”.

Example 4.8. There is a group G of length ω+1 which is 1-simply presented
(and so 1-balanced projective and 1-totally projective) and 1-summable, but is
not a dsc group.
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Proof. LetH be any separable group which is pω+1-projective, but not Σ-cyclic.
If B is a basic subgroup of H , we can let G = H/B[p]. It is readily checked that
G[p] is isometric to pωG⊕ (pB)[p], so that G is 1-summable. Since Gω

∼= pH is
pω+1-projective, G is 1-simply presented. Since Gω is not Σ-cyclic, G cannot
be a dsc group. �

The last example also shows that, in contrast to Theorem 3.5, the 1-balanced
projective groups are not determined by isometries of their (p1-)socles.
Our final example demonstrates that Theorem 4.6 and the strong case of

Theorem 3.2 do not immediately generalize to groups of uncountable length.
In other words, though every m,n-balanced projective group is m,n-totally
projective, the converse does not hold for strongly n-totally projective groups
of uncountable length, even in the case of groups that are n-summable.

Example 4.9. There is an n-summable group G that is strongly n-totally
projective, but not strongly n-balanced-projective - which, by Corollary 4.2, is
equivalent to it failing to be a dsc group.

Proof. We assume that n = 1, though a similar construction would be possible
for larger values. Again, let Hω1+1 be the generalized Prüfer group of length
ω1+1. In [1] a (1-)summable Cω1

group X of length ω1 was constructed which
is not a dsc group.
Let G = X ▽Hω1+1. Since X and Hω1+1 are Cω1

groups, by ([13], Propo-
sition 4), so is G. This implies that Gα is pα-projective for all α < ω1. Next,
since Hω1+1 is p

ω1+1-projective, by ([6], Theorem 82), Gω1+1
∼= G is also pω1+1-

projective. Together, this means that G is strongly 1-totally projective.
On the other hand, it is clear that the summability of X implies that there

is a direct sum of copies of X such that ⊕IX [p] is isometric to Y [p], where Y
is a dsc group. Observe that Y ▽Hω1+1 is a dsc group (see, for instance, [13],
Theorem 1), and since the torsion product behaves well with respect to socles
and heights, we can conclude that (⊕IX ▽ Hω1+1)[p] ∼= ⊕IG is isometric to
(Y ▽Hω1+1)[p]. Since the later is a free valuated vector space, it follows that
⊕IG, and hence G itself, is summable.
There is a pω1+1-pure exact sequence

0 → X ▽Mω1+1 → X ▽Hω1+1(= G) → X → 0.

If G were a dsc group, it would follow that it is pω1-projective. By Lemma
2.1(g), we could conclude that G ∼= X⊕ (X▽Mω1+1), which would imply that
X is a dsc group. Since X is not a dsc group, G must not be a dsc group,
either. �

5. Some open problems

In what follows, G is a group and λ is an ordinal. The following is clearly
important.
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Problem 5.1. Do the m,n-simply presented groups have the λ + m-Nunke
property?

Using Theorem 1.8, as in the proof of Theorem 1.12, it suffices to consider
the case where pλ+mG is bounded.

Problem 5.2. Do the m,n-totally projective groups have the λ + m-Nunke
property?

Problem 5.2 would be a consequence of the following, which is of independent
interest.

Problem 5.3. If G is pλ+n-projective, can we conclude that it is also pλ+(n)-
projective?

The next five questions have affirmative answers for groups of length less
than ω2.

Problem 5.4. If G is m,n-balanced projective, does it follow that it is m,n-
simply presented?

In other words, is a summand of an m,n-simply presented group also m,n-
simply presented?

Problem 5.5. If G is an m,n-totally projective group of countable length,
does it follow that it is m,n-balanced projective?

By Example 4.9, this does not hold if m > 0, n = 0 and G has length ω1.

Problem 5.6. If n > 0, and G1 and G2 are strongly n-balanced projective
groups such that G1[p

n] is isometric to G2[p
n], can we conclude that G1 is

isomorphic to G2?

Note that if G1 is n-summable, then G2 is, as well. Hence both will be dsc
groups, and therefore isomorphic.
The following generalizes a classical result about isotype subgroups of totally

projective groups due to Hill.

Problem 5.7. Suppose G is an m,n-totally projective (or m,n-balanced pro-
jective or m,n-simply presented) group of countable length and A is an isotype
subgroup of G. Can we conclude that A is also m,n-totally projective (or
m,n-balanced projective or m,n-simply presented)?

Our next question is a weakened version of Problem 5.4.

Problem 5.8. If G is m,n-balanced projective, can we conclude that there is
a subgroup P ⊆ G[pn] such that G/P is strongly m-balanced projective?

The following primarily concerns groups of uncountable lengths.

Problem 5.9. If G is an IT-group that is strongly n-totally projective, can
we conclude that G is an A-group?
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We close with a generalization of Proposition 3.6.

Problem 5.10. Suppose G is strongly 1-simply presented. Can we write G ∼=
H ⊕ (⊕λAλ), where λ ranges over the limit ordinals such that each Aλ is a Cλ

group of length λ, and H is totally projective?

References

[1] D. Cutler, Another summable CΩ-group, Proc. Amer. Math. Soc. 26 (1970), 43–44.
[2] P. Danchev and P. Keef, n-summable valuated pn-socles and primary abelian groups,

Comm. Algebra 38 (2010), no. 9, 3137–3153.
[3] L. Fuchs, Infinite Abelian Groups, Vol. I & II, Academic Press, New York, 1970 and

1973.
[4] , Vector spaces with valuations, J. Algebra 35 (1975), 23–38.
[5] , On pω+n-projective abelian p-groups, Publ. Math. Debrecen 23 (1976), no. 3-4,

309–313.
[6] P. Griffith, Infinite Abelian Group Theory, The University of Chicago Press, Chicago

and London, 1970.
[7] P. Hill, Criteria for total projectivity, Canad. J. Math. 33 (1981), 817–825.
[8] , The recovery of some abelian groups from their socles, Proc. Amer. Math. Soc.

86 (1982), no. 4, 553–560.
[9] P. Hill and C. Megibben, On direct sums of countable groups and generalizations, Studies

on Abelian Groups (Symposium, Montpellier, 1967) pp. 183–206 Springer, Berlin, 1968.
[10] K. Honda, Realism in the theory of abelian groups III, Comment. Math. Univ. St. Pauli

12 (1964), 75–111.
[11] J. Irwin and P. Keef, Primary abelian groups and direct sums of cyclics, J. Algebra 159

(1993), no. 2, 387–399.
[12] P. Keef, On the Tor functor and some classes of abelian groups, Pacific J. Math. 132

(1988), no. 1, 63–84.
[13] , On iterated torsion products of abelian p-groups, Rocky Mountain J. Math. 21

(1991), no. 3, 1035–1055.
[14] , Generalization of purity in primary abelian groups, J. Algebra 167 (1994), no.

2, 309–329.
[15] P. Keef and P. Danchev, On n-simply presented primary abelian groups, Houston J.

Math. 38 (2012), no. 4, 1027–1050.
[16] C. Megibben, The generalized Kulikov criterion, Canad. J. Math. 21 (1969), 1192–1205.
[17] R. Nunke, Purity and subfunctors of the identity, Topics in Abelian Groups, Scott,

121–171, Foresman and Co., 1963.
[18] , Homology and direct sums of countable abelian groups, Math. Z. 101 (1967),

no. 3, 182–212.
[19] , On the structure of Tor II, Pacific J. Math. 22 (1967), 453–464.
[20] F. Richman and E. Walker, Valuated groups, J. Algebra 56 (1979), no. 1, 145–167.

Patrick W. Keef

Department of Mathematics

Whitman College

Walla Walla, WA 99362, USA

E-mail address: keef@whitman.edu

Peter V. Danchev

Department of Mathematics

Plovdiv University “P. Hilendarski”, Plovdiv 4000, Bulgaria

E-mail address: pvdanchev@yahoo.com


