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Abstract— The problem of detecting and characterizing im-
pacts of malicious attacks against smart grid state estimation
is considered. Different from the classical bad data detection
for state estimation, the detection of malicious data injected by
an adversary must take into account carefully designed attacks
capable of evading conventional bad data detection. A Bayesian
framework is presented for the characterization of fundamental
tradeoffs at the control center and for the adversary. For the
control center, a detector based on the generalized likelihood
ratio test (GRLT) is introduced and compared with conventional
bad detection detection schemes. For the adversary, the tradeoff
between increasing the mean square error (MSE) of the state
estimation vs. the probability of being detected by the control
center is characterized. A heuristic is presented for the design of
worst attack.

Index Terms—Energy management systems, False data attack,
Smart grid security, State estimation.

I. INTRODUCTION

The electric grid in the United States has evolved over the
past century from a series of small independent community-
based systems to perhaps the largest and most complex cyber-
physical System in the world. The increasing reliance on
cyber-infrastructure to manage highly complex smart grids
comes with the risk of cyber-attacks by adversaries around
the globe. It has been widely reported recently that “cyberspies
have already penetrated the United States electrical grid and
left software programs that can be used to disrupt the system”
[1].

The nature of attacks on smart grids can be very different
from that on communication networks such as the Internet. The
objective of an adversary may not be just gaining unauthorized
information; an adversary could in theory cripple the power
grid by attacking the energy management system (EMS) which
collects data from remote meters and produces estimates of
system states at the intervals of roughly 15 minutes. If an
adversary is able to hack into the power grid and generates
fake meter data, the energy management system at the control
center may be misled by the state estimator, potentially making
erroneous decisions on contingency analysis, dispatch, or even
billing.

We consider in this paper the impact of malicious data attack
on smart grid state estimation and counter measures against
such attacks. We make a distinction between the conventional
“bad data” due to natural causes (meter malfunction, commu-
nication outage, and topological errors) from malicious data

injected by an adversary. The latter may be carefully designed
to maximize the impact of attack and evade detection.

While the problem of bad data detection has been well
studied for decades, the potential damage of malicious data
attack has only be investigated recently. In a recent paper
by Liu, Ning, and Reiter [2], the authors obtain conditions
under which the adversary can arbitrarily perturb the state
estimator without being detected by the conventional bad data
detection. The argument presented in [2] can in fact be made
even stronger: if an adversary can control enough meters and
if there is no prior distributions on network states, no detector
will ever be able to detect a carefully designed malicious data
attack.
A. Summary of Results and Contributions

We aim to quantify the impact of a malicious data attack on
power system state estimation and develop counter measures.
To this end, we consider two aspects of the overall problem:
(i) attack detection and localization strategies at the control
center; (ii) attack strategies by the adversary.

We first present a decision theoretic formulation of de-
tecting malicious data injection by an adversary. Because
the adversary can choose where to attack the network and
design the injected data, the problem of detecting malicious
data cannot be formulated as a simple hypothesis test, and
the uniformly most power test does not exist in general. We
proposed a detector based on the generalized likelihood ratio
test (GLRT). GLRT is not optimal in general, but it is known to
perform well in practice and it has well established asymptotic
optimality [3], [4], [5]. In other words, if the detector has many
data samples, the detection performance of GLRT is close to
optimal.

We note that the proposed detector has a different structure
from those used in conventional bad data detectors which
usually employ a test on the state estimator residues errors [6],
[7], [8]. The proposed the GLRT detector does not compute
explicitly the residue error. We show, however, that when there
is at most one attacked meter (a single attacked data), the
GLRT is identical to the classical largest normalized residue
(LNR) test using the residue error from the minimum mean
square error (MMSE) state estimator, which is the Bayesian
counter part of the LNR test. The asymptotic optimality of
GLRT lends a stronger theoretic basis for the LNR test for
the single bad data test. The proposed detector also estimates
(identifies) the specific meters from which the attack may be
originated.



Next we investigate malicious data attack from the per-
spective of an adversary who must make a tradeoff between
inflicting the maximum damage on state estimation and being
detected by the EMS at the control center. We define the notion
of Attacker Operating Characteristic (AOC) that characterizes
the tradeoff between the probability of being detected vs.
resulting (extra) mean-square error at the state estimator. We
therefore formulate the problem of optimal attack as minimiz-
ing the probability of being detected subject to causing the
mean square error (MSE) to increase beyond a predetermined
level. Finding the attack with the optimal AOC is intractable,
unfortunately. We present a heuristic that allows us to obtain
attacks that with minimum attack power leakage to the detector
while increasing the mean square error at the state estimator
beyond a predetermined objective. This heuristic reduces to
an eigenvalue problem that can be solved off line.

Finally, we conduct numerical simulations on a small scale
example using the IEEE 14 bus network. For the control center,
we present simulation results that compare different detection
schemes based on the Receiver operating Characteristics
(ROC) that characterize the tradeoff between the probability
of attack detection vs. the probability of false alarm. We show
that there is a substantial difference between the problem
of detecting randomly appearing bad data from detecting
malicious data injected by an adversary. For example, at the
detection error probability of 0.9, the malicious data attack
results in close to 5dB increase of MSE. See Fig. 3. Next
we compare the GLRT detector with two classical detection
schemes: the J(x̂) detector and the (Bayesian) largest normal-
ized residue (LNR) detector [6], [7]. Our test shows consistent
improvement over the two well established detection schemes.
See Fig. 2. From the adversary perspective, we compare the
Attacker Operating Characteristics (AOC). Our result shows
again that the GLRT detector gives higher probability of
detection than that those of conventional detectors for the same
amount MSE increase at the state estimator. See Fig. 2.

B. Related Work

The first paper that addresses cyber-attack on power system
state estimation appears to be [2], which inspires the work
presented here. Lin, Ning, and Reiter consider the problem of
malicious data attack under a deterministic model of network
state variables and arbitrary attack patterns. They obtain a
simple condition that malicious data are “undetectable” and the
attack may increase the state estimation error arbitrarily. We
show in Sec II that the undetectable condition obtained in [2]
is equivalent to the classical network observability condition
[9], [10]. The authors of [2] also found that for many standard
networks, the “undetectable” conditions are easily met if the
adversary can control only a limited number of meters.

The “undetectability” of certain malicious data injection
shown in [2] motivates a Bayesian formulation first considered
in [11] and further elaborated in this paper. Since state
estimation is performed every few minutes, there is a wealth
of historical data that can be used to characterize state dis-
tributions under normal operation conditions. The knowledge
of such “prior” therefore limits the ability of adversary to
perturb the network state arbitrarily. Under such a formulation,

attacks considered in [2] are no longer “undetectable”. The
detector presented in [11] uses L∞ norm on residue errors
from the state estimator and can be considered as the Bayesian
modification of the LRN test. Note that the idea of exploiting
state variable distributions has been considered earlier by
Lourenço, Costa, and Clements in [12] in the context of
topology error identification.

There are several differences between the work in [2]
and that in this paper. First, the work in [2] focuses on
the conditions of “undetectable attacks”, treating network
states as deterministic and unknown quantities. When the
undetectability condition is not satisfied, very little is known
about how to detect attacks and the effect of adversary on
state estimation. We present in this paper a detector that does
not depend on the undetectability condition of [2], thanks to a
Bayesian formulation of the state estimation [11]. The present
paper extends the results in [11] in several directions. We
provide a more general formulation of the problem, a new
detector for attacks, and a characterization of the tradeoff for
the adversary between probability of being detected and the
extra mean square error introduced at the state estimator.

Another relevant recent work is by Gorinevsky, Boyd, and
Poll [13] where a quadratic programming formulation for
estimating faults is presented. The main difference between the
approach in [13] and ours is that the formulation in [13] has
the interpretation that the attack vector has the Laplacian prior
and the state variables deterministic whereas, in this paper, the
state vector is Gaussian and attack vector deterministic.

Bad data detection is a classical problem that is part of
the original formulation of state estimation [6]. See [14] for
an earlier comparison study. Malicious data attack can be
viewed as the worst interacting bad data injected by an
adversary. To this end, very little is known about the worst
case scenario although the detection of interacting bad data
has been considered [7], [15], [16], [17].

II. PROBLEM FORMULATION

Consider a DC power flow state estimation problem based
on a linearized AC power flow model

z = Hx + a + e (1)

e ∼ N (0,Σe),
a ∈ Ak = {a ∈ R

m : ‖a‖0 ≤ k}
where z ∈ R

m is the vector power flow measurements, x ∈ R
n

the system state, e the Gaussian measurement noise with zero
mean and covariance matrix Σe, and vector a is malicious data
injected by an adversary. Here we assume that the adversary
can at most control k meters, i.e., a is a vector with at most
k non-zero entries (‖a‖0 ≤ k). A vector a is said to have
sparsity k if ‖a‖0 = k.

A. Detectability and Observability

Liu, Ning and Reiter observe in [2] that if there exists a
nonzero k-sparse a for which a = Hc for some c, then

z = Hx + a + e = H(x + c) + e.

Thus as a deterministic quantity, x is observationally equiva-
lent to x+c. Therefore, if both x and x+c are valid network



states, the adversary’s injection of data a when the true state is
x will lead the control center to believe that the true network
state is x+ c, and vector c can be scaled arbitrarily. Since no
detector can distinguish x from x + c, we call hereafter an
attack vector a unobservable if it has the form a = Hc.

Note that it is unlikely that random bad data a will satisfy
a = Hc. But an adversary can synthesize their attack vector
to satisfy the unobservable condition. The following theorem
provides the insight into the adversary action by connecting
unobservable attack with the classical network observability
conditions [9].

Theorem 1: There exists an unobservable k-sparse attack
vector a if and only if the network becomes unobservable
when some k measurements are removed, i.e., there exists an
(m − k) × n submatrix of H that does not have full column
rank.

Proof: Without loss of generality, let H be partitioned
into HT = [HT

1 | HT
2 ], and submatrix H1 does not

have full column rank, i.e., there exists a vector c �= 0
such that H1c=0. We now have a = Hc ∈ Ak, which
is unobservable by definition. Conversely, consider an
unobservable a = Hc ∈ Ak. Without loss of generality, we
can assume that the first m − k entries of a are zero. We
therefore have H1c = 0 where H1 is the submatrix made of
the first m − k rows of H. �

The implication from the above theorem is that the attack
discovered in [2] is equivalent to removing k meters from the
network thus making the network not observable. Indeed, with
Theorem 1, it is not too difficult to select a set of meters to
perturb the state estimator arbitrarily in the subspace of the
unobservable states.

B. A Bayesian Framework and MMSE Estimation

If an attack a is unobservable, can it be detected? Merrill
and Schweppe wrote in [18] that “If the system is controlled
by a human being, watching, perhaps, a pen recorder, he will
automatically ignore a large random spike that is obviously
incorrect.” In other words, if there is a prior distribution
on the states under normal conditions, the perturbation c
introduced by the adversary through a = Hc will deviate the
distribution from its prior, thus making the attack detectable.
Mathematically, this calls for a Bayesian formulation that
captures the statistical behavior of network states.

We consider in this paper a Bayesian framework where the
state variables are random vectors with Gaussian distribution
N (µx,Σx). We assume that, in practice, the mean µx and
covariance Σx can be estimated from historical data. By
subtracting the mean from the data, we can assume without
loss of generality that µx = 0.

In the absence of an attack, i.e., a = 0 in (1), (z,x) are
jointly Gaussian. The minimum mean square error (MMSE)
estimator of the state vector x is a linear estimator given by

x̂(z) = argmin
x̂

E(‖x − x̂(z)‖2) = Kz (2)

where

K = ΣxHT (HΣxHT + Σe)−1. (3)

The minimum mean square error, in the absence of attack, is
given by

E0 = min
x̂

E(||x − x̂(z)||2) = Tr (Σx − KxHΣx) .

Note that in the high signal to noise ratio (SNR) regime, the
MMSE estimator is closely approximated by the conventional
weighted least squares (WLS) estimator.

If an adversary injects malicious data a ∈ Ak but the control
center is unaware of it, then the state estimator defined in (2) is
no longer the true MMSE estimator (in the presence of attack);
the estimator x̂ = Kz is a “naive” MMSE estimator that
ignores the possibility of attack, and it will incur a higher mean
square error (MSE). In particular, the MSE in the presence of
a is given by

E‖x − Kz‖2
2 = E0 + ‖Ka‖2

2. (4)

The impact on the estimator from a particular attack a is
given by the second term in (4). To increase the MSE at the
state estimator, the adversary necessarily has to increase the
“energy” of attack, which increases the probability of being
detected at the control center.

III. DETECTION OF MALICIOUS DATA ATTACK

A. Statistical Model and Attack Hypotheses

We now present a formulation of the detection problem
at the control center. We assume a Bayesian model where
the state variables are random with a multivariate Gaussian
distribution x ∼ N (0,Σx). Our detection model, on the other
hand, is not Bayesian in the sense that we do not assume any
prior probability of the attack nor do we assume any statistical
model for the attack vector a.

Under the observation model (1), we consider the following
composite binary hypothesis:

H0 : a = 0 versus H1 : a ∈ Ak \ {0}. (5)

Given observation z ∈ R
m, we wish to design a detector δ :

R
m → {0, 1} with δ(z) = 1 indicating a detection of attack

(H1) and δ(z) = 0 the null hypothesis.
An alternative formulation, one we will not pursue here, is

based on the extra MSE ‖Ka‖2
2 at the state estimator. See (4).

In particular, we may want to distinguish, for ‖a‖0 ≤ k,

H′
0 : ‖Ka‖2

2 ≤ C, versus H′
1 : ‖Ka‖2

2 > C.

Here both null and alternative hypotheses are composite and
the problem is more complicated. The operational interpre-
tation, however, is significant because one may not care in
practice about small attacks that only marginally increase the
MSE of the state estimator.

B. Generalized Likelihood Ratio Detector

For the hypotheses test given in (5), the uniformly most
powerful test does not exist. We propose a detector based
on the generalized likelihood ratio test (GLRT). We note in
particular that, if we have multiple measurements under the
same a, the GLRT proposed here is asymptotically optimal in
the sense that it offers the fastest decay rate of miss detection
probability [19].



The distribution of the measurement z under the two hy-
potheses differ only in their means

H0 : z ∼ N (0,Σz)
H1 : z ∼ N (a,Σz),a ∈ Ak \ {0}

where Σz � HΣxHT + Σe. Let f(z|a) be the Gaussian
density function with mean a and covariance Σz ,

f(z|a) =
1

(2π)n/2|Σz| exp
{
−1

2
(z − a)T Σ−1

z (z − a)
}

.

(6)
The GLRT is given by

L(z) �
max
a∈Ak

f(z|a)

f(z|a = 0)

H1

≷
H0

τ, (7)

which is equivalent to

min
a∈Ak

aT Σ−1
z a − 2zT Σ−1

z a
H0

≷
H1

τ, (8)

where the threshold τ is chosen from under null hypothesis for
a certain false alarm rate. Thus the GLRT reduces to solving

minimize aT Σ−1
z a − 2zT Σ−1

z a
subject to ‖a‖0 ≤ k.

(9)

For a fixed sparsity pattern, i.e., if we know the support but not
necessarily the actual values of a, the above optimization is
easy to solve. In other words, if we know a small set of suspect
meters from which malicious may be injected, the above test
is easily computable. In general, the sparsity condition on a
makes this optimization problem non-convex and difficult to
solve. However, for our simulations we consider very small
k (never more than 2), for which it is easy to perform an
exhaustive search through all possible sparsity patterns.

C. Classical Detectors with MMSE State Estimation

We will compare the performance of the GLRT detector
with two classical bad data detectors [6], [7], both based on
the residual error r = z−Hx̂ resulted from the MMSE state
estimator.

The first is the J(x̂) detector, given by

rT Σ−1
e r

H1

≷
H0

τ. (10)

The second is the LRN test given by

max
i

|ri|
σri

H1

≷
H0

τ, (11)

where σri
is the standard deviation of the ith residual error

ri. We may regard this is a test on the l∞-norm of the
measurement residual, normalized so that each element has
unit variance.

The asymptotic optimality of the GLRT detector implies
a better performance of GLRT over the above two detectors
when the sample size is large. For the finite sample case (one
shot in particular), numerical simulations shown in Sec V
confirm that the GLRT detector improves the performance of

the J(x̂) and LNR detectors. The interesting exception is the
case when only one meter is under attack, i.e., ‖a‖0 = 1
and Σe = σ2

eI. In this case, the GLRT turns out to be
identical to the LNR detector. Therefore, the GLRT can be
viewed as a generalization of the LNR detector, in that it can
be tuned to any sparsity level. Moreover, this provides some
theoretical justification for the LNR detector. The proof that
establishes the equivalence between the GLRT and LNR for
the 1-sparsity attack is an algebraic exercise omitted here due
to space limitations. See Appendix for a proof.

IV. ATTACK OPERATING CHARACTERISTICS AND

OPTIMAL ATTACKS

We now study the impact of malicious data attack from the
perspective of an attacker. We assume that the attacker knows
the (MMSE) state estimator and the (GLRT) detector used
by the control center. We also assume that the attacker can
choose k meters arbitrarily in which to inject malicious data.
In practice, however, the attacker may be much more limitted.
Thus our results here are perhaps more pessimistic than in
reality.

A. AOC and Optimal Attack Formulations

The attacker faces two conflicting objectives: maximizing
the MSE by choosing the best data injection a vs. avoiding
being detected by the control center. The tradeoff between
increasing MSE of the state estimator and lower the prob-
ability of detection is characterized by attacker operating
characteristics (AOC), analogous to the receiver operating
characteristics (ROC) at the control center. Specifically, AOC
is the probability of detection of the detector Pr(δ(z) = 1 | a)
as a function of the extra MSE E(a) = E0 + ‖Ka‖2

2 (4) at
the state estimator, where E0 is the MMSE in the absence of
attack.

The optimal attack in the sense of maximizing the MSE
while limiting the probability of detection can be formulated
as the following constrained optimization

max
a∈Ak

‖Ka‖2
2 subject to Pr(δ(z) = 1|a) ≤ β, (12)

or equivalently,

min
a∈Ak

Pr(δ(z) = 1|a) subject to ‖Ka‖2
2 ≤ C. (13)

The design of optimal attack for the above is difficult in
general. Here we propose a heuristic for Pr(δ(z) = 1|a),
which will allow us to rewrite the above optimization in a
way that is easier to solve.

B. The Minimum Residue Energy Attack

The difficulty of obtaining optimal attack defined in (12,13)
is the lack of analytical expressions for the detection error
probability Pr(δ(z) = 1|a). We present here an alternative
approach using a residue energy heuristic.

Given the naive MMSE state estimator x̂ = Kz (2-3), the
estimation residue error is given by

r = Gz, G � I − HK (14)

Substituting the measurement model, we have

r = GHx + Ga + Ge.



Fig. 1. IEEE 14 bus system.

where Ga is the only term from the attack. Therefore, instead
of working with the probability of attack detection, we can
cast the problem of optimal attack as maximizing MSE while
minimizing the residue energy of the attack. Specifically, we
consider the following equivalent problems:

max
a∈Ak

‖Ka‖2
2 subject to ‖Ga‖2

2 ≤ η, (15)

or equivalently,

min
a∈Ak

‖Ga‖2
2 subject to ‖Ka‖2

2 ≥ C. (16)

The above optimizations remain difficult due to the constraint
a ∈ Ak. However, given a specific sparsity pattern S ⊂
{1, · · · , n} for which ai = 0 for all i /∈ S, solving the optimal
attack vector a for the above two formulations is a standard
generalized eignevalue problem.

In particular, for fixed sparsity pattern S, let aS be the
nonzero subvector of a, KS the corresponding submatrix of
K, and GS similarly defined. The problem (16) becomes

min
u∈Rn−k

‖GSu‖2
2 subject to ‖KSu‖2

2 ≥ C. (17)

Let QG � GT
S GS, QK � KT

S KS. It can be shown that the
optimal attack pattern has the form

a∗
S =

√
C

‖KSv‖2
2

v (18)

where v is the generalized eigenvector corresponding to the
smallest generalized eigenvalue λmin of the following matrix
pencil

QGv − λminQKv = 0.

The k dimensional symmetrical generalized eigenvalue prob-
lem can be solved the QZ algorithm [20].

V. NUMERICAL SIMULATIONS

We present some simulation results on the IEEE 14 bus
system as illustrated in Figure 1 where we have used Bus 1
as the reference. For the linearized DC model, there are 13
state variables and 54 measurements. In our simulation, the
state variables are Gaussian with covariance Σx = σ2

xI , and
the measurement errors are given by Σe = σ2

e . The SNR in
dB is defined as SNR � 10 log σ2

x

σ2
2

.

A. Receiver Operating Characteristic

Fig. 2 (left) shows ROC curves for the GLRT, J(x̂) detector,
and the LNR test. In our simulations, under H1, we assumed
that the attacker controls 2 meters and applied the minimum
energy residue attack that increases the MSE at the state
estimator to different levels. The GLRT performed consistently
better than the other two conventional detectors, and the gain
largest for the more practically significant false alarm rate
regions (0.001-0.1).

B. Attacker Operating Characteristic

Fig. 2 (right) shows the AOC for the three detectors under
the minimum residue energy attack, again with 2 adversarial
meters. The results were consistent with the ROC at the state
estimator. Again the GLRT performed better than the other
two detectors across the region of all MSE increments. It is
interesting to note that, with detection probability 90%, the
MSE increase by the attack is 9dB, which means the MSE
is almost 10 times as much as the MSE without attack when
the adversary only has access to 2 meters (optimized for the
attack).

C. Random bad data vs. malicious data

We now demonstrate the difference between (conventional)
bad data and malicious data. Here we assume the best detector
(GLRT) at EMS and compare the AOC curves when two bad
data are placed randomly in the network. The values of the
bad data, however, are optimized to minimize the detection
probability. In other words, the injected bad data have the most
damaging value, but their locations are chosen randomly.

Figure 3 shows the AOC curves for the two scenarios.
We observed pronounced decrease in detection probability
when the data change from bad to malicious. When viewed
at the same detection probability level, the malicious data can
increase the MSE significantly.

VI. CONCLUSIONS

We present in this paper an analytical framework to evaluate
the impact and develop counter measures of malicious data
attack by an adversary capable of selecting a set of meters
to fabricate data. Our results show that there is a significant
difference between malicious data attack and the conventional
bad data problem in power system state estimation. We pro-
pose a new detector based on the principle of generalized
likelihood ratio test. We introduce the attacker operating
characteristic as a measure of optimality of adversary attacks
and propose a heuristic based on the minimization of residue
energy of the attack subject to a level guaranteed increase of
mean square error at the control center.

There are a number of issues not addressed in this paper are
being investigated currently, such as computationally efficient
algorithms for the GLRT detector, and the design of adaptive
optimal minimum residue energy attack. The incorporation of
PMU is another new component that is being studied and will
be reported in the future.
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Fig. 2. Left: ROC Performance of GLRT. MSE increase is 7db. SNR=10dB. Right: AOC Performance of GLRT. False alarm rate is 0.01. SNR=10dB
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APPENDIX

We establish here that the equivalence of GLRT and LNR
when ‖a‖0 = 1. If k = 1, the left hand side of (8) becomes

min
i

min
ai

(Σ−1
z )iia

2
i − 2zT (Σ−1

z )iai (19)

where (Σ−1
z )ii is the ith diagonal element of Σ−1

z , and (Σ−1
z )i

is the ith row of Σ−1
z . The second minimization can be solved

in closed form, so (19) becomes

−max
i

[zT (Σ−1
z )i]2

(Σ−1
z )ii

. (20)

We may therefore write the GLRT as

max
i

|zT (Σ−1
z )i|√

(Σ−1
z )ii

H1

≷
H0

τ. (21)

The vector of numerators in (21) is given by r′ = Σ−1
z z. Note

that the covariance matrix of r′ is simply Σ−1
z . Therefore we

may regard (21) as a test on the maximum element of the r′

after each element is normalized to unit variance.
We now show that r′ is just a constant multiple of r,

meaning that (21) is identical to (11), saving a constant factor.
Recall that r = (I − HK)z, where

I − HK = I − HΣxHT (HΣxHT + Σe)−1

= (HΣxHT + Σe − HΣxHT )(HΣxHT + Σe)−1

= ΣeΣ−1
z = σ2

eΣ
−1
z .

Thus r = σ2
er

′; the two detectors are identical.
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