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The purpose of this note is to show that a close relationship exists

between the notions of majorization, factorization, and range inclu-

sion for operators on a Hilbert space. Although fragments of these

results are to be found scattered throughout the literature (usually

buried in proofs), it does not seem to have been noticed how nicely

they fit together to yield our theorems. We will also make an attempt

at extending our result to the case of unbounded operators in the

hope that it might be useful in establishing existence theorems for

linear partial differential equations.

The author wishes to acknowledge that he discovered these rela-

tions in the study of an unpublished manuscript of deBranges and

Rovnyak. Also, we acknowledge our indebtedness to P. Halmos for

several conversations on this subject and note, in particular, that it

was he who first noticed the equivalence of (1) and (3) in Theorem 1.

The Hilbert space considered can be either real or complex. We use

[l ] as our basic reference and use the definitions and notation therein

with the following exception. For an operator A on the Hilbert space

§ we will denote the range and null space of A by range [A] and

null [.4], respectively.

Theorem 1. Let A and B be ibounded) operators on the Hilbert space

§. The following statements are equivalent:

(1) range [A]Erange [B];

(2) AA*^\2BB* for some \^0; and

(3) there exists a bounded operator C on § so that A=BC.

Moreover, if (1), (2) and (3) are valid, then there exists a unique oper-

ator C so that

(a) \\C\\2 = ini{p\AA*^pBB*};
(b) null [4]= null [C}\ and
(c) range [C] Crange [-B*]-.

Proof. If A=BC, then

AA* = BCC*B* = ||C||IBA* - A(||c||2/ - CC*)B* ^ ||c||2AA*,

so that (3) implies (2). Further, it is clear that (3) implies (1).

If we suppose that range [^4] Crange [B], then we can define an

operator & on § as follows: for fE&, we have AfErange  [.4]
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Crange [B], so that there exists /j£null [75 ]x for which Bh = Af. Set

Cif = h. Then A =BCi and it remains only to prove that G is bounded.

Since Ci is defined on all of §, to do this it suffices to show that Ci

has a closed graph.

If {[/„, hn] }%_i is a sequence of elements each in the graph of Ci so

that limBM.M [/„, &„]=[/, /?], then lim,,^ Afn = Af and lim^^, 75/z„

= 75&. Thus, Af = Bh and further, because null [B] is closed, it follows

that &£null [73 ]x so that Cif=h. Hence Ci has been shown to be

bounded and (1) implies (3).

Lastly, suppose AA*^\2BB* for some X^O. Define a mapping D

from range [B*] to range [4*] so that P(75*f) =^*/. Then T> is well

defined since

\\D(B*f)\\2 = \\A*f\\2 = 044*/,/) = \2(BB*f,f) = A2||75*/||'.

Hence, 7> can be uniquely extended to range [75*]_, and if we define

D on range [75*]x to be 0, then 7>75*=.4*. If we set C2 = D*, then

A=BC2 so that (2) implies (3). Thus, (1), (2) and (3) have been

shown to be equivalent.

Further consideration of the proofs of (2) implies (3) and of (3)

implies (2) show us that (a) holds for the C2 constructed in the pre-

ceding paragraph. Moreover, (b) holds for this C2 because

null [C] = range [7>]X = range [A*]X = null [A]

and finally (c) holds, because

range [B*]1' C null [D] = range [C2]X

which implies range [C2] Crange [73*]-. Lastly, we show that if E is

an operator on § for which A =BE and range [E] Crange [73*]-, then

E = C2. If A=BE, then E*B* = A* = C2*73* so that E*f=C2 for

/Crange [7?*]-. If/£range [75* J-1, then/£range [£]± = null [£*] so

that E*f = 0 = C*/. Thus, E = C2 and the proof is complete.

We now state a version of Theorem 1 for unbounded operators.

This result is less definitive than the preceding and it seems quite

reasonable that additional assumptions about A and B would yield

more information about C. In particular, it would be of interest to

know what additional assumption in addition to range [.4 ] Crange [75 ]

is necessary to conclude that C is bounded.

Theorem 2. Let A and B be closed densely defined operators on §.

(1) IfAA*^BB*,1 then there exists a contraction C so that A EBC.

1 The statement AA*<BB* is assumed to mean that Dbb*EDaa* and (orfEDss*

we have (AA*f, f) < (BB*f,/).
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(2) If C is an operator so that A EBC, then range [A ] Crange [B].

(3) 1/range [A ] Crange [B], then there exists a densely defined oper-

ator C so that A=BC and a number M^O so that \\Cf\\2 ̂  M {\\f\\2

+ IM/I!2} for /G-Dc- Moreover, if A is bounded, then C is bounded,
and if B is bounded, then C is closed.

Proof. (1) We define the operator C* as before by setting C*B*f

= A*f for fEDBB*. Then C* is a contraction because

\\C*B*f\\2 = \\A*f\\2 = iAA*f,f) g iBB*f,f) = ||A*/||2.

If we extend C* to range [B*]~ and define it to be zero on range

[P*]1, then C*P* C-4* so that A EBC.
(2) If .4C-BC, then range [A] Crange [B].

(3) If range [A] Crange [B], then we proceed as in the proof of

Theorem 1 after making the observation that the null space of a

closed operator is closed. Thus C is defined on Da so that A = PC and

the closed graph theorem can be applied to C considered as an oper-

ator the graph of A to $£>. From this it follows that there exists M ^0

so that ||C/||2^M(||/||2 + m/||2) ior f ED a- If A is bounded, then C
is bounded and can be extended to all ^). If B is bounded and the

sequence { [/„, Cfn]}n-i converges to [/, g], then the sequence

\[fn, BCfn]}n=i converges to [f, Bg]. But BCfn = Afn so that

{ [fn, Afn] }^i converges to [f, Bg]. But A is closed so that Bg = Af or

Cf = g and we see that C is closed.

Added in proof. We remark that two easy generalizations of the

results of this paper are possible. Firstly, if we consider operators A

and B with domains equal to the Hilbert spaces §i and §2, respec-

tively, but having common range $, then we need only modify the

statement of Theorem 1 so that the operator C is now defined from

§i to §2 to obtain parallel results for this case. The proof is exactly

the same.

Secondly, the equivalence of statements (1) and (3) of Theorem 1

persists if A and B are operators between Banach spaces. Similarly,

the last statement of Theorem 3 is valid for closed operators between

Banach spaces. Again the proofs are the same.
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