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ABSTRACT

Context. We examine the MHD instabilities arising in the radiation zone of a differentially rotating star, in which a poloidal field of
fossil origin is sheared into a toroidal field.
Aims. We focus on the non-axisymmetric instability that affects the toroidal magnetic field in a rotating star, which was first studied
by Pitts and Tayler in the non-dissipative limit. If such an instability were able to mix the stellar material, it could have an impact on
the evolution of the star. According to Spruit, it could also drive a dynamo.
Methods. We compare the numerical solutions built with the 3-dimensional ASH code with the predictions drawn from an analytical
study of the Pitts & Tayler instability.
Results. The Pitts & Tayler instability is manifestly present in our simulations, with its conspicuous m = 1 dependence in azimuth.
But its analytic treatment used so far is too simplified to be applied to the real stellar situation. Although the instability generated field
reaches an energy comparable to that of the mean poloidal field, that field seems unaffected by the instability: it undergoes Ohmic
decline, and is neither eroded nor regenerated by the instability. The toroidal field is produced by shearing the poloidal field and it
draws its energy from the differential rotation. The small scale motions behave as Alfvén waves; they cause negligible eddy-diffusivity
and contribute little to the net transport of angular momentum.
Conclusions. In our simulations we observe no sign of dynamo action, of either mean field or fluctuation type, up to a magnetic
Reynolds number of 105. However the Pitts & Tayler instability is sustained as long as the differential rotation acting on the poloidal
field is able to generate a toroidal field of sufficient strength. But in the Sun such a poloidal field of fossil origin is ruled out by the
nearly uniform rotation of the deep interior.
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1. Introduction

In recent years there has been a surge of interest for stellar mag-
netism, due mainly to the discovery of magnetic fields in an in-
creasing number of stars, and to their mapping through Zeeman
imaging (cf. Donati et al. 2006). Theory benefits enormously
from these new constraints, and quite naturally the main focus
is on the generation of magnetic fields in turbulent convection
zones, which can now been studied through high resolution nu-
merical simulations (Brun et al. 2004, 2005; Dobler et al. 2006).
But attention has been drawn also to the instabilities that may af-
fect the magnetic field in stably stratified radiation zones. Spruit
(1999) reviewed various types of instabilities that are likely to
intervene in a magnetized radiation zone, and he concluded that
the strongest among them were those which had been described
by Tayler and his collaborators. Indeed, Markey & Tayler (1973)
have shown that a purely poloidal field would be unstable to non-
axisymmetric perturbations, and so would also a toroidal field
(Tayler 1973; Wright 1973; Goossens et al. 1981). Later Pitts
& Tayler (1985) proved that even in the presence of rotation a
toroidal field would be unstable to such perturbations.

Spruit (1999, 2002) analyzed the latter instability in more
detail, including Ohmic dissipation and radiative damping, and
starting from the dispersion relation established by Acheson
(1978); he suggested that it could regenerate the toroidal
field, and thus drive a genuine dynamo. Applying essentially
Spruit’s prescriptions, Maeder & Meynet (2003, 2004, 2005),
Eggenberger et al. (2005) and Heger et al. (2005) introduced
this dynamo, and the turbulent transport believed to be associ-
ated with it, in their stellar evolution calculations. It proved ex-
tremely efficient in establishing quasi uniform rotation. In the
case of massive stars, it would increase the loss of angular mo-
mentum through the stellar wind, and lead to slower rotating stel-
lar cores; this would yield pulsar rotation rates that are in better
agreement with the observations.

However, guided by other observational evidence,
Denissenkov & Pinsonneault (2006) questioned the exis-
tence of such a powerful process of angular momentum
transport; they noticed some inconsistencies in Spruit’s heuristic
argumentation, which they tried to correct. Unfortunately the
choice they made was in conflict with the rigorous analytical
treatment of the instability; this was pointed out by Spruit
(2006), and that part of their discussion was deleted in the final
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version (Denissenkov & Pinsonneault 2007). In the meanwhile,
Braithwaite (2006) conducted a numerical experiment which he
claimed to validate Spruit’s dynamo scenario.

Our interest in those instabilities was aroused when we
observed them while verifying if a fossil field was able to
prevent the spread of the solar tachocline, as had been pro-
posed by Gough & McIntyre (1998): the results of these three-
dimensional simulations are reported in Brun & Zahn (2006).
We then wanted to check whether these calculations agreed with
Spruit’s analytical predictions, and this incited us to re-examine
his original derivation.

We begin by extending Acheson’s dispersion relation to the
case where both an entropy gradient and a composition gradi-
ent are present, and derive the actual solutions of that equation
(rather than upper or lower bounds). We then discuss the heuris-
tic arguments that were first used by Spruit, and show how they
can be misleading. Next we compare the analytical solutions
with the numerical results obtained in Brun & Zahn (2006, here-
after referred to as BZ06), and finally we examine whether the
dynamo that was suggested by Spruit does actually operate.

2. The non-dissipative case

Let us first recall the major results concerning the instability
that affects a toroidal field in the radiation zone of a rotating
star, which were derived by Pitts & Tayler (1985) in the non-
dissipative limit. We consider this field as given, and ignore what
causes it, namely the mean poloidal field and the differential ro-
tation that is acting on it; we further assume that it varies as
Bϕ ∝ �p with the distance from the rotation axis (p ≥ 1). To
ease the task for the reader, we put the technical developments
in Appendix.

As was done in previous works, we perform a local analysis
and examine the stability of an imposed axisymmetric toroidal
field. We submit it to wave-like perturbations of the form

exp i(l� + mϕ + nz − σt), (1)

in a cylindrical reference frame (�, ϕ, z) centered on the rota-
tion axis of a star that is rotating uniformly with angular veloc-
ity Ω; σ = σR + iσI is the complex frequency. Such perturba-
tions obey a dispersion relation that was first derived by Acheson
(1978, Eq. (3.20)); Spruit (1999) made it more tractable by ap-
plying it only to the vicinity of the rotation axis, by assuming
that (l/n) � 1 and that the Alfvén velocity is negligible com-
pared to the sound speed. In Appendix, we establish that equa-
tion in a slightly more general case, allowing the stratification to
depend both on entropy and on chemical composition. For m � 0
and ignoring all forms of energy dissipation (radiative, Ohmic,
viscous) the dispersion relation takes the form (cf. Spruit 1999,
Eq. (A9))

(σ2 − ω2
A) (σ2 − ω2
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We have introduced here the stratification parameter

A =
l2

n2

N2

ω2
A

(3)

which measures the relative strength of the two restoring forces:
buoyancy and magnetic tension; N is the buoyancy frequency

(cf. 8) and ωA the Alfvén frequency associated with the toroidal
field Bϕ:

ω2
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(mVA
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m2
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B2
ϕ

4πρ
· (4)

This dispersion equation admits two pairs of wave modes, that
are well separated in frequency when ωA � Ω, which is the
case we shall consider here of moderate field strength (Bϕ �
100 kG below the solar convection zone). The fast modes may be
isolated by setting σ2 � ω2

A, which yields to first approximation
σ2 = (l/n)2N2 + 4Ω2: we recognize here the signature of the
gravito-inertial waves. The slow modes are found in the domain
σ2 � ω2

A � Ω2, where the dispersion relation reduces to the
following quadratic equation in ζ = 2mΩσ/ω2

A

ζ2 + 4ζ − [m2(1 + A) − 2(p + 1)] = 0. (5)

Its discriminant is ∆′ = m2(1+A)+2(1− p); when ∆′ < 0, it has
a complex root with a positive imaginary part σI > 0 and hence
this mode would be unstable for

p > 1 +
m2

2
(1 + A). (6)

As Pitts & Tayler (1985) pointed out, all modes are stable for
p = 1. And one expects actually the toroidal field to vary lin-
early with � in the vicinity of the rotation axis, if it is generated
by shearing a poloidal field through a depth dependent rotation.
Hence we shall assume from here on that p = 1. We are then left
with two oscillatory modes, whose frequencies are given by

ζ = −2 ± m
√

1 + A or σ =
ω2

A

Ω

⎡⎢⎢⎢⎢⎣− 1
m
±
√

1 + A
2

⎤⎥⎥⎥⎥⎦ · (7)

Note that for A < 3 there are two negative roots, and that for
A > 3 the roots have opposite sign.

3. Overstable modes

Since all modes are stable for p = 1 in the non-dissipative limit,
instability can only occur in form of a diffusive instability, with
the complex frequency presenting a positive imaginary part. The
dissipation is provided here by radiative and Ohmic diffusion,
with respective diffusivities κ and η. In addition to the two slow
oscillatory modes discussed above, whose amplitude may then
grow exponentially in time, there is also a direct mode, whose
frequencyσR → 0 in the non-dissipative limit, that may become
unstable.

We consider here only the case where the Roberts number
ε = η/κ may be treated as a small quantity, which is the case in
stellar interiors (ε ≈ 10−4 below the solar convection zone). In
Appendix, we derive Acheson’s dispersion relation in the more
general case where both a gradient of entropy and of chemical
composition are present. Then the stratification is characterized
by two buoyancy frequencies:

N2 = N2
t + N2

µ =
g

HP
(∇ad − ∇) +

g

HP

(
dln µ
dln P

)
(8)

with the usual notations, and assuming the perfect gas law for
simplicity. The corresponding stratification parameters are then

At =
l2

n2

N2
t

ω2
A

and Aµ =
l2

n2

N2
µ

ω2
A

; (9)
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Table 1. Maximum scaled growth-rate ζmax
I = 2ΩσI/ω

2
a and corre-

sponding frequency ζmax
R = 2ΩσR/ω

2
a, A∗ and S , at given εAt/Aµ and

for |m| = 1.

εAt/Aµ A∗ S (A∗) ζmax
R ζmax

I

0 3.306 0.3463 0.3868 0.1722
0.01 3.203 0.3593 0.3736 0.1679
0.1 2.957 0.3774 0.2820 0.1397
1 1.817 0.3750 0.1160 0.06945
10 1.908 0.2599 0.02211 0.01736
∞ 0 0 – 0.4858 0.4227

it is convenient to introduce also the sum A∗ = εAt + Aµ.
In Appendix (Eq. (A.15)) we show that the scaled com-

plex frequency ζ = 2mΩσ/ω2
A obeys the following third-order

equation:

εAtζ
2 +

(
2ζ2 + 4ζ − Aµ

)
S 2

− i S ζ
(
ζ2 + 4ζ + 3 − A∗ − S 2

)
= 0, (10)

where S = 2Ωηn2/ω2
A represents the suitably scaled Ohmic

diffusivity. Note that At intervenes only through the product
εAt, which illustrates how the restoring force due to the en-
tropy gradient is weakened through radiative damping. For given
meridional wavenumbers n and l, or equivalently for a set [At,
Aµ, S ], Eq. (10) has three complex solutions; if its imaginary
part ζI is positive, the mode is overstable. Its growth-rate σI =
(ω2

A/2mΩ) ζI then peaks at azimuthal wavenumber |m| = 1, a
distinctive property of this instability. From here on we shall
consider only that case |m| = 1, and refer to this instability as
the Pitts & Tayler instability, to distinguish it from that which
affects a poloidal field (Markey & Tayler 1973).

We observe that if S , εAt and/or Aµ, are of order unity, this
will also be the case for ζ, which implies that both the fre-
quency σR and the growth-rate σI scale as ω2

A/Ω, like in the
non-dissipative case. The maximum growth-rate and the corre-
sponding frequency are given in Table 1 for a sample of values
of εAt/Aµ; we see that it is the prograde mode that is unstable
(or rather overstable), except for Aµ = 0.

For given ratio At/Aµ, the instability domain can be de-
lineated in the [A∗, S ] plane by locating the points where the
growth-rate vanishes and thus where the oscillation frequency is
purely real: σ = σR. Referring back to (10), this occurs when
the following equations are both satisfied:

εAt x2 + (2x2 + 4x − Aµ) S 2 = 0,

x2 + 4x + 3 − A∗ − S 2 = 0, (11)

where x = 2mΩσR/ω
2
A is the scaled frequency. The solution of

this system determines the minimum strength of the magnetic
field that is required for instability, as we shall see next.

Let us first examine the two limit cases (At = 0 and Aµ = 0)
that were considered by Spruit.

3.1. Stratification due only to the composition gradient

For At = 0, system (11) reduces to

2x2 + 4x − Aµ = 0,

x2 + 4x + 3 − Aµ − S 2 = 0. (12)

It is easily solved:

x = −1 +
√

1 + Aµ/2
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Fig. 1. Limits of the instability domain in the (A∗, S ) plane, for vari-
ous values of At/Aµ. The stratification parameters are defined as At =
(l/n)2(Nt/ωA)2 and Aµ = (l/n)2(Nµ/ωA)2, whereas A∗ = εAt + Aµ.
ε = η/κ designates the Roberts number, and S = 2ηΩn2/ω2

A defines the
limits of the instability domain in vertical wavenumber n, for given A∗.

S 2 = 2
√

1 + Aµ/2 + 1 − Aµ/2; (13)

the function S (Aµ) decreases from
√

3 at Aµ = 0 to 0 at Amax =

6 + 4
√

3 = 12.928, as illustrated in Fig. 1.
We now use this result to determine the instability threshold.

Like Spruit (1999), we eliminate n2 by combining the definition
of Aµ:

l2

n2

N2
µ

ω2
A

= Aµ (14)

with that of S :

2Ωη

ω2
A

n2 = S (Aµ); (15)

this gives us the minimum strength of the toroidal field required
to trigger the instability:

[Aµ S (Aµ)]ω
4
A = 2Ωηl2N2

µ . (16)

That condition is optimized when [Aµ S (Aµ)] is maximum, at
[AS ]max = 9.829, which is reached for Aµ = 8.788. Thus our re-
sult confirms that of Spruit (1999, Eq. (A23)), although they dif-
fer somewhat in their numerical coefficients (Amax, for instance,
is underestimated by Spruit, whose value is 3 instead of 12.928).

3.2. Stratification due only to the entropy gradient

For Aµ = 0 system (11) has no simple analytical solution, but
it can be easily shown that S (At) vanishes at εAt = 0 and 3, as
illustrated in Fig. 1. Thus the maximum value of the stratification
parameter that allows for instability is At = 3/ε.

Proceeding as before, we find that the instability threshold is
given by

[εAt S (εAt)]ω4
A = 2Ωεηl2N2

t ; (17)
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Table 2. Stratification parameters and optimal conditions for the onset
of instability. A∗max is the highest value of A∗ = εAt + Aµ that allows
for instability; [AS ]max the maximum of the product A∗S (A∗) for fixed
εAt/Aµ, obtained at A∗opt, from which one derives the instability thresh-
old for the magnetic field (see text).

εAt/Aµ A∗max S (A∗max) [AS ]max A∗opt

0 12.928 0 9.829 8.788
0.01 10.249 0.602 9.307 8.138
0.1 6.970 0 .754 6.960 5.885
1 4.000 0.550 3.451 3.171

10 3.125 0.219 2.186 2.087
∞ 3 0 0.728 2.070

it is optimized at [εAt S (εAt)] = 0.728 for εAt = 2.070. Here
also we retrieve Spruit’s result, but with the exact proportionality
constant.

3.3. Stratification due to both entropy and composition
gradients

In the general case both causes of stratification are present, and
S is a function of At and Aµ; the instability domain is displayed
in Fig. 1 for a set of fixed At/Aµ. All solutions, except for Aµ = 0,
have in common the point A∗ = 0, S =

√
3, and all solutions,

except for At = 0 share the point A∗ = 3, S = 0, as predicted
by Eq. (11). Note that they are double-valued in the general
case, which means that the instability interval in n, the vertical
wavenumber, has a lower boundary that differs from zero. Only
in the limit cases, At = 0, Aµ = 0, does the instability domain
extend to S = 0, between A∗ = 0 and A∗max.

To determine the instability threshold for the toroidal field,
we eliminate as before n2 between

l2

n2

⎡⎢⎢⎢⎢⎢⎣εN2
t

ω2
A

+
N2
µ

ω2
A

⎤⎥⎥⎥⎥⎥⎦ = A∗ (18)

and

2Ωη

ω2
A

n2 = S (A∗); (19)

this yields

[A∗ S (A∗)]ω4
A = 2Ωηl2

[
εN2

t + N2
µ

]
, (20)

which validates Spruit’s prescription of replacing the buoyancy
frequency N2 by [εN2

t + N2
µ] (his Eq. (55))1. This expression is

optimized for the values of [A∗ S (A∗)] that are given in Table 2,
together with the maximum value of the stratification parame-
ter A∗max which allows for instability, and that of the correspond-
ing S (A∗max).

For either ε = 0 or N2
µ = 0, we retrieve the two special cases

considered before.

4. On the validity of heuristic arguments

In his seminal paper, Spruit (1999) used a few heuristic argu-
ments to describe the Pitts & Tayler instability in a simple, intu-
itive way. Let us examine their validity in the light of the rigorous
treatment given in the preceding section and in Appendix.

1 Through heuristic arguments, Maeder & Meynet (2004) obtain a
similar expression, but where N2

t is reduced by ε/2 instead of ε.

With one such arguments, Spruit seeks a lower limit for the
vertical wavenumber n. We quote him: “For displacements of
amplitude ξ, the work done per unit mass against the stable strat-
ification is 1

2ξ
2(l/n)2N2. The energy gained from the field config-

uration is 1
2ω

2
Aξ

2. For instability, the field must be strong enough,
such that ω2

A > (l/n)2N2”. Furthermore, since l  1/r, this pro-
vides him a lower limit for n (cf. his Eq. (44)).

In Spruit (2002), the argument is slightly different: ξ is the
unstable displacement, and 1

2ω
2
Aξ

2 the kinetic energy that is re-
leased in this displacement, “since the growth-rate of the insta-
bility in the absence of constraints like rotation is σ ∼ ωA”.

Another argument is used to set an upper limit to n: the
growth-rate σ has to overcome the damping rate of Ohmic dif-
fusion; hence

σ > n2η, (21)

and this is applied to the case Ω � ωA, where σ ∼ ω2
A/Ω.

Denissenkov & Pinsonneault (2006) object quite understand-
ably to this ambivalent choice ofσ, namelyσ ∼ ωA for the lower
bound and σ ∼ ω2

A/Ω for the upper bound on n. They take the
latter definition in both cases, which seems more coherent – but
disagrees with the rigorous treatment.

Where is the problem? In fact buoyancy and magnetic field
act both as restoring forces, as is illustrated by the energy equa-
tion, which we establish in Appendix in the non-dissipative
case (A.22):

1
2

(
∂ξ

∂t

)2

+
1
2

m2ω2
Aξ

2 +
1
2

N2ξ2z = 0. (22)

It shows how the energy of the perturbation is exchanged back
and forth between kinetic and potential (magnetic and buoyancy)
energy, as is typical in dynamical systems. In the absence of dis-
sipation, the total energy remains constant, while it increases
when the diffusive instability occurs. Thus the buoyancy force
and the Lorentz force2 are not antagonistic, and it is not possible
to draw an instability condition from their relative strengths.

These shortcomings of the heuristic approach have been im-
plicitly recognized in Spruit (2006), where he writes that “all
physical effects contribute if all terms and factors [meaning
Aµ, εAt, S and ζ in our notation] are of the same order [i.e. of
order unity, as can be seen in (10)]”. To achieve this, the ratio
(l/n)2 has thus to satisfy (l/n)2 ∼ ω2

A/N
2, a condition that is less

stringent than Spruit’s original inequality.
The other heuristic condition (21) deserves also a couple of

remarks. First, as we show in Appendix, in the limit of small
n2 the growth-rate is proportional to the damping rate: σ ∝ n2η
(cf. A.16), and it is not clear what information can be extracted
then about n2 by equating these two rates. Second, in presence
of radiative damping, why should this condition not be replaced
by σ > n2κ, since the thermal diffusivity κ largely exceeds the
Ohmic diffusivity?

We conclude that heuristic arguments, though appealing,
can be misleading when they are not supported by a rigorous
treatment.

2 In fact, one should call it the Laplace force, contrary to what has
become common practice. Pierre-Simon Laplace (1749–1827) was the
first to give the expression of the force exerted by a magnetic field on
an electric current; the force named after Hendrik Lorentz (1853–1928)
is that experienced by a moving charged particle.
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Fig. 2. How to close the dynamo loop involving the Pitts &Tayler insta-
bility. In dashed lines the loops proposed by Spruit (A) and Braithwaite
(B). The only possible way to regenerate the mean toroidal and/or
poloidal field is through the mean electromotive force 〈u × b〉 produced
by the non-axisymmetric instability-generated field. But the dynamo
must regenerate the poloidal field, in order to be fed from the differen-
tial rotation, and this leaves only the loop drawn in solid line.

5. Can the Pitts & Tayler instability sustain
a dynamo?

We now come to the suggestion made by Spruit (2002), that this
instability could sustain a dynamo in stellar radiation zones, as
thermal convection does in a convection zone. We find his idea
quite interesting, but we argue that this dynamo cannot operate
as he describes it. According to him, the instability-generated
small scale field, which has zero average, is wound up by the dif-
ferential rotation “into a new contribution to the azimuthal field.
This again is unstable, thus closing the dynamo loop”. But this
shear induced azimuthal field has the same azimuthal wavenum-
ber as the instability-generated field, i.e. m � 0 and predomi-
nantly m = 1: it has no mean azimuthal component, and thus it
cannot regenerate the mean toroidal field that is required to sus-
tain the instability. For the same reason, the instability-generated
field cannot regenerate the mean poloidal field, as was suggested
by Braithwaite (2006). Therefore the Pitts & Tayler instability
cannot be the cause of a dynamo, as it was described by Spruit
and Braithwaite.

To close the dynamo loop, as is well known in mean-field
theory (Parker 1955; Moffatt 1978), one has to invoke the so-
called α-effect, which involves the non-zero mean electromotive
force 〈u × b〉 that is produced here by the Pitts & Tayler insta-
bility. This can be read in the azimuthally averaged induction
equation:

dB
dt
= eϕ [�Bm · ∇Ω] + ∇ × 〈u × b〉 − ∇ × (η∇ × B), (23)

where u and b are the non-axi-symmetric parts of the velocity
and magnetic fields; the meridional advection has been absorbed
in the Lagrangian time derivative. The first term on the RHS
describes how the poloidal field Bm is wound up by the differ-
ential rotation to produce the mean toroidal field (the Ω-effect),
the second how the mean electromotive force may (re)generate
both the poloidal and the toroidal fields (the α-effect), and the
last term represents the Ohmic diffusion, eventually enhanced
by the turbulence (the β-effect). The only possible dynamo loop
is depicted in Fig. 2 (solid lines); those proposed by Spruit and
Braithwaite are shown in dashed lines. Moreover, for the dy-
namo to operate, the mean electromotive force must overcome
the Ohmic dissipation.

Table 3. Typical values of the relevant parameters in the upper radiation
zone of the Sun, and values adopted for the numerical simulations (in
cgs units).

Parameter Symbol Sun Case A Case B

thermal diffusivity κ 107 8 × 1012 8 × 1012

magnetic diffusivity η 103 8 × 1010 8 × 109

viscosity ν 30 8 × 109 8 × 109

buoyancy frequency Nt 2.1 × 10−3 3 × 10−4 3 × 10−4

rotation frequency Ω 3 × 10−6 3 × 10−6 3 × 10−6

Another type of dynamo has been observed in numerical
simulations, with externally forced turbulence: it is the small-
scale or fluctuation dynamo. There the magnetic field has no
mean components, neither poloidal nor toroidal, but a quasi-
stationary regime may be achieved when the magnetic Reynolds
number Rm = VL/η exceeds some critical value (V and L are the
characteristic velocity and length-scale of the turbulence). But it
remains to be checked whether such a dynamo can be sustained
by an imposed shear, such as a differential rotation.

6. 3D numerical simulations of the MHD instabilities

In Spruit’s scenario, the toroidal field which undergoes the Pitts
& Tayler instability is generated by winding up an existing
poloidal field through a differential rotation Ω(z) that results
from slowing down the star by a stellar wind. It is similar to the
model we took to examine the possibility of confining the so-
lar tachocline by a fossil field (BZ06). However, in our case the
differential rotation is imposed in latitude by the adjacent con-
vection zone, and the depth dependence of Ω near the polar axis
is caused by thermal diffusion (cf. Spiegel & Zahn 1992). What
distinguishes our model from that of Spruit, and several others
(cf. Miesch et al. 2007; Arlt et al. 2007; Kitchatinov & Rüdiger
2007), is the presence of that large scale poloidal field which
is allowed to evolve freely through advection by the meridional
circulation, Ohmic diffusion, and eventually interaction with the
instability-generated field.

Our simulations, together with the equations of the prob-
lem and the resolution methods, are described in full detail
in BZ06. We used the global ASH code (Clune et al. 1999;
Brun et al. 2004) to solve the relevant anelastic MHD equations
(Eqs. (1)–(5) in BZ06) in a spherical shell representing the upper
part of the solar radiation zone (0.35 ≤ r/R� ≤ 0.70), using a res-
olution of Nr×Nθ×Nϕ = 193×128×256. For numerical reasons,
we had to increase substantially the diffusivities of heat, mag-
netic field and momentum, as shown in Table 3, while respecting
their hierarchy in the solar conditions. The characteristic evolu-
tion times are shortened accordingly, but contrary to BZ06 we
made no effort here to rescale them by the Eddington-Sweet time
in order to facilitate the comparison with the real Sun. In addi-
tion to the case A discussed in BZ06, we performed an additional
series of simulations with a lower Ohmic diffusivity (by a factor
of 10, case B), in order to reach a higher magnetic Reynolds
number.

The temporal evolution of the magnetic fields and of the
MHD instabilities is best followed in Fig. 3, where we display
the energies of the poloidal, toroidal and non-axisymmetric com-
ponents of the field. Initially a purely poloidal field of about
1 kG (when measured at the base of the computational domain)
is buried in the radiation zone; it is unstable to non-axisymmetric
perturbations of high azimuthal wavenumber (m ≈ 40), as shown
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Fig. 3. Time evolution of the energies of the mean poloidal (PME),
mean toroidal (TME) and non-axisymmetric (FME) components of the
magnetic field. Cases A and B refer respectively to higher and lower
magnetic diffusivity (cf. Table 3). Note the steady decline of the poloidal
field, which is not affected by the irruption of the m = 1 Pitts & Tayler
instability (at t ≈ 8000 days in case A and ≈20 000 days in case B).

Fig. 4. Azimuthal component of the instability-generated magnetic
field, at the peak of the instability (≈10 000 days, case A), measured
at r/R� = 0.7, θ = 75◦. Note that this non-axisymmetric field is domi-
nated by the wavenumber m = 1, which is the signature of the Pitts &
Tayler instability.

in BZ06 (cf. their Fig. 7), which is in agreement with the pre-
dictions of Markey & Tayler (1973). The poloidal field diffuses
outward at a rate proportional to the Ohmic diffusivity and at
some point (around 8000 days in case A or 20 000 days in
case B) it meets the differential rotation that has spread into
the radiation zone, due to thermal diffusion. Their interaction
induces there a toroidal field, whose strength is comparable to
that of the poloidal field in case A; it becomes even larger in
case B, where it keeps growing when we stop the simulation,
at 60 000 days (corresponding to 1.3 Gyr when rescaled to the
Ohmic diffusivity of the Sun). This toroidal field produces a
strong non-axisymmetric MHD instability, with a dominant az-
imuthal wavenumber m = 1, which is clearly the signature of
the Pitts & Tayler instability: it is illustrated in Fig. 4. In case A,
this instability-generated field saturates at an energy comparable
to that of the mean poloidal field, whereas in case B it is still
increasing when we stop the simulation, much like the toroidal
field.

This can be seen also in Fig. 5, where we display a merid-
ional section of the mean and fluctuating components, from
the case B simulation at t = 50 000 days, where the energy
of the fluctuating field matches that of the poloidal field. By

a b 

Fig. 5. Mean toroidal field Bϕ(r, θ) (left) and meridional section of the
fluctuating toroidal field bϕ(r, θ, ϕ) (right). Only the odd m have been
kept in the latter, and the azimuthal angle ϕ has been chosen such as to
emphasize the m = 1 component. Note that mean and fluctuating fields
are of comparable strength. (Case B, t = 50 000 days.)

subtracting the data of opposite azimuthal angles, ϕ and ϕ + π,
we isolate the modes of odd m, and we choose ϕ such as to op-
timize the contribution of the m = 1 component. The mean field
Bϕ has a quadrupolar shape and is strongest close to the convec-
tion zone, whereas the fluctuating field bϕ is present everywhere,
at medium level. At high latitude, the fluctuations are broader
in the horizontal than in the vertical direction; translated into
wavenumbers, this anisotropy amounts to n/l ≈ 5. Measured
in the vertical direction, the characteristic scales are somewhat
larger for Bϕ (≈0.07 R�) than for bϕ (≈0.05 R�).

7. Confronting the numerical simulations
with the analytical model

How do our 3D simulations compare with the simplified analyt-
ical model described above in Sects. 2, 3? The Alfvén frequency
ωA ∼ 3×10−7 s−1 that characterizes the toroidal field at the peak
of the instability (≈104 days in case A) is significantly below the
critical value for the Pitts & Tayler instability which is deduced
from (20): ωcrit

A = 2 × 10−6
√

R/l� s−1, where l� = 2π/l is the
radial wavelength.

Another property of the analytical model is that the vertical
wavenumber largely exceeds the horizontal wavenumber, par-
ticularly when the stratification is dominated by the µ-gradient,
since (l/n)2(Nµ/ωA)2 = Aµ = O(1) (Eq. (14)). In our model, the
contrast n/l is less severe, because there is no composition gra-
dient: the instability threshold is then given by (18), which we
rewrite here as

ε
l2

n2

N2
t

ω2
A

= εAt ≤ 3. (24)

With the parameters that characterize our numerical simulations,
this yields n/l � 50, which is still not compatible with the ob-
served structure of our m = 1 mode, where n/l ≈ 5. It is as if
the role of the stratification were overestimated in the analytical
model.



J.-P. Zahn et al.: MHD instabilities and dynamo in stellar radiation zones 151

Therefore we must conclude that the analytical model con-
sidered by Spruit is not applicable to the more realistic prob-
lem treated in BZ06, and to the situation arising in stars. There
may be several reasons for this. The first is that this simplified
model ignores the presence of the poloidal field. However its in-
clusion would probably tend to stabilize the configuration, and
that would worsen the discrepancy.

Second, the rotation is taken as uniform, whereas the shear
of the differential rotation certainly plays a destabilizing role.
Moreover, it is that neglected differential rotation which is the
very cause of the instability by generating the toroidal field, a
point that has been stressed by Maeder & Meynet (2003).

The third reason is that the� dependence of the instability is
poorly described by a trigonometric function, unless the wave-
length is small compared to the distance to the axis: l� � �.
Bessel functions would probably be better suited (cf. Tayler
1957).

Finally the simplified model ignores the curvature effects,
as was emphasized by Denissenkov & Pinsonneault (2006).
The neglect of the �-component of the buoyancy force, com-
pared to that of the Lorentz force, is allowed only as long as
N2(�/r) ξ� � ω2

Aξ�, hence in close vicinity of the rotation
axis, for�/r � (ωA/N)2. This is a very severe restriction, since
(ωA/N)2 ∼ 10−6 in our numerical solution (case A).

8. Looking for dynamo action

An important property of our numerical solutions is that the
decline of the poloidal field is not affected by the instability-
generated field. As can be seen in Fig. 3, this is true even once the
(Pitts & Tayler) instability has reached its saturation level, where
its energy is comparable with that of the mean poloidal field.
This has two consequences. First it proves that the smallest re-
solved scales do not act on the mean poloidal field as a turbulent
diffusivity: they seem to behave rather as gravito-Alfvén waves,
with their kinetic energy balancing their potential energy (mag-
netic + buoyancy), as in the linear regime described by Eq. (22).
Hence the saturation of the instability is not due to the mecha-
nism suggested by Spruit (2002), which was inspired by thermal
convection, namely that the magnetic eddy-diffusivity ηt adjusts
such as to neutralize the Pitts & Tayler instability, i.e. that it sat-
isfies Eq. (20). In our model – and presumably also in stellar ra-
diation zones - the regulation is apparently achieved through the
action of the Lorentz torque on the differential rotation, which
produces just the right amount of toroidal field that is required
to sustain the instability, through small departures from Ferraro’s
law.

At saturation, the mean quantities are stationary on the insta-
bility time-scale Ω/ω2

A, which translates into the following con-
dition for the azimuthal component of the momentum equation:

4πρ
∂

∂t

(
�2Ω

)
= Bm · ∇(�Bϕ) + 〈bm · ∇(�bϕ)〉 ≈ 0. (25)

Here B is the mean axisymmetric magnetic field with Bm be-
ing its meridional part, and likewise for b, the non-axisymmetric
field generated by the instability; 〈 . . .〉 designates the azimuthal
average. Since the characteristic scales are comparable for the
mean and fluctuating field, this equation tells us that the mag-
netic energy of the instability field must be – crudely speaking –
of the same order as that of the axisymmetric mean field, as we
observe in our simulations.

In our simulations we see no regeneration of the mean
poloidal field: the α-effect plays a negligible role, at least up to

Fig. 6. Evolution of the magnetic energies after suppressing the mean
poloidal field at t = 60 000 days (case B). The mean electromotive
force due to the instability-generated field produces some amount of
poloidal energy (PME, dashed line), but that field is too weak to prevent
through Ω-efect the Ohmic dissipation of the toroidal field Bϕ (TME,
dash-dotted line), which causes the decline of the instability-generated
field (FME, solid line). There is no dynamo action, in spite of the high
magnetic Reynolds number Rm = 105.

the magnetic Reynolds number Rm = R2∆Ω/η ∼ 105 (case B),
for Prandtl number Pm = ν/η = 1. (Evaluated with the instabil-
ity velocity u at saturation, that Reynolds number is of the same
order: Rm = v�ξ�/η = (v2�/σI)/η ∼ V2

A(Ω/ω2
A)/η = �2Ω/η.)

Note that the β-effect, i.e. the turbulence-enhanced diffusivity, is
also absent here; hence one should not expect much mixing of
the stellar material. We thus conclude that in our simulations the
Pitts & Tayler instability is unable to sustain a large-scale mean
field dynamo, in the parameter domain that we have explored.

There is no sign either of a small-scale fluctuation dynamo,
though one may argue that we inhibit this type of dynamo by
imposing our large-scale fossil field. To check this point, we
switched off the poloidal field at the latest stage of our low-η
simulation (case B). As shown in Fig. 6, the toroidal field de-
creases then rapidly, because it is no longer produced by the
Ω-mechanism, and the instability-generated field accompanies
its decline. Thus the fluctuating field does not maintain itself, al-
though the magnetic Reynolds number, Rm = R2∆Ω/η ∼ 105

(case B), should amply fulfill the necessary condition for a tur-
bulent dynamo: at magnetic Prandtl number of order unity, as
here, the critical magnetic Reynolds number is of order 100, ac-
cording to Ponty et al. (2006).

9. Why do our results differ
from those of Braithwaite?

To our knowledge, the only simulation so far that claims to sup-
port a dynamo operating in stellar radiation zones is that by
Braithwaite (2006): he showed that a sufficiently strong differ-
ential rotation can amplify a seed field to a level where it seems
to be maintained, while undergoing cyclic reversals. According
to him, his results confirm the analytical expectations of the role
of the Pitts & Tayler instability, but to us it is not clear whether
that specific instability plays any role in his simulation: for in-
stance the author does not mention the m = 1 signature of the
instability-generated field. Instead, he may have triggered a fluc-
tuation dynamo.

Why do we reach different conclusions about the existence
of such a dynamo? Our set-ups differ somewhat, even when
we suppress the large-scale poloidal field: in Braithwaite’s case,
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differential rotation is enforced by a body force with strong re-
laxation, whereas in ours it spreads from the boundary of the
computational domain, which is more realistic.

We differ also in the boundary conditions applied to the mag-
netic field, which are known to play a sensitive role in numerical
dynamo. We connect our internal field to a potential field out-
side, as if the convection zone were a perfect conductor, whereas
Braithwaite imposes the field to be normal to the boundary.
Using a geometry similar to that of Braithwaite, Gellert et al.
(2007) do not find dynamo action either, and they loose the Pitts
&Tayler instability when they switch off the exterior field, much
as we find when we switch off the poloidal field (Fig. 6).

But the main difference perhaps resides in the way the equa-
tions are solved. Our code uses (enhanced) physical diffusivities;
it is of pseudo-spectral type with a resolution of 128×256×192,
and this method is known to have exponential convergence and
machine accuracy in evaluating derivatives. This allows us to
reach a magnetic Reynolds number of 105, and when we fail to
observe dynamo action this is certainly not due to a insufficient
resolution. Braithwaite uses instead a 6th order finite difference
scheme, with a resolution of 64 × 64 × 33; the numerical dif-
fusion is tuned to ensure stability for the chosen resolution, but
it is not straightforward to infer from it the magnetic Reynolds
number that characterizes the simulation (Braithwaite, private
communication).

Further examining his numerical code (Nordlund &
Galsgaard 1995), one is led to guess that the background vis-
cosity characterizing the numerical dissipation is ν = 0.02 cs∆x,
with cs being the sound speed and ∆x the grid spacing. This
translates into a viscous time, which is also the Ohmic decay
time, τη = τν = L2/ν = 1600 τs, with τs = L/cs. It appears that
none of the simulations reported in his paper has been run for
more than 3000 τs; so one may wonder whether they have been
carried long enough to go beyond the transient phase.

10. Conclusion

We have re-examined the non-axisymmetric instabilities affect-
ing a toroidal magnetic field in a rotating star, which have
first been described by Pitts & Tayler (1985) in the ideal, non-
dissipative limit. The problem was generalized by Spruit (1999)
to include the diffusion of heat and of magnetic field. We have
extended his analytic treatment to the case where the medium is
stratified both in entropy and in chemical composition (Eq. (20)).
Our exact solutions fully validate his approximate results.

Then we have compared these analytical results with numer-
ical solutions built with the 3-dimensional ASH code; in our
model the toroidal field is produced by shearing a fossil poloidal
field through the inward propagating differential rotation im-
posed by the convection zone. Our numerical solutions clearly
display the Pitts & Tayler instability with its dominant m = 1
mode, but they do not conform to the quantitative predictions
of the analytical model. In our simulations the instability occurs
well below the threshold predicted by the analytical model, and
it is much less sensitive to the stratification. These discrepan-
cies are probably due to the approximations made to simplify
that analytical model, such as neglecting the poloidal field, the
differential rotation and the radial component of the buoyancy
force.

It also appears that the saturation of the instability can-
not be ascribed to a turbulent diffusivity fulfilling the critical
conditions, as in Spruit’s model: it occurs when the energy of
the instability-generated field reaches approximately that of the
mean fields. The mean poloidal field steadily declines due to

Ohmic dissipation, while it is wound up by the differential ro-
tation to produce the toroidal field. Contrary to Spruit’s expecta-
tion, which is based on questionable grounds as we have shown
in Sect. 8, we detect here no sign of a dynamo that could re-
generate the mean fields; the small scale motions do not act ei-
ther as an eddy diffusivity on the mean poloidal field. Unlike the
turbulent motions present in a convection zone, the instability-
generated motions produce here no α and no β-effect. Neither
do we observe a fluctuation dynamo, in spite of the relatively
high magnetic Reynolds number, in contrast with the findings of
Braithwaite (2006), who however considers a somewhat simpler
model.

But the Pitts & Tayler instability persists as long as the
toroidal field remains of sufficient strength, i.e. a few Gauss in
the conditions prevailing below the solar convection zone, which
puts a similar requirement on the poloidal field. We have shown
in Brun & Zahn (2006) that such a poloidal field does not ex-
ist in the Sun, because it would imprint on the radiative interior
the differential rotation of the convection zone, and that is ruled
out by the helioseismic diagnostic. The Pitts & Tayler instability
could well occur in other stars hosting a large-scale toroidal field,
but we doubt that it may cause there any significant transport
of matter and angular momentum, since in our simulations the
motions associated with the instability behave rather as Alfvén
waves than as turbulence. To settle that issue, observational tests
will play an irreplaceable role.
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Appendix A: Dispersion relation and energy
equation

Let us recall that all perturbations (displacement ξ, magnetic
field b, pressure P′, temperature T ′, molecular weight µ′) are
expanded in Fourier modes

exp i(l� + mϕ + nz − σt), (A.1)

in the vicinity of the rotation axis (the z-axis).
We begin by deriving the buoyancy force, which is weakened

through radiative and atomic diffusion. We split the buoyancy
frequency in two parts, the first due to the thermal stratification
and the second to the the composition gradient:

N2 = N2
t + N2

µ =
g

HP
(∇ad − ∇) +

g

HP

(
d ln µ
d ln P

)
(A.2)

with the usual notations, and taking for simplicity the perfect gas
equation of state.

The linearized heat equation may be written as

−iσ
T ′

T
+

N2
t

g
(−iσξz) = −κs2 T ′

T
, (A.3)

where κ is the thermal diffusivity, and s2 = l2 + m2/�2 + n2.
(We simplify the Laplacians by assuming that the diffusivities
do not vary much over a meridional wavelength.) Likewise, the
advection/diffusion equation for the molecular weight perturba-
tion takes the form

−iσ
µ′

µ
− N2

µ

g
(−iσξz) = −λs2 µ

′

µ
, (A.4)
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with λ being the molecular diffusivity. Thus the buoyancy force
is given by

−gρ
′

ρ
= g

(
T ′

T
− µ

′

µ

)
= −

⎡⎢⎢⎢⎢⎢⎣ N2
t

1 + iκs2/σ
+

N2
µ

1 + iλs2/σ

⎤⎥⎥⎥⎥⎥⎦ ξz. (A.5)

Turning next to the Lorentz force, we perturb the toroidal mag-
netic field Bt = eϕ B(�) by the displacement ξ, and draw the
field perturbation b from the induction equation

∂B
∂t
= ∇ × (V × B) − ∇ × (η∇ × B), (A.6)

to obtain

−iσb = ∇ × (−iσξ × Bt) − ηs2 b. (A.7)

First ignoring Ohmic diffusion, we get b = im (B/�) ξ. It is then
straightforward to calculate the perturbation of the Lorentz force
per unit volume

L =
1

4πρ
[(∇ × b) × B + (∇ × B) × b] ; (A.8)

introducing the Alfvén frequency ω2
A = (B2/�2)/4πρ and as-

suming that B ∝ �p:

L� = −m2ω2
A ξ� + (l�) mω2

A ξϕ − im (p + 1)ω2
A ξϕ

Lϕ = im (p + 1)ω2
A ξ� (A.9)

Lz = (n�) mω2
A ξϕ − m2ω2

A ξz.

When keeping Ohmic diffusion b = im (B/�) ξ/(1 + iηs2/σ),
and hence the Lorentz force will also be divided by (1+ iηs2/σ).

It remains to implement the expressions derived above for
the buoyancy and Lorentz forces in the equations of motion:

i l
P′

ρ
+

⎡⎢⎢⎢⎢⎣−σ2 +
m2ω2

A

1 + iηs2/σ

⎤⎥⎥⎥⎥⎦ ξ�
+

⎡⎢⎢⎢⎢⎣− (l�)mω2
A

1 + iηs2/σ
+ i

(p + 1)mω2
A

1 + iηs2/σ
+ 2iΩσ

⎤⎥⎥⎥⎥⎦ ξϕ = 0 ,

i
m
�

P′

ρ
−

⎡⎢⎢⎢⎢⎣i (p + 1)mω2
A

1 + iηs2/σ
+ 2iΩσ

⎤⎥⎥⎥⎥⎦ ξ� − σ2ξϕ = 0 ,

i n
P′

ρ
− (n�)mω2

A

1 + iηs2/σ
ξϕ (A.10)

+

⎡⎢⎢⎢⎢⎢⎣−σ2 +
m2ω2

A

1 + iηs2/σ
+

N2
t

1 + iκs2/γσ
+

N2
µ

1 + iλs2/σ

⎤⎥⎥⎥⎥⎥⎦ ξz = 0,

and to complete them with the continuity equation, in the
Boussinesq approximation:

lξ� +
m
�
ξϕ + nξz = 0. (A.11)

This yields a fourth-order system whose determinant is the dis-
persion relation we are looking for.

From here on, we shall consider only the most realistic case
where p = 1. To first approximation we may neglect the molec-
ular diffusivity compared to the Ohmic diffusivity, and a fortiori
to the thermal diffusivity. We further assume that l2 � n2, scale
all frequencies and damping rates by the Alfvén frequency:

σ̃ =
σ

ωA
= α + iβ, Ω̃ =

Ω

ωA
, k =

κn2

γωA
, h =

ηn2

ωA
, (A.12)

and introduce

At =
l2

n2

N2
t

ω2
A

, Aµ =
l2

n2

N2
µ

ω2
A

· (A.13)

The dispersion relation may then be cast into

σ̃6 − σ̃4[4Ω̃2 + At + Aµ + 2 + 2hk + h2] − σ̃3 8Ω̃/m

+σ̃2 [At+ Aµ−3 + 2hk (4Ω̃2+ Aµ + 1) + h2(4Ω̃2+ At + Aµ)]

+σ̃ hk 8Ω/m − hk Aµ

+i σ̃5 [2h + k]

−i σ̃3 [k (4Ω̃2 + Aµ + 2) + 2h (4Ω̃2 + At + Aµ + 1) + h2k]

−iσ̃2 8(k + h) Ω̃/m

+iσ̃ [k (Aµ − 3) + h (At + Aµ) + h2k(4Ω̃2 + Aµ)] = 0. (A.14)

From now on we no longer deal with the gravito-inertial modes,
which allows us to discard the terms in σ̃6 and σ̃5. The slow
modes then obey a 4th order equation which can be further
reduced to a third order equation, by taking into account that
4Ω̃2 � (εAt, Aµ), ε � 1 and σ̃2 � (1, k2). This leads to

εAtζ
2 +

(
2ζ2 + 4ζ − Aµ

)
S 2

−i S ζ (ζ2 + 4ζ + 3 − A∗ − S 2) = 0, (A.15)

where ζ = 2mΩ̃σ̃ = 2mΩσ/ω2
A, S = 2Ω̃h = 2Ωηn2/ω2

A and
A∗ = εAt + Aµ.

This dispersion relation may be solved numerically to obtain
the growth-rate σI of the unstable modes. In the two limit cases,
this equation has solutions for S → 0 at given Aµ or εAt, which
can be easily derived. When At = 0, the growth-rate is given by

σI = η n2 4
√

1 + Aµ − 2 − Aµ

2 + 2Aµ − 4
√

1 + Aµ
(At = 0, S → 0); (A.16)

it is positive for Aµ < 6 + 4
√

3. In the other special case Aµ = 0,
the growth-rate is positive between εAt = 0 and 3:

σI = η n2 3 − εAt

εAt
(Aµ = 0, S → 0). (A.17)

These expressions are not valid for Aµ → 3, or respectively At →
0, εAt → 3, where one has to keep higher order terms.

We finally turn back to the non-dissipative case, for which
we derive the dynamical energy equation. Introducing the per-
turbation velocity u = ∂ξ/∂t, and considering only the real part
of all variables, we rewrite (A.10) for the stable case p = 1 as

∂v�
∂t
−2Ωvϕ +

1
ρ

∂P′

∂�

+m2ω2
A ξ� − m(l�)ω2

A ξϕ + 2ω2
A

∂ξϕ

∂ϕ
= 0 (A.18)

∂vϕ

∂t
+2Ωv� +

1
ρ�

∂P′

∂ϕ
− 2ω2

A
∂ξ�

∂ϕ
= 0 (A.19)

∂vz

∂t
+

1
ρ

∂P′

∂z
+

(
N2 + m2ω2

A

)
ξz − m(n�)ω2

A ξϕ = 0. (A.20)

We multiply these equations respectively by v�, vϕ, vz and add
them up, making use of the continuity equation (A.11), to obtain

1
2
∂

∂t

[
v2� + v

2
ϕ+v

2
z

]
+

1
2

m2ω2
A
∂

∂t

[
ξ2� + ξ

2
ϕ + ξ

2
z

]
+

1
2

N2 ∂

∂t
ξ2z =

2ω2
A

[
∂ξ�

∂t

∂ξϕ

∂ϕ
− ∂ξϕ
∂t
∂ξ�

∂ϕ

]
· (A.21)
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For these stable oscillatory modes, the r.h.s. vanishes since
∂/∂t = iσ and ∂/∂ϕ = im; therefore the sum of kinetic and
potential (magnetic + buoyancy) energies is constant, as is the
rule in non-dissipative dynamical systems:

1
2
v2 +

1
2

m2ω2
Aξ

2 +
1
2

N2ξ2z = cst. (A.22)
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