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This paper considers magnitude, asymptotics and duration of drawdowns for some Lévy processes. First,
we revisit some existing results on the magnitude of drawdowns for spectrally negative Lévy processes
using an approximation approach. For any spectrally negative Lévy process whose scale functions are well-
behaved at 0+, we then study the asymptotics of drawdown quantities when the threshold of drawdown
magnitude approaches zero. We also show that such asymptotics is robust to perturbations of additional
positive compound Poisson jumps. Finally, thanks to the asymptotic results and some recent works on the
running maximum of Lévy processes, we derive the law of duration of drawdowns for a large class of Lévy
processes (with a general spectrally negative part plus a positive compound Poisson structure). The duration
of drawdowns is also known as the “Time to Recover” (TTR) the historical maximum, which is a widely
used performance measure in the fund management industry. We find that the law of duration of drawdowns
qualitatively depends on the path type of the spectrally negative component of the underlying Lévy process.
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1. Introduction

Drawdowns relate to an investor’s sustained loss from a market peak. It is one of the most fre-
quently quoted indices for downside risks in the fund management industry. Drawdown quantities
appear in performance measures such as the Calmar ratio, the Sterling ratio, the Burke ratio, and
others; see, for example, Schuhmacher and Eling [34] for a collection of such drawdown-based
performance measures. Furthermore, drawdown problems have drawn considerable theoretical
and practical interest in various research areas including probability, finance, risk management,
and statistics; see Section 1.1 for a brief literature review.

In this paper, we consider a one-dimensional Lévy process X = {Xt, t ≥ 0} defined on
(�,F,F = {Ft , t ≥ 0},P), a filtered probability space satisfying the usual conditions. The draw-
down process of X is defined as

Yt = Mt − Xt, t ≥ 0,

where Mt = sup0≤u≤t Xu is the running maximum (historical peak) of X at time t . Let

τa = inf{t ≥ 0 : Yt > a},
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be the first time the magnitude of drawdowns exceeds a pre-specified threshold a > 0. Given
that (max0≤s≤t Ys > a) = (τa < t) P-a.s., the distributional study of the maximum drawdown in
magnitude is equivalent to the study of the stopping time τa .

However, from a risk management standpoint, the magnitude itself is not sufficient to provide
a comprehensive risk evaluation of extreme drawdown risks. For instance, for extreme risks such
as tornado and flooding, it is natural to also investigate the frequency and the duration of draw-
downs. Landriault et al. [22] recently studied the frequency of drawdowns for a Brownian motion
process by defining two types of drawdown time sequences depending on whether a historical
running maximum is reset or not. In this paper, we will consider the duration of drawdowns,
also known as “Time to Recover” (TTR) the historic running maximum in the fund management
industry.

Mathematically, the duration of drawdowns of a stochastic process can be considered as the
length of excursions from its running maximum. For t ≥ 0, let Gt := sup{0 ≤ s ≤ t : Ys = 0}
be the last time the process Y is at level 0 (or equivalently X = M) before or at time t . The
drawdown duration at time t is therefore t − Gt . We then define a stopping time

ηb = inf{t ≥ b : t − Gt ≥ b}, (1.1)

that is the first time the duration of drawdowns exceeds a pre-specified time threshold b > 0.
Equivalently, the event (ηb > t) implies that the maximum duration of drawdowns before time t

is shorter than b.
The stopping time ηb is related to the so-called Parisian time, which is the first time the length

of excursions from a fixed spatial level (rather than its running maximum) exceeds a pre-specified
time threshold; see, for example, Chesney et al. [9] and Czarna and Palmowski [11]. Further,
Loeffen et al. [26] provided an unified proof to derive the probability that the Parisian time
occurs in an infinite time horizon (known as the Parisian ruin probability in actuarial science)
for spectrally negative Lévy processes. Notice that, in contrast to the Parisian time, the stopping
time ηb is almost surely finite (e.g., page 105 of Bertoin [4]), which motivates us to study the
Laplace transform (LT) of ηb in this paper. Another related concept is the so-called red period of
the insurance surplus process; see Kyprianou and Palmowski [21]. The red period corresponds
to the length of time an insurance surplus process shall take to recover its deficit at ruin. But it
is different than the distributional study of ηb , especially when X has no negative jumps (e.g.,
Brownian motion).

1.1. Literature review on drawdowns

Taylor [36] first derived the joint Laplace transform of τa and Mτa for Brownian motion pro-
cesses. Later on, it was generalized by Lehoczky [24] to time-homogeneous diffusion processes.
Douady et al. [13] and Magdon et al. [28] derived infinite series expansions for the distribution
of τa for a standard and drifted Brownian motion, respectively. For spectrally negative Lévy pro-
cesses, Mijatović and Pistorius [29] obtained a general sextuple formula for the joint Laplace
transform of τa and the last passage time at level Mτa prior to τa , together with the joint dis-
tribution of the running maximum, the running minimum, and the overshoot of Y at τa . Also,
an extensive body of literature exists on the dual of drawdowns, drawups, which measure the
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increase in value of an underlying process from its running minimum; see, for instance, Pistorius
[30], Hadjiliadis and Večeř [16], Pospisil et al. [32], and Zhang and Hadjiliadis [38,39].

In finance and risk management, researchers have devoted considerable effort in assessing,
managing, and reducing drawdown risks. For instance, Grossman and Zhou [15] examined a port-
folio selection problem subject to drawdown constraints. Cvitanic and Karatzas [10] extended
the discussion to multiple assets. Chekhlov et al. [8] proposed a new family of risk measures
and studied problems of parameter selection and portfolio optimization under the new measures.
Pospisil and Večeř [31] invented a new class of Greeks to examine the sensitivity of invest-
ment portfolios to drawdowns. Carr et al. [5] designed some European-style digital drawdown
insurance contracts and proposed semi-static hedging strategies using barrier options and vanilla
options. Other recent works on drawdown insurance are Zhang et al. [37,40], among others.

In addition, a few a priori unrelated problems in finance and insurance are also closely con-
nected to the drawdown problematic. For instance, the pricing of Russian options (e.g., Shepp and
Shiryaev [35], Asmussen et al. [1] and Avram et al. [2]), and the optimal dividend models with
“reflecting barriers” (e.g., Avram et al. [3], Kyprianou and Palmowski [21], and Loeffen [27])
are two common examples.

1.2. Objective and structure

In this article, we begin by developing an approximation technique in the spirit of Lehoczky [24]
to revisit several known LT results on the magnitude of drawdowns of spectrally negative Lévy
processes via basic fluctuation identities.

Second, as the threshold of drawdown magnitude a ↓ 0, we examine the asymptotic behavior
of those LTs for any spectrally negative Lévy process whose scale functions are well-behaved at
0+ (see Assumption 4.1 below). We also show that such asymptotics are robust with respect to
the perturbation of arbitrary positive compound Poisson jumps, and hence obtain the asymptotics
of drawdown estimates for a class of Lévy models with two-sided jumps.

Finally, we study the duration of drawdowns via the LT of ηb. First, an approximate scheme for
the LT of ηb is developed. To obtain a well-defined limit, we turn our problem to the behavior of
the density of the running maximum process M and the convergence of some potential measure
of the drawdown process Y . Thanks to the asymptotic results obtained and some recent works
on the distribution of the running maxima of Lévy processes (e.g., Chaumont [6], Chaumont and
Małecki [7], and Kwaśnicki et al. [19]), we obtain the law of ηb in terms of the right tail of
the ascending ladder time process for a class of Lévy process with two-sided jumps (a general
spectrally negative part plus a positive compound Poisson structure).

The rest of the paper is organized as follows. In Section 2, we review the scale function of
spectrally negative Lévy processes and the ascending ladder process of a general Lévy process.
In Section 3, we revisit some known LT results on the magnitude of drawdowns of spectrally
negative Lévy processes based on an approximation approach. The asymptotic behavior of these
LTs for small threshold is studied in Section 4, where we also examine the asymptotic behavior
in the presence of positive compound Poisson jumps. In Section 5, the LT of ηb is derived for
a large class of Lévy processes with two-sided jumps. Some explicit examples are presented in
Section 6. For completeness, some results on the extended continuity theorem are presented in
the Appendix.
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2. Preliminaries

In this section, we briefly introduce some preliminary results for Lévy processes. Readers are
referred to Bertoin [4] and Kyprianou [20] for a more detailed background.

For ease of notation, throughout the paper, we let R = (−∞,∞), R+ = [0,∞) and H
+ = {s ∈

C : Re(s) ≥ 0}. We denote by Px the law of a Lévy process with X0 = x ∈ R. For brevity, we
write P = P0. The minimum of real numbers u,v is denoted by u∧v = min{u,v}. For a function
f (·) on (0,∞) and x0 ∈ [0,∞], we write f (x) = o(g(x)) as x → x0 for a positive function g(·)
if limx→x0 f (x)/g(x) = 0.

2.1. Spectrally negative Lévy processes and scale functions

Consider a spectrally negative Lévy process X = {Xt, t ≥ 0}. Throughout the paper, we assume
that |X| is not a subordinator and hence 0 is regular for (0,∞) (see Definition 6.4 and Theo-
rem 6.5 of Kyprianou [20] for the definition and equivalent characterizations of the regularity).
The Laplace exponent of X is given by

ψ(s) := 1

t
logE

[
esXt

] = −μs + 1

2
σ 2s2 +

∫
(−∞,0)

(
esx − 1 − sx1{x>−1}

)
�(dx), (2.1)

for every s ∈ H
+. Here, σ ≥ 0 and the Lévy measure �(dx) is supported on (−∞,0) with∫

(−∞,0)

(
1 ∧ x2)�(dx) < ∞.

It is known that X has paths of bounded variation if and only if
∫
(−1,0)

|x|�(dx) < ∞ and σ = 0.
In this case, we can rewrite (2.1) as

ψ(s) = sd +
∫

(−∞,0)

(
esx − 1

)
�(dx), s ≥ 0, (2.2)

where the drift d := −μ+∫
(−1,0)

|x|�(dx) > 0 as |X| is not a subordinator. For any given q ≥ 0,
the equation ψ(s) = q has at least one positive solution, and we denote the largest one by �(q).

It is well known that {ecXt−ψ(c)t , t ≥ 0} is a martingale for any c ≥ 0. This gives rise to the
change of measure

dPc

dP

∣∣∣
Ft

= ecXt−ψ(c)t , t ≥ 0. (2.3)

Under the new measure Pc , X is still a spectrally negative Lévy process, and its Laplace exponent
is given by ψc(s) = ψ(s + c) − ψ(c) for all s ∈C such that s + c ∈ H

+.
For any q ≥ 0, the q-scale function W(q) : R 	→ [0,∞) is the unique function supported on

(0,∞) with Laplace transform∫
(0,∞)

e−sxW(q)(x)dx = 1

ψ(s) − q
, s > �(q).



436 D. Landriault, B. Li and H. Zhang

It is known that W(q) is continuous and increasing on (0,∞). Henceforth, we assume that the
jump measure �(dx) has no atom, then it follows that W(q) ∈ C1(0,∞) (e.g., Lemma 2.4 of
Kuznetsov et al. [18]). Moreover, if the Gaussian coefficient σ > 0 then W(q) ∈ C2(0,∞) for all
q ≥ 0 (e.g., Theorem 3.10 of Kuznetsov et al. [18]). The q-scale function W(q) is closely related
to exit problems of the spectrally negative Lévy process X with respect to first passage times of
the form

T +(−)
x = inf

{
t ≥ 0 : Xt ≥ (≤)x

}
, x ∈R.

Two well-known fluctuation identities of spectrally negative Lévy processes are given below
(e.g., Kyprianou [20], Theorem 8.1). For q ≥ 0 and 0 ≤ x ≤ a, we have

Ex

[
e−qT +

a 1{T +
a <T −

0 }
] = W(q)(x)

W(q)(a)
(2.4)

and

Ex

[
e−qT −

0 1{T −
0 <T +

a }
] = Z(q)(x) − Z(q)(a)

W(q)(x)

W(q)(a)
, (2.5)

where Z(q)(x) = 1 + q
∫ x

0 W(q)(y)dy.
The following lemma gives the behavior of scale functions at 0+ and ∞; see, for example,

Lemmas 3.1, 3.2 of Kuznetsov et al. [18]. Relation (2.6) is from (3.13) of Egami et al. [14].

Lemma 2.1. For any q ≥ 0,

W(q)(0+) =
⎧⎨⎩

0, if σ > 0 or
∫
(−1,0)

|x|�(dx) = ∞ (unbounded variation),

1

d
, otherwise (bounded variation),

W(q)′(0+) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

σ 2
, if σ > 0,

∞, if σ = 0 and �(−∞,0) = ∞,

q + �(−∞,0)

d2
, if σ = 0 and �(−∞,0) < ∞,

and

lim
x→∞

W(q)′(x)

W(q)(x)
= �(q). (2.6)

2.2. The ascending ladder process of general Lévy processes

In this subsection, we consider a general Lévy process X = {Xt, t ≥ 0} characterized by its
characteristic exponent

	(s) := −1

t
logE

[
eisXt

] = iμs + 1

2
σ 2s2 +

∫
R\{0}

(
1 − eisx + isx1{|x|<1}

)
�(dx), (2.7)
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for all s ∈R. If X has bounded variation, we can rewrite (2.7) as

	(s) = −isd +
∫
R\{0}

(
1 − eisx

)
�(dx), (2.8)

where the drift d := −μ − ∫
0<|x|<1 x�(dx).

The local time of X at its running maximum, denoted by L = {Lt , t ≥ 0}, is a continuous,
non-decreasing, R+-valued process. The inverse local time process, also known as the ascending
ladder time process, is defined as L−1 = {L−1

t , t ≥ 0} where

L−1
t :=

{
inf{s > 0 : Ls > t}, if t < L∞,

∞, otherwise.

The ladder height process H = {Ht, t ≥ 0} is defined as

Ht :=
{

X
L−1

t
, if t < L∞,

∞, otherwise.

The inverse local time L−1 corresponds to the real times at which new maxima are reached, and
the ascending ladder height process H corresponds to the set of new maxima.

The bivariate process (L−1,H) = {(L−1
t ,Ht ), t ≥ 0}, called the ascending ladder process

of X, is a two-dimensional (possibly killed) subordinator with joint Laplace transform

E
[
e−αL−1

t −βHt 1{t<L∞}
] = e−κ(α,β)t , α,β ≥ 0.

The joint Laplace exponent is given by

κ(α,β) = κ(0,0) + αdL + βdH +
∫

(0,∞)2

(
1 − e−αx−βy

)
(dx,dy), α,β ≥ 0, (2.9)

where (dL, dH ) ∈R
2+ and  is a bivariate intensity measure on (0,∞)2 satisfying∫

(0,∞)2

(
1 ∧

√
x2 + y2

)
(dx,dy) < ∞.

When L−1 and H are independent,  takes the form (dx,dy) = L(dx)δ0(dy) +
H (dy)δ0(dx) for x, y ≥ 0. In particular, if X is a spectrally negative Lévy process, one can
choose Lt = Mt , which implies that L−1

t = T +
t , Ht = XT +

t
= t on {t < L∞}, and further

κ(α,β) = �(α) + β .
By letting β = 0 in (2.9), we obtain the Laplace exponent of the ascending ladder time process,

−1

t
logE

[
e−αL−1

t 1{t<L∞}
] = κ(α,0) = κ(0,0) + αdL +

∫
(0,∞)

(
1 − e−αx

)
νL(dx), α ≥ 0,

where νL(dx) = (dx, (0,∞)) is the jump measure of L−1. It follows from integration by parts
that

κ(α,0) − κ(0,0) = α

(
dL +

∫
(0,∞)

e−αxν̄L(x)dx

)
, α ≥ 0, (2.10)
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where ν̄L(x) := νL(x,∞).
The renewal function h associated with the ladder height process H is defined as

h(x) :=
∫

(0,∞)

P{Ht ≤ x}dt, x ≥ 0. (2.11)

When X is a spectrally negative Lévy process, it is easily seen that h(x) = ∫
(0,x)

e−�(0)t dt for
x ≥ 0. We recall the follow results (see Theorem 5 in Chapter III and Theorem 19 in Chapter VI
of Bertoin [4]) on the connection between the renewal function and the creeping property. Here
we say X creeps across x if it enters (x,∞) continuously.

Lemma 2.2. The following assertions are equivalent.

(i) P{X creeps across x} > 0 for some x > 0.
(ii) The drift coefficient dH > 0.

(iii) The renewal function h is absolute continuous and h′ is bounded.

Moreover, when these assertions hold, there is a version h′ that is continuous and positive on
(0,∞). Finally, limx↓0 h′(x) = 1

dH
> 0 and P{X creeps across x} = dH h′(x) for all x > 0.

3. Magnitude of drawdowns revisited

In this section, we revisit some known results of the magnitude of drawdowns of spectrally
negative Lévy processes via fluctuation identities and an approximation approach introduced by
Lehoczky [24]. Such approach is in the spirit of the general Itô’s excursion theory.

Lemma 3.1. For q ≥ 0 and x > 0, we have

E
[
e−qT +

x 1{Mτa ≥x}
] = exp

{
−W(q)′(a)

W(q)(a)
x

}
. (3.1)

Proof. For fixed x > 0 and n ∈ N, let {sn,i , i = 0, . . . , n} be a sequence of increasing partitions
of the interval [0, x] with 0 = sn,0 < sn,1 < · · · < sn,n = x and such that �n = max1≤i≤n(sn,i −
sn,i−1) decreases to 0 as n → ∞. Using the strong Markov property of X, we propose to approx-
imate the event (Mτa ≥ x) by

⋂n
m=1(T

+
sn,i

< T −
sn,i−1−a|X0 = sn,i−1), and thus use

En :=
n∏

i=1

E
[
e
−qT +

sn,i 1{T +
sn,i

<T −
sn,i−1−a}|X0 = sn,i−1

]
,

as an approximation of E[e−qT +
x 1{Mτa ≥x}]. By (2.4), we have

En =
n∏

i=1

W(q)(a)

W(q)(a + sn,i − sn,i−1)
= exp

{
n∑

i=1

ln

{
1 − W(q)(a + sn,i − sn,i−1) − W(q)(a)

W(q)(a + sn,i − sn,i−1)

}}
.
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Since W(q) ∈ C1(0,∞) and is increasing on (0,∞), we have(
W(q)(a + sn,i − sn,i−1) − W(q)(a)

W(q)(a + sn,i − sn,i−1)

)2

≤
(

W(q)(a + �n) − W(q)(a)

W(q)(a)

)2

≤ K(�n)
2,

for all 1 ≤ i ≤ n and some constant K > 0. By the fact that − ln(1 − ε) = ε + o(ε) for small
ε > 0, it follows that

E
[
e−qT +

x 1{Mτa ≥x}
]

= lim
n→∞ exp

{
n∑

i=1

ln

{
1 − W(q)(a + sn,i − sn,i−1) − W(q)(a)

W(q)(a + sn,i − sn,i−1)

}}

= lim
n→∞ exp

{
−

n∑
i=1

W(q)(a + sn,i − sn,i−1) − W(q)(a)

W(q)(a + sn,i − sn,i−1)

}

= exp

{
−W(q)′(a)

W(q)(a)
x

}
,

which completes the proof. �

By letting q = 0 in (3.1), it is easy to see that Mτa follows an exponential distribution with
mean W(a)/W ′(a). Then it follows from (3.1) that, for q ≥ 0 and x ≥ 0,

E
[
e−qT +

x |Mτa = x
] = exp

{
−

(
W(q)′(a)

W(q)(a)
− W ′(a)

W(a)

)
x

}
. (3.2)

Next, we consider the following lemma which relates to downward exiting.

Lemma 3.2. For q, s ≥ 0, we have

Ea

[
e
−qT −

0 −s(a−X
T

−
0

)|T −
0 < T +

a

] = W(a)

W ′(a)

Z
(p)
s (a)W

(p)′
s (a) − pW

(p)
s (a)2

W
(p)
s (a)

, (3.3)

where p = q − ψ(s), W
(p)
s and Z

(p)
s are p-scale functions under Ps .

Proof. We first consider that s ≤ �(q), or equivalently, q ≥ ψ(s). For 0 ≤ x ≤ y, since T −
0 ∧T +

y

is a.s. finite, by change of measure (2.3) and (2.5),

Ex

[
e
−qT −

0 −s(x−X
T

−
0

)
1{T −

0 <T +
y }

] = E
s
x

[
e−pT −

0 1{T −
0 <T +

y }
]

(3.4)

= Z
(p)
s (x) − Z

(p)
s (y)

W
(p)
s (x)

W
(p)
s (y)

.
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It follows from (2.4) and (3.4) that

Ea

[
e
−qT −

0 −s(a−X
T

−
0

)|T −
0 < T +

a

]
= lim

ε↓0
Ea

[
e
−qT −

0 −s(a−X
T

−
0

)|T −
0 < T +

a+ε

]
(3.5)

= lim
ε↓0

(
Z

(p)
s (a) − Z

(p)
s (a + ε)

W
(p)
s (a)

W
(p)
s (a + ε)

)
W(a + ε)

W(a + ε) − W(a)

= W(a)

W ′(a)

Z
(p)
s (a)W

(p)′
s (a) − pW

(p)
s (a)2

W
(p)
s (a)

.

The other side of the approximation limε↓0 Ea−ε[e−qT −
0 −s(a−X

T
−
0

)|T −
0 < T +

a ] also results
in (3.5). The proof is then completed through an analytical extension of (3.3) to s ≥ 0. �

To obtain the main result of this section, we notice that a sample path of X until τa can be
splitted into two parts: the rising part and the subsequent crashing part. Because of the regularity
of 0 for (0,∞), we know that the last passage time (Gτa |Mτa = x) = (T +

x |Mτa = x), P-a.s.
(see also discussions on page 158 of Kyprianou [20]). Our analysis essentially follows this idea:
relations (3.2) and (3.3) correspond to the rising and the crashing part, respectively. The following
quadruple LT is obtained by pasting these two parts at the turning point Gτa .

Theorem 3.1. For q, r, s, δ ≥ 0, we have

E
[
e−qτa−rGτa −sYτa −δMτa

] = W(q+r)(a)

δW(q+r)(a) + W(q+r)′(a)

Z
(p)
s (a)W

(p)′
s (a) − pW

(p)
s (a)2

W
(p)
s (a)

, (3.6)

where p = q − ψ(s).

Proof. By conditioning on the event (Mτa = x) for x > 0, we have τa = Gτa + T −
x−a ◦ θGτa

and
T −

x−a ◦ θGτa
< T +

x ◦ θGτa
, P-a.s. where θ is the Markov shift operator defined as Xt ◦ θs = Xt+s .

Therefore, by (3.2) and (3.3), we obtain

E
[
e−qτa−rGτa −sYτa |Mτa = x

]
= E

[
e−(q+r)Gτa −q(τa−Gτa )−sYτa |Mτa = x

]
= E

[
e−(q+r)Gτa E

[
e
−qT −

x−a◦θGτa
−s(x−X

T
−
x−a

)|T −
x−a ◦ θGτa

< T +
x ◦ θGτa

]|Mτa = x
]

(3.7)

= E
[
e−(q+r)Gτa |Mτa = x

]
Ex

[
e
−qT −

x−a−s(x−X
T

−
x−a

)|T −
x−a < T +

x

]
= exp

{
−

(
W(q+r)′(a)

W(q+r)(a)
− W ′(a)

W(a)

)
x

}
W(a)

W ′(a)

Z
(p)
s (a)W

(p)′
s (a) − pW

(p)
s (a)2

W
(p)
s (a)

.
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Multiplying (3.7) by the density of Mτa and then integrating with respect to x, we ob-
tain (3.6). �

Relation (3.6) generalizes Theorem 1 of Avram et al. [1] by incorporating the joint LT of Gτa

and Mτa . Moreover, by a similar approximation argument, one can solve for the joint distribution
of equation (3.6) but with the law of Yτa , which then recovers the sextuple law in Theorem 1 of
Mijatović and Pistorius [29] (the running minimum at τa can also be easily incorporated).

4. Asymptotics of magnitude of drawdowns

In this section, we investigate the asymptotics of the LT (3.6) of the magnitude of drawdowns
as a ↓ 0 for spectrally negative Lévy processes. Furthermore, we show that such asymptotics are
robust with respect to the perturbation by positive compound Poisson jumps.

4.1. Spectrally negative Lévy processes

Henceforth, we make the following assumption on the behavior of the scale function at 0+.

Assumption 4.1.

lim
x↓0

xW ′(x) = 0.

In fact, since xW ′(x) ≥ 0 for all x > 0, as long as W ′ is well-behaved at 0+ in the sense that

lim
x↓0

xW ′(x) = c for some c ∈ [0,∞],

one deduces from the integrability of W ′ at 0+ that c = 0.

Remark 4.1. From Lemma 2.1, it is clear that Assumption 4.1 holds if the Gaussian component
σ > 0 or �(−∞,0) < ∞. Moreover, the spectrally negative α-stable process with index α ∈
(1,2), whose Laplace exponent ψ(s) = sα and scale function

W(x) = 1{x≥0}
xα−1

�(α)
,

also satisfies Assumption 4.1.

Since scale functions are only known in a few cases, we examine sufficient conditions on the
Laplace exponent to identify cases when Assumption 4.1 holds.

Remark 4.2. For a general spectrally negative Lévy process with Laplace exponent ψ ,
by Lemma 2.1, one can choose an arbitrary s0 > �(0) and define a function g(x) :=
1{x>0}e−s0xxW ′(x), which is non-negative and continuous on R \ {0}. By Lemma 3.3 of
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Kuznetsov [18] and (2.6), we further know that g(x) ∈ L1(R). By integration by parts and
analytical continuation, one obtains that∫

R

eisxg(x)dx = ϕ(s0 − is), s ∈R,

where ϕ(s) := sψ ′(s)−ψ(s)

ψ(s)2 for Re(s) ≥ 0. By the Fourier inversion and the dominated con-
vergence theorem, we know that a sufficient condition for Assumption 4.1 to hold is that
ϕ(s0 − i·) ∈ L1(R) as it implies that g(·) is continuous over R.

Lemma 4.1. Under Assumption 4.1, we have limx↓0 xW(q)′(x) = 0 for every q ≥ 0.

Proof. Since the scale function W is supported on (0,∞), for any k ≥ 1, we have

d

dx
W ∗(k+1)(x) =

∫
(0,x)

W ′(x − y)W ∗k(y)dy + W(0+)W ∗k(x)

≤ xk−1

(k − 1)!W
k(x)

(∫
(0,x)

W ′(x − y)dy + W(0+)

)
(4.1)

= xk−1

(k − 1)!W
k+1(x),

where the inequality above is due to equation (8.23) of Kyprianou [20] and the monotonic-
ity of W . By (4.1) and taking derivatives term by term to the well-known identity W(q)(x) =∑∞

k=0 qkW ∗(k+1)(x), where W ∗k is the kth convolution of W with itself, we obtain

xW(q)′(x) = xW ′(x) + x

∞∑
k=1

qk d

dx
W ∗(k+1)(x)

≤ xW ′(x) + qxW 2(x)

∞∑
k=1

(qxW(x))k−1

(k − 1)!
= xW ′(x) + qxW 2(x)eqxW(x).

This ends the proof as the right-hand side of the last equation approaches 0 as x ↓ 0 by Assump-
tion 4.1. �

Lemma 4.1 is paramount to derive the following asymptotic results.

Theorem 4.1. Consider a spectrally negative Lévy process X satisfying Assumption 4.1. For any
q, s ≥ 0, we have

lim
ε↓0

W(q)′(ε)
W(q)(ε)

(
1 −E

[
e−qτε−sYτε

]) =
{

s, if X has unbounded variation,

s + q − ψ(s)

d
, if X has bounded variation.
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Proof. Using (3.6), one deduces that

W(q)′(ε)
W(q)(ε)

(
1 −E

[
e−qτε−sYτε

])
= s − (

q − ψ(s)
)W(q)′(ε)
W(q)(ε)

∫
(0,ε)

e−sxW(q)(x)dx (4.2)

+ s
(
q − ψ(s)

)∫
(0,ε)

e−sxW(q)(x)dx + (
q − ψ(s)

)
e−sεW(q)(ε).

From the monotonicity of W(q)(·), we have

0 ≤ W(q)′(ε)
W(q)(ε)

∫
(0,ε)

e−sxW(q)(x)dx ≤ W(q)′(ε)
W(q)(ε)

εW(q)(ε) = εW(q)′(ε).

It follows from (4.2) and Lemma 4.1 that

lim
ε↓0

W(q)′(ε)
W(q)(ε)

(
1 −E

[
e−qτε−sYτε

]) = s + (
q − ψ(s)

)
W(q)(0+),

which ends the proof by Lemma 2.1. �

4.2. A class of Lévy models with two-sided jumps

Next, we consider a class of Lévy process with two-sided jumps of the form

Xt = X̃t + S+
t , (4.3)

where X̃ a spectrally negative Lévy process satisfying Assumption 4.1, and S+ is a compound
Poisson process with arrival rate λ+ = �(0,∞) ∈ (0,∞) and i.i.d. positive jump size with dis-
tribution function F+. The two processes X̃ and S+ are assumed to be independent. Since we
assume that |X̃| is not a subordinator and is regular for (0,∞), it is clear that the same holds
for X.

The characteristic exponent of X is given by

	(s) = 	̃(s) + λ+
∫ ∞

0

(
1 − eisx

)
F+(dx), s ∈ R, (4.4)

where 	̃(·) is the characteristic exponent of X̃. Henceforth, we add the symbol ˜ to all quantities
when they relate to the spectrally negative Lévy component X̃ only.

By conditioning on the first positive jump arrival time and the jump size, we have the following
representation of the joint Laplace transform of (τε, Yτε ).
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Lemma 4.2. For q, s ≥ 0 and ε > 0, we have

E
[
e−qτε−sYτε

] =
E[e−(q+λ+)τ̃ε−sỸτ̃ε ] +E[e−qτε−sYτε 1{τε>ξ+

1 ,J+
1 <Y

ξ
+
1 −}]

1 − (λ+/(q + λ+))(1 −E[e−(q+λ+)τ̃ε ]) +E[e−qξ+
1 1{τ̃ε>ξ+

1 ,J+
1 <Ỹ

ξ
+
1 −}]

, (4.5)

where ξ+
1 and J+

1 are the time and size of the first upward jump of X, respectively.

Proof. Recall that ξ+
1 is exponentially distributed with mean 1/λ+. By the strong Markov prop-

erty of X and the fact that (τε < ξ+
1 ) = (τ̃ε < ξ+

1 ) a.s.,

E
[
e−qτε−sYτε

]
= E

[
e−qτε−sYτε 1{τε<ξ+

1 }
] +E

[
e−qτε−sYτε 1{τε>ξ+

1 }
]

= E
[
e−qτ̃ε−sỸτ̃ε 1{τ̃ε<ξ+

1 }
] +E

[
e−qτε−sYτε 1{τε>ξ+

1 ,J+
1 ≥Y

ξ
+
1 −}

]
+E

[
e−qτε−sYτε 1{τε>ξ+

1 ,J+
1 <Y

ξ
+
1 −}

]
= E

[
e−(q+λ+)τ̃ε−sỸτ̃ε

] +E
[
e−qξ+

1 1{τ̃ε>ξ+
1 ,J+

1 ≥Ỹ
ξ
+
1 −}

]
E

[
e−qτε−sYτε

]
+E

[
e−qτε−sYτε 1{τε>ξ+

1 ,J+
1 <Y

ξ
+
1 −}

]
.

Solving for E[e−qτε−sYτε ], one obtains

E
[
e−qτε−sYτε

] =
E[e−(q+λ+)τ̃ε−sỸτ̃ε ] +E[e−qτε−sYτε 1{τε>ξ+

1 ,J+
1 <Y

ξ
+
1 −}]

1 −E[e−qξ+
1 1{τ̃ε>ξ+

1 ,J+
1 ≥Ỹ

ξ
+
1 −}]

. (4.6)

For the denominator on the right-hand side of (4.6), we notice that

E
[
e−qξ+

1 1{τ̃ε>ξ+
1 ,J+

1 ≥Ỹ
ξ
+
1 −}

]
= E

[
e−qξ+

1
] −E

[
e−qξ+

1 1{τ̃ε<ξ+
1 }

] −E
[
e−qξ+

1 1{τ̃ε>ξ+
1 ,J+

1 <Ỹ
ξ
+
1 −}

]
(4.7)

= λ+

q + λ+
(
1 −E

[
e−(q+λ+)τ̃ε

]) −E
[
e−qξ+

1 1{τ̃ε>ξ+
1 ,J+

1 <Ỹ
ξ
+
1 −}

]
.

The proof of (4.5) is completed by substituting (4.7) to (4.6). �

We present an analogue of Theorem 4.1 for the Lévy process (4.3) with two-sided jumps.
Note that by (4.4), the drift of the characteristic exponent d of X̃ and X are the same when X̃

has bounded variation.
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Theorem 4.2. Consider the Lévy model (4.3). For q, s ≥ 0, we have

lim
ε↓0

W(q+λ+)′(ε)
W(q+λ+)(ε)

(
1 −E

[
e−qτε−sYτε

]) =
⎧⎨⎩

s, if X̃ has unbounded variation,

s + q − ψ̃(s)

d
, if X̃ has bounded variation.

Proof. Since X̃ and S+ are independent and (τε < ξ+
1 ) = (τ̃ε < ξ+

1 ) a.s., we have

P
{
τε > ξ+

1 , J+
1 < Yξ+

1 −
} = P

{
τ̃ε > ξ+

1 , J+
1 < Ỹξ+

1 −
}

≤ P
{
τ̃ε > ξ+

1 , J+
1 < ε

}
(4.8)

= (
1 −E

[
e−λ+ τ̃ε

])
P
{
J+

1 < ε
}

≤ (
1 −E

[
e−(q+λ+)τ̃ε

])
F+(ε).

It follows from Theorem 4.1 that

W(q+λ+)′(ε)
W(q+λ+)(ε)

P
{
τε > ξ+

1 , J+
1 < Yξ+

1 −
}

(4.9)

≤ W(q+λ+)′(ε)
W(q+λ+)(ε)

(
1 −E

[
e−(q+λ+)τ̃ε

])
F+(ε) = o(1),

for small ε > 0. By (4.5), (4.8) and (4.9), one obtains that

W(q+λ+)′(ε)
W(q+λ+)(ε)

(
1 −E

[
e−qτε−sYτε

])
(4.10)

=
W(q+λ+)′(ε)
W(q+λ+)(ε)

(1 −E[e−(q+λ+)τ̃ε−sỸτ̃ε ] − λ+
q+λ+ (1 −E[e−(q+λ+)τ̃ε ])) + o(1)

1 − λ+
q+λ+ (1 −E[e−(q+λ+)τ̃ε ]) + o(1)

.

We first consider X̃ has unbounded variation. From Lemma 2.1, we deduce that W(q+λ+)′(ε)
W(q+λ+)(ε)

→
∞ as ε ↓ 0. By Theorem 4.1, this further implies that

1 −E
[
e−(q+λ+)τ̃ε

] = o(1). (4.11)

One concludes from (4.8) and (4.11) that the denominator on the right-hand side of (4.10) ap-
proaches 1 as ε ↓ 0. Moreover, by Theorem 4.1,

lim
ε↓0

W(q+λ+)′(ε)
W(q+λ+)(ε)

(
1 −E

[
e−qτε−sYτε

]) = lim
ε↓0

W(q+λ+)′(ε)
W(q+λ+)(ε)

(
1 −E

[
e−(q+λ+)τ̃ε−sỸτ̃ε

]) = s.

When X̃ has bounded variation but the Lévy measure �(−∞,0) = ∞, note that (4.11) still
holds by Lemma 2.1. Hence, it follows from (4.8) that the denominator on the right-hand side of
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(4.10) also approaches 1 as ε ↓ 0. Furthermore, by Theorem 4.1, we obtain

lim
ε↓0

W(q+λ+)′(ε)
W(q+λ+)(ε)

(
1 −E

[
e−qτε−sYτε

]) = s + q + λ+ − ψ̃(s)

d
− λ+

q + λ+
q + λ+

d
= s + q − ψ̃(s)

d
.

Finally, when X̃ has bounded variation and �(−∞,0) < ∞, by Lemma 2.1 and Theorem 4.1,

lim
ε↓0

(
1 −E

[
e−qτ̃ε−sỸτ̃ε

]) = q + sd − ψ̃(s)

q + �(−∞,0)
. (4.12)

Then, by (4.10), (4.8) and Theorem 4.1, it is straightforward to verify that

lim
ε↓0

W(q+λ+)′(ε)
W(q+λ+)(ε)

(
1 −E

[
e−qτε−sYτε

]) = s + q − ψ̃(s)

d
,

which completes the proof. �

5. Duration of drawdowns

In this section, we examine the duration of drawdowns via the LT of the stopping time ηb defined
in (1.1) for the Lévy model with two-sided jumps (4.3).

To do so, we use the perturbation approach which has been developed by many researchers in
similar contexts (e.g., Dassios and Wu [12], Landriault et al. [23], Li and Zhou [25], Loeffen et
al. [26], and Zhang [37]). To present the main idea, let ε > 0 and define the following sequence
of stopping times:

τ 1
ε = τε, ϑ1

0 = τ 1
ε + T +

M
τ1
ε

◦ θτ 1
ε
, . . . , τ i

ε = ϑi
0 + τε ◦ θϑi

0
, ϑi

0 = τ i
ε + T +

M
τi
ε

◦ θτ i
ε
,

for i ∈ N where we recall θ stands for the Markov shift operator. An approximation of ηb is given
by

ηε
b = inf

{
t ∈ (τ i

ε , ϑ
i
0] : t − τ i

ε ≥ b for some i ∈N
}
,

for which only excursions of Y with height over ε are considered. By construction, it is clear that
ηε

b is monotonically decreasing as ε ↓ 0, and ηb = limε↓0 ηε
b , P-a.s.

For fixed q > 0, we consider an independent exponential rv eq with mean 1/q . By the strong
Markov property of X,

P
{
eq > ηε

b

} = P
{
eq > ηε

b,ϑ
1
0 > τ 1

ε + b
} + P

{
eq > ηε

b,ϑ
1
0 < τ 1

ε + b
}

= P
{
eq ∧ ϑ1

0 > τ 1
ε + b

} + P
{
ϑ1

0 < eq ∧ (
τ 1
ε + b

)}
P
{
eq > ηε

b

}
,

which yields

P
{
eq > ηε

b

} = P{eq ∧ ϑ1
0 > τ 1

ε + b}
1 − P{ϑ1

0 < eq ∧ (τ 1
ε + b)} . (5.1)



On magnitude, asymptotics and duration of drawdowns for Lévy models 447

By conditioning on Yτ 1
ε

and then using the strong Markov property of X at time τ 1
ε , we find

P
{
ϑ1

0 < eq ∧ (
τ 1
ε + b

)} =
∫

[ε,∞)

E
[
e−qτε 1{Yτε ∈dy}

]
P
{
T +

y < eq ∧ b
}

(5.2)

= E
[
e−qτε

] −
∫

[ε,∞)

E
[
e−qτε 1{Yτε ∈dy}

]
P
{
T +

y > eq ∧ b
}

and

P
{
eq ∧ ϑ1

0 > τ 1
ε + b

} =
∫

[ε,∞)

E
[
e−qτε 1{Yτε ∈dy}

]
P
{
eq ∧ T +

y > b
}

(5.3)

= e−qb

∫
[ε,∞)

E
[
e−qτε 1{Yτε ∈dy}

]
P
{
T +

y > b
}
.

Substituting (5.2) and (5.3) into (5.1), we obtain

E
[
e−qηε

b
] = P

{
eq > ηε

b

} = e−qb
∫
[ε,∞)

E[e−qτε 1{Yτε ∈dy}]P{T +
y > b}

1 −E[e−qτε ] + ∫
[ε,∞)

E[e−qτε 1{Yτε ∈dy}]P{T +
y > eq ∧ b} . (5.4)

From the representation (5.4), it seems relevant to define, for x > 0 and p ≥ 0, a bounded auxil-
iary function

f (p)
ε (t) :=

∫
[ε,∞)

E
[
e−qτε 1{Yτε ∈dy}

]
P
{
T +

y > ep ∧ t
}

(5.5)

=
∫

[ε,∞)

E
[
e−qτε 1{Yτε ∈dy}

]
P{Mep∧t ≤ y},

where the dependence of (5.5) on q is silently assumed. Hence, we rewrite (5.4) as

E
[
e−qηε

b
] = e−qbf

(0)
ε (b)

1 −E[e−qτε ] + f
(q)
ε (b)

. (5.6)

To obtain a well-defined asymptotics for f
(p)
ε (b) as ε ↓ 0, the key is to investigate the con-

vergence of the measure E[e−qτε 1{Yτε ∈dy}] as ε ↓ 0, which is closely related to the asymptotic
results of Section 4. As we will see below, the convergence of the measure differs according to
whether the Lévy process has bounded or unbounded variation.

5.1. Bounded variation case

We first show that the distribution function of the running maximum of X is well-behaved.

Proposition 5.1. Let X be a Lévy process of bounded variation with a drift d > 0 in its char-
acteristic exponent representation (2.8). Then, for any fixed p ≥ 0 and t > 0, the function
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P{Mep∧t ≤ y}/y is bounded for y ∈ (0,∞). Moreover, if we further assume that �(−∞,0) = ∞
and � has no atoms on (−∞,0), the function P{Mep∧t ≤ y}/y is also continuous for every
y ∈ (0,∞).

Proof. For any fixed p ≥ 0 and t > 0, we denote by

F
(p)
t (y) := P{Mep∧t ≤ y}/y.

We first consider the case p = 0. Using the upper bound in equation (4.16) of Chaumont and
Małecki [7] (which holds for a general Lévy process), we know that

F
(0)
t (y) ≤ e

e − 1
κ

(
1

t
,0

)
h(y)

y
, (5.7)

where we recall h(·) is the renewal function defined in (2.11). Since X has bounded variation and
d > 0, we deduce that X creeps upwards by Theorem 7.11 of Kyprianou [20]. From Lemma 2.2
we know that h(y)/y converges to a finite limit as y ↓ 0. Therefore, we conclude from (5.7) that
F

(0)
t (y) is bounded for y ∈ (0,∞).
Next, we consider the case p > 0. By Wiener–Hopf factorization, it is well known that M̃ep

follows an exponential distribution with mean 1/�̃(p) > 0. Moreover, since Mt ≥ M̃t a.s. for
any t ≥ 0, one obtains that

F
(p)
t (y) =

∫
(0,t)

pe−ps P{Ms ≤ y}
y

ds + e−pt P{Mt ≤ y}
y

≤
∫

(0,∞)

pe−ps P{M̃s ≤ y}
y

ds + e−ptF
(0)
t (y)

= 1 − e−�̃(p)y

y
+ e−ptF

(0)
t (y).

By the boundedness of F
(0)
t (·), we deduce that F

(p)
t (y) is also bounded for y ∈ (0,∞).

Finally, suppose that we also have �(−∞,0) = ∞ and � has no atoms on (−∞,0). For any
fixed t > 0, by Theorem 27.7 of Sato [33], we know that the law of X̃t is absolute continuous
with respect to the Lebesgue measure, so is the law of Xt from the property of convolutions. In
addition, by Theorem 6.5 of Kyprianou [20], we know X is regular for (0,∞) as X has bounded
variation and d > 0. Therefore, from Theorem 1 of Chaumont [6], we conclude the law of Mt is
absolute continuous with respect to the Lebesgue measure. As a consequence, P{Mep∧t ≤ y}/y
is continuous for every y ∈ (0,∞). �

Remark 5.1. For the Lévy model (4.3) with X̃ has bounded variation and �(−∞,0) = ∞, it
follows that P{Mep∧t ≤ y}/y is bounded and continuous for y ∈ (0,∞) due to our assumptions

that |X̃| is not a subordinator, X̃ is regular for (0,∞), and � has no atom on (−∞,0).

We are now ready to present the main result of this subsection.
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Theorem 5.1. Consider the Lévy model (4.3). If X̃ has bounded variation and satisfies Assump-
tion 4.1, for any q > 0, we have

E
[
e−qηb

] = e−qb

∫
(0,∞)

P{Mb ≤ y}�(−dy)

q + ∫
(0,∞)

P{Meq∧b ≤ y}�(−dy)
.

Proof. We first consider the case �(−∞,0) = ∞. From (5.5) with p ≥ 0, we have

W(q+λ+)′(ε)
W(q+λ+)(ε)

f (p)
ε (b)

= W(q+λ+)′(ε)
W(q+λ+)(ε)

∫
[ε,∞)

E
[
e−qτε 1{Yτε ∈dy}

]
P{Mep∧b ≤ y}

(5.8)

=
∫

(0,∞)

P{Mep∧b ≤ y}
1 − e−y

· W(q+λ+)′(ε)
W(q+λ+)(ε)

1{y≥ε}
(
1 − e−y

)
E

[
e−qτε 1{Yτε ∈dy}

]
=

∫
(0,∞)

P{Mep∧b ≤ y}
1 − e−y

με(dy),

where με(dy) is a finite measure on (0,∞) defined as

με(dy) = W(q+λ+)′(ε)
W(q+λ+)(ε)

1{y≥ε}
(
1 − e−y

)
E

[
e−qτε 1{Yτε ∈dy}

]
. (5.9)

By Theorem 4.2, we have

lim
ε↓0

∫
(0,∞)

e−syμε(dy) = lim
ε↓0

W(q+λ+)′(ε)
W(q+λ+)(ε)

(
E

[
e−qτε−sYτε

] −E
[
e−qτε−(s+1)Yτε

])
= 1 + ψ̃(s) − ψ̃(s + 1)

d
,

for all s ≥ 0. On the other hand, we notice from (2.2) that∫
(0,∞)

e−sy 1 − e−y

d
�(−dy)

= 1

d

∫
(−∞,0)

(
esy − 1

)
�(dy) − 1

d

∫
(−∞,0)

(
e(s+1)y − 1

)
�(dy)

= 1 + ψ̃(s) − ψ̃(s + 1)

d
.

Hence, by Proposition A.1, one concludes that, as ε ↓ 0, με(dy) weakly converges to the measure
d−1(1 − e−y)�(−dy), which is a finite measure on (0,∞) because X̃ has bounded variation.
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From Proposition 5.1 and Remark 5.1, we know the function P{Mep∧b ≤ y}/(1 − e−y) is
bounded and continuous for y ∈ (0,∞). By the definition of weak convergence, it follows from
(5.8) that

lim
ε↓0

W(q+λ+)′(ε)
W(q+λ+)(ε)

f (p)
ε (b) = lim

ε↓0

∫
(0,∞)

P{Mep∧b ≤ y}
1 − e−y

με(dy)

=
∫

(0,∞)

P{Mep∧b ≤ y}
1 − e−y

1

d

(
1 − e−y

)
�(−dy) (5.10)

= 1

d

∫
(0,∞)

P{Mep∧b ≤ y}�(−dy).

Therefore, by (5.6), (5.10) and Theorem 4.2, we have

E
[
e−qηb

] =
e−qb limε↓0

W(q+λ+)′(ε)
W(q+λ+)(ε)

f
(0)
ε (b)

limε↓0
W(q+λ+)′(ε)
W(q+λ+)(ε)

(1 −E[e−qτε ]) + limε↓0
W(q+λ+)′(ε)
W(q+λ+)(ε)

f
(q)
ε (b)

= e−qb
∫
(0,∞)

P{Mb ≤ y}�(−dy)

q + ∫
(0,∞)

P{Meq∧b ≤ y}�(−dy)
.

Finally, we consider the case that �(−∞,0) < ∞. By (4.12), for any s ≥ 0, we have

lim
ε↓0

∫
(0,∞)

e−sy
E

[
e−qτε 1{Yτε ∈dy}

] = ψ̃(s) − sd + �(−∞,0)

q + �(−∞,0)
=

∫
(0,∞)

e−sy �(−dy)

q + �(−∞,0)
.

By Proposition A.1, we see that the measure E[e−qτε 1{Yτε ∈dy}] weakly converges to the measure
�(−dy)/(q + �(−∞,0)) as ε ↓ 0. Since P{Mep∧b ≤ y} is bounded and upper semi-continuous
in y ∈ (0,∞), it follows from Portemanteau theorem of weak convergence that

lim sup
ε↓0

f (p)
ε (b) = lim sup

ε↓0

∫
(0,∞)

P{Mep∧b ≤ y}E[
e−qτε 1{Yτε ∈dy}

]
(5.11)

≤ 1

q + �(−∞,0)

∫
(0,∞)

P{Mep∧b ≤ y}�(−dy).

On the other hand, since P{Mep∧b < y} is lower semi-continuous in y ∈ (0,∞). By Portemanteau
theorem again, we have

lim inf
ε↓0

f (p)
ε (b) ≥ lim inf

ε↓0

∫
(0,∞)

P{Mep∧b < y}E[
e−qτε 1{Yτε ∈dy}

]
≥ 1

q + �(−∞,0)

∫
(0,∞)

P{Mep∧b < y}�(−dy) (5.12)

= 1

q + �(−∞,0)

∫
(0,∞)

P{Mep∧b ≤ y}�(−dy),
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where the last equality holds because � has no atom on (−∞,0) and P{Mep∧b < y} =
P{Mep∧b ≤ y} for almost all y > 0. By letting ε ↓ 0 in each term of (5.6) and using (5.11),
(5.12) and (4.12), this completes the proof of Theorem 5.1. �

5.2. Unbounded variation case

We now consider the unbounded variation case for which the following assumption on the density
of Xt is made.

Assumption 5.1. If X has unbounded variation, we assume that the density of Xt , namely pX
t (x),

is bounded for all t > 0.

Remark 5.2. We point out that Assumption 5.1 is identical to assumption (H1) in Chaumont
and Małecki [7], which is equivalent to the assumption that the characteristic function e−t	(·) ∈
L2(R), for all t > 0. It is also clear that, if X is a spectrally negative Lévy process with unbounded
variation and Y is an arbitrary Lévy process independent of X, then the sum X + Y satisfies
Assumption 5.1 as long as X does. Hence, examples of Levy processes satisfying Assumption 5.1
include processes with σ > 0, or σ = 0 and with a spectrally negative α-stable jump distribution
with α ∈ (1,2).

The following proposition shows that, for a Lévy process with unbounded variation satisfying
Assumption 5.1, the density of the running maximum at 0+ is well-behaved.

Proposition 5.2. Let X be a Lévy process with unbounded variation that creeps upwards and
satisfies Assumption 5.1. Then the running maximum Mt has a continuous density pM

t (·) for
every t > 0 and further,

lim
x↓0

pM
t (x) = ν̄L(t) + κ(0,0)

dH

> 0,

where ν̄L(·) is the tail of the jump measure of the ascending ladder time process (see (2.10)).

Proof. From Lemma 2.2, we know that the renewal density h′ can be chosen to be a continu-
ous function with well-defined limit h′(0) = 1

dH
> 0. Since X has unbounded variation, assump-

tion (H2) of Chaumont and Małecki [7] also holds. By Proposition 2 and Theorem 1 of Chaumont
and Małecki [7], we know that Mt has a continuous density pM

t (x) for every t > 0, and also,

lim
x↓0

pM
t (x)

h′(x)
= dH lim

x↓0
pM

t (x) = n(ζ > t),

where n(ζ > t) is the excursion measure of excursions with length over t > 0. From (6.11) and
(6.14) of Kyprianou [20] (see also Section IV.4 of Bertoin [4]), we know that

n(ζ > t) = ν̄L(t) + κ(0,0) > 0,

which completes the proof. �
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Corollary 5.1. Under the conditions of Proposition 5.2, for any fixed p ≥ 0 and t > 0, the
function P{Mep∧t ≤ y}/y is bounded and continuous for y ∈ [0,∞), where its value at y = 0 is
defined as the right limit

lim
y↓0

P{Mep∧t ≤ y}
y

= 1

dH

(∫
(0,t)

pe−ps ν̄L(s)ds + e−pt ν̄L(t) + κ(0,0)

)
.

Proof. From Proposition 5.2, it is only left to justify the limit of P{Mep∧t ≤ y}/y as y ↓ 0. By
dominated convergence theorem and Proposition 5.2 again, we have

lim
y↓0

P{Mep∧t ≤ y}
y

=
∫ t

0
pe−ps lim

y↓0

P{Ms ≤ y}
y

ds + e−pt lim
y↓0

P{Mt ≤ y}
y

=
∫ t

0
pe−ps lim

y↓0
pM

s (y)ds + e−pt lim
y↓0

pM
t (y)

= 1

dH

(∫
(0,t)

pe−ps ν̄L(s)ds + e−pt ν̄L(t) + κ(0,0)

)
,

which ends the proof. �

Now we are ready to present the main result of this subsection.

Theorem 5.2. Consider the Lévy model (4.3). If X̃ has unbounded variation and satisfies As-
sumptions 4.1 and 5.1, for any q > 0, we have

E
[
e−qηb

] = e−qb ν̄L(b) + κ(0,0)∫
(0,b)

qe−qt ν̄L(t)dt + e−qbν̄L(b) + κ(0,0)
.

Proof. It is clear that the Lévy model (4.3) creeps upward as its spectrally negative component
X̃ does and its upward jumps follow a compound Poisson structure. Moreover, since X̃ satisfies
Assumption 5.1, by Remark 5.2, we see that all the conditions of Proposition 5.2 are satisfied.

For the finite measure με(dy) defined in (5.9), it is straightforward to verify from Theorem 4.2
that, for any s ≥ 0,

lim
ε↓0

∫
R+

e−syμε(dy) = lim
ε↓0

W(q+λ′)′(ε)
W(q+λ+)(ε)

(
E

[
e−qτε−sYτε

] −E
[
e−qτε−(s+1)Yτε

])
= 1 =

∫
R+

e−syδ0(dy).

It follows from Proposition A.1 that με(dy) weakly converges to the Dirac measure δ0(dy) as
ε ↓ 0. Moreover, by Corollary 5.1, we know that the function P{Mep∧t ≤ y}/(1 − e−y) is also
bounded and continuous for y ∈ [0,∞), where its value at y = 0 is defined by the limit as y ↓ 0.
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From (5.8) and Corollary 5.1, we have

lim
ε↓0

W(q+λ+)′(ε)
W(q+λ+)(ε)

f (p)
ε (b) = lim

ε↓0

∫
R+

P{Mep∧b ≤ y}
1 − e−y

με(dy)

= lim
y↓0

P{Mep∧b ≤ y}
1 − e−y

(5.13)

= 1

dH

(∫
(0,b)

pe−pt ν̄L(t)dt + e−pbν̄L(b) + κ(0,0)

)
.

It follows from (5.6), (5.13) and Theorem 4.2 that

E
[
e−qηb

] = e−qb
limε↓0

W(q+λ+)′(ε)
W(q+λ+)(ε)

f
(0)
ε (b)

limε↓0
W(q+λ+)′(ε)
W(q+λ+)(ε)

(1 −E[e−qτε ] + f
(q)
ε (b))

= e−qb ν̄L(b) + κ(0,0)∫
(0,b)

qe−qt ν̄L(t)dt + e−qbν̄L(b) + κ(0,0)
,

which ends the proof. �

In general, the function ν̄L and κ(0,0) are only implicitly known via (2.10) and Wiener–Hopf
factorization. When X has no positive jumps, we can express E[e−qηb ] explicitly in terms of pX

t .

Corollary 5.2. Let X be a spectrally negative Lévy process with unbounded variation and satis-
fies Assumptions 4.1 and 5.1. For any q > 0, we have

E
[
e−qηb

] = e−qb

∫
(b,∞)

1
s
pX

s (0)ds∫
(0,b)

qe−qt
∫
(t,∞)

1
s
pX

s (0)ds dt + e−qb
∫
(b,∞)

1
s
pX

s (0)ds
.

Proof. By Kendall’s identity, for any fixed t, y > 0, we have

1

y
P{Mt ≤ y} = 1

y

∫
(t,∞)

P
{
T +

y ∈ ds
} =

∫
(t,∞)

1

s
pX

s (y)ds.

It follows from Fourier inversion that, for any y ∈R and s > 0,

0 ≤ 1

s
pX

s (y) ≤ 1

2πs

∫
R

∣∣e−s	(u)
∣∣du.

From the proof of Proposition 5 of Chaumont and Małecki [7], we know that for any fixed t > 0,

1

2π

∫
(t,∞)

1

s

∫
R

∣∣e−s	(u)
∣∣duds < ∞.
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By the dominated convergence theorem and Corollary 5.1, we have

ν̄L(t) + κ(0,0)

dH

= lim
y↓0

P{Mt ≤ y}
y

=
∫

(t,∞)

1

s
pX

s (0)ds,

which completes the proof by using Theorem 5.2. �

6. Examples

Example 6.1. Consider a Brownian motion, i.e. Xt = μt +σWt with σ > 0. For any fixed t > 0,
we have

pX
t (x) = 1

σ
√

2πt
exp

{
− (x − μt)2

2σ 2t

}
.

By Remarks 4.1, 5.2 and Corollary 5.2, we have

E
[
e−qηb

] = e−qbg(b)∫
(0,b)

qe−qtg(t)dt + e−qbg(b)
,

where g(t) := ∫
(t,∞)

1
s
pX

s (0)ds = 2
σ
√

2πt
e−μ2t/(2σ 2) − 2μ

σ
N(−μ

√
t

σ
) and N(·) is the cumulative

distribution function of a standard normal rv.

Example 6.2. Consider a spectrally negative α-stable process with Laplace exponent ψ(s) = sα

with α ∈ (1,2). For fixed t > 0, it is well known (e.g., pages 87–88 of Sato [33]) that

pX
t (x) = 1

π
t−1/α

∞∑
n=1

(−1)n−1 �(1 + n/α)

n! sin

(
nπ

α

)(
t−1/αx

)n−1
,

where �(·) is the Gamma function. It follows that∫
(t,∞)

1

s
pX

s (0)ds = α

π
�

(
1

α

)
sin

(
π

α

)
t−1/α.

By Remarks 4.1, 5.2 and Corollary 5.2, we have

E
[
e−qηb

] = 1

eqbb1/α
∫
(0,b)

qe−qt t−1/α dt + 1
.

Example 6.3. Consider a spectrally negative Gamma process with Laplace exponent

ψ(s) = sd +
∫

(−∞,0)

(
esx − 1

)
β|x|−1eαx dx = sd − β log(1 + s/α), s ∈H

+,
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where α,β > 0 are constants. From Remark 4.2, we define

ϕ(s) := sψ ′(s) − ψ(s)

ψ(s)2
= β log(1 + s/α) − βs/(s + α)

(sd − β log(1 + s/α))2
.

One can easily verify that, for any fixed s0 > �(0), we have ϕ(s0 + i·) ∈ L1(R) which implies
Assumption 4.1 holds. Using Kendall’s identity and

pX
t (x) = αβs

�(βt)
(sd − y)βs−1e−α(sd−y)1{y<sd}, x ∈ R, t > 0,

we have

P
{
T +

y > t
} = y

∫
(t,∞)

1

s

αβs

�(βs)
1{y<sd}(sd − y)βs−1e−α(sd−y) ds, y > 0 and t > 0.

Hence, by Fubini’s theorem followed by some calculations, we can show that∫
(0,∞)

P{Mt ≤ y}�(−dy)

=
∫

(0,∞)

P
{
T +

y > t
}
�(−dy)

=
∫

(0,∞)

y

∫
(t,∞)

1

s

αβs

�(βs)
1{y<sd}(sd − y)βs−1e−α(sd−y) ds β

e−αy

y
dy

= (dα)βs

∫
(t,∞)

1

�(βs)
sβs−2e−αsd ds.

Using Theorem 5.1, one concludes

E
[
e−qηb

] = e−qb(dα)βs
∫
(b,∞)

sβs−2e−αsd

�(βs)
ds

q + (dα)βs
∫
(0,b)

qe−qt dt
∫
(t,∞)

sβs−2e−αsd

�(βs)
ds + e−qb(dα)βs

∫
(b,∞)

sβs−2e−αsd

�(βs)
ds

.

Example 6.4. Consider Kou’s jump-diffusion model given by

Xt = μt + σWt +
N+

t∑
i=1

J+
i −

N−
t∑

j=1

J−
j ,

where μ ∈ R, σ > 0, N± are two independent Poisson processes with arrival rates λ± > 0 and
J± are a sequence of i.i.d. exponentially distributed random variables with mean 1/η± > 0. Its
Laplace exponent is given by

ψ(s) = σ 2

2
s2 + μs + λ−

(
η−

η− + s
− 1

)
+ λ+

(
η+

η+ − s
− 1

)
, s ∈ (−η−, η+)

.
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According to Corollary 1 of Asmussen et al. [1] and Section 6.5.4 of Kyprianou [20], it is known
that the Laplace exponent of the ascending ladder height is given by

κ(α,β) = (β + ρ1,α)(β + ρ2,α)

(β + η+)
, α,β ≥ 0,

where ρ1,α and ρ2,α (with ρ1,α < η+ < ρ2,α) are the two distinct nonnegative solutions of
ψ(s) = α. By Remarks 4.1, 5.2 and Theorem 5.2, one obtains

E
[
e−qηb

] = e−qb
ν̄L(b) + ρ1,0ρ2,0

η+∫
(0,b)

qe−qt ν̄L(t)dt + e−qbν̄L(b) + ρ1,0ρ2,0
η+

.

Appendix

The following result is from Theorem 5.22 of Kallenberg [17].

Theorem A.1 (Extended continuity theorem). Let μ1,μ2, . . . be probability measures on R
d

with characteristic functions μ̂n(t) → ϕ(t) pointwisely for every t ∈ Rd , where the limit ϕ is
continuous at 0. Then μn converges weakly to μ for some probability measure μ in R

d with
μ̂ = ϕ. A corresponding statement holds for the Laplace transforms of measures on R

d+.

Proposition A.1. Let {μn}n∈N be finite measures on [0,∞) with Laplace transforms

μ̂n(s) =
∫
R+

e−syμn(dy),

for n ∈ N and s ≥ 0. Suppose that limn→∞ μ̂n(s) = ϕ(s) for all s ≥ 0, where ϕ(·) is a positive
and continuous function on [0,∞). Then μn weakly converges to μ as n → ∞, for some finite
measure μ on [0,∞), and μ̂ = ϕ.

Proof. Since limn→∞ μ̂n(0) = ϕ(0) > 0, we can consider a sequence of probability measures
νn(dy) := μn(dy)μ̂n(0)−1. By our assumptions, it is easy to see

lim
n→∞ ν̂n(s) = ϕ(s)ϕ(0)−1,

which is a continuous function at 0. By Theorem A.1, one concludes that {νn}n∈N weakly con-
verges to some probability measure v on [0,∞) with v̂(·) = ϕ(·)ϕ(0)−1. Therefore, by letting
μ(·) := v(·)ϕ(0), we can see that μn weakly converges to μ as n → ∞ and μ̂ = ϕ. �
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