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ON M-PROCESSES AND M-ESTIMATION!

By A. H. WELSH
The Australian National University

We relate the asymptotic behavior of M-estimators of the regression
parameter in a linear model in which the dimension of the regression
parameter may increase with the sample size to the stochastic equicontinuity
of an associated M-process. The approach synthesises a number of results for
the dimensionally fixed regression model and then extends these results in a
direct unified way. The resulting theorems require only mild conditions on
the y-function and the underlying distribution function. In particular, the
results do not require y to be smooth and hence can be applied to such
estimators as the least absolute deviations estimator. We also treat one-step
M-estimation.

1. Introduction. Suppose that for each n we observe Y,,...,Y,, where
(1.1) Y,=x/0+ce, 1<j<n,

with {x;=(1,x};)} a sequence of p-vectors, § € R” an unknown parameter,
o > 0 a nuisance parameter and {e;} a sequence of independent random variables
with location zero, unit scale and common distribution function F. Although
{x;} and p (and consequently ) may depend on n, we suppress this and other
dependences on n for notational simplicity. Since for each n we can center the
components of each x;, there is no loss of generality in supposing that x =
n7'Tr_ x; = (1,0,...,0). We will also assume that X'X = ¥*_,xx} is nonsingu-
lar for each n and put z; = (X'X)"'x;, 1 <j < n.

A rich class of estimators of the regression parameter § can be represented as
M-estimators. Let y: R — R be a given function, let 7 € R be fixed and let
{M (¢, )} be defined by

n

M,(t,s) =n? ¥ 24((1 + s)(oe;, — 7 — xjt) /o), tERP, sER.
J=1

Then an M-estimator 8 of 8 [Relles (1968) and Huber (1973)] is a solution of

(1.2) M,(6 -6 —7u,0) =0,

if o is known or if 1 + s can be factored out, or more generally of

(1.3) MJ(6—80—r1u,67%—1) =0,
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where u, = (1,0,...,0) € R” and ¢ is a location invariant and scale equivariant
estimator of o. The function ¢ can be chosen to achieve asymptotic efficiency
(maximum likelihood), robustness [Huber (1973)] or for convenience (least-squares
or least absolute deviations). In the general asymmetric case, 7 represents the
asymptotic bias in estimating the intercept. The asymptotic properties of an
M-estimator 8 are related to the properties of the centered process {M,(¢, s) —
EM (t, s)} associated with §. We will call this process an M-process.

Many interesting inferential problems arising from the model (1.1) can be

formulated in terms of fixed contrasts in the regression parameter of the form

a’d, where a € R” satisfies |a¢| = 1. (Here |- | denotes the p-dimensional
Euclidean norm.) Asymptotic inference procedures for such contrasts can be
derived from the asymptotic distribution of the estimated contrasts a’f. Another
class of interesting inferential problems depends on quadratlc forms in the slope
estimates. Asymptotic inference procedures require the asymptotic distribution
of these quadratic forms. In the classical approach, p is regarded as fixed [Huber
(1973), Bickel (1975), Jureckova (1977) and Yohai and Maronna (1979)] but p
may also be permitted to diverge to infinity with n [Huber (1973), Yohai and
Maronna (1979), Portnoy (1984, 1985, 1986a), Antille and Milasevié¢ (1987), and
Mammen (1987)]. Allowing p to diverge with n is a way of allowing the model to
become more complicated as the sample size increases and, through the restric-
tions on the rate at which p can increase, suggests restrictions on the complexity
of the model for each finite n; see Portnoy (1986a), page 1153.

Allowing p to increase with n, Huber (1973) obtained a normal approximation
theorem for fixed contrasts under conditions which entail p®/n — 0, a result
which was improved by Yohai and Maronna (1979) who required p°/?%/n — 0. At
the culmination of a remarkable series of papers, Portnoy (1986a) managed to
weaken the condition on p to p'/8(log n)?/n — 0; see also Portnoy (1985) and
Mammen (1987). Portnoy (1985) also obtained the asymptotic distribution of a
quadratic form in the estimates when ( p log n)3/?/n — 0. While the results of
Huber (1973) and Yohai and Maronna (1979) depend on essentially classical
arguments, the results of Portnoy (1985, 1986a) are obtained by exploiting special
features of the problem. Interestingly, Portnoy (1986b) showed that the best rate
that can be hoped for using classical methods is p?/n — 0. In all of these
references, y is assumed to have at least two smooth, bounded derivatives and o
is supposed known. It is desirable to weaken these conditions to obtain results
for estimators such as the least absolute deviations estimator which has a
discontinuous yY-function and to refleét the fact that ¢ is not usually known.
Antille and Milasevi¢ (1987) investigated a one-step analogue of the least
absolute deviations estimator but their result is unsatisfactory because it re-
quires moment conditions on {e;} and the very strong condition pé/n - 0.

For p fixed, the asymptotic dlstnbutlon of a’f (or equivalently of §) and of
quadratic forms in 6 can be obtained without assuming that ¢ is smooth and o
is known by invoking a stochastic equicontinuity argument: Essentially, this
involves uniformly approximating M, (¢, s) by M,(0,0) — E{M,(¢t, s) — M,(0,0)}
and then expanding the integrated part of the approximating process. Bickel
(1975), Jureckova (1977) and Jureckova and Sen (1987a, 1987b) have obtained
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suitable uniform approximations for {M,(t, s)}. Bickel (1975) applied a stochas-
tic equicontinuity argument to obtain the asymptotic distribution of one-step
M-estimators and, realising that an M-estimator can be viewed as a one-step
M-estimator using itself as the initial estimator, Jureckova (1977) and Yohai and
Maronna (1979) invoked the stochastic equicontinuity to obtain the asymptotic
distribution of a consistent M-estimator. While Yohai and Maronna (1979) gave
a separate argument to show that 6 is consistent, Juretkova (1977) managed to
deduce consistency from the approximating process in the stochastic equiconti-
nuity argument. Welsh (1986) used the uniform approximation argument to
investigate the problem of estimating 6. Thus the stochastic equicontinuity
argument neatly unifies the arguments required for a full treatment of the
asymptotic behaviour of one-step M-estimators and M-estimators.

In this article we extend the stochastic equicontinuity argument to allow p to
diverge with n. The stochastic equicontinuity argument then enables us to
obtain new results for one-step M-estimators, M-estimators and robust scale
estimators. One-step M-estimators are of interest both as simple approximations
to M-estimators and as a means of overcoming nonuniqueness problems associ-
ated with M-estimators based on nonmonotone y-functions. The present results
extend those of Bickel (1975) in a natural way. The results for both one-step
M-estimators and M-estimators allow ¢ to be discontinuous and o to be
unknown. In consequence, the results apply to the regression quantile estimators
of Koenker and Bassett (1978) and in particular to the least absolute deviations
estimator. The least absolute deviations estimator is an attractive initial estima-
tor since it does not require a concomitant scale estimator. Finally, the stochastic
equicontinuity results for M-processes with discontinuous y-functions enable us
to extend the results of Welsh (1986) on scale estimation to allow p to diverge
with n. Indeed, the results of Welsh (1986) hold when p diverges with n
provided that F has a bounded second derivative in appropriate neighbour-
hoods. This article therefore presents an aesthetically and pedagogically pleasing
synthesis of fixed p results, a unified extension of these results to permit p to
diverge with n and a synthesis of the two types of results.

In contrast to the work of Portnoy (1984, 1985, 1986a), our objective is to
impose the weakest possible conditions on y and F rather than on p. Nonethe-
less, for contrast estimation, if ¢ has a bounded derivative, we require

p*(log n)2,+7/n -0,

v > 0, a rate which is slower only than those of Portnoy (1984, 1985, 1986a) and
Mammen (1987) while if ¢ is discontinuous, we require

p*(log n)*/n - 0,

a surprisingly mild restriction in view of the result of Antille and Milasevié
(1987). To obtain the distribution of quadratic forms, we require slower growth
rates on p. In particular, if ¢ has a bounded derivative we require

p>(log n)zﬂ/n - 0,



340 A. H. WELSH
v > 0, while if ¢ is discontinuous, we require
p*(ogn)’/n - 0.

We present the basic stochastic equicontinuity results in Section 3 after
discussing the conditions they require in Section 2. We then apply the stochastic
equicontinuity results to obtain results for one-step M-estimators (Section 4) and
M-estimators (Section 5).

2. Conditions. The results in this article require conditions on ¢ and F
jointly, on {x;} and on p as a function of n. Of course, we will assume that the
basic linear model (1.1) holds throughout the article.

We will require:

(C.1) The function ¢ is a bounded function of bounded variation, that is,
¥ =4y —¢7, where [¢*| < K < o0 and ¢y* is monotone increasing.

The requirement that ¢ be of bounded variation is standard in M-estimation. In
his work on the M-process with p fixed, Bickel (1975) did not require y to be
bounded but this condition is required for the exponential inequalities we need
to apply. The remaining conditions on ¢ and F depend on whether ¢ is known
(or can be factored out) or not. Let 7 € R be a fixed quantity to be specified in
each section. To establish stochastic equicontinuity when ¢ is known, we require:

(C.2) There is a K < ¢ such that, as A — 0,
J7 {5 x =0+ h) —yE(x - 07— 1)) dF(x) < KIAI",

where 0 < a < 2;
and:

(C.3) There is a K < oo such that for some ¢ > 0,

1 ,e
|31|1£e |}Szl|1£emf—oo{¢i(x ~o'r+qg+h)—yYH(x—-0or+ q)} dF(x) < K.

If o is not known, we also require:

(C.4) There is a K < oo such that for some £ > 0,

1 e
sup sup sup _2_/ {xpi((l +r+g)(x—o v+ h))

|ri<elgl<e|hl<e d Y-

~9=((1+ r)(x = o7 + b))} dF(x) < K;
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and:
(C.5) There is a K < oo such that for some ¢ > 0,

1 ;o
sup sup sup —— [~ ($*((1 + r)(x — o7r + g + b))
\r|<e|q|<e|h|<e |h| — o0

(U # ) - o7+ g - R))) dF(x) < K.

These conditions explicitly permit smoothness requirements to be traded off
between ¢ and F. In the Lipschitz condition, (C.2), a = 2 if ¢+ has a bounded
derivative but otherwise the weaker a < 2 applies; for a < 2, the case a = 1is of
particular interest. The growth condition on p will depend on the smoothness of
¥ through the value of a. The above conditions are essentially those used by
Bickel (1975) for the fixed p problem.

The stochastic equicontinuity results lead to asymptotic linearity results
provided either:

(C.6) There exists a A*# 0 such that
f{¢i(x — o Y+ k) — y*(x — o)) dF(x) = chA*+ O(h?);

or.

(C.7) There exist a A*# 0 and an n* such that
[(92(0 + @) — o7 + ) = 2 (x - o7'r)) dF(x)

= ohA*+ agn*+ O(h® + |qh| + q%),
depending on whether o is known or not. In the sequel, let
A=AT=A", n=n"—7".

If ¢ is absolutely continuous with derivative ¢/, A = o~ Yfy/(x — 07 '7) dF(x)
and 7 = o~ Y(x — 6" '7)Y'(x — 67 '7) dF(x) so that 7 = 0 when F is symmetric
about ¢~ ' and v is antisymmetric. These conditions are required by Bickel
(1975) except that he imposes the additional condition that n = 0. To treat the
one-step M-estimators and the M -estimators, we will set

d= [y(x - o)’ dF(x).

Finally, in Section 5, we will also require:

(C.8) There is a T(F)€ R such that [y(x — o 'T(F))dF(x)=0 and
(C.1)~(C.7) to hold with 7 = T(F). Clearly, T(F) = 0 if F' is symmetric about
the origin and ¢ is antisymmetric.
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The conditions on the sequence {x;} are intended to hold in probability if {x )
is a sample from an appropriate distribution. As noted in the Introduction, we
suppose that x;, =1, 1 <j < n, that we center the components of each x ;SO
that for each n, x = n‘lZ;;lxj =(1,0,...,0) and X’X = ¥7_,x;x} is nonsingu-
lar. These conditions imply that

n—l 0/
- -1
(X,X) 1 = n , s
0 Y x 2% s
J=1

where {x/ = (1, x},)}. Centering the design ensures that it is possible to estimate
the slope when the underlying distribution is asymmetric since any bias will
appear only in the intercept [see Carroll and Welsh (1988)]. We will take

u, =(1,0,...,0) € RP
throughout the sequel. We will also require:

(C.9) There are constants 0 < C’ < C < oo such that the maximum and
minimum eigenvalues of X’'X satisfy

Aa( X'X) < nC
and
Ain( X'X) = nC’;
(C.10) There is a C < oo such that
max |xj’-(X’X‘)_lxj| < (p/n)C;

l<j<n
and:
(C.11) There is a C < oo such that for each a € R? satisfying |a| = 1,

max, . ;. ,la'(X'X) x| < n7'C and max, _;_ [(X'X) x| < n7'C, where || - ||
is the maximum norm.

As noted by Portnoy (1985), it follows from (C.9) and (C.10) that there is a
C < oo such that

n
max |x)]> < pC and } |x,* < npC.
1<j<n P

Jj=1
We will frequently use the fact that
n X' Xt
sup 2 (x¢)* = sup —
14 <(p/m)/2B j=1 a<o/mis 1

< pB%C,
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by (C.9), and hence that

1/2
n
2
sup Ylxjtl < sup n1/2( Y (x)t) )
18| <(p/ny/*B j=1 1 <(p/ny/*B J=1

< n'/2p\/2BC\/2.

The above conditions are slightly simpler and weaker than those imposed by
Portnoy (1985, 1986a).
It is useful to note that if we reparametrise the model (1.1) so that we have

(2.1) Y, =wi+oe, 1<j<n,

where w; = n'/%(X'X)""?x;, 1<j<n, and B = n~ V¥ X'X)/?9, and condi-
tions (C.9), (C.10) and

(C.11") There is a C < oo such that for each @ € R? satisfying |a| = 1,

max |¢'(X'X) Y?x) <n V?C and max I(X'X) ™% < n~V/%C

l<j<n l<j<n

hold, then {w;} satisfies conditions (C.9)-(C.11). Hence the results of Sections
3-5 hold for the reparametrised model with condition (C.11) replaced by (C.11").

Conditions (C.11) and (C.11") will usually fail to hold for balanced ANOVA
problems. Indeed, as noted by Portnoy (1984), for the one-way design with p
cells and n/p observations per cell, we find that the squared Euclidean norm of
the centered estimator is of order p?/n rather than p/n. Thus the results of
Section 3 cannot apply to this problem. This is in accordance with the finding
of Portnoy (1984) that the regression problem and the balanced ANOVA prob-
lem should be treated separately. It turns out that if we modify the approach of
the present article for the balanced ANOVA problem then we require more
restrictive growth conditions on p than for the regression problem. We will not
pursue the ANOVA problem further in this article.

The conditions we impose on p are a function of « in (C.2). We will require:

(C.12) ¢, — 0, where

o2 = (p/n)*’plogn, if0<a<?2,
"\ p¥ogn)*/n, vy>0, ifa=2.

The most important cases arise when a = 1 or 2. As noted in the Introduction,
for « = 2, this condition is stronger than those of Portnoy (1985, 1986a) but
weaker than those of Huber (1973) and Yohai and Maronna (1979) and, for
a = 1, it is weaker than that of Antille and Milasevi¢ (1987). It is interesting to
note that these rates are simply p times the fixed p remainder rate evaluated at
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n/p rather than n. Since the fixed p rates are known to be good, these rates
seem quite reasonable.

3. Stochastic equicontinuity and asymptotic linearity results. For fixed
p, conditions under which an M-process with a possibly discontinuous -func-
tion is stochastically equicontinuous have been given by Bickel (1975) and
Jureckova (1977) (without bounds on the rate of convergence) and by Jurekova
and Sen (1987a, 1987b) (with bounds on the rate of convergence). Both the
contiguity arguments of Jureckova (1977) and the induction argument of
Jureckova and Sen (1987a) seem difficult to apply when p — . Our arguments
are based on direct approximations as in Bickel (1975) and exponential inequali-
ties. Although our methods are based on ideas used in the theory of empirical
processes [see, for example, Pollard (1984), Chapters 2 and 7], a straight applica-
tion of the results in Pollard (1984) leads to inferior results to those obtained
below. Indeed, the present results are a substantial improvement over the result
of Antille and Milasevi¢ (1987) which was obtained by applying empirical process
results.

We will need to establish the stochastic equicontinuity of M-processes with
respect to two norms. We will need a stochastic equicontinuity result for a
contrast process to find the asymptotic distribution of contrast estimators and
we will need a stochastic equicontinuity result in terms of the maximum norm,
Il Il, of the M-process to establish a consistency result for M-estimators and to
find the asymptotic distribution of quadratic forms. For p fixed, the two results
are equivalent.

For the simple cases that o is known or (1 + s) can be factored out, we have
the following stochastic equicontinuity result.

THEOREM 3.1. Suppose that conditions (C.1)~(C.8) and (C.9)-(C.12) hold.
Then for any a € RP satisfying |a| = 1,

sup  |a/{M,(t,0) — EM,(t,0) — M,(0,0) + EM,(0,0))]
|t| <(p/n)/?B

= 0,(¢9,)

(3.1)

and

(3:2) sup || M,(t,0) — EM,(¢,0) — M,(0,0) + EM,(0,0)|| = O,(4,),
It <(p/n)/?B

for each fixed B < oo, where ¢, is defined in condition (C.12).

Proor. Without loss of generality, suppose that ¢ =1, 7=0 and ¢ is
nondecreasing. Cover the ball {|t| < (p/n)/?B} with cubes C = {C(t,)}, where
C(t,) is a cube containing ¢, with sides of length (p/n%)!2B so that N =
card(C) = (2n*)?, |t;| < (p/n)/?B and for t € C(t,), |t — t,| < (p/n*?)B =
B, say.
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Since ¢ is monotone, we have the upper bound
sup la’{M,(t,0) — EM,(t,0) — M,(0,0) + EM,(0,0)}]
lt| <(p/n)'/*B

< max |a'{M,(t,,0) — EM,(#;,0) = M,(0,0) + EM,(0,0)}|
1<k<

+ /2 =Xt + |xB,) — EY(e — xit, + |x;
a3 j§1|az{¢(e, ity + 1%)18,) — Ed(e = xjty + |x,18,)

—y(e, — xjt,) + Ey(e — x;tk)}

+ max n'/? Y |az |E{¢(e —xjty + |xj|B,) — ¥(e —xjt, — |xj|ﬁn)}.

1<k<N j=1

Now, by (C.3),

max n'/? Z la’z |E{¢(e — xjt, + |xj|Bn) 1 Xity, — |xj|Bn)}
1<k<N j=1

n
2
< KBgn'? Y la’z)| |x |
j=1

n
< (p/n*?%)BKn'? max |a'z,| 3 |x;
J J

l<j<n j=1

< (p/n*)BKCn ' ¥ |x))
=1
< (p/n)’BKC?,
by (C.9) and (C.10).
Next, consider the first term in (3.3). By (C.2),

n i (a’zj)zE{\p(e - x}tk) — Ey(e— x}tk) —y(e) + E‘P(e)}2

IA

M=

n

(a’zj)ZE{xp(e - x}tk) - 4/(9)}2

1

J

n
Kn), (a’zj)2|xj’-tk|"‘
j=1

IA

n
< KCn™' ) |xjt,)"
Jj=1

< (p/n)*B%KC(logn)’,
where y = 0if a < 2and vy > 0if a = 2, by (C.9) and (C.10). Also, ¢ is bounded,
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so by Bernstein’s inequality,

P[ max jo' (M,(t,0) — EM,(£,,0) = },(0,0) + EM,(0,0))| > 4(B*KC) "))
—s _2Nexp[ - 1632KC¢3/{BZKC( p/n)*(logn)” + 4(BZKC)1/2’1_1/2¢,.}]

< 2Nexp(—4plogn) (for n large enough)
< 2exp(—plogn).

Since B, = (p/n*?*)B < (p/n)*/?B2KC, the above argument can be used to
show that the remaining term in (3.3) is O,(¢,) so (3.1) is obtained.
With only minor modifications, the above argument also yields (3.2). O

Before extending Theorem 3.1 to allow for unknown scale, we prove a
preliminary lemma which plays the role of the tightness arguments used in
Bickel (1975).

LeEMMA 3.1.  Suppose that conditions (C.1), (C.4) and (C.9)—(C.12) hold. Let
{ti,..-, ty} be a set of points, t, € R? such that |t,| < (p/n)/?B, for some
B < 0,1 <k < N=(2n%?. Then for any a € R” satisfying |a| = 1,

n}eaxN sup |a/{Mn(tk9 S) - EMn(tk’ S) - Mn(tk’O) + EMn(th O)}I
l<k<

lsl<n~Y2%/2
= Op(Vn)
and
max sup “Mn(tk9 S) - EMn(tk7 S) - Mn(tk,o) + EMn(tk70)“ = Op(Vn))
ISkSN|s|sn71/2/2

where v? = plog n/n'/?.
PROOF. As in the proof of Theorem 3.1, suppose that 6 =1, 7= 0 and v is

nondecreasing. Let ¢*(u) = ¢(u)I(u > 0) and ¢~ (u) = Y(u)I(u < 0) so Y(u) =
¢ (u) + ¢ (u) and

M,(t,,5) — EM,(t;,s) — M,(£,0) + EM,(t,,0)
= nl/? ilzj{cj)*((l + s)(ej- - xj’-tk)) - E¢+((1 +s)(e— xj’-tk))
—¢+(ej - x;tk) + E¢+(e — xj’-tk)}

+nl/? Xn" zj{¢_((1 +s)(e, — x;tk)) —E¢ ((1+s)(e— xlty))

Jj=1
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Let {b,} be any sequence of positive integers such that b, ~ n'/%. Then put
s;=n"YAb;1-1/2),1=0,1,..., b, so that

n'/? En: a’zj{¢+((1 +5)(e; — x;"tk))

Jj=1

max sup
1<k<N Is| <n=1/2/2

—E¢" (1 +s)(e —xt,)) — ¢" (e, xjts)

+E¢+(e - xj’-tk)}

n

n'’2y a'z; { +((1 + sl)(e{- - le'tk))

Jj=1

< max max
l<k<N 1<li<b,

_E¢+((1 + 31)(9 - xj’.tk))
(3.4) —¢"(e; — x/t,) +E¢+(e—x;tk)}|

n

n2 Y ez {o4((1 + s,)(e; — x)t,))

Jj=1

+ max max
1<k<N1x<li<b,

—Eci)*((l +5,)(e - x;tk))
—¢+((1 + Sl—l)(ej - x}tk))

+Eo (1 +5,,)(e — xj"tk))}‘

2 1/2 — 4!
+Ir<r}€a<xN 1r<nlaixb n ,Z1|aZ|E{ ¢ ((1+5,)(e—xjt,))

—o (1 +s,)(e—xjt,)) }.

Now, the last term in (3 4) is bounded above by

max  max 2n'/? Z la'z)| [E{W((l +s)(e — xjt,))

1<k<N 1<li<b, j=1

_ +((1 + sl,l)(e - xj’-tk))}zll/2

< max max 2n'/? Z la’z I[ {\P((l +5,)(e — xjt,))

1<k<N 1l<li<), j=1

_\P((l +5,,)(e— le'tk))}2] v

n
<KY%p 'Y la'z)]
=1

= 0(n" '),
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by (C.4) and (C.11). Also, by (C.4),

n gl(a’ZjVE{qﬁ((l + sl)(e - xj’-tk)) _ ¢+(e _ x;tk)}2

“ ’ 2 s ’ 2
<n) (a zj) E{¢((1 + sl)(e — xjtk)) - 11/(6 - xjtk)}
J=1
< n V2K,
so that by Bernstein’s inequality, the first term in (3.4) is O (»,). A similar
argument shows that the second term in (3.4) is also O,(»,).

With only minor modifications to the above argument, we can replace ¢* by
¢ . Then combining the results for ¢ and ¢, we.obtain the first part of the
lemma.

Similar arguments yield the second statement in the lemma. O

We can now prove a stochastic equicontinuity result which is applicable when
¢ is unknown.

THEOREM 3.2. Suppose that conditions (C.1)~(C.5) and (C.9)~(C.12) hold.
Then for any a € R? satisfying |a| = 1,

sup sup |a'{M,(¢t,s) — EM,(t,s) — M,(0,0) + EM,(0,0)}]
(3.5) It <(p/n)/2B |s| <n 12,2
= OP(¢n)
and
sup sup ||M,(t,s) — EM,(¢,s) — M,(0,0) + EM,0,0)]|
(3.6) It <(p/n)2B |s|<n"1/2/2
= Op(¢n)9

for each fixed B < oo, where ¢, is defined in condition (C.12).

PROOF. As in the proof of Theorem 3.1, suppose that ¢ = 1, 7 = 0 and ¢ is
nondecreasing. Also, cover the ball {|¢| < ( p/n)/2B} with the cubes C defined in
Theorem 3.1. Then

sup sup |a’'{M,(t,s) — EM,(¢t,s) — M,(0,0) + EM,(0,0)}]
1t <(p/n)'/B |s|<n”'/%/2 ‘

< n}eaxN|a’{Mn(tk,O) — EM,(t,,0) — M,(0,0) + EM,(0,0)}|
1<ks<

+ max sup |a@'{M,(t,,s) — EM,(¢t,,s) — M,(t,0)
(37) Iskleslsnﬂ/z/Q

+EM,(t,,0)}|

+ max sup sup |a'{M,(¢t,s) — EM,(¢t,s) — M(t,,s)
L=k<N tec(y) [sl<n”12/2

+EM,(t,,s)}.
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The first term is treated in the proof of Theorem 3.1 and the second term is
treated by Lemma 3.1 so it remains to consider the third term.
Now, since ¢ is monotone,

max  sup sup |@'{M,(t,s) — EM,(t,s) — M,(t,,s) + EM,(¢,,s)}|

1<ksN teC(ty) |s|<n~ 2,2

n
< max  su n'/2 Y |a'z; 1+ s)(e; —xit, + |x;
IsksN|s|Sn_Il)/2/2 jgll Jl{‘l’(( )( J Tk | _]IB}’L))

—E¢((1 +s)(e— xity + |xj|,8,,))

—y(e, — xit, + |x,B,)

+E¢(e — xj’-tk + |xj|Bn)}|

n
+ 1/2 ‘o 14+ e
1Sk2N |SISS:}1)/2/2 " jglla Z’|{¢(( s)(e; = xjty))
_E¢((1 +s5)(e— xj"tk))
~y(e; — xjty) + Ey(e - xj’-tk)}‘
n
+ I?kajN nl/2 j§1|a'zj|{¢(e,~ — Xt + Iij.Bn)

—Ey(e— xjty + 15,1B,) — v(e; — x)t)

+E¢(e - xj’tk)}

n

+ max = sup n%y |a’zj|E{¢((1 +s)(e—xit, + |xj|,8n))
|<k< ,

[s|]<n V2,2 Jj=1

(1 + s)(e—ajt, — 1%,18,)) ],

where B, = (p/n®?)B. The first term can be treated by a slight variation of
Lemma 3.1, the second term can be treated by Lemma 3.1 and the last two terms
can be treated as in the proof of Theorem 3.1.

A similar argument yields (3.6). O

In order to obtain asymptotic linearity results, we need to expand
E(M,(t,0) — M, (0,0)} or E{(M,t,s)— M, 0,0)} depending on whether ¢ is
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known or not. If ¢ is known and (C.6) holds,
|Ea’{M,(¢,0) — M,(0,0) — n'/%A}]

[ § e futes— o w0 - vles - 7))

Jj=1

n
2
< Kn'? ) |a’z,|(x}t)
_ =

< KCn 12 f (x12)?
J=1
< (p/n*?)KC?,
by (C.9) and (C.11). Similarly,
IE{M,(2,0) — M,(0,0) — n'/?A}|| < ( p/n'/?)KC2.

Combining the above expansions with Theorem 3.1, we have the following
asymptotic linearity result.

THEOREM 3.3. Suppose that conditions (C.1)—(C.3), (C.6) and (C.9)—(C.12)
hold. Then

sup  |a'{M,(t,0) — M,(0,0) + n'*\}| = O,(4,)
tt| <(p/n)/*B

and

sup  ||M,(¢,0) — M,(0,0) + n'/%\|| = O,(9,),
tt| <(p/n)/’B

for each fixed B < «o, where ¢, is defined in condition (C.12).

Similar arguments lead to the asymptotic linearity result for the unknown o
case.

THEOREM 3.4. Suppose that conditions (C.1)—(C.5), (C.7) and (C9—(C.12)
hold. Then :

sup sup @’ {M,(¢,s) — M,(0,0) + n'/%\ — n'’sanu, }|
Itl<(p/n)/?B |s|<n"'/%/2
= 0,(¢,)
and
sup sup || M,(¢,5) — M,(0,0) + n'/%\ — n'/%.soqu,|| = 0,(4,),

[t <(p/n)/*B |s|<n"1/?/2

for each fixed B < oo, where ¢, is defined in condition (C.12).
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4. One-step M-estimators. To obtain an M-estimator of §, we need to
solve the estimating equations (1.2) or (1.3) and then, if there are multiple
solutions, we need to identify a particular solution to be the estimator of 6.
Consequently, it is important to investigate the properties of the solution
sequence obtained from a specified algorithm. The estimating equations are often
solved by an iterative Newton-Raphson procedure so that a simple algorithm
for obtaining a unique approximate solution to (1.2) or (1.3) is to take a
predetermined number of Newton-Raphson steps from an initial estimator. The
resulting estimator is a finite sequence of one-step estimators and its analysis can
be reduced to that of one-step estimators. While one-step M-estimators may
arise as convenient practical approximations to M-estimators, they can have
theoretical advantages over M-estimators. Le Cam (1956) has shown that one-step
estimators are no less efficient and can even be more efficient than their fully
iterated counterparts.

For the fixed p problem, Bickel (1975) considered two types of one-step
estimators. Let §* be an initial estimator of # and let r, =Y, — x/0*,1 <j < n,
denote the residuals from 6*. Also let § be a location invariant and scale
equivariant estimator of ¢. If ¢ is absolutely continuous with derivative ¢’, a
type I one-step M-estimator is defined by

Foov+ { ¥ % ’(rj/cf)} )
j=1

Alternatively, whether ¢ is smooth or not, a type II one-step M-estimator is
defined by
' n
§=0*+X"Y(XX) " ¥ x4(r/6),
j=1

where A is an estimator of A = A*— A~ defined in conditions (C.6) and (C.7). Of
course, if ¢ is known, we put ¢ = o.

The results below are conveniently stated in terms of the conditions presented
in Section 2 and the following additional conditions:

(L.1) There is an estimator 6* such that |6* — 8 — 1u,| = O,((p/n)"/*) and
a’(0* — 8 — 1u,) = Op(nfl/z) for some fixed 7, € R and a € R? satisfying
la| = 1;

(1.2) There is a location invariant and scale equivariant estimator ¢ such that
6 — o =0,(n""?); and A .

(I.3) There is an estimator A such that A — A = O, (n™"?).

To approximate the distribution of a quadratic form in the slope estimates, we
will replace (1.1) by:

(L.1") There is an estimator 6* such that [( X'X)"*(6* — 6 — 7u,)| = O,(p*?)
for some fixed 7, € R.

These conditions are essentially required by Bickel (1975). The choice of X
depends on the precise nature of A and so cannot be pursued in any generality.
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However, if { is absolutely continuous, we may take A = n’l):" W(r;,/8)/6
and impose further conditions on ¢ to ensure that (1.3) holds w1th A=
Ey'(e -0 5)/06. If Ey(e — 07 '1y) = 0, we can weaken (1.3) to require only
that A —p A. The results of Section 3 and the arguments of Welsh (1986) yield
condltlons under which the median absolute deviation from the median and the
semi-interquartile range satisfy (1.2). We will exhibit estimators satisfying (I.1) in
Section 5. Estimators satisfying (I.1) under conditions different from those given
in Section 2 may be found in Huber (1973), Yohai and Maronna (1979) and
Portnoy (1985, 1986a). Estimators satisfying (I.1’) may be obtained from the
results of Section 5 by applying the arguments of Sections 3 and 5 to the
reparametrised model (2.1).

We begin by considering the type II contrast estimator. The following general-
isation of Theorem 4.1 of Bickel (1975) establishes conditions under which the
type Il estimator has an asymptotic normal distribution.

THEOREM 4.1. Suppose that conditions (C.1)-(C.7), (C.9)«(C.12) and
(1.1)—(1.3) hold with v = 1,. Then if 0 is a type II one-step M-estimator and
a € R? satisfies |a| = 1,

[a’(ff— 0 — {1+ A 'Ey(e - a_lfro)}ul)

—(n2)) '@’ {M,(0,0) — EM,(0,0)}

+A7 (6 - o0)a'u, + }\‘QE\L/(e - o_lfro)(f\ — )\)(;t’ul]/{a’(X’X)‘lot}l/2

~,0.

Consequently, if either n = 0 and Ey(e — 0 '1)) =0 or a, = 0,
(6 - 6 — ru)A/{@(X'X) tad) " >, N(©0,1).

If o is known, conditions (C.4), (C.5), (C.7) and (1.2) can be omitted.

ProoF. Notice that with 7 = 7,
n'/? ’(0—0—70 )

=n'2'(0* — 0 — 1yu,) + n/2h- ' (X'X)” Z (rj é)

=nV%a'(8* — 0 — ru;) + A’ M (8% — 6 - 'roul,ao_l - 1)
AR = Mn % (0* - 0 — r4u,)
+A 7l (An2(0* — 0 — mu,) + A’ M (0% — 8 ~ 7yuy, 0671 — 1)}
=A"Ya'M,(0,0) + o'r)nlﬂ(aé‘1 - 1a'u,} + 0,(1)
A0 (M0,0) — EM(0,0)} - \"9n%( ~ 0)a'u,
-A2Ey(e - o~ ’T) V2R ~ Na'y,
+n2A By (e — o7 l)a’u, + 0,(1),
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by (1.1)-(I1.3) and Theorem 3.4. Now
max |a’zj-|/{a’(X’X)_1a}1/2 < Apa X’X)}* max la’z;| = 0,
l<j<n l<j<n

by (C.9) and (C.11), and

5 (a'z,)/a(X'X) 'a =1,
Jj=1

S0
a'{M,(0,0) — EM,(0,0)}/{na’(X'X) 'a}"”*
=Y a’zj{\p(ej — o‘lfro) — Ey(e - cr‘lfro)}/{a’(X’X)_la}1/2
j=1
g N(O’ d)’
by the central limit theorem. The result is then obtained from Slutsky’s theorem.

a

The estimator considered by Antille and Milasevi¢ (1987) is a type 1I
M-estimator so Theorem 4.1 improves on their result.

The following result yields conditions under which a quadratic form in the
slope estimate has an asymptotic normal distribution and hence the distribution
of the quadratic form may be approximated by a chi-squared distribution with
p — 1 degrees of freedom.

THEOREM 4.2. Suppose that conditions (C.1)-(C.7), (C.9), (C.10), (C.11"),
(1.1%, (1.2) and (1.3) hold with v = 7,. Then if 0 is a type II one-step M-estimator
and p$2 — 0 with ¢, defined in (C.12),

{)\2(0"2 - 02)’X2/X2(0~2 - 02)/d -(p- 1)}/{2(17-_ 1)}1/2 ~5 N(0,1),
where 6, and 8, denote the slope estimator and parameter, respectively, and
XXy =X0_1x ;0% withx) = (1,x}y),1 <j < n. If o is known, conditions (C.4),
(C.5), (C.7) and (1.2) can be omitted.

Proor. With r = 7,, we have in an obvious notation that
5‘( X2/X2)1/2(0~2 - 02) = n’1/2<X2’X2)1/2Mn2(0,0)
+(X = M)(X3X,) (87 = 8;) + Ry,
where
R, = n" VX X;X,){M,(6* — 6 — 1yuy, 06 — 1)
—M,,(0,0) + n/2A(65 — 6,) }.

We then take the squared Euclidean norm of both sides and multiply out the
right-hand side. By Theorem 4.1 of Portnoy (1985) (see the note following
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Portnoy’s Theorem 4.1),
{In772(X4X3)" " M,5(0,0)2/d — (p — 1)} /{2(p - 1)}/2 >, N(0,1)

so the result will follow if the remaining five terms divided by (p — 1)'/2
converge in probability to zero. Since |n™/*( X3 X,)"/*M,,(0,0)| = O,((p — 1)),
(X5 X5)'/%(65* — 8,)] = O(p/*) by (11') and A — A = O,(n"/?) by (L3), the
result will follow if we can show that |R_,| -, 0. But

IR ol < D'2|R,,ll = O,( p%,),

by Theorem 3.4 applied to the reparametrised model (2.1) and the result is
obtained. O

The arguments of Theorems 4.1 and 4.2 and hence analogous results apply to
type I estimators under additional smoothness conditions on v, but we will not
pursue the matter.

5. M-estimators. M-estimators are of interest both in their own right and
as potential initial estimators for the one-step M-estimators. In practice, M-
estimators which arise as the unique solution of the equations (1.2) or (1.3) are of
particular importance in both contexts. The least absolute deviations estimator
has the further advantage of not requiring a concomitant scale estimator and
hence is a useful initial estimator. The results below establish that these
estimators can be used to make inferences about the regression parameter or as
initial estimators but are not restricted to these estimators.

We derive the asymptotic distribution of a contrast of an M-estimator § from
the asymptotic linearity results in Section 3. The argument is straightforward
once we establish that § satisfies the consistency condition |§ — § — T(F | =
O,((p/n)'/*). We will actually use the asymptotic linearity results to establish
that the equations (1.2) or (1.3) admit a solution which satisfies the consistency
condition. We establish the consistency condition for M-estimators based on
continuous but not necessarily monotone y-functions and for M-estimators
based on monotone but not necessarily continuous y-functions. For the first case,
we extend an argument of Portnoy (1984) while for the second we extend an
argument of Jureckova (1977). The results apply to the regression quantile
estimators of Koenker and Bassett (1978) and hence in particular to the least
absolute deviations estimator.

We begin by considering M-estimators associated with continuous but not
necessarily monotone y-functions.

THEOREM 5.1. Suppose that conditions (C.1)~(C.12) and (1.2) hold with
7 = T(F). Then if { is continuous, there is a solution 6 of (1.3) such that

16— 8 = T(F)u,| = 0,((p/n)"").

If o is known, conditions (C.4), (C.5), (C.7) and (1.2) can be omitted.
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ProoF. Let # = {t € R”: |t| = (p/n)/?B) for some B. Then, arguing as in
the proof of Theorem 3.2 of Portnoy (1984), it is enough to show that
t'M(t,067! — 1) <0 for t € # in probability. Let ¢ > 0 be given. Then for
L >0,

P{t'M,(t,06 ' — 1) <0Oforall t € B}
> P(¢'M,(t,06™* — 1) < —(p/n*/?)L forall t € B}
> P{¢'M,(0,0) — n'/?|t|’A — n¥/%(6 — o)nt'y,
< —(p/n'/?)2L forall t € B}
— P{(t'M,(t,067! — 1) — t'M,(0,0)
+n2|t°A + n'/%(6 — o)nt'u, > (p/n*/?)L forall t € B}
> P{¢'M,(0,0) — n'/*(6 — a)nt'u; < (p/n*/?)(B*\ — 2L) for all T € &)
—P{IM(t, 067" — 1) — M(0,0)
—n%\ + n'/%(6 — o)nu,| > p*/?L/B forall t € B}
> P{|M,(0,0) — n'/%(é — o)nu,| < p*/*(BA — 2L/B)}
—P{||M,(¢,06 ' — 1) — M,(0,0)
+n'2\ + n'/%(6 — o)nu,|| > L/B forall t € B}
> P{|M,(0,0)| < 1p"/*(BA — 2L/B)}
—P{[n'/*(6 — o)n| > }p"/*(BA — 2L/B)]}

- { sup  ||M, (¢, 06 ' —1) — M,L0,0)
|t| <(p/n)/?B

+n'%N + nV3(6 — o)nuy| > L/B}.
But

E|M,(0,0)* < 2dn }_ z/z,

j=1
< 2dn trace{(X’X)_l}
< 2dnp{A (X' X))} 1

<2pd/C’
so that for B large enough, by Chebyshev’s inequality,
P{|M,(0,0)| < 1p/*(BA —2L/B)} > 1 — ¢/3.
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Also, for L and r large enough,

p{ sup  |M,(t,06 1 — 1) — M,(0,0)

|t <(p/n)/*B

+n?%tA /o + n'?*(é — o)nu,| > L/B}

< P{ sup sup || M,(t,s) — M,(0,0)
[t] <(p/n)/?B |s| <n~'/2/2

+n'%tN /o — n¥?sonu,| > L/2B}
+P{lo67' — 1| > n"'?/2} + P{|n'/*(c — 6)(a' — 6 ')on| > L/2B}
<e/3
and
P{[n'/*(6 — o)n| > $p"/*(BX — 2L/B)} < /3,
by Theorem 3.4 and (I1.2), and the result is obtained. O

The next result applies to M-estimators associated with monotone but not
necessarily continuous y-functions. The argument below is based on the elegant
argument of Jureckova (1977).

THEOREM 5.2. Suppose that conditions (C.1)-(C.12) and (1.2) hold with
7 = T(F). Then if § satisfies (1.3) and y{ is monotone,

16~ 6~ T(F)u| = 0,((p/n)"").
If o is known, conditions (C.4), (C.5), (C.7) and (1.2) can be omitted.

Proor. Without loss of generality, suppose that ¢ is nondecreasing. Then
for B, L > 0 and 7 = T(F),

P{lf — 6 - T(F)u| = (p/n)"*B)

< P{ inf | M(t,0671 — 1) < pl/ZL}

[t| =(p/n)'/*B

+P{|(f— 8 — T(F)u,| > (p/n)"B,

inf  IM(t,06 71— 1) > pl/ZL}
|t|=(p/n)/?B

- P{ inf  |M(£,067" — 1) < pl/2L>.
|t z(p/n)/*B

If |t = (p/n)?B, put v = (p/n)?Bt/|t| so that |v| = (p/n)"/?B and ¢ = rv
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with r = |t|/(p/n)?B = 1. Then
M, (t,06 ' — 1) > —¢'M,(¢t,66 ' —1)/]¢]
= —v'M,(rv,06"' = 1)/(p/n)"*B
> —v'M,(v,06 '~ 1)/(p/n)"*B,

as —v'’M,(rv, 067! — 1) is nondecreasing in r. Consequently,

,P{ inf  [M(t,0671— 1) < p1/2L}
(t|=(p/n)/’B

< P{ inf — oM (v,067 ' — 1) < (P/n1/2)BL}
lo| =(p/n)/?B

< P{ inf  — oM, (0,0) + n'*o?A
lo| =(p/n)/’B

+n'2(¢ — o)nv'u, < 2( p/nI/Q)BL>

+p{ inf - vM(v,66 '~ 1) < (p/n'/2)BL,
lo| =(p/n)/2B
inf  — v'M,(0,0) + n'/?v|2A
lo|=(p/n)/*B

+n%(6 — s)nv'u, > 2(p/n1/2)BL>
< P{—(p/n)"*BIM,(0,0) — n*/*(é — o)nu,|
+(p/n/2)B2\ < 2(p/n"*)BL}

+ P{ sup oM (v,06 ' — 1) — v'M,(0,0)
lo|=(p/n)/*B

+n'2|02A + n'/%(é — o)nv'u, > (p/n)l/QBL}
< P{|M,(0,0) — n**(é — o)nu,| > p"/*(BX — 2L)}

+P{ sup M (v,66 ' —1) — M,(0,0)
lo]=(p/n)"/*B

+n%0N + n*/%(6 — o)qu,| > p1/2L}
< P{|M,(0,0)| > ;p"/*(B\ — 2L)}
+P{|n'/*(6 — o)n| > 1pV/*(BX — 2L)}

+P{ sup  [[M,(v, 06" — 1) — M,(0,0)
(ol =(p/n)*B

+n'%\ + n*%(6 — o)qu,|| > L}.

The proof may be concluded as in the proof of Theorem 5.1. O
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Applying Theorem 3.4 as in the proof of Theorem 4.1, we immediately obtain
the following result.

THEOREM 5.3. Suppose that conditions (C.1)—(C.12) and (1.2) hold with
T = T(F). Then if ¢ is continuous or monotone and a € R? satisfies |a| = 1,
there is a solution 6 of (1.3) such that

@' (8 — 8§ — T(F)u,) — (n/2A)'a’M,(0,0) — A"'n(6 - o)a'y, ~
(a(x'x) e} }

Consequently, if either n = 0 or a, = 0,

(6 -8 - T(F)u)A/{a(X'X) 'ad)”” =, N(O,1).

Moreover, if § is a type II one-step M-estimator based on  and in addition (L1
and (1.3) hold with v, = T(F),

o (6 - 8)/{a(X'X) 'a)”* > 0.
If o is known, conditions (C.4), (C.5), (C.7) and (1.2) can be omitted.

By a similar argument to that used to prove Theorem 4.2, we obtain the
following result on quadratic forms.

THEOREM 5.4, Suppose that conditions (C.1)-(C.10), (C.11") and (1.2) hold
with 7= T(F). Then if ¢ is continuous or monotone and P2 — 0 with ¢,
defined in (C.12) there is a solution 6 of (1.3) such that

{)\2(92 - 02)/X2'X2(0A2 - 02)/d -(p- 1)}/{2(13 - 1)}1/2 -4 N(0,1),

where 0; and 0, denote the slope estimator and parameter, respectively, and
XXy = X0 1x,;0x, withx} = (1,x}y), 1 <j < n. If 0 is known, conditions (C.4),
(C.5), (C.7) and (1.2) can be omitted.

ProoF. We apply either Theorem 5.2 or 5.4 to the reparametrised model
(2.1) to show that |(X'X)/*(8 — § — T(F)u,)| = O,(p"/*). Then we use the fact
that 6§ satisfies (1.3) to write in an obvious notation,

M XX,) (0, — 6,) = n~ VP X4X,)/*M,,(0,0) + R,,,,
where
R, =n VY X;X,)"*(M,(0 — 6 — T(F)u,, 067" - 1)
—M,,(0,0) + n'/2A(6, — 6,)}.
The proof is completed by arguing as in the proof of Theorem 4.2. O

It is useful for applications of Theorems 5.3 and 5.4 to note that they continue to
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hold if with + = T(F),
p VM6 — 8 — T(F)u,, 067 - 1)
<|MJ(6-6-T(F)u,o67*—1)]| =p0
and
a'M,(§— 60— T(F)u,06 ' —1) >, 0

replace the condition that § satisfies (1.3), that is, ) only has to satisfy (1.3)
asymptotically.

We conclude this section with an application of the above results to the
regression quantile estimators of Koenker and Bassett (1978). Let 0 < g < 1 be
fixed and define

Y(x) =q-I(x<F(q)), x€R,

where F~1! is the usual left continuous inverse of F. Koenker and Bassett (1978)
defined any value 6(g) of # that minimises

(YJ - xj’ﬂ){q - I(Y; —x/8 < 0)}

.
1

to be a gth regression quantile. Of course, 4(1 /2) is the least absolute deviations
estimator of §. The following result extends the results of Koenker and Bassett
(1978) and Ruppert and Carroll (1980) to allow p to diverge with n. The proof is
an extension of the proof of Theorem 4 of Ruppert and Carroll (1980).

THEOREM 5.5. Let 0 < g < 1 be fixed. Then suppose that F has two bounded
derivatives in a neighbourhood of F~*(q) and that F/(F~Y(q)) > 0. Also sup-
pose that conditions (C.9)—(C.11) hold and p*(log n)?/n — 0. Then if a € R?
satisfies |a| = 1,

a'(8(q) - 6(q)) + Tj_1a'z,{I(e; < F-X(q)) — q} /F(FY(q))
_ 1/2
{a(X'X) 'aq(1 - q)}
where 8(q) = 8 + F (q)u,. Consequently,
a'{0(q) — 6(q)}F'(F Y(q))
, _ 1/2
{a(X'X) "aq(1 —q))

Proor. It is straightforward to show that the conditions of the

theorem ensure that conditions (C.1)-(C.3), (C.6) and (C.8) hold for Y(x) =

q — I(x < F~'(q)) with A = F/(F Y(q)) and d = ¢(1 = q). Consequently, the
result will follow from Theorem 5.4 if we can show that f(q) satisfies

a'M,(6(q) - 6(g),0) 50

—)PO,

—4 N(0,1).

and
IM,(6(q) — 6(q),0)|| = 0.
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For u € R and a € R” satisfying |a| = 1, let

G(u,a) = Xn: (Yj - x6(q) - n1/2a’zju){q - I(Y; — x/0(q) — nV'zu < O)}
Jj=1

and let H(u, a) be the derivative from the right (with respect to u) of G(u, a) so
H(u,a) =n"%?Y a’zjxp(Y} —x/0(q) - nV%a'zu + F*I(q)).
J=1
Now H(u, a) is nondecreasing in u so for ¢ > 0,
H(—¢,a) < H0,a) < H(e, a).

But G(u, a) achieves its minimum at « = 0 so H(—¢,a) <0 and H(e,a) > 0
and we have

|H(0, a)| < H(e,a) — H(—¢, a).
Letting ¢ — 0,
|H(0, a)] < n*? Y |a’zj|I(Y} - x8(q) = O)
J=1
< (p/n/?)C, almost surely,
by (C.11) and the fact that ¥7_, I(Y; — x ;é(q) = 0) = p almost surely. Hence
a'M,(6(q) — 6(q),0) = H(0,a) — 0, almost surely.
Finally, notice that if {a,,..., a ») is the standard basis in R?, we have that
H(0, a,)| < n'* ¥ 12,41(Y; ~ x/6(q) = 0)
=1
80

134,(6(¢) = 6(),0)ll = max |H(0, a,)

n

max n1/2 Z |ZJL|I(YJ - leé(q) = O)

l<i<p

IA

Jj=1

IA

(p/n*/*)C (almost surely)
-0
and the result is obtained. O

Finally, it is straightforward to obtain an approximation to the distribution of
(X' X)/*0(q) — 0(g)}*
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