
OnMakingTCPMoreRobustto Packet Reordering

EthanBlanton
OhioUniversity

eblanton@irg.cs.ohiou.edu

Mark Allman
BBN Technologies/NASA GRC

mallman@bbn.com

January4, 2002

Abstract

Previous researchindicatesthatpacket reorderingis nota
rareeventon someInternet paths.Reorderingcancause
performanceproblems for TCP’s fast retransmissional-
gorithm, which usesthe arrival of duplicateacknowl-
edgments to detectsegment loss. Duplicate acknowl-
edgmentscanbe causedby the lossof a segment or by
the reordering of segments by the network. In this pa-
perwe illustratetheimpact of reorderingon TCPperfor-
mance. In addition, we show the performance of a con-
servative approachto “undo” thecongestioncontrol state
changes madein conjunction with spurious retransmis-
sions.Finally, we proposeseveralalternativesto dynami-
callymakethefastretransmissionalgorithm moretolerant
of thereorderingobservedin thenetwork andassessthese
algorithms.

1 Intr oduction

Previous researchindicatesthatpacket reorderingis nota
rareeventover someInternetpaths.A network paththat
persistentlyreorders segments will degrade the perfor-
manceof traffic utilizing TCP, theInternet’s mostwidely
usedtransport protocol [MC00]. [BPS99] showsthatseg-
ment reordering over the MAE-East exchange is not a
rareevent andeliminatingreorderingis a difficult prob-
lem. [Pax97] reports on the reorderingobserved in TCP
transferson a meshof 35 measurementhosts.This study
shows that 0.1%–2.0% of all segments(dataandACK)
experiencereordering in the network. In addition, the
prevalenceof reordering variedacrossdifferent network
paths(for instance15% of the segments transmittedby
oneparticular hostwerereordered).

TCP receivers generate cumulative acknowledgments
that indicatethe highest in-order pieceof datathat has
arrived [Pos81]. For example, assumethat three seg-
mentsaretransmittedinto the network,

���
–
���

, andthat
the secondtwo segments are reordered. Whensegment� �

arrives, thereceiver will transmitanacknowledgment
(ACK) for

� �
. Thenext segmentto arrive is

� �
, which is

out of order. However, the TCP receiver ACKs only the
lastin-ordersegmentreceived–

���
in ourexample. When

segment
���

arrives thelast in-orderpieceof datathathas
beenreceivedbecomes

���
, andtherefore theACK trans-

mittedwill contain
� �

.
TCPusestwo basicmechanismsto detectsegmentloss.

First, if an ACK for a given segment is not received in
a certain amount of time the retransmission timer ex-
piresand the presumed lost datasegmentis retransmit-
ted [Pos81]. Alternatively, TCP canusethe fastretrans-
mit algorithm [Jac88, APS99].Fastretransmitusesdupli-
cateACKs (a cumulative acknowledgment for the same
segment asthe last ACK received) to infer that a partic-
ular datasegment was dropped by the network. In an
attempt to disambiguateduplicate ACKs causedby loss
from thosecausedby reorderingevents,the fastretrans-
mit algorithmcalls for theTCPsenderto wait until three
duplicateACKs have arrivedbefore retransmittinga seg-
ment.

Reordering hasa negative effect on TCP performance
for severalreasons:

	 A network thatreordersdatasegmentssuchthat3 or
more duplicate ACKs are triggeredat the receiver
will causethe TCP senderto usefast retransmit to
resenda datasegment thatwasnot lost, hencewast-
ing bandwidth.

	 TCP assumesthat loss is an indicationof network
congestion[Jac88], and so a senderperceiving re-
orderingaslosswill alsoincorrectly reducethedata
transmissionrate whensendinga spurious retrans-
mission. In this paper we address this problem by
examininganumberof algorithmsthatvarythenum-
berof duplicateACKs required to triggerthefastre-
transmitalgorithm (andhenceadjustthecongestion
control state)basedon theobservedreordering.

	 Segment reordering causesinterruptions to TCP’s
ACK clock [Jac88], thereby causingits transmission
to be more bursty. TCP’s standardcongestion con-
trol algorithms [APS99] do not allow TCP to send
segments in responseto duplicateACKs before fast

retransmitis triggered. By not sendingsegmentsin
response to theseduplicateACKs, TCP effectively
storespermissionto sendnew data.Therefore,if an
ACK covering new dataarrivesbeforefast retrans-
mit is triggered then the burst of datasenton this
ACK will be larger than if reordering had not oc-
curred. Thisproblemmaybemitigatedby theuseof
the limited transmit algorithm[ABF01], which calls
for the TCP senderto transmitnew datasegments
uponthearrival of thefirst two duplicateACKs. An-
othermethodthatmayreducethesizeof thesebursts
isusingamax-burst parameter, asoutlinedin [FF96].
Thismethodplacesanupperbound onthenumberof
segments a TCPsendercantransmitin responseto a
singleincoming acknowledgment.

To mitigatetheproblemof burstinesswe extendthe
limited transmitalgorithm[ABF01] toallow theTCP
senderto transmitnew datasegmentsupon receipt
of duplicateACKsbeforedetermining thataretrans-
mit is necessary. This extensionis especiallyimpor-
tant after we introduce algorithms that increasethe
number of duplicateACKs required to trigger fast
retransmit. Furtherdiscussionof our extensions to
theLimited Transmitalgorithm is givenin
 6.1.

Reordering of acknowledgments can also cause
bursty TCP behavior. ACKs that convey no new
information are discardedby the TCP senderand
therefore cannot beusedto clock out new dataseg-
ments.However, thenext ACK thatarrivesandcon-
veys new acknowledgment information will trigger
a larger thandesirable burst of datasegments to be
transmitted.(This phenomenon is discussedin more
detailin
 6.1.)

	 Segment reorderingcanalsoprohibit TCPfrom sam-
pling the round-trip time (RTT) as frequently as in
an ordered stream. The RTT is sampledandaver-
agedto calculatethe retransmissiontimeout (RTO)
usedby TCPto achievereliabledelivery, asoutlined
in [PA00]. RTT timing hastraditionally taken the
form of startinga timer before a given segment,

�
,

is transmittedandthenstopping the timer whenan
ACK covering segment

�
arrives. Reordering can

falsely inflate the RTT estimatewhen no unneces-
saryretransmissionsaresent,which canpotentially
hurt performancein that TCP would have to wait
longerbeforesendinga legitimateretransmission.In
thecasewhena segmentis retransmittedneedlessly
becauseof reordering, thecorrespondingRTT sam-
ple must be marked as invalid [KP87]. For exam-
ple, if segment

�
is senttwice then the RTT sam-

ple is ambiguousin thatthesendercanneverbesure
whetherthe ACK is in responseto the first or sec-
ond transmissionof segment

�
. The exception to

this rule is thecasewhentheTCPconnectionis us-
ing thetimestampoption[JBB92] (however, theuse
of timestampsin the Internet appearsto be limited
[All00]).

Traditional RTO timershave beenbasedon course-
grained clocks (e.g.,500 ms). In addition, [AP99]
showsthatlargeminimum RTOsarerequiredto pro-
tectagainst spurious retransmissions.[PA00] speci-
fiesthat theminimum RTO shouldbe1 second.We
believe thatwith sucha lowerbound on theRTO the
slight timing problemsintroducedby reorderingwill
haveonly smalleffects on theRTO estimate.There-
fore this problem is not furtherstudiedin this paper,
although an investigation of this effect in real net-
works is anareafor futurework.

The investigationpresented in this paper usesthe in-
formationprovidedby therecentlystandardizedduplicate
selective acknowledgment (DSACK) option [FMMP00]
to make TCP more robust in the faceof reordering. We
present simulation resultsusing various techniques for
changing theway TCP sendersdecideto retransmitdata
segments. This paperis intended to bea preliminary in-
vestigation on thesealgorithms and further testingover
real networks is encouragedto determine the efficacy of
the various mechanismsintroducedin this paper in the
faceof more realisticreorderingpatterns.

Theremainderof thispaper is organizedasfollows.
 2
outlinesthesimulationenvironmentweusedin our inves-
tigation, includinganoutlineof thechanges we madeto
thens simulator.
 3 discussesvarious methodsthatallow
a TCPsenderto detectspuriousretransmissions.
 4 pro-
vides a brief illustrationof theproblemnetwork reorder-
ing causesfor TCP connections.
 5 examinesa simple
schemeto usetheDSACK optionto improveTCPperfor-
mancein thefaceof packet reordering.
 6 discussessev-
eralmethods for makingTCP’s retransmissiondecisions
more adaptive, thereforemaking TCPmorerobustto net-
work reordering.Our resultsaregivenin
 7. Finally, our
conclusionsandan outline of future work in this areais
given in
 8.

2 Simulation Envir onment

Weusedns-2.1b7-snapshot-20000816 asthebasisfor our
investigation.We addeda number of new featuresto the
simulatorandpatchedseveral bugs. We usedthe sack1
variant of TCPoutlinedin [FF96] with extensionsto sup-
port DSACK for all experimentsoutlined in this paper.
Appendix A outlines the changeswe madeto the sack1
TCP variant and the scoreboard in order to make both
work correctly in thefaceof reorderedsegments.

S

D

R1

R2

10 Mbps

1 ms

1 ms

10 Mbps

50 ms5 Mbps

Figure1: Simulatednetwork topology.

2.1 Network Topologyand Setup

Figure1 illustratesthetopology usedin our experiments.
The sendinghost,

�
, anddestinationhost, � , are each

connectedto a router via 10 Mbps networks. The two
routers, �� and ��� , areconnected to eachotherover a
5 Mbps link with a one-way delay of 50 ms. All our
simulationsuse1500bytesegments,currently a common
packet sizeon the Internet [All00]. The senderusesthe
the sack1 variant of TCP with a maximum congestion
window of 500segmentsto simulatetheuseof autotuned
socket buffers[SMM98]. TheTCPsendernever reaches
theadvertisedwindow in our experimentsindicatingthat
the characteristics of the network path are dictating the
performanceof the transfer. The window sizeusedalso
guaranteesthat a singleTCP flow is ableto congest the
network suchthatpacketsaredroppedby the bottleneck
routers. Finally, theTCPsenderusesa clock granularity
of 500msfor theretransmissiontimer. TheTCPreceiver
usesthe sack1 TCP sink with delayed ACKs. The de-
layedACK timeris implementedasaheartbeattimerwith
200msgranularity. Theroutersin ourtopology usemaxi-
mumqueuesizesof 65segmentsandadrop-tail queueing
strategy.

2.2 Reordering Router

The stockversionof ns doesnot provide a goodway to
introduce segment reordering for experimentation. We
implemented a commandthat canbe usedin simulation
scriptsto swaptwo segmentsin arouter’squeueatagiven
time. As outlinedin thefollowing sections,we variedthe
numberof random queueswapsandthefrequency thatwe
forcedreordering. Thedisadvantageof ourmethod of in-
troducingreorderingis thataqueuemusthaveformed for
thereordering to happen. However, this is consistentwith
thefinding in [BPS99] thatshows a relationshipbetween
reorderingandcongestion. Our topology hasbeenengi-
neeredsuchthata persistentqueue is formedby ourTCP
traffic, sothatreorderinghappensasweexpect.

We arenot familiarwith a good modelof reorderingas
it happensin real networks, however we believe that fu-
ture researchshouldattemptto createsucha model for

use in future simulation studies. Our approach is de-
signedto createreorderingevents in two dimensions.In-
formally, thesetwo notionsare: (�) how oftenreordering
takesplace,and(���) how many packetsareinvolved in the
reorderingevent. Webelievethatthismethod of introduc-
ing reorderinginto our traffic is sufficient to explore TCP
behavior whenfacedwith a rangeof reordering behavior.

2.3 Traffic Pattern

All of the experimentsin this paper areconductedusing
a singlebulk TCP transfer. While not a particularly re-
alistic traffic pattern,sucha transferallows us to gauge
theidealperformanceof thealgorithmswe investigatein
a controlled manner. Clearly additional experimentsin-
volving thesealgorithms in real networks with morere-
alistic traffic patternsandreordering patterns is necessary
before widespreaduseof thesealgorithms is suggested.
Additionally, the lack of competingtraffic in our simula-
tionscausesall reorderingtobeappliedtooneconnection.
This is likely theworst-casescenario. Reordering events
would not beasharmful to TCPsendersif thereordered
segmentswereall from differentconnections.

Notethatwe do not considershorttransfers in this pa-
per. While most of the connections on the Internet are
short-lived flows [TMW97], we do not expect the algo-
rithms discussedin this paperto be useful to shortdata
transfers, asshort transfersdo not have time to increase
theircongestionwindow beforeterminating. Mechanisms
thatexaminepastreorderingevents in anattemptto make
TCP more robust against future events aretherefore not
likely to have a large impact on short transfers. How-
ever, an areaof future work may be to gauge the ability
andtheefficacy of sharingreordering informationacross
TCP connections(similar to the sharingcongestioncon-
trol state,asproposedin theliterature[Tou97, BRS99]).

3 DetectingSpurious Retransmits

The first key item requiredto mitigatethe impactof re-
ordering on TCP performanceis the ability for the TCP
senderto detectspurious retransmissions. Several meth-
odsfor determiningwhenTCPhassentaneedlessretrans-
missionhavebeenproposed,asfollows:

1. TheEifel algorithm[LK00] usestheTCPtimestamp
option [JBB92] or two bits from the TCP reserved
field to disambiguateanoriginal transmissionfrom a
retransmission.Eifel is robust to up to a congestion
window’sworthof lostacknowledgments.Whenus-
ing the reserved bits, the algorithmrequires negoti-
ationof Eifel during theinitial three-wayhandshake
usedto initiateeveryTCPconnection.

2. The DSACK option [FMMP00] allows a TCP re-
ceiver to report to thesenderany duplicatesegments
that arrive. Using DSACK information and a his-
tory of which segmentshave beenretransmitted, the
sendercandeterminewhenaretransmissionis likely
spurious. A single DSACK notification is sent in
one acknowledgment for eachduplicatedata seg-
ment that arrives. BecauseDSACKs areonly sent
once,DSACK is not robust to ACK loss. That is, if
anACK containing DSACK informationis dropped
or corruptedby the network, the informationabout
that particular segment is lost and the senderwill
never detectthespurious retransmission.

3. A new option could be designedthat reported the
arrival of duplicate data segments in a more ro-
bustfashionthanDSACK. For instance,thereceiver
couldreportthe informationin severalacknowledg-
ments, much like SACK information is currently
transmitted.Suchanoptionwouldincreasetheprob-
ability of theTCP senderobtainingall availablein-
formationaboutspuriousretransmissions.

4. [AP99] proposesa methodfor timing the ACK of
a retransmittedsegment. If theACK returns in less
than

���� ����������� , where ����������� is the minimum
RTT observed thusfar in theconnection,theretrans-
mission is likely spurious. This methodhasbeen
shown to be effective in determining whether a re-
transmissionbasedontheRTO wasrequired, but has
not yet beenevaluatedon retransmissionstriggered
by thefastretransmit algorithm.

Therearereal-world tradeoffsin choosingamechanism
to detectneedlessretransmissions, however investigating
thesetradeoffs is outsidethescopeof thispaper. Thegoal
of this paperis to investigate appropriatebehavior after a
spurious retransmissionhasbeendetected,andany of the
abovemechanismswouldhaveworkedfor thepurposeof
this investigation.We therefore choseto usetheDSACK
optionbecauseit is theonly alternativethathasbeenstan-
dardizedat thetimeof thisstudy.

4 The Impact of Reordering

Thissectionprovidesasimplisticevaluationof theimpact
of reorderingonbulk TCPtransfers.Ourgoalin this sec-
tion is to illustratethatreorderingdoesin facthurtperfor-
mance,andto provide a baselinefor subsequentsections.
Also notethattheabsoluteresultspresentedin thissection
arelessimportantthanthequalitative results.In different
environments with a different (morerealistic)traffic mix,
we would expect different results. The goal of this sec-
tion is to illustratethepatterncausedby various levelsof
reordering.

Figure 2 shows theaverage throughput of a 10 minute
TCP connection with periodic reordering events. Fig-
ure 2(a) illustratesthe throughput as a function of the
number of random queue swapsperformed roughly ev-
ery 1 or 8 seconds(theactualinterval wasrandomly de-
termined using a Poissonprocesswith a meanof 1 or
8 seconds).Figure2(b) shows thethroughput impactasa
functionof theaverageinterval betweenreorderingevents
(eachconsistingof 12 random queueswaps).Eachpoint
onbothplotsis themeanof 30simulations.

520000

530000

540000

550000

560000

570000

580000

590000

600000

610000

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

by
te

s/
se

co
nd

)

�

Number of Queue Swaps

1 Second
8 Seconds

(a)Throughputasa functionof thenumberof random queueswaps.

210000

215000

220000

225000

230000

235000

240000

245000

250000

0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

U
ni

qu
e

pa
ck

et
s

in
 1

0
m

in
ut

es
)

Average Time Between Reordering (seconds)

(b) Throughputasa function of thefrequency of reordering.

Figure 2: Performanceof standardSACK-basedTCP
whenfacedwith packet reordering.

As shown in figure 2(a), the throughput is indirectly
proportional to the number of packets swappedin the
queue. Also, asthenumber of swapsgrows thethrough-
put stabilizes. This shows that after a certainpoint the
reorderingnearlyalwayscausesaneedlessfastretransmit

(and
!

halvingof cwnd). Oncea spurious fastretransmit is
triggered,thesendingrateis reducedin auniform fashion.
After this point, therefore, reorderinghaslittle additional
effect. In addition, theseplots indicate that throughput
drops asthefrequency of thereorderingeventsincreases.

45

50

55

60

65

70

75

80

85

0 5 10 15 20 25

U
nn

ec
es

sa
ry

 R
et

ra
ns

m
its

"

Number of Queue Swaps

1 Second
8 Seconds

(a) Unnecessaryretransmits as a function of numberof random
queueswaps.

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20

U
nn

ec
es

sa
ry

 R
et

ra
ns

m
its

"

Average Time Between Reordering (seconds)

(b) Unnecessaryretransmitsas a function of the frequency of re-
ordering.

Figure3: Numberof unnecessaryretransmissionswhen
facedwith packet reordering.

Figure3 shows thenumberof unnecessaryretransmis-
sions sent during our simulations. Figure 3(a) shows
the number of spurious retransmitsas a function of the
number of random queueswaps. The queueswapsare
performed roughly every 1 and 8 seconds for compari-
son. Meanwhile, Figure 3(b) shows thenumber of need-
lesslyretransmittedsegmentsasa function of theaverage
time betweenreorderingevents(eachof which consists

of 12 random queueswaps).Again, eachdatapoint rep-
resentsanaverageof 30simulations.Theplotsshow that
thenumberof spuriousretransmissionsincreasewith the
number of queue swapsper reordering event. This con-
firms thereasonfor thedropin throughput shown in Fig-
ure 2. Additionally, Figure3 shows that as the interval
betweenreorderingevents is reduced,thenumber of spu-
rious retransmissionsincreasesasexpected.

5 “Undoing” Bad CongestionCon-
tr ol Decisions

As discussedin
 3, a number of possiblemethods for
detecting spurious retransmissions exist. As mentioned,
we choseto usea conservative algorithm basedon the
DSACK optionbecauseDSACK is currently a standards
trackmechanismwhile the othermethods arestill being
researched. Further, we believe that the resultsshown in
this paperarelikely to besimilar usingalternatemethods
for detectingspurious retransmits.

Using the DSACK option [FMMP00], a TCP sender
is informed aboutduplicatesegments that arrive at the
receiver. Duplicate segmentscan be causedby either
a spurious retransmissionsentby the TCP senderor by
somequirk in thenetwork thatcausespacket replication.
[Pax97] shows that packet replicationby the network is
exceedinglyrare. A DSACK therefore hasa high proba-
bility of reporting a spuriousretransmission.As anaddi-
tional check,theTCP sendershould ensurethat theseg-
ment reportedasarriving multiple timeswasactuallyre-
transmitted. Oncea TCP senderdetermines that a spu-
rious retransmissionhasoccurred using the DSACK in-
formation,theeffect theretransmithadon thecongestion
control statecanbecorrected.

We utilize the following changes to TCP’s conges-
tion control state processing(as generally outlined in
[FMMP00]):

	 Upondetectionof apacketloss(i.e.,congestionindi-
cation), we save thevalueof thecongestionwindow
(cwnd) as #%$'&�(*),+.-0/ before reducing thecongestion
window.

	 Uponthearrival of a DSACK andthedetermination
that theduplicatewascausedby a spurious retrans-
mission,thesendernotesthis until the“loss” recov-
eryeventis finished.

	 Once the “loss” recovery event is completed, we
checkto make surethat no real loss was detected.
If all retransmitswerefoundto bespurious,theslow
start threshold(ssthresh) is set to #%$�&�(1),+2-0/ . This
causesthe TCP senderto useslow start to increase

cwnd to its value prior to the spurious retransmis-
sion.1

Wechanged thens sack1 model toperformasdescribed
above whenusingDSACK. In addition, theSACK algo-
rithm in ns madeseveral assumptions that did not allow
for thegraceful handling of DSACK, whichrequiredsev-
eralchangesto thealgorithm asoutlinedin Appendix A.

599000

600000

601000

602000

603000

604000

605000

606000

607000

608000

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

by
te

s/
se

co
nd

)

�

Number of Queue Swaps

1 Second
8 Seconds

Figure4: Throughput of TCPwith DSACK asa function
of thenumber of queueswaps.

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25

U
nn

ec
es

sa
ry

 R
et

ra
ns

m
its

"

Number of Queue Swaps

SACK
DSACK

Figure5: Numberof spuriousretransmitswith andwith-
outDSACK asa function of thenumberof queue swaps.

The above modifications allow a TCP senderto miti-
gatethethroughput problemscausedby spuriousretrans-
missions. Figure 4 shows the throughput obtainedby
a DSACK enabledTCP as a function of the number of
queue swapsperformed.Theplot shows thatevenunder
persistentreordering (approximately one event per sec-
ond) DSACK allows TCP to maintainthroughput. The

1We have chosen to modify ssthresh instead of modifying cwnd di-
rectly to prevent the injection of a (potentially) large burstof segments
into thenetwork.

decreasein throughput is roughly 1% in the worst case
shown on theplot.

Thecostof theadditional performanceis thatTCPwith
DSACK is muchmoreaggressive in comparisonto TCP
without DSACK. Figure 5 shows the number of spuri-
ousretransmissionsperformedwith andwithout DSACK
when reordering is introduced at intervals of approxi-
matelyonesecond.As shown, usingDSACK increases
the number of bad retransmissions by roughly a factor
of six. This is causedby DSACK TCP’s ability to keep
thecongestionwindow large whencomparedto standard
SACK TCP, therefore causingit to experiencemorere-
ordering thana typical SACK TCP senderthat is forced
to slow down in response to eachmistake. Thesespu-
rious retransmissionswastenetwork resourcesandcould
contribute to congestion collapse [FF99]. The next sec-
tion exploresa numberof waysto mitigatethis problem
in DSACK while retainingtheperformancebenefits.

6 Avoiding Mistakes

While thealgorithm in
 5 enablesTCPto effectively re-
cover from unneededcongestioncontrol adjustments, it
is not sufficient to solve the entire reordering problem.
By reopeningcwnd without attemptingto preventfurther
unnecessaryretransmissions,we areeffectively allowing
TCP to inject potentially large amounts of uselessdata
into the network (as shown in figure 5). Theseuseless
packetscould leadtoward congestioncollapse. Without
DSACK, TCP is requiredto reduce the sendingrateand
effectively “pays the price” for sendingunnecessaryre-
transmissions.If thedisadvantageof sendingspurious re-
transmissionis eliminated, however, somenew algorithm
is required to attemptto prevent future retransmissions
causedby reordering.

Theidealsolutionis obviously for thesending TCPto
know preciselyhow muchreorderingis presentin thenet-
work path at any given time so retransmissions can be
appropriatelytriggered. However, given the characteris-
tics of IP, this is difficult to determine in thegeneral case.
Therefore,TCPmustempirically measuretheamount of
reorderingperceived in the network pathandadjustthe
retransmissionalgorithmsaccordingly.

The fast retransmit algorithm provides protection
against reorderingeventsthatcauseslightreorderingsuch
that the receiver doesnot generate 3 duplicate acknowl-
edgments(e.g.,two successive packetsbeing swappedin
thenetwork). By waiting until thearrival of thethird du-
plicateACK to trigger a retransmissionthe TCP sender
can successfullydisambiguate loss from reordering in
thesecases. We experimentwith compensating for re-
ordering by making the threshold that triggers fast re-
transmit a variable,dupthresh, andadjustingthevariable

based
3

on the amount of reordering measuredin the net-
work path.

This is amoredelicateprocessthanit first seems.If the
adjustedvalueis not largeenough, TCP will continueto
sendunnecessaryretransmissions.On the otherhand,if
the threshold becomestoo large, fastretransmitmaynot
betriggeredatall andlosswill berecoveredvia the(often
costly) RTO timer. The next several subsectionsoutline
various algorithms for adjustingdupthresh. Thepoint of
this paper is not necessarilyto provide a compelling case
for oneof thesealgorithmsover theothers.Thegoalis to
explore(viasimulation) theadvantagesanddisadvantages
of eachscheme.Webelievethatexperimentationoverthe
Internet is requiredbefore makinga decisiononwhichof
thesealgorithms is “the best”.

6.1 Extending the Limited Transmit Algo-
rithm

Beforewe considerchanging the duplicate ACK thresh-
old requiredto triggerfastretransmit,wemustextend the
Limited Transmitalgorithm[ABF01] to ensurethat the
ACK clock is preservedduring areordering or lossevent.
Limited Transmit calls for sending a new (previously un-
sent)segment uponreceiptof eachof thefirst two dupli-
cateACKs in the hopesof ensuringthat even whenop-
eratingwith a smallcwnd we cangenerateenoughdupli-
cateACKs to trigger fast retransmit andnot rely on the
retransmission timer. Our version of Limited Transmit
addstransmissionof new dataon every secondduplicate
ACK thatarrivesafter thefirst two. This keepstheACK
clock going while reducing thesending ratein casecon-
gestionhasoccurred(bysendingonlyhalfasmuchdataas
the incoming ACKs areacknowledging). This schemeis
similar to therate-halving congestioncontrol mechanism
[MSML99].

In addition to keepingdataandACK packetsin thenet-
work pathso that feedback continues this extensionre-
ducesthepotential burstcausedby increasingthethresh-
old to enterfastretransmit(aswill be discussedbelow).
For instance,assumeit takesthe receiptof 10 duplicate
acknowledgments to trigger fast retransmitto properly
disambiguate loss from reordering. Say the senderre-
ceives9 duplicateACKs andthenanew cumulativeACK
(i.e., therewas a reordering event). If we were to use
TCPwithout extending Limited Transmit we wouldburst
on the order of 10 packets into the network when the
non-duplicateACK arrives.However, with our extension
to limited transmitthe TCP senderwould burst roughly
5 segmentsinto the network. The Limited Transmitex-
tensiondoesnot completelyprevent bursts,but amelio-
ratesthemto somedegree.

We also note that depending on how well the algo-
rithmspresentedin thefollowing subsectionsactuallydis-

ambiguatereorderingandlossin realnetworks thecom-
munity may wish to revisit this algorithm andsendnew
dataonevery duplicateACK before fastretransmitis trig-
gered ratherthanon every secondduplicateACK (which
we believe to be theconservative first approach). Trans-
mitting oneachduplicateACK wouldlikely eliminatethe
bursting problemalargerduplicateACK threshold creates
in thegeneral case.

6.2 ConstantIncr easeof the Duplicate ACK
Thr eshold

The first mechanism we introduceis to simply increase
dupthresh by somevalue 4 every time we detecta spu-
rious fastretransmit. This algorithm hastheadvantageof
being simpleto implement. An associateddisadvantageis
that it may take a number of “mistakes” before TCP de-
terminestheappropriatevalueof dupthresh for thecurrent
network conditions. Theactualperformanceof thealgo-
rithm dependson theamount of reordering happeningin
the network, the valueof 4 andthe valueof cwnd. For
theexperimentspresentedin this paper, weused4657 .
6.3 Incr easingThr esholdBasedon Length

of Reordering Event

The next algorithm attemptsto use the length of the
reordering event as the basis for increasing dupthresh.
TheTCPsenderfirst determinesthenumberof duplicate
ACKs that would have disambiguatedreordering from
loss, 8 . Theaverageof 8 anddupthresh is thenusedas
thenew valueof dupthresh, with theadditional guarantee
thatdupthresh is incrementedbyat least . Theadvantage
of this schemeis thata TCPsendermayconverge to the
optimal valueof dupthresh afterfewermistakesthanwhen
simply increasingdupthresh by somefixed constantas
proposedin thelastsubsection. Thedisadvantageis thata
single,lengthyreorderingeventmayinflatedupthresh un-
reasonably andthuscausea later timeout, while increas-
ing by only a smallconstanton eachmistake makessuch
pathological behavior less likely to causethe TCP con-
nection to experienceanRTO onthenext realpacket loss.

6.4 Using a Duplicate ACK Thr eshold and
a Timer

Additionally, we testeda method first outlinedin [Pax97]
that calls for the useof 3 duplicateACKs in addition to
a small amount of time to trigger retransmits.If an ac-
knowledgmentfor thesegment believed to havebeenlost
arrivesbefore the timer fires, thepending retransmission
is cancelled. We basetheamount of time we wait on the
amount of time that would have beenrequired to obtain
enoughduplicateACKs to disambiguatereordering from

loss
9

in previously experiencedreorderingevents. At face
value this method is essentiallythe sameas the mech-
anismoutlined in the previous subsections (gauging the
number of duplicateACKs we needto observe). How-
ever, usingthe passageof time ratherthanthe arrival of
duplicate ACKsmaybemorerobustto ACK loss,aswell
as to the sizeof the reordering event. The disadvantage
of this methodis that it requires an additional timer for
eachTCP connection,which is moreoverheadthan the
previouslydiscussedmethods.

6.5 Using a Running Averageof the Dupli-
cateACK Thr eshold

This algorithm keepsan exponentially weightedmoving
average (EWMA) of the length of perceived reordering
events, andadjustsdupthresh accordingly. Eachtime a
purereorderingeventof length : duplicateACKs is de-
tected,theEWMA is updated,asfollows:

;=<1> 5
?A@ � :CBEDFHG @JI � ;=<1> if :LK ;=<*>D @ �,M I � :CBNDOHG @ �PM I � ;=<1> otherwise

(1)
Where the EWMA gain,

@
, and the multiplicative

factor, M , varied in our simulations. We then update
dupthresh basedonthenew avg, asfollows:

(1Q1RTSFUWVYXYZ[U\5C] ;=<*> B_^W`ba[c (2)

At initialization, dupthresh andavg aresetto 3 dupli-
cateACKs.

6.6 Reducingthe Duplicate ACK Thr eshold

In our simulations, whena TCP senderusesthe RTO to
triggera retransmissionwe take this asanindication that
thecurrent estimateof theamountof reorderingin thenet-
work is invalid andresetdupthresh to 3 duplicate ACKs.
Whenthe RTO fires either(�) TCP’s current estimateof
dupthresh is outdated suchthat enough duplicateACKs
did notarriveto trigger fastretransmitbeforetheRTO ex-
pired, or (�d�) the amount of ACK loss was sufficient to
prevent thefastretransmit algorithmfrom detectingloss.
In eithercasedupthresh requiresadjustment so thatTCP
can continue to operate effectivly. The methodwe use
(reduce dupthresh backto 3) is conservative in that it is
no worsethancurrent TCP implementations. However,
weenvisionadditionaladjustmenttechniquesmayleadto
betteroverall performanceandshouldbestudiedin future
work (e.g.,reducing dupthresh by half whentheRTO ex-
pires).

In addition, if a TCP stackvaries its duplicate ACK
threshold to compensatefor reorderingandsubsequently
experiencesactualpacketlosscausingcwnd to bereduced

below dupthresh, the sendermay be unable to generate
enough duplicateACKs to trigger a fast retransmit. In
order to avoid this situation,dupthresh must always be
lessthancwnd. In our simulations,we capdupthresh at
90% of cwnd, with a maximum of #%$'&�(\G7 segments.
While we did not vary theseconstantsin our simula-
tionswedidnotnoticeany performanceimpactfromtheir
choice.

7 Results

Figure 6 shows the throughput (number of data bytes
persecond)asa function of the number of queue swaps
performedapproximately every 1 secondfor the various
dupthresh compensationschemesoutlined above. The
TCP connection is 10 minutes long, as in the previous
experiments. As shown on the plot, all the compensa-
tion schemesexcept trackingdupthresh with an EWMA
(
@ 5e ; M 5 ��Ff) improve throughput slightly over the

casewhenno dupthresh compensationis employed (de-
noted “DSACK–No mitigation” on the plot). Using an
EWMA hurt performanceslightly when the reordering
washeavy. All linesshown ontheplot arewithin approx-
imately1% of eachother;therefore we concludethat the
impact any particularcompensationschemehason per-
formanceis minimal and that the performanceincrease
comes from the ability to revert to the previous conges-
tion controlstatewhena retransmissionis determinedto
bespurious.

598000

599000

600000

601000

602000

603000

604000

605000

606000

607000

608000

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

by
te

s/
se

co
nd

)

g

Number of Queue Swaps

DSACK -- No mitigation
Increment by 1
Increment by N

Time-delayed F.R.
EWMA

Figure 6: Throughput as a function of the number
of queue swaps for various dupthresh compensation
schemes.

Figure 7 (with the h -axisplottedon a log-scale)shows
theeffectsof thealgorithmsdescribedabove onunneces-
sary retransmissions. Eachof thesealgorithms reduces
the number of unnecessaryretransmissionswhen com-
pared to reverting thecongestionwindow without any at-

10

100

1000

0 5 10 15 20 25

U
nn

ec
es

sa
ry

 R
et

ra
ns

m
its

i

Number of Queue Swaps

Standard Sack1 TCP
DSACK -- No Mitigation

Increment by 1
Increment by N

Time-delayed Fast Retransmit
EWMA

Figure7: Mediannumber of spurious retransmissionsas
a functionof thenumber of queueswaps.

tempttocompensatefor prematurefastretransmitscaused
by thereordering. Furthermoreall algorithmsexcept the
algorithm usinganEWMA (again

@ 5j ; M 5 ��Of) gener-
atefewerunnecessaryretransmissionsthanstockns sack1
TCP (without any capacityfor correctingbogus changes
to the congestioncontrol state). Finally, all schemesfor
adjustingdupthresh reducethenumber of unnecessaryre-
transmissionswhencomparedto usingDSACK to revert
thecongestioncontrolstatewithoutattemptingto change
dupthresh.

The plot shows that the best algorithm, in terms of
avoidingneedlessretransmits, is thetime-delayedfastre-
transmitalgorithm. Thetime-delayedfastretransmitalgo-
rithm andthe increase-by-Nalgorithm aresimilar in that
they attemptto retransmitat thesamepoint andonly dif-
fer in thetriggeringevent. Theformer algorithm usesthe
passageof a certainamount of time,while thelatteruses
the receiptof a certainnumber of duplicate ACKs. The
simulationresultsshow that usinga timeout is morero-
bustthanusingthereceiptof a givennumberof duplicate
ACKs. This is explained because ACKs can be lost or
the algorithmmay be slightly off in predicting the num-
berof duplicateACKs thatshouldbeusedto trigger fast
retransmit. However, usinga timeouthasthe advantage
that theseevents do not hinder the firing of the fast re-
transmission.

The figure also shows that the increase-by-N algo-
rithm performs fewer needlessretransmissionsthan the
increase-by-1 algorithm. The differenceshows that in-
creasingdupthresh by 1 duplicateACK per needlessre-
transmitprovidesaslowerconvergencetimethanincreas-
ing by thedesiredamount at onetime. UsinganEWMA
to track the appropriatedupthresh is not nearlyaseffec-
tive astheotherschemesin thesesimulations. Below we
considertheimplications of choosingdifferent valuesfor
the

@
and M on theperformanceof theEWMA.

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25

M
ed

ia
n

D
ev

ia
tio

n

k

Number of Queue Swaps

Standard Sack1 TCP
Increment by 1
Increment by N

Time-delayed F.R.
EWMA

Figure 8: Median deviation of unnecessaryretransmis-
sions.

Figure 8 shows the mediandeviation of eachscheme
from its medianperformance. Under our model of re-
ordering, thesealgorithms performed with varying de-
grees of consistency in their effectivenessat preventing
unnecessaryretransmissions.The algorithms that pre-
ventedmoreunnecessaryfastretransmitson median also
performedlessconsistently, with a mediandeviation ap-
proachinghalf of the mediannumber of unnecessaryre-
transmissions. In addition to allowing more needless
retransmissions,the EWMA tracking of dupthresh also
showswidervariation thantheotherschemes.

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
nn

ec
es

sa
ry

 R
et

ra
ns

m
its

"

alpha

x=1
x=0.5

x=0.25
x=0.125

x=0.0625

Figure 9: Unnecessaryretransmissionsasa function of
@

for various valuesof M .

Figure 9 illustratesthenumberof spuriousretransmis-
sionsasa function of

@
for various valuesof M . As the

figureshows,thedifferentvaluesof
@

havevery little im-
pact on the dupthresh estimateformed. The plot does
show, however, that the difference betweenthe gain for
increasing and decreasingthe EWMA makes a signifi-
cantdifferencein thenumberof spurious retransmitstrig-

geredl . Whentherateof increaseanddecreaseis thesame
(M 5m), the plot shows over 550 needlessretransmis-
sionsover thecourseof thesimulation. Meanwhile,when
increasingsixteentimes as fast as decreasing the num-
ber of unneeded retransmissionsdrops to roughly 275.
However, even when M 5nYoprq the number of spurious
retransmits is significantly higher than any of the other
methods we usedto adjustdupthresh, which all triggered
under 100unnecessaryretransmitsin oursimulations.

8 Conclusionsand Futur eWork

The simulation resultspresented in this paper suggest
methods that canbe usedto effectively mitigate theper-
formanceimpactreorderingimposesupon TCP. In many
cases,a TCP capableof restoring its congestioncontrol
stateupon discovery that a spurious retransmit hasoc-
curredperforms nearly as well under heavy reordering
conditionsasastandardTCPwithout reordering.Theap-
proach of simply restoring congestioncontrol stateeach
time a spurious retransmitis detected,however, leadsto
anundesirableincreasein thenumber of unnecessaryre-
transmissionsinjectedinto the network. We determined
that somemethodof preventingthe spuriousretransmits
a priori is desirableandshowedseveralmethodsthatlook
promising for estimatingthepropervaluefor dupthresh.

Suppressionof spurious retransmitswas found to be
effectively controlled by modifying theconditions under
which the fast retransmit algorithm is initiated. Adjust-
mentof theduplicateacknowledgment thresholdusedto
trigger fast retransmit andthe insertionof a small delay
before transmitting the“lost” packet werefound to beef-
fective meansof reducing the frequency of spurious re-
transmissionsunderthe variety of reordering conditions
studiedin theinvestigationpresentedin thispaper. Mean-
while, our simulationsinvolving an EWMA estimateof
theproperduplicateACK threshold show thatthemethod
doesnotwork nearlyaswell astheothermethods.

Futurework in this areaincludes:

	 The simulatedresultspresentedin this paper need
verification in the real network. Our model of re-
ordering,asmentionedin Section2, is simplisticand
maynotaccuratelyrepresentthebehavior of physical
networks. While it is sufficient to validatethemeth-
odsoutlined hereasproof-of-conceptideas,quanti-
tative resultsregarding theabsoluteefficacy of these
algorithms using this simulation model is not ad-
vised.

	 Further, arealisticmodel of reorderingbasedonem-
pirical observationswould improve the accuracy of
future simulations.While theprevalenceof reorder-
ing in thenetwork hasbeendocumented, ourpresent

understandingof thequalitiesof reorderingis incom-
plete.

	 The possibility of proactively avoiding spurious re-
transmitsshouldbe researched. The algorithms in
this paper arereactive, correcting a spuriousretrans-
missionthat hasalreadyoccurred and taking steps
to prevent future mistakes. It would be desirable
to avoid the unnecessaryretransmissionin the first
place.

Acknowledgments

We would like to thankSally Floyd for numeroushelpful
tips anddiscussions,aswell astheinitial work of adding
DSACK notification to ns. We would alsolike to thank
JosephIshac,HansKruse,ReinerLudwig, Shawn Oster-
mann andCraig Partridge for their suggestions anddis-
cussionsduring thedevelopmentof thiswork. Finally, we
thank theanonymousCCR reviews for a number of sug-
gestions thatimprovedthis paper.

References

[ABF01] Mark Allman, Hari Balakrishnan,andSally Floyd.
Enhancing TCP’s Loss Recovery Using Limited
Transmit,January2001.RFC3042.

[All00] Mark Allman. A WebServer’s View of theTrans-
port Layer. Computer Communications Review,
30(5):10–20,October2000.

[AP99] Mark Allman and Vern Paxson. On Estimating
End-to-EndNetwork PathProperties.In ACM SIG-
COMM, September1999.

[APS99] Mark Allman, Vern Paxson, and W. Richard
Stevens. TCP Congestion Control, April 1999.
RFC2581.

[BPS99] JonBennett,Craig Partridge,andNicholasShect-
man. Packet Reorderingis Not PathologicalNet-
work Behavior. IEEE/ACM Transactions on Net-
working, December1999.

[BRS99] Hari Balakrishnan,Hariharan Rahul, and Srini-
vasanSeshan.An IntegratedCongestionManage-
mentArchitecturefor InternetHosts.In ACM SIG-
COMM, September1999.

[FF96] Kevin Fall and Sally Floyd. Simulation-based
Comparisons of Tahoe, Reno, and SACK TCP.
Computer Communications Review, 26(3), July
1996.

[FF99] Sally Floyd and Kevin Fall. Promotingthe Use
of End-to-EndCongestionControl in the Internet.
IEEE/ACM Transactions on Networking, 7(6), Au-
gust1999.

[FMMP00] Sally Floyd, JamshidMahdavi, Matt Mathis, and
Matt Podolsky. An Extension to the Selective
Acknowledgement(SACK) Option for TCP, July
2000.RFC2883.

[Jac88] VanJacobson.CongestionAvoidanceandControl.
In ACM SIGCOMM, 1988.

[JBB92] VanJacobson, RobertBraden,andDavid Borman.
TCPExtensionsfor High Performance,May 1992.
RFC1323.

[KP87] Phil Karn andCraigPartridge. Improving Round-
Trip Time Estimatesin ReliableTransportProto-
cols. In ACM SIGCOMM, pages2–7,August1987.

[LK00] ReinerLudwig andRandyKatz. The Eifel Algo-
rithm: Making TCP Robust AgainstSpuriousRe-
transmissions.Computer Communication Review,
30(1),January2000.

[MC00] Sean McCreary and K. Claffy. Trends
in Wide Area IP Traffic Patterns A View
from Ames Internet Exchange. May 2000.
http://www.caida.org/outreach/papers/AIX0005/.

[MSML99] Matt Mathis, Jeff Semke, JamshidMahdavi, and
Kevin Lahey. The Rate-HalvingAlgorithm for
TCP CongestionControl, August 1999. Internet-
Draft draft-mathis-tcp-ratehalving-00.txt (work in
progress).

[PA00] VernPaxsonandMark Allman. ComputingTCP’s
RetransmissionTimer,November2000.RFC2988.

[Pax97] VernPaxson. End-to-EndInternetPacket Dynam-
ics. In ACM SIGCOMM, September1997.

[Pos81] Jon Postel. Transmission Control Protocol,
September1981. RFC793.

[SMM98] Jeff Semke, JamshidMahdavi, and Matt Mathis.
Automatic TCP Buffer Tuning. In ACM SIG-
COMM, September1998.

[TMW97] Kevin Thompson,GregoryMiller, andRick Wilder.
Wide-Area Internet Traffic Patternsand Charac-
teristics. IEEE Network, 11(6):10–23, Novem-
ber/December1997.

[Tou97] JoeTouch. TCP Control Block Interdependence,
April 1997. RFC2140.

A TCP SACK Changes

After introducingsegment reorderinginto the traffic pat-
tern usedin our simulations,we found several problems
with thens sack1 implementation. Thesechanges do not
haveany impact ontransfersthatdonotexperiencepacket
reordering, as the validation testsincludedwith ns still
succeedwith ourchanges.Thefollowing arethechanges
we made:

	 We only consideranACK to bea “duplicateACK”
(for thepurposesof triggeringfastretransmit)when

it containsnew SACK information. This hastheef-
fect of preventingDSACKs from triggering fastre-
transmit.

	 Theinitializationof “pipe” in ns madesomeassump-
tions about limited transmit that, while usuallycor-
rectwithout our modifications, wereinsufficient for
ourpurposes.Thisinitializationwasmodified to cor-
rectlycalculatetheamount of outstanding dataat the
beginningof lossrecovery in all cases.

	 As outlined in [FF96], the SACK algorithm decre-
mentsthepipe variable (thesender’s estimateof the
number of segments currently in the network) by
2 segmentswheneverapartialACK is received.Par-
tial ACKs areassumedto indicatethat the original
transmissionand the retransmissionhave both left
the network. However, when reordering is present
a partialACK maynot beassociatedwith a retrans-
mitted segment. Therefore, we limit the number of
timesthealgorithmis allowedto decrementpipe by
2 segmentsto the number of segments retransmit-
ted. Otherwise,pipe is decrementedby 1 segment
for eachpartialACK thatarrives.

	 As outlined above, reordering may causea number
of “normal” looking ACKs during “loss” recovery.
Per the above restriction, the senderwill decrease
pipe by 1 segment for mostof theseACKs. How-
ever, whenthe receiver is usingdelayedACKs the
incoming ACKs may indicate that more than one
segment hasleft the network. Therefore,we intro-
ducedanew rulewhereby if theincoming ACK does
not containSACK information and the scoreboard
is emptytheACK is takenat facevalueandpipe is
decrementedby thenumberof new segments cumu-
latively ACKed.

	 The scoreboard data structurerequired numerous
changesto copewith DSACK information.

