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Abstract

Previous researclindicateshatpacletreorceringis nota
rareeventon somelnternd paths. Reordringcancause
perfamanceprobdems for TCP’s fastretrarsmissional-
gorithm, which usesthe arrival of duplicate ackrowl-
edgnentsto detectsegmen loss. Duplicate ackrowl-
edgnentscanbe causedby the loss of a sggmen or by
the reorcering of seggmeris by the network. In this pa-
perwe illustratetheimpad of reorceringon TCP perfor-
mance. In addition we shaw the performane of a con-
senative appoachto “undd’ the corgestioncontiol state
changs madein conjunction with spuriais retranss-
sions.Finally, we propseseveralalternatvesto dynami-
cally make thefastretransmissioalgorithm moretoleran
of thereoreringobseredin thenetwork andassesshese
algorithms.

1 Intr oduction

Previous researclindicateshatpacletreorceringis nota
rareeventover somelntemetpaths.A network paththat
persistentlyreorcers segmerts will degrade the perfor-
manceof traffic utilizing TCR the Intemet’s mostwidely
usedtranspot pratocol [MCOQ]. [BPS99 shawvsthatsey-
ment reoidering over the MAE-East excharge is not a
rare event and eliminatingreoderingis a difficult prab-
lem. [Pax97 repots on the reoderingobseredin TCP
transferson a meshof 35 measuementhosts. This study
shaws that 0.1%—20% of all sgments(dataand ACK)
expetiencereordeing in the network. In addition, the
prevalenceof reordeing varied acrossdifferent network
paths(for instancel5% of the segmeris transmittedby
oneparticdar hostwerereodered)

TCP recevers geneate cumulative acknowledgments
that indicate the highest in-order piece of datathat has
arrived [Pos8]. For exampge, assumethat three seg-
mentsaretransmittedinto the network, S1—S3, andthat
the secondtwo sggmerts are reodered. When seggmen
S arrives, therecever will transmitanacknaviedgmen
(ACK) for S;. Thenext segmentto arriveis Sz, whichis

out of order However, the TCP recever ACKs only the
lastin-ordersggmentreceived— S, in ourexamge. When
sgment S, arrives thelastin-order pieceof datathathas
beenrecevedbecones Sz, andtherefoe the ACK trans-
mittedwill containSs.

TCPusegwo basicmechaismsto detectseggmentoss.
First, if an ACK for a given segmert is not receved in
a certainamoun of time the retransmission timer ex-
pires andthe presuned lost datasegmentis retrarsmit-
ted[Pos81. Alternatively, TCP canusethe fastretrans-
mit algorithm [Jac88 APS99]. Fastretransmitusesdui-
cate ACKs (a cumulatve ackrowledgment for the same
segment asthe last ACK receved) to infer thata partic-
ular datasggment was drogped by the network. In an
attemp to disambigiate dudicate ACKs causedby loss
from thosecausedoy reorcering events,the fastretrans-
mit algorithmcalls for the TCP sendetto wait until three
dugicate ACKs have arrived befare retrarsmitting a seg-
mert.

Reoraering hasa negative effect on TCP perfomance
for severalreasos:

¢ A network thatreodersdatasegmentssuchthat3 or
more duplicge ACKs are triggeredat the recever
will causethe TCP senderto usefastretrarsmit to
resench datasegmert thatwasnot lost, hencewast-
ing bandwidh.

e TCP assumeshat lossis an indication of network
corgestion[Jac88§, andso a senderperceving re-
orderingaslosswill alsoincorrectly reducethe data
transmissiorrate when sendinga spuriais retrans-
mission. In this pape we address this prodem by
exanining anunberof algorithns thatvarythenum:
berof dugdicate ACKs requredto triggerthefastre-
transmitalgorithm (andhenceadjustthe congestio
cortrol state)basedntheobseredreordering.

e Segment reodering causesinterryptions to TCP’s
ACK clock[Jac88§, therely causingts transmission
to be more bursty TCP’s standardcongestion con-
trol algorithms [APS99 do not allow TCP to send
segmentsin resposeto duplicateACKs befae fast



retransmitis triggered. By not sendingsegmentsin

respose to theseduplicateACKs, TCP effectively
storespermissionto sendnew data. Therefore,if an
ACK covering new dataarrivesbeforefastretrans-
mit is triggered then the burst of datasenton this
ACK will be larger thanif reorcering had not oc-
curred This prodem maybemitigatedby the useof

thelimited transmit algorithm[ABF01], which calls
for the TCP senderto transmitnew datasegmeris
uponthearrival of thefirst two duplicateACKs. An-

othermethodthatmayreducethe sizeof thesebursts
is usingamax-burst parametegrasoutlinedin [FF96].

Thismethodplacesanupperbourd onthenumker of

segmerts a TCP sendeicantransmitin responséo a
singleincoming ackrowledgnent.

To mitigatethe prablem of burstinessve extendthe
limited transmitalgorithm[ABF01] to allow the TCP
senderto transmitnew datasegmentsupa receip

of dudicate ACKs before deternining thataretrans-
mit is necessaryThis extersionis especiallyimpor-

tant after we introdwce algoiithms that increasethe
numter of duplicateACKs required to trigger fast
retransmit. Furtherdiscussiorof our extensias to

theLimited Transmitalgoiithm is givenin § 6.1.

Reordeing of acknavledgmers can also cause
bursty TCP behaior. ACKSs that corvey no new

information are discardedby the TCP senderand
therefae cannot be usedto clock out new dataseg-

ments.However, thenext ACK thatarrivesandcon-
veys new ackrowledgnentinformation will trigger
a largerthandesiralte burst of datasegments to be
transmitted (This pheromena is discussedh more
detailin § 6.1.)

Sgymeri reoderingcanalsoprohbit TCPfrom sam-
pling the rourd-trip time (RTT) asfrequently asin
an ordeed stream. The RTT is sampledand aver-
agedto calculatethe retransmissiortimeout (RTO)
usedby TCPto achieve reliabledelivery, asoutlined
in [PAOQ]. RTT timing hastraditionally taken the
form of startinga timer befae a given sggmen, S,
is transmittedand then stoppirg the timer whenan
ACK covering segmert S arrives. Reordeing can
falselyinflate the RTT estimatewhen no unneces-
saryretrarsmissionsare sent,which canpotentially
hurt perfamancein that TCP would have to wait
longerbefae sendingalegitimateretransmissionin
the casewhena segmentis retrarsmittedneedessly
becausef reorcering, the correspading RTT sam-
ple mustbe marked as invalid [KP87]. For exam-
ple, if sgmentS is senttwice thenthe RTT sam-
pleis ambigwusin thatthesendercannever besure
whetherthe ACK is in responseo the first or sec-
ond transmissiorof seggmert S. The exceptin to

this rule is the casewhenthe TCP conrectionis us-
ing thetimestampoption[JBB92] (however, theuse
of timestampsn the Intemet appearsto be limited
[AllO0]).

Tradtional RTO timershave beenbasedon course-
graired clocks (e.g.,500 ms). In addtion, [AP99]
shavsthatlarge minimun RTOsarerequiredto pro-
tectagairst spuriots retrarsmissions.[PA0Q] speci-
fiesthatthe minimum RTO shouldbe 1 second.We
believe thatwith suchalowerbourd onthe RTO the
slighttiming prablemsintroducedby reorceringwill
have only smalleffeds onthe RTO estimate.Thele-
fore this prodem is not further studiedin this paper
althowgh an investigaion of this effect in real net-
works is anareafor futurework.

The investigationpreseted in this pape usesthe in-
formationprovidedby therecentlystandadizedduplicate
selective acknowledgment (DSACK) option [FMMPO(]
to make TCP more robustin the faceof reorcering. We
preseh simulation resultsusing variows techniqes for
chamging the way TCP sendersiecideto retransmitdata
segments. This paperis intencedto be a preliminary in-
vestigdion on thesealgorithms and further testing over
real networks is encouagedto determire the efficacy of
the variouls mechanismsntroducedin this pager in the
faceof more realisticreoderingpatterns.

Theremainetr of this pape is organizedasfollows. § 2
outlinesthe simulationernvironmentwe usedin our inves-
tigation, including an outline of the change we madeto
thens simulator § 3 discussesariows methalsthatallow
a TCPsendetto detectspuriaisretransnssions.§ 4 pro-
vides a brief illustration of the problemnetwork reorde-
ing causedor TCP conrections. § 5 exaninesa simple
schemeo usethe DSACK optionto improve TCP perfa-
marcein thefaceof pacletreordeing. § 6 discussesev-
eral methals for making TCP’s retrarsmissiondecisions
more adaptie, therebre makng TCP morerobustto net-
work reorcering. Our resultsaregivenin § 7. Finally, our
corclusionsandan outline of future work in this areais
givenin § 8.

2 Simulation Environment

We usedns-2.1b7-snapshot-20000816 asthebasisfor our
investigation.We addeda numter of new featureso the
simulatorand patchedseveral bugs. We usedthe sackl
vaitiant of TCPoutlinedin [FF9€ with extersionsto sup-
port DSACK for all experimentsoutlinedin this paper
Appendix A outlinesthe chargeswe madeto the sackl
TCP variant and the scorebard in orde to make both
work corredly in thefaceof reordeedsegments.
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Figurel: Simulatednetwork topdogy.

2.1 Network Topologyand Setup

Figurel illustratesthetopdogy usedin our expeiments.
The sendinghost, S, and destinationhost, D, are each
conrectedto a router via 10 Mbps networks. The two
routes, R1 and R2, are connectd to eachotherover a
5 Mbps link with a one-way delay of 50 ms. All our
simulationsuse1500byte segmentscurrerly acomnon
paclet sizeon the Internd [All00]. The senderusesthe
the sackl variart of TCP with a maximum congestion
window of 500segmentgto simulatethe useof autotured
soclet buffers[SMM98]. The TCP sendemever reactes
theadwettisedwindow in our expeiimentsindicatingthat
the characteastics of the network path are dictating the
perfamanceof the transfer The window size usedalso
guaranteesthat a single TCP flow is ableto congest the
network suchthat pacletsare droppedby the bottlereck
routes. Finally, the TCP sendemusesa clock grandarity
of 500msfor theretrarsmissiontimer. The TCPrecever
usesthe sackl TCP sink with delayed ACKs. The de-
layedACK timerisimplemeniedasaheartteattimerwith
200msgrandarity. Theroutersin ourtopolagy usemaxi-
mumquele sizesof 65 sggmentsandadrop-tail queuéng
stratey.

2.2 Reordering Router

The stockversionof ns doesnot provide a goodway to
introduce segmert reorcering for expeimentation We
implemened a comnandthat canbe usedin simulation
scriptsto swaptwo sggmentsin aroute’squeueatagiven
time. As outlinedin thefollowing sectionswe variedthe
numterof randan queueswapsandthefrequeng thatwe
forcedreodering Thedisadwartageof our methal of in-
trodwcing reorceringis thata queuemusthave formed for
thereordeing to happenHowever, thisis consistentvith
thefinding in [BPS99 thatshawvs a relatiorship between
reorcering and congestion. Our topolog/ hasbeenengi-
neeredsuchthata persistentjuete is formedby our TCP
traffic, sothatreoderinghapgnsaswe expect.

We arenot familiarwith agoad modelof reorceringas
it hapgensin real networks, however we believe that fu-
ture researchshouldattemptto createsucha modelfor

usein future simulation studies. Our apprach is de-
signedto createreorceringeventsin two dimersions. In-
formally, thesetwo notionsare: () how oftenreordering
takesplace,and(i:) how mary pacletsareinvolved in the
reoderingevert. We believe thatthis methal of introduc-
ing reorceringinto our traffic is sufficientto explore TCP
betavior whenfacedwith arangeof reordeing behaior.

2.3 Traffic Pattern

All of the experimentsin this pager are condictedusing
a singlebulk TCP transfer While not a particdarly re-
alistic traffic pattern,sucha transferallows us to gaug
theideal perfomanceof the algoithmswe investigatan
a cortrolled manner Clearly additional expelimentsin-
volving thesealgorithms in real networks with morere-
alistictraffic patternsandreordeing patterrs is necessary
befae widespreadiseof thesealgorithns is suggsted.
Additionally, the lack of comgetingtraffic in our simula-
tionscausesll reorceringto beappliedto oneconrection.
This is likely theworst-casescenario Reorderiig events
would not be asharnful to TCP sendersf thereordered
segmentswereall from differentcomections.
Notethatwe do not considershorttransfes in this pa-
per While mostof the connetions on the Interret are
shot-lived flows [TMW97], we do not expectthe algo-
rithms discussedn this paperto be usefulto shortdata
transfes, asshorttransfersdo not have time to increase
theircongestiowindow before terminatirg. Mechanisms
thatexamire pastreorderingevertsin anattemptto make
TCP more robust agairst future events are therefoe not
likely to have a large impact on short transfes. How-
ever, an areaof future work may be to gaug the ability
andthe efficagy of sharingreordeing informationacress
TCP conrections(similar to the sharingcorgestioncon-
trol state asproposedin theliterature[Tou97, BRS99]).

3 Detecting Spurious Retransmits

Thefirst key item requiredto mitigate the impactof re-
ordering on TCP perfomanceis the ability for the TCP
sendetto detectspuriaus retransmission Several meth-
odsfor determiiing whenTCPhassentaneedlessetrans-
missionhave beenproposedasfollows:

1. ThekEifel algorithm[LK0O] useshe TCPtimestamp
option [JBB92] or two bits from the TCP resered
field to disambigiateanoriginal transmissiorirom a
retrarsmission.Eifel is robustto up to a congestia
window’s worth of lostackrowledgnents.Whenus-
ing the resered bits, the algorithmrequres negati-
ationof Eifel duiing theinitial three-vay handshke
usedto initiate every TCP conrection.



2. The DSACK option [FMMPOQ] allows a TCP re-
ceiverto repat to thesendemary dudicate sgmeris
that arrive. Using DSACK information and a his-
tory of which sgmentshave beenretransmittedthe
sendercandetermire whenaretransmissiors likely
spuriots. A single DSACK natificatin is sentin
one acknavledgmen for eachduplicate data seg-
mentthat arrives. BecauseDSACKs are only sent
once,DSACK is notrobustto ACK loss. Thatis, if
anACK containirg DSACK informationis dropped
or coruptedby the network, the informationabou
that particdar sggmentis lost and the senderwill
never detectthe spuriots retransmission

3. A new option could be designedthat repoted the
arrival of duplicate data segmentsin a more ro-
bustfashionthanDSACK. For instancetherecever
couldreporttheinformationin severalacknavledg-
ments, much like SACK information is currently
transmitted Suchanoptionwould increaetheprab-
ability of the TCP sendermbtainingall availablein-
formationaboutspuriousretrarsmissions.

4. [AP99 proposesa methodfor timing the ACK of
a retrarsmittedsegmert. If the ACK returrs in less
than2 - RTT,,i,, whee RTT,,;, is the minimum
RTT obsenred thusfarin theconnetion, theretrans-
missionis likely spuriaus. This methodhasbeen
shawn to be effective in deternining whethe are-
transmissiomasedntheRTO wasrequired but has
not yet beenevaluatedon retrarsmissiongriggered
by thefastretrarsmit algorithm

Therearereal-worldtradeofsin choosingamechanism
to detectneedessretransmissios, however investigating
theseradedfs is outsidethe scopeof this paper. Thegod
of this paperis to investigde apprgriatebehaior after a
spuriots retransmissiomasbeendetectedandary of the
abore mecharsmswould have workedfor the purposeof
this investigation. We therefae choseto usethe DSACK
optionbecausd is theonly alternatve thathasbeenstan-
dardizdatthetime of this study

4 The Impact of Reordering

Thissectionprovidesa simplisticevaluationof theimpad
of reorceringon bulk TCPtransfers Ourgoalin this sec-
tionis toillustratethatreorceringdoesin facthurt perfor-
mance andto provide a baselingor subseqgantsections.
Also notethattheabsoluteesultspresentedh thissection
arelessimpartantthanthe qualitative results.In different
ervironmens with a different (morerealistic)traffic mix,
we would expect differert results. The goal of this sec-
tion is to illustratethe patterncausedy variows levels of
reorcering.

Figure 2 shaws the average throughpu of a 10 minute
TCP conrection with periodc reorcering everts. Fig-
ure 2(a) illustratesthe throughpu as a function of the
nunber of randan quewe swaps perfamed roughly ev-
ery 1 or 8 secondgthe actualinterval wasrandanly de-
termired using a Poissonprocesswith a meanof 1 or
8 seconds)Figure2(b) shavs thethrowghpu impactasa
function of theaverayeintenal betweeneoderingevents
(eachconsistingof 12 randan queueswaps). Eachpoint
onbothplotsis themeanof 30 simulations.
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Figure 2: Perfeamanceof standardSACK-basedTCP
whenfacedwith pacletreodering.

As shawn in figure 2(a), the throughpu is indirectly
proportioral to the number of paclets swappedin the
queaue. Also, asthe numter of swapsgrows the through-
put stabilizes. This shaws that after a certain poirt the
reoderingnearlyalwayscauses needles$astretransmit



(andhalvingof cwnd). Oncea spuriots fastretrarsmitis
triggered,thesendingateis redu@din auniform fashion.
After this point, therdore, reoderinghaslittle additional
effect. In addtion, theseplots indicae that throughpu
drops asthefrequency of thereorceringeventsincreases.
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Figure 3: Numberof unnecssaryretrarsmissionswhen
facedwith pacletreodering

Figure3 shaws the nunberof unnecessaryetransrs-
sions sent during our simulations. Figure 3(a) showvs
the number of spuriaus retransmitsas a function of the
numter of randan queueswaps. The queueswapsare
perfamedrougHy every 1 and 8 second for compari-
son. Meanwhile, Figure 3(b) shavs the numbe of need-
lesslyretrarsmittedsegmentsasa function of theaverage
time betweenreodering events (eachof which corsists

of 12 randan queueswaps). Again, eachdatapoint rep-
resentanaverageof 30 simulations.The plotsshow that
the nunber of spuriaus retrarsmissiongncreasewith the
nunber of quele swapsperreordeing evert. This con-
firmsthereasorfor thedropin throughpu shovn in Fig-
ure 2. Additionally, Figure 3 shavs that asthe intenal
betweerreoderingevensis rediwced,the numbe of spu-
rious retransmissionsmcreaesasexpected.

5 *“Undoing” Bad Congestion Con-

tr ol Decisions

As discussedn § 3, a numker of possiblemethals for
detectig spuriais retransmissiomexist. As mentianed,
we choseto usea conserative algoithm basedon the
DSACK optionbecase DSACK is currently a standards
track mechanismwhile the othermethod arestill beirg
researchd. Furtheyr we believe thatthe resultsshovn in
this paperarelikely to be similar usingalternatemethals
for detectingspuriots retransmits.

Using the DSACK option [FMMPO(], a TCP sender
is informed aboutduplicatesegmeris that arrive at the
receiver. Duplicate segmentscan be causedby either
a spuriots retransmssion sentby the TCP senderor by
somequirk in the network thatcausegaclet replication
[Pax97] shaws that paclet replicationby the network is
exceedinglyrare. A DSACK therefae hasa high proka-
bility of reportirg a spuriaisretransmissionAs anaddi-
tional check,the TCP sendershodd ensurethatthe sey-
men repoted asarriving multiple timeswasactuallyre-
transnitted. Oncea TCP senderdetermiresthat a spu-
rious retransnssion hasoccured using the DSACK in-
formation,the effed theretransmithadon thecongestia
cortrol statecanbe corrected.

We utilize the following changs to TCP’s conges-
tion contiol state processing(as generfly outlined in
[FMMPOQ)):

e Upondetectiorof apacletloss(i.e.,corgestionndi-
cation), we save the valueof the congestionwindow
(cwnd) ascwnd,,., before redwcing the congestio
window.

e Uponthearriva of aDSACK andthe deternination
thatthe duplicatewas causedy a spuriaisretrans-
mission,the sendemotesthis until the “loss” recov-
ery eventis finished.

e Oncethe “loss” recovery event is competed, we
checkto malke surethat no real losswas detected
If all retrarsmitswerefoundto bespuriais,theslow
start threshold(ssthresh) is setto cwndpre,. This
causeghe TCP senderto useslow startto increase



cwnd to its value prior to the spuriais retransrs-
i 1
sion:

We change thens sackl mocel to perfam asdescribed
abore whenusingDSACK. In addition the SACK algo-
rithm in ns madeseverd assumptios that did not allow
for thegracefl handing of DSACK, whichrequiredser-
eralchangsto thealgorithm asoutlinedin Apperdix A.
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The above modificatiors allow a TCP senderto miti-
gatethethroughpu prodemscausedy spuriaisretrans-
missions. Figure 4 shaws the throughput obtainedby
a DSACK enabledTCP as a function of the numter of
guete swapsperformed. The plot shows thatevenunder
persistentreoidering (appoximately one event per sec-
ond) DSACK allows TCP to maintainthroughpu. The

1We have chose to modify ssthresh insteal of modifying cwnd di-

rectly to preventthe injection of a (potentially) large burstof segmens
into the network.

deceasein throudhputis roughly 1% in the worst case
shavn ontheplot.

Thecostof theadditiond perfamancds thatTCPwith
DSACK is muchmoreaggressive in comparisonto TCP
without DSACK. Figure 5 shavs the numkber of spuri-
ousretrarsmissiongerfamedwith andwithout DSACK
when reorcering is introduced at intervals of appoxi-
matelyone second. As shavn, usingDSACK increases
the number of bad retransmissios by rouchly a factor
of six. Thisis causedy DSACK TCP’s ability to keep
the congestiorwindow large whencomparedto standad
SACK TCR therebre causingit to experiencemore re-
orderingthana typical SACK TCP sendetrthat is forced
to slow down in resposeto eachmistale. Thesespu-
rious retransmissions/astenetwork resoucesandcoud
cortribute to congestion collapse [FF99. The next sec-
tion exploresa nunber of waysto mitigatethis prokdem
in DSACK while retainingthe perfamancebenefits.

6 Avoiding Mistakes

While thealgorittm in § 5 enablesTCP to effectively re-
cover from unreededcongestioncontiol adjustmets, it
is not sufficient to solve the entire reorcering prablem.
By reopeningcwnd without attemptingto preventfurther
unrecessaryetrarsmissionswe areeffectively allowing
TCP to inject potertially large amours of uselessdata
into the network (as shown in figure 5). Theseuseless
paclets could lead toward congestioncollapse. Without
DSACK, TCP s requiredto redue the sendingrateand
effectively “pays the price” for sendingunrecessarye-
transnissions.If thedisadwartageof sendingspuriots re-
transnissionis eliminated however, somenew algorithm
is requred to attemptto prevent future retransmissions
causedy reorcering.

Theidealsolutionis obviously for the sendig TCPto
know preciselyhow muchreorceringis presentn thenet-
work path at arny given time so retransmissios can be
appopriatelytriggered. However, given the charageris-
tics of IP, thisis difficult to deternine in the geneal case.
Therefore, TCP mustempiiically measureéhe amoun of
reodering percéved in the network pathand adjustthe
retrarsmissionalgaithmsaccordimgly.

The fast retransmit algorithm provides protectia
aganstreoderingeventsthatcauseslightreoderingsuch
thatthe recever doesnot generée 3 dudicate acknavl-
edgnents(e.g.,two successie pacletsbeing swappedn
thenetwork). By waiting until thearriva of the third du-
plicate ACK to trigger a retransmissiorthe TCP sender
can successfullydisambigiate loss from reorcering in
thesecases. We experimentwith compemsatingfor re-
ordering by makirg the threshdd that triggers fast re-
transnit a variable,dupthresh, andadjustingthe varialle



basedon the amoun of reorcering measuredn the net-
work path

Thisis amoredelicateprocesshanit first seemslf the
adjustedvalueis not large enowgh, TCP will continueto
sendunneessaryretrarsmissions.On the otherhand, if
the threshdd beconestoo large, fastretransmitmay not
betriggeredatall andlosswill berecoveredvia the (often
costly) RTO timer. The next several subsectionsutline
variouws algotithms for adjustingdupthresh. The point of
this pager is not necessarilyo provide a compellirg case
for oneof thesealgorithms over theothers.Thegoalis to
explore (via simulatior) theadvartagesanddisadwantages
of eachschemeWe believe thatexpelimentationoverthe
Interretis requiredbefole makinga decisiononwhich of
thesealgorithis is “the best”.

6.1 Extending the Limited Transmit Algo-
rithm

Beforewe corsiderchangng the dugdicate ACK thresh-
old requiredto triggerfastretrarsmit, we mustexterd the
Limited Transmitalgorithm [ABF01] to ensurethat the
ACK clockis preseredduring areordeing or lossevent.
Limited Trarsmit callsfor sendiry a new (previously un-
sent)segmert uponreceiptof eachof thefirst two dupli-
cateACKs in the hopes of ensuringthat even whenop-
eratingwith a smallcwnd we cangeneateenaighdupli-
cate ACKs to trigger fastretrarsmit and not rely on the
retransmnission timer.  Our version of Limited Trarsmit
addstransmissiorof new dataon every secondduplicate
ACK thatarrivesafterthefirst two. This keepsthe ACK
clock going while redicing the sendimg ratein casecon-
gestiorhasoccured(by sendingonly halfasmuchdataas
theinconing ACKs areacknavledging. This schemds
similar to therate-halvirg corgestioncontrd mechanism
[MSML99].

In addtion to keepingdataandACK pacletsin thenet-
work path so that feedbak continies this extensionre-
ducesthe potertial burstcausedy increasinghethresh-
old to enterfastretransmit(aswill be discussedelow).
For instance assumet takesthe receiptof 10 duplicate
acknavledgmets to trigger fast retransmitto properly
disambigiate loss from reoiering. Say the senderre-
ceives9 dudicate ACKs andthenanewv cumuative ACK
(i.e., therewas a reorcering event) If we wereto use
TCPwithout extendng Limited Transnit we would burst
on the order of 10 paclets into the network when the
nonduplicateACK arrives. However, with our extersion
to limited transmitthe TCP sendemwould burst roughly
5 sggmentsinto the network. The Limited Transmitex-
tensiondoesnot completelyprevert bursts, but amelio-
ratesthemto somedegree.

We also note that depewling on how well the algo-
rithmspresertedin thefollowing subsectioaactuallydis-

amhbguatereoderingandlossin real networks the com-
murity may wish to revisit this algoithm and sendnew
dataonevery dudicate ACK before fastretransmiis trig-
geral ratherthanon every seconddugdicate ACK (which
we believe to be the conserative first appoach). Trans-
mitting oneachduplicateACK wouldlik ely eliminatethe
burstirg problemalargerduplicateACK threshdd creates
in thegeneal case.

6.2 Constantincreaseof the Duplicate ACK
Threshold

The first mechaism we introduceis to simply increase
dupthresh by somevalue K evely time we detecta spu-
rious fastretrarsmit. This algoithm hasthe adventageof
beirg simpleto implement. An associatedisadartageis
thatit maytake a numbe of “mistakes” befae TCP de-
termirestheapprariatevalueof dupthresh for thecurrent
network condtions. The actualperfamanceof thealgo-
rithm depenls on the amouwnt of reordeing happgeningin
the network, the valueof K andthe value of cwnd. For
theexperimentspresentedh this paperweusedK = 1.

6.3 Increasing Threshold Basedon Length

of Reordering Event

The next algorithm attemptsto use the length of the
reodering evert as the basisfor increaing dupthresh.

The TCP sendeffirst deterninesthe nurmber of dudicate
ACKs that would have disambigiatedreordering from

loss,C. Theaverageof C anddupthresh is thenusedas
thenew valueof dupthresh, with theadditioral guaratee
thatdupthresh is incremeredby atleastl. Theadwantage
of this schemds thata TCP sendemay corvergeto the
optimal valueof dupthresh afterfewermistalesthanwhen
simply increasingdupthresh by somefixed constantas
proposedn thelastsubsectionThedisadwantageis thata

single lengthyreorceringeventmayinflate dupthresh un-

reasoably andthuscausea latertimeou, while increas-
ing by only a smallconstanbn eachmistale makessuch
pattological behaior lesslikely to causethe TCP con-
nectian to expeienceanRTO onthenext realpacletloss.

6.4 Using a Duplicate ACK Threstold and
aTimer

Additionally, we testeda metha first outlinedin [Pax97
that calls for the useof 3 duplicateACKs in additian to
a small amouwnt of time to trigger retransmits.If anac-
knowledgnentfor the segmert believed to have beenlost
arrivesbefae the timer fires, the pendng retrarsmission
is cancelled We basethe amoun of time we wait on the
amaunt of time that would have beenrequied to obtain
enaighduplicateACKs to disambigatereordeing from



lossin previously expeiiencedreorcering everts. At face
value this methal is essentiallythe sameas the mech-
anismoutlinedin the previous subsectios (gaudng the
numter of duplicateACKs we needto obsere). How-

ever, usingthe passag®f time ratherthanthe arrival of

duplicae ACKs maybemorerobustto ACK loss,aswell

asto the size of the reorcering evert. The disadwartage
of this methodis thatit requres an additiond timer for

eachTCP conrection, which is more overheadthanthe
previously discussedanethod.

6.5 Using a Running Average of the Dupli-
cate ACK Threshold

This algorithm keepsan exponentially weightedmoving

averag (EWMA) of the length of pereived reordering

everts, and adjustsdupthresh accordngly. Eachtime a

purereomeringeventof length N duplicateACKs is de-

tected the EWMA is updated,asfollows:

g = { (a-2) N+ (1—a-z)-avg othewise
1)

Where the EWMA gain, «, and the multiplicative
factor z, variedin our simulatiors. We then update
dupthresh basednthe new avg, asfollows:

a-N+(1-a)-avg if N > avg

(2)

At initialization, dupthresh andavg aresetto 3 dupli-
cateACKs.

dupthresh = |avg + 0.5]

6.6 Reducingthe Duplicate ACK Threslold

In our simulatiors, whena TCP sendersesthe RTO to
triggera retransmissionve take this asanindicatian that
thecurren estimateof theamount of reorceringin thenet-
work is invalid andresetdupthresh to 3 duplicae ACKs.
Whenthe RTO fires either () TCP’s curren estimateof
dupthresh is outdded suchthat enowgh duplicateACKs
did notarriveto trigger fastretransmibefaetheRTO ex-
pired, or (i) the amouwnt of ACK loss was sufficient to
preventthe fastretrarsmit algorithmfrom detectingloss.
In eithercasedupthresh requiesadjustmehsothat TCP
can contine to opeate effectivly. The methodwe use
(redwce dupthresh backto 3) is consevative in thatit is
no worsethan current TCP implemertations. However,
we ervision additional adjustmentechnigqesmayleadto
betteroverall perfomanceandshouldbestudiedin future
work (e.g.,reducirg dupthresh by half whenthe RTO ex-
pires).

In addition, if a TCP stackvariesits duplicae ACK
threshdd to compensategor reordering andsubseqgantly
expetiencesactualpacletlosscausingewnd to beredwced

belov dupthresh, the sendemay be unalte to geneate
enaigh duplicate ACKs to trigger a fastretrarsmit. In
order to avoid this situation, dupthresh must always be
lessthancwnd. In our simulations,we cap dupthresh at
90% of cwnd, with a maximum of cwnd — 1 segments.
While we did not vary theseconstantsin our simula-
tionswe did notnoticeary perfomancampactfrom their
chdce.

7 Results

Figure 6 shows the throughpu (nunber of data bytes
persecond)asa fundion of the nunber of quele swaps
performedapprximately every 1 secondfor the various

dupthresh compesationschemesoutlined abore. The

TCP conrectionis 10 minutes long, asin the previous

experiments. As shavn on the plot, all the compesa-
tion schemesxcep tracking dupthresh with an EWMA

(a=12z = %) improve throughput slightly over the

casewhenno dupthresh compensationis emplo/ed (de-

noted “DSACK-No mitigatiori’ on the plot). Using an

EWMA hurt perfamanceslightly when the reorcering

washeavy. All linesshavn ontheplot arewithin appiox-

imately 1% of eachother;therefae we corcludethatthe

impad ary particularcompemationschemehason per

formanceis minimal and that the perfamanceincrease
comres from the ability to revert to the previous conges-
tion control statewhena retransmissiotis determired to

bespurias.
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Figure 6: Throughpu as a function of the numter
of queue swaps for various dupthresh compensation
schemes.

Figure 7 (with they-axisplottedon a log-scale)shavs
theeffectsof thealgoithmsdescribedhbove on unreces-
sary retrarsmissions. Eachof thesealgorithns reduces
the numter of unrecessaryretransmissionsvhen com-
parel to reverting the congestionwindow without ary at-
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Figure7: Mediannumler of spuriaisretrarsmissionsas
afunction of thenumker of queueswaps.

temptto compensatdor prematue fastretransmitcaused
by thereorcering. Furthemoreall algoithms except the

algorithm usinganEWMA (againa = 1; z = %) gener

atefewerunnecessaryetransmissiosthanstockns sackl

TCP (without ary capacityfor correctingbogus changs

to the congestioncontiol state). Finally, all schemedor

adjustingdupthresh redu@ thenumbe of unrecessarye-

transmissionsvhencomparedto usingDSACK to revert

the congestioncontrol statewithout attemptingto change
dupthresh.

The plot shows that the bestalgaithm, in terms of
avoiding needlessetransnts, is thetime-delaydfastre-
transmitalgorithm. Thetime-delgedfastretransmitlgo-
rithm andthe increae-by-Nalgorithm aresimilar in that
they attemptto retransmitat the samepoint andonly dif-
ferin thetriggeringevert. Theformer algoithm usesthe
passag®f a certainamount of time, while thelatteruses
the receiptof a certainnunmber of dudicate ACKs. The
simulationresultsshowv that usinga timeou is morero-
bustthanusingthereceiptof a givennumber of duplicate
ACKs. This is explained becase ACKs can be lost or
the algorithmmay be slightly off in predcting the num-
ber of dudicate ACKs thatshouldbe usedto trigge fast
retransnt. However, usinga timeouthasthe adwartage
that theseeverts do not hinder the firing of the fastre-
transmission.

The figure also shaws that the increase-i-N algo-
rithm perfams fewer needlesgetransnssionsthanthe
increase-i-1 algoithm. The differenceshaws thatin-
creasingdupthresh by 1 duplicateACK per needlesge-
transmitprovidesa slower convergencetime thanincreas-
ing by the desiredamouwnt at onetime. Usingan EWMA
to track the appopriatedupthresh is not nearlyas effec-
tive asthe otherschemesn thesesimulatiors. Below we
considertheimplicatiors of choosingdifferert valuesfor
thea andz ontheperfamanceof the EWMA.
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Figure 8: Median deviation of unnecasaryretransmis-
sions.

Figure 8 shavs the mediandeviation of eachscheme
from its medianperformane. Unde our model of re-
ordering, thesealgaithms perfamed with varying de-
grees of consisteng in their effectivenessat preventing
unrecessaryretransmissions. The algorithns that pre-
verted moreunrecessaryastretransmitoon media also
performedlessconsistentlywith a mediandeviation ap-
proachinghalf of the mediannumter of unrecessarye-
transnissions. In addition to allowing more needess
retrarsmissions the EWMA tracking of dupthresh also
shavs wider vaiiation thanthe otherschemes.
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Figure 9: Unne@ssaryretrarsmissionsasa fundion of «
for various valuesof x.

Figure 9 illustratesthe number of spurous retransmis-
sionsasa function of « for various valuesof z. As the
figure shaws, thedifferentvaluesof a have very little im-
pacton the dupthresh estimateformed. The plot does
shaw, however, that the differerce betweenthe gain for
increasing and deceasingthe EWMA males a signifi-
cantdifferencein thenumter of spuriots retrarsmitstrig-



gered Whentherateof increaseanddecreasés thesame
(x = 1), the plot shavs over 550 needlesgetransmns-
sionsover thecourseof thesimulation Meanwhile when
increasingsixteentimes as fast as decreasig the num-
ber of unneedd retrarsmissionsdropsto roughly 275.
However, evenwhenz = 1/16 the nunber of spurios
retransnts is significantly higher than ary of the other
method we usedto adjustdupthresh, which all triggered
unde 100unneessaryetrarsmitsin our simulations.

8 Conclusionsand Future Work

The simulation results preseted in this pape suggest

method that canbe usedto effectively mitigate the per
formanceimpactreoderingimposesupa TCP. In mary
casesa TCP capableof restorimg its congestioncontrd
stateupon discovery that a spuriots retrarsmit hasoc-
curred perfams nearly as well under heary reordering
condtions asa standard’CPwithoutreorcering. Theap-
proad of simply restorirg corgestioncontol stateeach
time a spuriais retransmitis detected however, leadsto
anuncesirableincreasan the numker of unneessaryre-
transmissionsnjectedinto the network. We determired
that somemethodof preventingthe spuriousretrarsmits
apriori is desirableandshavedseveralmethod thatlook
promising for estimatinghe proper valuefor dupthresh.
Suppessionof spuriots retransmitswas found to be
effectively contiolled by modfying the conditiors under
which the fastretrarsmit algoiithm is initiated. Adjust-
mentof the duplicateacknavledgment thresholdusedto
trigger fastretrarsmit andthe insertionof a small delay
before transmittirg the “lost” pacletwerefound to be ef-
fective meansof redicing the frequency of spuriots re-
transmissionainderthe variety of reordeing corditions
studiedin theinvestigationpresentedh this paper Mean-
while, our simulationsinvolving an EWMA estimateof
theproperduplicateACK threshdd showv thatthemethod
doesnotwork nearlyaswell asthe othermethals.
Futurework in thisareaincludes:

e The simulatedresultspresentedn this pager need
verificatin in the real network. Our model of re-
ordeing, asmentioredin Section2, is simplisticand
maynotaccuratelyepresenthebehaior of physical
networks. While it is sufficient to validatethe meth-
odsoutlined hereasproof-of-conceptideas,quanti-
tative resultsregarding the absoluteefficacy of these
algorithms using this simulation model is not ad-
vised.

e Furtherarealisticmockl of reoideringbaseconem-
pirical obserationswould improve the accuacy of
future simulations.While the prevalenceof reoder
ing in thenetwork hasbeendoaumentedour presen

uncerstandig of thequalitiesof reorderingis incom
plete.

e The possibility of proactvely avoiding spuriais re-
transmitsshouldbe researchd. The algorittmsin
this pape arereactive, correctirg a spuriaisretrans-
missionthat hasalreadyoccured and taking steps
to prevent future mistakes. It would be desirable
to avoid the unrecessaryetrarsmissionin the first
place.
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