
On Managing Business Processes Variants ⋆

Ruopeng Lu a, Shazia Sadiq b, Guido Governatori c

aSAP Research CEC Brisbane, Australia

bSchool of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, Australia

cQueensland Research Laboratory, National ICT Australia (NICTA)
Brisbane, Australia

Abstract

Variance in business process execution can be the result of several situations, such
as disconnection between documented models and business operations, workarounds
in spite of process execution engines, dynamic change and exception handling, flex-
ible and ad-hoc requirements, and collaborative and/or knowledge intensive work.
It is imperative that effective support for managing process variances be extended
to organizations mature in their BPM (Business Process Management) uptake so
that they can ensure organization wide consistency, promote reuse and capitalize
on their BPM investments. This paper presents an approach for managing busi-
ness processes that is conducive to dynamic change and the need for flexibility in
execution. The approach is based on the notion of process constraints. It further
provides a technique for effective utilization of the adaptations manifested in process
variants. In particular, we will present a facility for discovery of preferred variants
through effective search and retrieval based on the notion of process similarity, where
multiple aspects of the process variants are compared according to specific query
requirements. The advantage of this approach is the ability to provide a quantita-
tive measure for the similarity between process variants, which further facilitates
various BPM activities such as process reuse, analysis and discovery.

Key words: Business process management, process constraints, process variants,
process similarity, flexible workflows

⋆ This research work has been conducted at The University of Queensland.
Email addresses: ruopeng.lu@sap.com (Ruopeng Lu), shazia@itee.uq.edu.au

(Shazia Sadiq), guido.governatori@nicta.au (Guido Governatori).

Preprint submitted to Elsevier 16 February 2009

1 Introduction

There have been many efforts towards providing agile business process man-
agement (BPM) support in recent years. Business process management sys-
tems (BPMS) have been recognized as a substantial extension to the legacy
of workflow management systems (WFMS). While a typical WFMS supports
process design, deployment and enactment, an extension of WFMS function-
ality provided by BPMS is the facilitation of process diagnosis activities [1].
Furthermore, new requirements emerging from the flexibility and dynamism
of business processes require support for instance adaptation, which further
impacts on the design, execution and especially the diagnostic activities of
BPMS, and eventually will contribute to process evolution and improvement
(cf. Fig. 1).

Process Design

Process Enactment

Process
Deployment

Instance
Adaptation

Process Diagnosis

WFMS

BPMS

BPMS Supporting Instance Adaptation

Process
Improvement

Fig. 1. The extended BPMS life-cycle supporting instance adaptation and process
improvement

The process diagnosis phase refers to a wide range of BPM activities, includ-
ing business process analysis (BPA) and process mining and discovery [1,2,10].
These post-execution activities are intended to identify and resolve operational
process problems, discover preferred work practices, and provide business in-
telligence. Instance adaptation is an emerging paradigm due to various reasons
such as changes in underlying business objectives and operational constraints,
and unexpected events that cannot be handled by predefined exception han-
dling policies. Consequently, the execution of process instances needs to be
changed at runtime causing different instances of the same business process
to be handled differently.

Over the last several years of developments in BPM research and industry, we
see two equally strong but often conflicting forces impacting on the develop-
ments. Where as one fundamental aspect of BPMS and its predecessor WFMS,
is to provide control and coordination of business activities, there is another
equally demanding aspect of ensuring that the control does not prohibit the

2

operational flexibility, to unacceptable levels.

There are many use cases for such requirements. For example, in in-patient
hospital administration processes, where patient admission procedures are pre-
dictable and repetitive, however, in-patient treatments such as x-rays, pathol-
ogy tests etc. are prescribed uniquely for each case, but none-the-less have to
be coordinated and controlled. Another example can be found in higher ed-
ucation and professional training, where students with diverse learning needs
and styles are working towards a common goal (degree program). Study paths
taken by each student need to remain flexible to a large extent, time providing
study guidelines and enforcing course level constraints is necessary to remain
compliant with curriculum requirements and maintain a certain quality of
learning.

Similarly, consider an engineering firm that provides maintenance and advisory
services for telecommunication faults and inquiries. Service plans for individual
customer inquiries will be quite diverse, even though basic administration may
be the same. We will later introduce the last scenario in more detail as it is
used as a running example to demonstrate various concepts and methods.

Many research prototypes (MOBILE [18], ADAPTflex [31], Pocket of Flexibil-
ity [35], Worklets [5], DECLARE [30]) have shown a variety of conceptually
advanced solutions along this direction (see Section 6 for detail descriptions).
In order to provide a balance between the opposing forces of control and flex-
ibility, we have argued for [35], a modeling framework that allows part of the
model that requires less or no flexibility for execution to be predefined, and
part to contain loosely coupled process activities that warrant a high level
of customization. When an instance of such a process is created, the process
model is concretized by the domain expert at runtime. The loosely-coupled ac-
tivities are given an execution plan according to instance-specific conditions,
possibly some invariant process constraints, and their expertise. Current BPM
solutions only provide limited support for instance adaptation. For example,
the de facto industrial standard for process modeling, Business Process Model-
ing Notations (BPMN) [29] offers a concept called Ad Hoc Sub-process (AHS)
that provides certain level of support for instance adaptation requirements.
AHS is a group of activities that have no pre-defined execution dependencies.
A set of activities can be defined for the AHS, but the sequence and number
of executions for the activities is completely determined by the performers of
the activities and cannot be defined at design time. Based on the runtime con-
ditions and their domain expertise, the performers determine how to execute
the activities within the AHS, namely the order of execution (sequential or
parallel). The contained activities can be executed multiple times until the
pre-defined completion conditions are satisfied [29]. Fig. 2 shows an example
process model with a AHS for a network diagnostics scenario. Fig. 3 shows

3

three of many potential execution possibilities of the AHS 1 .

Network Diagnostics Plan

~

T1: Send
Test

Message

T2: Test
Hub201

T5: Test
ExchangeA3

7

T6:
Loop1078

T3: Test
ExchangeA3

0

T7: Test
Hub709

T4: Reboot
Srv59

T8: Test
Hub544

Receive
Request

Access
Situation

Notify
Customer

Log Report

Fig. 2. A network diagnostics scenario modeled with a BPMN ad hoc sub-process

Network Diagnostics Plan

T1: Send
Test

Message

T4: Reboot
Srv59

T8: Test
Hub544

T6:
Loop1078

(a) An execution scenario where four
tests are chosen to execute in sequence

Network Diagnostics Plan

T1: Send
Test

Message

T2: Test
Hub201

T8: Test
Hub544

T4: Reboot
Srv59

T3: Test
ExchangeA3

0

(b) An execution scenario where three
tests are chosen to execute in paral-
lel after sending test message, and con-
cluding by testing Hub544

Network Diagnostics Plan

T6:
Loop1078

T5: Test
ExchangeA37

T1: Send
Test

Message

T2: Test
Hub201

T4: Reboot
Srv59

T8: Test
Hub544

(c) An execution scenario where six tests are chosen to
execute in sequence

Fig. 3. Execution possibilities of the BPMN ad hoc sub-process shown in Fig. 2

The subprocess illustrated in these figures can be considered part of a process
that manages maintenance and advisory services for telecommunication faults
and inquiries in a telecommunications company. Below we detail a typical
scenario in this regard to provide further motivation and rationale for the
approaches proposed in this paper. This scenario will constitute a running
example throughout the paper:

A telecommunications company receives customer enquiries about network
connection problems, where each complaint case is assigned to a system engi-
neer who is responsible for designing a service plan and solving the problem.
The inquiry logging and reporting procedures are predictable and repetitive,
while diagnostic tests required to prepare a service plan will typically be case
specific and potentially uniquely configured for each case, but nonetheless still
have to be coordinated and controlled. The particular configuration of diagnos-
tic tests specific to a given instance is expected to be determined dynamically
by a domain expert, such as a senior engineer, based on case specific properties
and the experts knowledge and experience.

1 Note the modeling notation is BPMN [29].

4

There are eight diagnostic tests T1, T2, . . . , T8 available in the process, as
shown in Fig. 2:

• Send Test Message (T1)
• Test Hub201 (T2)
• Test ExchangeA30 (T3)
• Reboot Srv59 (T4)
• Test ExchangeA37 (T5)
• Loop1078 (T6)
• Test Hub709 (T7)
• Test Hub544 (T8)

Any number of these tests can be prescribed for a given request, in some
preferred order. The network engineer has the flexibility to design a service
plan that best suits the individual case. The design decisions can only be made
at runtime when case specific conditions are available and thus cannot be fully
anticipated at design time.

Although constructs such as BPMN AHS can be flexibly configured to exe-
cute contained activities sequentially or in parallel, there is no means for con-
trols such as restricting the number of selectable activities, nor defining com-
plex/partial dependencies among them. Techniques are required where part
of the modeling effort is transferred to domain experts or knowledge workers
who make design decisions at runtime under meaningful, domain-relevant con-
straints. In Section 3, we will provide an approach capable of capturing a large
number of selection and scheduling constraints, thus providing a meaningful
context for runtime instance adaptations.

At the same time, it can be observed that the typical consequence of an effec-
tive instance adaptation environment is the production of a large number of
process variants. An executed process instance reflects a variant of realization
of the process constraints, and provides valuable knowledge of work organi-
zation at the operational level. There is evidence that work practices at the
operational level are often diverse, incorporating the creativity and individu-
alism of knowledge workers and potentially contributing to the organization’s
competitive advantage. Such resources can provide valuable insight into work
practice, help externalize previously tacit knowledge, and provide valuable
feedback on subsequent process design, improvement, and evolution.

Nevertheless, the way that domain experts reason about the situation during
instance adaptation cannot be truly reconstructed using computational tech-
niques. Building a repository to systematically capture, structure and subse-
quently deliberate on the decisions that led to a particular design is a more
pragmatic way to approach the problem. We observe that a process variant at
least contains information from the following dimensions:

5

• Structural dimension contains the process model based on which the pro-
cess instance is executed. For process variants, the structural dimension
is represented by the process model that is adapted from the design time
model for the particular process variant during instance adaptation.
• Behavioral dimension contains executional information such as the set of

tasks involved in the process execution (may differ from structural dimen-
sion due to choice constructs), the exact sequence of task execution, the
performers and their roles in executing these tasks, the process-relevant
data, and execution duration of the process instance.
• Contextual dimension contains descriptive information (annotations) from

the process modeler about the reasoning behind the design of a particular
process variant.

There are various occasions in the BPM life-cycle when precedents of process
variants need to be retrieved. For example, during instance adaptation itself,
domain experts may refer to a list of precedent process variants designed for a
similar situation. Using appropriate analysis techniques, a collection of suffi-
ciently similar process variants could be generalized as the preferred/successful
work practice, and consequently contribute to the design of a given instance
and subsequently to process improvements.

In this paper we will address both the above issues, namely techniques for
supporting instance adaptation, and the utilisation of the direct consequence
of instance adaptation - management of process variants. We will introduce a
framework for instance adaptation to support flexible business process man-
agement based on the notion of process constraints. This approach transfers
part of the process modeling effort to domain experts who make execution
decisions at runtime. Instance adaptation is supported by techniques for spec-
ifying instance-specific process models and constraint checking in different
variants of the business process. We will demonstrate how the specification of
so-called selection and scheduling constraints can lead to increased flexibility
in process execution, while maintaining a desired level of control. This aspect
is detailed in Section 3.

We then introduce the key technique for managing process variants, namely a
query formalization and progressive refinement technique for process variant
retrieval. In our previous work, we have developed a reference architecture for
managing such process variants for effective retrieval [23]. The contribution
of this paper is to provide an approach for utilizing the retained process vari-
ants. An essential concept in this regard is the definition of similarity between
process variants in terms of their various dimensions. In other words, how to
characterize the degree of match between two similar process variants. This is
a hard problem in general due to the informal nature of commonly adopted
process description languages, and more so due to the subjectivity in process
model conceptualization. Questions such as how to measure the similarity be-

6

tween two process variants having different process models but same sequence
of task execution can come forth. From the behavioral perspective two vari-
ants are equivalent since they have the same execution behavior. While from
the structural perspective they may be dissimilar. Thus variants can share
features in one dimension but be dissimilar in another dimension, making an
objective evaluation of similarity rather difficult. At the same time, it is desir-
able that the similarity between the variants can be quantified, i.e., to be able
to define a metric space to indicate the degree of similarity or dissimilarity.

The rest of the paper is organized as follows. Section 2 will provide background
concepts for the underlying framework for supporting instance adaptation.
In Section 3, we introduce the core concept of process constraints, based on
which the instance adaptation framework is developed. Section 4 discusses
how a repository of process variants manages a large number of executed pro-
cess variants as an information resource. In particular, the schema for process
variants in the repository will be defined. Queries applicable on process vari-
ants and their formalization will be discussed in Section 5. In this section,
we also provide a quantitative measure for defining similarity between process
variants, covering structural, behavioral and contextual dimensions, as well
as a progressive-refinement technique for query processing. Related work is
presented in Section 6, followed by the conclusion and future work in Section
7.

2 Framework for Managing Business Process Variants

The framework for constraint-based flexible business process management
comprises of two major components, namely Business Process Constraint Net-
work (BPCN), and Process Variant Repository (PVR). In this section, the
overall approach of the framework is presented, which shows how this frame-
work can be applied to BPMS, and the relationship between BPCN and PVR.
The functionality of the proposed framework (cf. Fig. 4) is explained with re-
spect to different stages in the BPM life-cycle.

- Create Process Template
- Specify Process
Constraints

Process Variant Repository

Process Design

- Runtime Instance
Adaptation
- Create Process Variants

Process Execution

- Using Variants for
Process Diagnosis,
Redesign and Evolution

Process Diagnosis

Business Process Constraint
Network

Fig. 4. Framework for constraint-based business process management

7

The rationale of BPCN is to provide a descriptive way to build models for
business processes where the complete process cannot be prescribed at design
time. Essentially, BPCN captures the set of available tasks in a given business
process, and allows for a specification of constraints to govern how instance-
specific process models can be built from these tasks. This approach relaxes
rigid process descriptions into a set of minimal constraints, such that a variety
of process models can be designed for different process instances, provided the
relevant constraints are satisfied. The basic intuition and working of BPCN is
described below.

The flexible business process is defined at design time. The process modeler
designs a template for the underlying business process, which contains a pool
of available tasks in the business process, and the specification of process con-
straints restricting how these tasks can be selected and executed. This may
be part of a larger process model defined in a conventional or prescriptive
way (see e.g. the example in Fig. 5), or it may constitute the entire process
model. In the absence of a process model, the specification of process con-
straints reflects the process logic and hence the template and model become
synonymous. However, the constraint representation of the process logic has a
descriptive nature, which specifies what must be done but not how. The quality
of the process constraints is then checked by constraint reasoning techniques,
such that the validity of the constraints is ensured (Section 3). The definition
created above is uploaded to the process engine. This process is now ready for
execution.

At runtime, the user or application would create an instance of the defined
process. On instantiation, the engine creates a copy of the process definition
and stores it as an instance template (instance-specific process model). This
process instance is now ready for execution. The available process activities
of the newly created instance are assigned to performers through work lists
and activity execution takes place as usual, until the instance needs to be
dynamically adapted to particular requirements arising at runtime.

Instance adaptation takes place when a domain expert wishes to create an
instance-specific variant of the process. The domain expert undertakes the
task of dynamically adapting the instance template with available pool of ac-
tivities, while guided by the specified constraint set. This revises the instance-
specific process model and requires a build function which has the capability to
load and revise instance templates for active instances. The instance-specific
process model is referred to as a process variant.

The next step is to verify the new model representing the process variant, to
ensure that it conforms to the correctness properties of the modeling language
as well as the given constraints. For the adapted process variant, conformance
to constraints is checked through the verification component of BPCN (see Sec-

8

tion 3.4). On satisfactory verification the newly defined (or revised) instance
resumes execution. Execution will now continue as normal, until completion
or until re-invocation of the build function, in which case instance adaptation
will be performed again.

BPCN is essentially a design approach, but is supported by an execution
environment in which process instances can be individually specified according
to specific needs, but still conform to process constraints, e.g., a particular
configuration of tests prescribed by a service plan. The execution environment
allows for the generation of potentially a large number of customized process
variants, each of which has been constructed with the help of a domain expert
utilizing expert knowledge as well as case-specific requirements.

After the process variant has been executed, the adapted process model and
its runtime properties are acquired by PVR, which is a structured repository
of storing executed process variants. PVR also provides support for reusing the
retained information. Thus, PVR provides the support for process diagnosis
and subsequent process improvement activities. These functions of the PVR
will be discussed in Sections 4 - 5.

3 Business Process Constraint Network (BPCN)

The foremost factor in designing business processes is achieving improvements
in the business outcomes [17]. However, decisions at the strategic level need to
be evaluated in light of constraints that arise from several sources. It has been
identified that at least four sources of constraints have impact on a business
process design:

• Strategic constraints define the tactical elements of the process e.g. ap-
proval of director required for invoices beyond a certain value.
• Operational constraints are determined through physical limitations of

business operations, e.g. minimum time for warehouse offloading.
• Regulatory constraints are prescribed by external bodies and warrant

compliance e.g. financial and accounting practices (Sarbanes-Oxley Act), or
batch identification for FDA in the pharmaceutical industry.
• Contractual constraints define the contractual obligations of an orga-

nization towards its business partners, e.g. maximum response time for a
service.

In order to harness the full power of BPM techniques, each of these constraints
should eventually be translated into constructs of a (executable) business pro-
cess model, and subsequently lead to process enforcement at the business
activity level. In BPCN, constraints can be modelled according to specific

9

business requirements in some business domain by a process modeller, and a
constraint network is then formulated according to the properties of the related
business domain. This can be referred to as constraint modeling. In this ap-
proach, the process modellers manually transform the process knowledge into
the executable form (as BPCN constraints). However, in the application areas
where business process requirements are represented in a well-defined format,
such as business contract or regulatory obligations, it is desirable for a sys-
tematic methodology for transforming well-defined contractual expressions to
a set of executable constraints. This transformation process is referred to as
constraint acquisition.

BPCN primarily provides the environment for constraint modeling in order
to facilitate the instance adaptation framework introduced in the previous
section. In BPCN, business process specification is undertaken through the
specification of process constraints. Under the same process template, the
selection, and the subsequent modeling of selected tasks can be largely different
from instance to instance. When adapting a process variant at runtime, the
first step is to choose a suitable set of tasks to execute in the current process
instance. There are some core tasks that need to be executed in every instance,
while some others may be optional and can be included/excluded for execution
according to user preference and instance-specific conditions. At the same
time, there are many other restrictions and inter-dependencies that need to
be expressed. These are referred to as Selection constraints, and essentially
define what activities constitute the process model. In this paper, the focus of
BPCN is on a range of elementary controls at task level, i.e., the individual
property and the binary relations among the tasks in a process template.
Accordingly, 9 classes of selection constraints have been conceptualized for
expressing such restrictions on task selection.

Furthermore, there are constraints that define how the selected activities are
performed, both in terms of ordering as well as temporal dependencies. These
are referred to as Scheduling constraints. These constraints are applicable at
process level, which constitute the specification of task selection restrictions
and the dependencies within these tasks including control dependencies (such
as sequence, alternative, parallel etc.) and inter-task temporal dependencies
(such as relative deadlines). Such constraints are defined in graphical notations
provided by BPCN, which can be used to conceptually express requirements
for instance adaptation by general process modelers who have little or no
formal background. With the help of examples, this section briefly introduces
how to apply business process constraints to achieve flexibility in process man-
agement.

Consider the process given in the figure. This represents the scenario intro-
duced in Section 1. Recall that any number of these tests can be prescribed
for a given request, in some preferred order. The network engineer has the

10

T3T1 T2 T4

T7T5 T6 T8

Begin End
Receive
Request

Assess
Situation

Notify
Customer

Log Report

T1: Send Test Message
T2: Test Hub201
T3: Test ExchangeA30
T4: Reboot Srv59

T5: Test ExchangeA37
T6: Loop1078
T7: Test Hub709
T8: Test Hub544

Service Plan

Fig. 5. Process model containing a process template for the network diagnosis pro-
cess

flexibility to design a service plan that best suits the individual case. The
design decisions can only be made at runtime when case specific conditions
are available and thus cannot be fully anticipated at design time. At the same
time, some dependencies and restrictions among the available tests can be
abstracted beforehand, such as below:

• T1, T4 and T8 are basic tests and must be performed for all testing cases;
• Based on operational guideline, minimal 4 tests have to be performed to

guarantee accuracy, while maximal 6 tests can be selected for efficiency;
• Testing ExchangeA30 (T3) depends on the result of test data of Hub201

(T2), and must be performed after Hub201;
• Either Hub709 (T7) or Hub544 (T8) needs to be tested as they are located

on the same communication bus;
• ExchangeA30 can only be tested (T3) when Srv59 is rebooting (T4).

The abovementioned restrictions and dependencies can be considered as con-
straints on tests selection (i.e., the requirements on mandatory selection,
and the number of tests) and scheduling (the order of execution). However,
it is obvious that even with a small number of activities, there is a large
number of possible service plans that satisfy the (quite restrictive) testing
constraints. For example, while at least four and at most six tests can be
chosen out of eight available ones, where there are three mandatory tests
that have to be chosen all the time, the engineer can still choose to per-
form exactly four, five or up to six tests. In combinatorial terms, there are
C5

1 +C5
2 +C5

3 = 5!
1!(5−1)!

+ 5!
2!(5−2)!

+ 5!
3!(5−3)!

= 5+10+10 = 25 possible selection
scenarios. Reducing the number from scenarios where T3 is selected without
T2, or T7 and T8 are selected together (14 scenarios), there are still 11 pos-
sible selection scenarios (e.g., choosing tests T1, T4, T8 and T5; or T1, T4,
T8, T2, T3 and T6). Consider that for each such scenario, the engineer can
further define a variety of execution plans including any execution order, e.g.,
execute all selected tasks in sequence, or in parallel, or some in sequence and
others or parallel. In graphical modeling notation (e.g., BPMN), it is tedious
if not impossible to capture and manage all such scenarios and to articulate
the conditions for the alternative branches.

11

This is a typical example of the need for operational flexibility. In our ap-
proach, it is assumed that the underlying system supports a typical graph-
based process model and a state-based execution model. Such process models
support typical constructs such as sequence, fork, choice, etc., and activity ex-
ecution is based on a finite state machine with typical states such as available,
commenced, suspended, and completed. This is a common environment for
many commercial process management systems, and therefore our approach
has minimal impact on underlying systems. For the subsequent discussion on
process constraints, we first introduce some basic terms:

A process template PT is defined by a set of process tasks T and a set of pro-
cess constraints C. T represents the available pool of activities to be adapted
at runtime. C is a set of (selection and/or scheduling) constraints that defines
relations between the properties of tasks in T .

3.1 Selection Constraints

We now define various selection constraints and their graphical notations that
can be used to conceptually express task selection requirements. The notations
are developed for process modelers who have little or no background in con-
straint satisfaction theory. Nevertheless, formalization of selection constraints
is later presented, in order to precisely define the semantics.

The following classes of selection constraints have been identified:

Mandatory constraint man defines a set of tasks that must be executed in
every process variant, in order to guarantee that intended process goals will
be met.

Prohibitive constraint pro defines a set of tasks that should not be executed
in any process variant.

Cardinality constraint specifies the minimal min and maximal max cardi-
nality for selection among the set of available tasks.

Inclusion constraint inc expresses the dependency between two tasks Tx and
Ty, such that the presence of Tx imposes restriction that Ty must also be
included. Prerequisite pre constraint is the inverse of an inclusion con-
straint.

Exclusion constraint exc prohibits Ty from being included in the process
variant when the Tx is selected.

Substitution constraint sub defines that if Tx is not selected, then Ty must
be selected to compensate the absence of the former.

Corequisite constraint cor expresses a stronger restriction in that either both
Tx and Ty are selected, or none of them can be selected, i.e., it is not possible
to select one task without the other.

12

Exclusive-Choice constraint xco is also a more restrictive constraint on the
selection of alternative tasks, which requires at most one task can be selected
from a pair of tasks (Tx, Ty).

Tx Ty Tx Ty Tx Ty

Tx Ty Tx Ty Tx Ty

Tx Tx

Mandatory Prohibitive

Inclusion Exclusion Substitution

Prerequisite Corequisite Exclusive-Choice

min:max

Cardinality

Fig. 6. Notations for selection constraints

The notation for selection constraints is summarized in Fig. 6. Note however,
the arrows do not indicate order of execution for the tasks within the process
template (i.e., control flow structure of the tasks). Rather, they are introduced
to provide visual representation for selection constraints, as indicated by the
labels.

Below we provide the formal consideration for selection constraints. Let T =
{T1, T2, . . . , Tn} denote the set of all tasks in a process template PT . Each task
Ti is considered as a propositional variable ranging over domain Di = {0, 1}.
Let Ti = 1 stand for the presence of task Ti in a process variant V and Ti = 0
stand for absence.

Mandatory, prohibitive and cardinality constraints can be defined by restrict-
ing the domains of respective tasks. A mandatory task Ti ∈ T is denoted by
man(Ti), where man is a property of Ti restricting its domain Di = {1}. The
set of all mandatory tasks in a process template PT is given by:

Rman = {Ti | man(Ti)}

A task Ti in a process template PT is prohibitive if it is forbidden to be
selected in any process variants V of PT . A single prohibitive task Tx can be
denoted by pro(Tx), where pro is a property of Tx restricting Dx = {0}. The
set of all prohibited tasks in a process template PT is given by:

Rpro = {Ti| pro(Ti)}

A minselect constraint is denoted by Rmin(m) ⊆ T , such that |Rmin(m)| ≥ m,
and ∀Ti ∈ Rmin(m), Di = {1}. The minselect constraint restricts that every
process variant V should contain all tasks in Rman, and zero, one or more

13

tasks from (T − Rman). A maxselect constraint is denoted by Rmax(n) ⊆ T ,
such that |Rmax(n)| ≤ n, and ∀Ti ∈ Rmax(n), Di = {1}.

The mandatory, prohibitive and cardinality constraints are defined by restrict-
ing the domain of a single task. On the other hand, the other selection con-
straints including inclusion, exclusion, substitution, prerequisite, corequisite
and exclusive-choice are binary relations that are defined by restricting the do-
mains of the pair of tasks. We accordingly call them containment constraints.
For example, An inclusion constraint Rinc is a binary relation on a pair of
variables (tasks) Tx, Ty ∈ T , if and only if (iff):

Rinc = ((Tx, Ty), {(0, 0), (0, 1), (1, 1)})

An inclusion constraint Rinc defined on tasks Tx, Ty reads Tx includes Ty. By
definition, it restricts the domain of values that can be assigned to the pair
(Tx, Ty). In this case, either (0, 0), (0, 1), or (1, 1) can be assigned. Applying
this definition to task selection, it expresses that when Tx is selected, Ty must
also be selected (Tx is the dependent of Ty). The following selection scenarios
are permitted:

• neither Tx nor Ty is selected, i.e., (0, 0);
• Ty is selected without Tx, i.e., (0, 1);
• both Tx and Ty are selected, i.e., (1, 1).

The scenario (1, 0) is prohibited where Tx is selected without Ty, thus enforcing
the inclusion relationship between selection of Tx and Ty.

Similarly, an exclusion constraint Rexc is a binary relation on a pair of variables
Tx, Ty ∈ T , iff :

Rexc = ((Tx, Ty), {(0, 0), (0, 1), (1, 0)})

An exclusion constraint prohibits the selection scenario (1, 1) where both Tx

and Ty are selected. Table 1 presents a summary for the definition of the
containment constraints.

3.2 Scheduling Constraints

Scheduling constraints take advantage of the temporal property of each task
in a process template, namely the execution duration. Suppose each task Ti

is given an expected execution duration dur(Ti). It can be observed that
representing each task by its execution duration (as an interval), the inter-
dependencies between these tasks can be modeled [6].

14

Table 1
Definitions of Containment Constraints

Constraint Definition

Rinc ((Tx, Ty), {(0, 0), (0, 1), (1, 1)})

Rexc ((Tx, Ty), {(0, 0), (0, 1), (1, 0)})

Rsub ((Tx, Ty), {(0, 1), (1, 0), (1, 1)})

Rpre ((Tx, Ty), {(0, 0), (1, 0), (1, 1)})

Rcor ((Tx, Ty), {(0, 0), (1, 1)})

Rxco ((Tx, Ty), {(0, 1), (1, 0)})

The following classes of scheduling constraints have been identified:

Before constraint expresses that tasks Tx and Ty should be arranged sequen-
tially, but not in adjacency in the process model.

Meet constraint expresses that Tx and Ty are to be arranged sequentially,
and in adjacency, i.e., Tx and Ty need to be placed in adjacent to each other
(consecutive placement).

Order constraint is less restrictive that expresses Tx and Ty are to be executed
in a specific order (not necessarily in adjacency). If a pair of tasks (Tx, Ty)
satisfies either Before or Meet, it also satisfies Order constraint.

Starts constraint expresses a restriction on commencement time of executing
tasks Tx and Ty, such that Tx and Ty are arranged in parallel, and commence
execution at the same time. In addition, Tx should finish execution before
Ty.

Finishes constraint expresses a restriction that Tx and Ty are arranged in
parallel, and complete execution at the same time. In addition to both tasks
completing execution at the same time, Tx should commence execution after
Ty.

During constraint expresses that Tx and Ty are arranged in parallel, and Tx

can only commence execution after Ty has commenced, and must complete
execution before Ty completes.

Equals constraint restricts that Tx and Ty are arranged in parallel, and com-
mence and complete execution at the same time.

Parallel constraint is also less restrictive that expresses Tx and Ty are ar-
ranged in parallel. If a pair of tasks (Tx, Ty) satisfies either Starts, Finishes,
During, or Equals constraint, it also satisfies Parallel constraint.

The set of scheduling constraint notations is summarized in Fig. 7.

15

Tx Tybefore Tx Tymeets Tx Tyorder Tx Tystarts

Tx Tyfinishes Tx Tyequal Tx TyparallelTx Tyduring

Fig. 7. Notations for scheduling constraints

3.3 Validation of Constraints

We now use the running example introduced previously to demonstrate con-
straint specification and validation. Suppose a set of selection and scheduling
constraints (cf. Fig. 8) is specified for the process template in Fig. 5 containing
following constraints.

• Mandatory task T1, T4 and T8;
• Minimal selection of 4 and maximal selection of 6 tasks;
• T2 is the prerequisite of T3;
• T7 and T8 are of exclusive-choice;
• Order between T2 and T3;
• T3 starts T4.

T2

T7

T3

T8

T1

T2

T3 T4

T1 T6

T3

T5

order

starts

Selection Constraints 4:6 Scheduling Constraints

T6T5 T8T7T4

Fig. 8. Selection and scheduling constraints defined on the pool of available tasks

Given the constraint specification in a process template, it is necessary to
validate the constraint set, or ensure that the constraints are satisfiable, i.e.,
there exists at least one solution for the constraint set. At the very least, the
validation of the constraint set must firstly ensure that any hidden facts in
the constraint specifications are explicitly shown. This makes the constraint
specification non-redundant and understandable, and is particularly useful for
domain experts when concretizing the process template during instance adap-
tation. The second requirement is to ensure that there is at least one possible
scenario where no constraint is violated. In other words, to avoid contradicting
constraint specifications. For example, Tx includes Ty and Tx excludes Ty are
two contradicting constraints. If such conflicts exist, it is not possible to find
a scenario where no constraint is violated. Furthermore, it is possible that the
selection constraint specification is too restrictive that there is no possible way
for satisfactory task selection. An obvious example can be a process template
with prohibitive constraints on every task. In practice however, it is expected

16

that a large number of instance adaptation scenarios will be typically satisfied
from a given set of constraints.

In order to provide a means of validating the constraints, the constraint spec-
ification is transformed into respective constraint systems (namely SCN and
TCN for selection and scheduling constraints). BPCN uses Constraint Satisfac-
tion [11] as the underlying theory to formally model and reason about process
constraints. Selection (SCN) and scheduling constraint networks (TCN) are
defined to provide formal semantics to validate the constraint specifications.
SCN and TCN can also be used to check for the conformance of the adapted
process variants at runtime. This is ensured through the enforcement of net-
work consistency in SCN and TCN. SCN is a binary Boolean constraint net-
work, and TCN is a qualitative temporal constraint network. The complexity
of the consistency checking algorithm is bound by the number of constraints
in the network. Formal specifications of process constraints can be found in
[24], where definitions of SCN, TCN, as well as the constraint validation and
process variant verification techniques are discussed in detail.

Below we present the basic intuition behind the validation procedure using
the running example, where in there are some implicit (hidden) and redun-
dant constraints. An exclusive-choice constraint is defined on T7 and T8, which
means either T7 or T8 can be included but not both. At the same time, T8
must be chosen for all process variants (mandatory task). The implicit con-
straint is T7 to be prohibitive, which also makes the exclusive-choice constraint
redundant. Furthermore, an implicit constraint T2 order T4 can be implied
from T2 order T3 and T3 starts T4. This is because when T3 and T4 start
execution at the same time, if T2 finishes execution on or before T3 starts, the
same relation also applies to T2 and T4 (transitivity). The validated constraint
specification is shown in Fig. 9, where the redundant constraint is removed,
and implicit constraints are made explicit.

T2

T7

T3

T8

T1

T2

T3 T4

T1 T6

T3

T5

order

starts

Selection Constraints 4:6 Scheduling Constraints

T6T5
T8T7

T4

T2 T4order

Fig. 9. Validated selection and scheduling constraints defined in Fig. 8

17

3.4 Runtime Verification for Variant Design

The process constraints in BPCN express minimal restrictions on task se-
lection and scheduling for all business process variants. With the graphical
notations, the constraint specification is used to provide visual support for
domain experts to design process variants during instance adaptation. This
section demonstrates how instance adaptation is supported at runtime.

Instance adaptation is generally performed in two steps, namely task selection
and task scheduling. A domain expert first chooses from the task pool, the set
of tasks to be performed in the current process variant. Based on which, the
domain expert can then assign an expected execution duration for each task
and then define the flow dependencies for the selected tasks.

As a result, each process variant contains a complete process model (cf. Def-
inition 1 in Section 4). A process variant is executable in that the process
model with flexible components have been concretized, i.e. the set of tasks
to be executed, and the assignment of exactly one temporal relation between
each pair of tasks are defined in the process model. Any user specified pro-
cess variant needs to be checked against the given process constraints, i.e.,
a process variant is consistent if the task selection and schedule satisfy the
constraint specification.

Fig. 10 shows four concretized process variants for the example process tem-
plate (cf. Fig. 5). For ease of discussion, the execution durations are annotated
with each task in the figure. These variants are to be verified against the se-
lection (displayed on lower left) and scheduling constraints (lower right). The
goal of verification is to first check whether the set of selected tasks satisfies
relevant selection constraints, and secondly whether the execution schedule
satisfies relevant scheduling constraints.

In Fig. 10, variants V2, V3 and V4 satisfy all relevant selection and scheduling
constraints. In particular, variant V2 contains the minimal number of (4) tasks
required, which includes all mandatory tasks T1, T4 and T8. Since task T2 is
not included, the only applicable scheduling constraint T3 starts T4 is satis-
fied. Variants V3 and V4 contain the maximal number of (6) tasks which also
include all mandatory tasks. All three scheduling constraints are applicable
and satisfied.

On the other hand, variant V1 violates the prohibitive constraint since it con-
tains T7. Assumed that there is no transition overhead between tasks in the
process model. V1 violates the order constraints between T2, T3, and T2, T4.
This is because T2 cannot start before T7 finishes (it takes 20 mins after T1
finishes to start T7), while T3 and T4 can start execution before T2 (it takes
10 mins after T1 finishes to start T3 and T4). To resolve this violation, T7

18

Verify Task Selection Verify Task Schedule

Fork

Sync

T3

T2

T1

T4

Fork

Sync

T8

T7

30 mins

20 mins

15 mins 30 mins

10 mins

10 mins

T2

T3 T4

T1 T6

T3

T5

order

starts

Scheduling Constraints

T8T7

T2 T4order

T2

T7

T3

T8

T1

Selection Constraints 4:6

T6T5T4

Process
Variant V1

T1

30 mins

Fork

Sync

T3 T4

15 mins 30 mins

T8

10 mins

Fork

Sync

T3

T8

T6

Fork

Sync

T2

10 mins 10 mins

15 mins 20 mins

Fork

Sync

T1 T4

30 mins 30 mins

T8

T3

T1

T4

Fork

Sync

T6

T2

30 mins 10 mins

10 mins

30 mins

15 mins 20 mins

Process
Variant V2

Process
Variant V3

Process
Variant V4

Fig. 10. Verifying process variants against process constraints

can be removed from the model, and the previously violated constraints can
be satisfied. The complexity of the verification algorithms is bound by the
number of constraints in the constraint network.

3.5 Summary

This section has presented how selection and scheduling constraints can be
specified at design time, through intuitive constraint notations. The quality of
the constraint specification is checked through the formal machinery of SCN
and TCN respectively. This section further demonstrates the applicability of
BPCN, which aims at presenting how instance adaptation is supported at
runtime. Different process models can be built/tailored for individual process
instances at runtime. Such instance-specific process models (process variants
V) contain a complete process model that is defined by domain experts at run-
time during instance adaptation. With the possibility for generating a large
number of such process variants from the execution environment, the follow-
ing section on process variant repository will demonstrate how such valuable
information can be managed and reused.

19

4 Process Variant Repository

It can be observed that BPCN facilitates the creation of “quality” process
variants, since each variant conforms to a set of necessary constraints, but
also represents a domain expert’s preferred approach to handle a particular
case. In the proposed framework, process variants and their properties will be
retained in a repository, called Process Variant Repository (PVR). Over time,
PVR can build into an immense corporate resource.

The fundamental goal of PVR is to provide an appropriate characterization to
describe the preferred work practices represented through process variants, and
subsequently generalize the conditions contributing to the preference. PVR
provides a well-formed structure to retain past process designs, as well as
an instrument to utilize the adaptations manifested in process variants. In
particular, a facility for discovery of preferred variants is provided through
effective search and retrieval based on the notion of process similarity, where
multiple aspects of the process variants are compared according to specific
query requirements.

4.1 Reference Architecture

The capture of executed process variants and the subsequent retrieval of pre-
ferred process variants are the two major functions of PVR [23]. Fig. 11
presents an overview of the PVR reference architecture.

1

Repository
Management

Query Processing

Query

Retrieved Cases
Executed Process

Instance

5

4

3

Instance
Adaptation
on BPCN

2

5

3

PVR
Usage

4

Process Variant Repository

Repository

Fig. 11. Reference architecture of PVR

In Step 1-2 as annotated in Fig. 11, an executed process variant is retained in
the repository. The variant is created using the instance adaptation mechanism
of BPCN. Later, a query is formulated to specify variant retrieval requirements
(Step 3). The query requirement is formulated with the help of the query

20

processing component. In Step 4, the repository is searched to find matching
process variants according to query requirements. The goal of this step is to
retrieve a set of sufficiently similar process variants to the query. In Step 5,
the best matches are selected from the set of initial matches according to
the degree of similarity relevant to the query. The further selection involves a
ranking process. Step 4-5 will be repeated if a progressive refinement approach
is taken, where the initial query definition is refined in order to obtain a more
restrictive set of results.

4.2 Process Variant Schema

In order to provide a query facility for variants, it is necessary to first define a
schema for describing them. The particular design of a variant is reflective of a
domain expert’s preferred work practice. However, (given groups of) variants
are derived from a common design time process templates and hence can have
a significant overlap as well. Before we present the schema of process variant,
we first define two important concepts, including process model and execution
sequence.

Definition 1 (Process Model) A process model W is a pair (N, F), which
is defined through a directed graph consisting a finite set of nodes N , and a
finite set of flow relations F ⊆ N × N . Nodes are classified into tasks T and
coordinators C, where N = C ∪ T , and C ∩ T = ∅. T is the set of atomic
tasks in W , and C contains coordinators of the type: Begin, End, Fork, Syn,
Choice, Merge, where

• Begin node represents the beginning of the process model;
• End node represents the end of the process model;
• Choice node represents the divergence of a single path into two or more

mutually exclusive alternative paths (cf. XOR-Split, Exclusive Choice);
• Merge node represents the convergence of two or more mutually exclusive

alternative paths into a single path (cf. XOR-Join, Simple Merge);
• Fork node represents the divergence of a single path into two or more par-

allel paths (cf. AND-Split, Parallel split);
• Sync node represents the convergence of two or more parallel paths into a

single path (cf. AND-Join, Synchronization).

A sub-process (or a process component) is a special type of W , which is a
fragment of a process model in which Begin and End are excluded from its co-
ordinator nodes. Task nodes represent atomic manual or automated activities
or sub processes (representing nesting) that must be performed to satisfy the
underlying business process objectives. Coordinator nodes allow us to build
control flow structures (fork, choice, loop etc.) to manage the coordination

21

requirements.

Begin

End

Fork

Sync

T5

T1

T2 T3

T4T6

Begin

End

T1

Fork

Sync

T2 T3

T7

T5

Begin

Sync

T1

Choice

Merge

T2 T3

T4

T5

Fork

T6

End

Begin

Sync

T1

Merge

Choice

T5

Fork

End

T2

T3 T4 T6

Begin

Sync

T1

Choice

T5

End

T2

T8

T4

T3

Fork Fork

Merge Merge

T6 T7

Wa Wb Wc Wd We

T4

Fig. 12. Example process variant models

An execution sequence of a process variant is referred to as the trace of exe-
cution in a process model, which reflects the actual order of task execution at
runtime. Typically, a process model with parallel (fork) or alternative branches
(choice) contains more than one possible execution sequences. For example,
sequences 〈T1, T2, T6, T5〉, 〈T1, T2, T5, T6〉, 〈T1, T3, T4, T6, T5〉 and
〈T1, T3, T4, T5, T6〉 are four possible execution sequences in Wb (cf. Fig. 12),
since T2 and 〈T3, T4〉 are on alternative branches, and T5, T6 are on parallel
branches. Note however that for a given process variant, there is exactly one
execution sequence resulting from execution.

We follow the general mathematical definition to define an execution sequence:
A finite sequence s = {s1, s2, . . . , sn} is a function with the domain 1, 2, . . . , n,
for some positive integer n. The i-th element of s is denoted by si.

Definition 2 (Execution Sequence) An execution sequence sW of a pro-
cess model W is a finite sequence of tasks T ′ ⊆ T in W , which is defined by
the sequence 〈T1, T2, . . . , Tn〉, n ≥ 1.

Note that in some process model W , it is possible that n > |sW |, for some
execution sequence sW = 〈T1, T2, . . . , Tn〉. E.g., in Wd, a possible execution
sequence is 〈T1, T2, T2, T3, T4, T5, T6〉, where T2 has been executed twice

22

due to the loop structure. The superscript W of an execution sequence sW for
a process model W can be omitted if no ambiguity is caused.

We now provide a definition for the process variant schema. A retained process
variant in PVR is referred to as a case and represents the complete design and
runtime properties of a variant.

Definition 3 (Process Variant Schema) A case V is defined by
(id, W, sW , Res, Dat, T, Com, Mod), where

• id is the identifier for the process variant V ;
• W is the process model (N, E) for V defined on the task set T ⊆ N ;
• sW is the execution sequence of tasks T in V based on W ;
• Res = {Res1, . . . , Resm} is a finite set of resource instances allocated to

execute V ;
• Dat = {Dat1, . . . , Datk} is a finite set of workflow-relevant data items re-

lated to V ;
• T = {T1, . . . , Tn} is the set of tasks in V , ∀Ti ∈ T , Ti = (ni, Resi, T

−
i , T+

i),
where:
· ni is the identifier of Ti;
· Resi ∈ Res is the resource instance allocated to Ti;
· T−

i and T+
i are the time stamps when Ti commenced and completed exe-

cution;
• Com is an annotation that textually describes the design of the variant;
• Mod is the set of modeler(s) who participated in the instance adaptation for

V .

The schema contains instance level features id, W, sW , Res, Dat, Com, Mod
and task level feature T . The id can be combined with the variant symbol V ,
i.e., V10 denotes variant V with the feature (id, 10). Occasionally we omit the
subscript i for V when there is no ambiguity. Each element in V is referred
to as a feature of V . These features can be classified into structural (id, W),
behavioral (sW , Res, Dat) and contextual (Com, Mod) dimension. The process
variant repository is the set of all collected process variants, that is PV R =
{V1, . . . , Vn}.

PVR is expected to contain a large number of process variants. Table 2 shows
some example process variants in PVR based on the graphical process models
presented in Fig. 12. Only the variant id, model W and execution sequence s
is shown for conciseness. It is likely that many process variants can have the
same process model (if the design time template is adapted in the same way),
while the execution sequences may still be different.

For example, V1 and V8 have the same process model Wa, while due to instance-
specific runtime conditions, the execution sequences are different. However, V1

and V5 have the same execution sequence although their process models differ.

23

Table 2
Tabular view of a typical PVR showing the first three features

id W sw . . .

V1 Wa 〈T1, T2, T3, T6, T4, T5〉

V2 Wc 〈T1, T3, T2, T4, T7, T5〉

V3 Wd 〈T1, T2, T2, T3, T4, T5, T6〉

V4 Wb 〈T1, T2, T5, T6〉

V5 Wd 〈T1, T2, T3, T6, T4, T5〉

V6 We 〈T1, T2, T3, T4, T6, T8〉

V7 We 〈T1, T2, T3, T5, T7, T8〉

V8 Wa 〈T1, T3, T4, T2, T6, T5〉

.

This observation leads to an interesting problem when defining similarity of
process variants regarding W and s, which will be discussed in the next section.

5 Query Processing

PVR uses queries to express requirements for process variant retrieval. Based
on different retrieval requirements, a query is a collection of one or more
process variant features (cf. Definition 3), describing some desired attributes
for the targeted variants. Many of such features can be expressed by a typical
structured query language, and can mostly be satisfied using well established
query techniques like SQL. For example, in order to find all process variants
in which execution duration is less than 3 hours, and any performers of role
senior engineer were involved, a query can be formulated by referring to the
time stamp of execution (|T+

i − T−
i | < 3 hours) and the allocated resource

instance (Resi = “senior engineer”).

Unlike traditional query systems however, the search criteria for process vari-
ants may also include reference to complex structural features. For example,
the requirements can be to find all case in which task Test Hub201 (T2) and
Test ExchangeA30 (T3) were executed immediately after Send Test Message
(T1), and Reboot Srv59 (T4) was performed in parallel with Test Hub709 (T7)
etc. (cf. Wc in Fig. 12), or simply having the same process model as given in
the query.

For queries containing structural features, we propose that the query require-
ment be expressed in a way similar to the query-by-example (QBE) paradigm,

24

where a process model W Q is presented in the query containing the desired
structural features, and the objective is to retrieve all cases with a process
model W similar to W Q. W Q can resemble a complete process model (cf. W Q

a

in Fig. 13), which specifies the exact structure required for the process variants
to be retrieved; or a partial process model (cf. W Q

b in Fig. 13), which contains
a fragment of the process model characterizing the desired structural features
to be retrieved.

Besides structured feature, a query may also include multi-dimension features
found in the process variant schema. For example, tasks T1, T2 and T3 were
performed by a senior engineer in sequence, and finished execution within 1
day (We in Fig. 12), or having execution sequence 〈T1, T3, T4, T5, T6〉 and
tasks T5 and T6 were in parallel branches in the process model (cf. Wb in Fig.
12).

It is specifically interesting to investigate providing a facility to find process
variants for queries that provide structural criteria, as in the above examples.
We now provide a generalised definition for a query in PVR. The following dis-
cussions on process variant similarity, however, are focus on the more complex
structural features (W and sW).

Definition 4 (Query) Let F be the set of all features in PVR. A query Q

is defined by the set of query features
{

F Q
1 , . . . , F Q

n

}

, where ∀F Q
i ∈ F , F Q

i

corresponds to a feature defined in the schema of V . The function Type maps a
query feature into one of the process variant features, i.e., Type : F 7→ TY PE,
where TY PE =

{

id, W, sW , Res, Dat, T, Com, Mod
}

.

Fork Sync T5T1

T2

T3

T4

Wa
Q

Wb
Q

T2 T4 T6

Begin End

Fig. 13. Example of structural query features, W
Q
a as a complete process model and

W
Q
b as a partial process model

5.1 Similarity of Process Variants

In order to determine the degree of match between the desired process variant
as described by query features and the potential match, the notion of similarity
measure needs to be defined.

25

Given a query Q with one or more query features
{

F Q
1 , . . . , F Q

k

}

, and a pro-

cess variant V described by the list of features
{

F V
1 , . . . , F V

k

}

according to the

variant schema (Definition 3), it is desirable that applying a similarity func-
tion Sim(V, Q) yields a quantitative figure that indicates the degree of match
between V and Q. Nevertheless, each different type of features has specific
semantics, e.g., the similarity measure for execution sequence and allocated
resources should be different. For each different feature Fi, a similarity func-
tion sim should be defined according to the specific semantics of the type
of Fi. The overall similarity score Sim(V, Q) is the average of the similarity
score for each pair of comparable features (F V

i , F Q
i), i.e., F V

i , F Q
i ∈ F and

Type(F V
i) = Type(F Q

i).

We define the metric space for process variant similarity in the interval of real
numbers between 0 and 1, where 0 indicates complete dissimilarity, and 1 indi-
cates complete matching, and a number between 0 and 1 for partial matching.
In order to distinguish different similarity functions, the feature type is ap-
pended to the function symbol sim, e.g., simF1 denotes the similarity function
defined for feature F1. Note that we refer to sim(F V

i , F Q
i) as simFi

(V, Q)

Definition 5 (Generalized Similarity) Let Q =
{

F Q
1 , . . . , F Q

k

}

, k ≥ 1, be

a query, V be a process variant described by the list of feature
{

F V
1 , . . . , F V

k

}

.

Let simF i : F V × F Q 7→ {0, . . . , 1} be a similarity function for a feature type
in TY PE. Then the overall similarity (Sim) between the process variant V
and the query Q is given as:

Sim(V, Q) =
1

|Q|

k
∑

i=1

simFi
(V, Q)

wherein (F V
i , F Q

i) is a pair of comparable features.

For features in behavioral and contextual dimension (including s, Res, Dat,
T, Com and Mod), the similarity function can be defined based on known
techniques. For example, simple set membership can be used to compare re-
sources specified in the query to resources utilized in the variant. Similarly,
Euclidean distance can be used to define similarity between execution se-
quences [39]. Case based reasoning has been used to match variants against
textual descriptions [36].

5.2 Structural Similarity

The structural feature of process variants is described by a complete or partial
process model. Structural aspect is arguably the most important aspect of a

26

process variant. Defining the similarity based on the metric space is useful for
quantifying the degree of match for structural feature, especially for ranking
partial matching process models.

Nevertheless, it is argued that graph-based similarity measure alone is inade-
quate for determining complex matching involving structural features in PVR.
This is primarily due to the specialized structural relationships within graph-
ical process models, i.e. models may be structurally different but semantically
similar. It is desirable that the similarity of process models can be quantified
to some extent. Such that, when the closeness of the query process model and
process variant model cannot be visually observed, partial matching variants
can be presented using a ranking function to produce a similarity score base
on the metric space.

Furthermore, as discussed in previous example (cf. Table 2), it is often the
case that exact matching execution sequences may result from different process
models. While from the same process model, different execution sequences can
be derived. There has been study towards the interplay between the similarity
of design time process models and actual execution sequences, which argues
for defining structural similarity according to typical execution behaviors as
reflected by a chosen set of execution sequences [4]. According to the typical
behavior, the more “useful” fragments of the process model are assigned more
weight towards the overall structural similarity score.

Based on this observation, it is proposed to define the structural similarity
according to both the structural and the execution behavior of the process
model, i.e., the execution sequence. Given the structural feature (as described
by a process model) W Q of a query Q, it is used to retrieve all process variants
V in which their process model W is similar to W Q. Our approach is to first
qualify the initial structural matches between a particular W and W Q, based
on structural relationships, where complete and (near perfect) partial matches
can be visually identified. A ranking algorithm (similarity function) is then
applied for the (not so perfect) partial matching process models to produce
a similarity score between each such model and W Q (presented in Section
5.4). As for the first step, we define three essential structural relationships
[34] between W and W Q:

Definition 6 (Structural Similarity) Let W = (N, E) be the process
model of a process variant V , and W Q = (NQ, EQ) a query process model.

• W is said to be structurally equivalent to W Q if N = NQ and E = EQ;
• W is said to structurally subsume W Q if NQ ∈ N , and W Q preserves the

structural constraints between nodes NQ as specified in W ;
• W is said to structurally imply W Q if NQ = N , and W Q preserves the

structural constraints between nodes NQ as specified in W .

27

Additionally, if W and W Q conform to equivalent relationship, they also con-
form to subsume and imply relationship. Given a query process model W Q,
a variant process model variant W is said to be a complete match to W Q if
equivalent or subsume relationship holds between W and W Q (Imply relation-
ship holds means near prefect partial matches.). The technique to determine
complete match is by SELECTIVE-REDUCE [21], which applies graph reduc-
tion techniques to determine the match between W and W Q. The rationale
of the technique is to firstly eliminate from N all task nodes that are not
contained in NQ, and secondly to reduce redundant flow relations in E using
reduction rules.

The algorithm is provided in appendix A for completeness. Fig. 14 shows the
result of applying SELECTIVE-REDUCE to process variant models Wa to We

(cf. Fig. 12) according to structural query process model W Q
a (cf. Fig. 13). The

reduced process models consist of only tasks {T1, T2, T3, T4, T5} as in W Q.
In Fig. 14, the reduced process model RWc from Wc is structurally equivalent
to W Q

a , which is considered as a complete match.

Begin

End

Fork

Sync

T5

T1

T2 T3

T4

Begin

End

T1

Fork

Sync

T2 T3

T5

Begin

T1

Choice

Merge

T2 T3

T4

T5

End

Begin

Sync

T1

Merge

Choice

T5

Fork

End

T2

T3 T4

Begin

Sync

T1

Choice

T5

End

T2

T4

T3

Fork Fork

Merge Merge

RWa RWb RWc RWd RWe

T4

Fig. 14. Reduced process models against query process model W
Q
a

In the rest of this section, the progressive refinement approach for query exe-
cution including the ranking technique for partial matches is presented.

28

5.3 Process Variant Retrieval Based on Progressive-Refinement

In the query processing approach, given a query Q =
{

F Q
1 , . . . , F Q

k

}

, a can-

didate set of process variants CV Q = {V1, V2, . . . , Vm} is first chosen from
PVR, where each Vi ∈ CV Q is described by a set of corresponding features
{

F Vi

1 , . . . , F Vi

k

}

. When a query feature F Q
j ∈ Q is to be compared, all Vi ∈ CV Q

are collected according to the value of feature F Vi

j that is comparable to F Q
j .

Each different F Vi

j is then compared with F Q
j . For all Vi where F Vi

j is a com-

plete match to F Q
j , Vi will remain in the candidate set CV Q. While for those

containing partial matching features can be ranked according to the similar-
ity score simFj

(Vi, Q). The process variants with “the most similar” partial
matching feature can also remain in CV Q. The process variants “not similar
enough” are removed from CV Q. This process is repeated until all F Q

j ∈ Q
have been compared, or the ideal result set is obtained. The overall similarity
score can be calculated for each process variant Vi in the result set by applying
Sim(Vi, Q). Fig. 15 provides an illustration for this approach.

Result Set

Candidate
Process
Variants

Query
Feature Filtering

Ranking

Query

Top-rank
Partial Matches

Repository

Process
Variants

Reduced
Candidates

Complete
Matches

Partial
Matches

Candidates

Fig. 15. Progressive-refinement query processing approach

For simple matching features, applying similarity function sim produces a
ranking for partial matches. The filtering step for complex matching involving
structural features however, is to apply SELECTIVE-REDUCE (Section 5.2),
which qualifies the structural relationship between the reduced process variant
models and the query process model, when complete matches (equivalent or
subsume) and near perfect partial matches (imply) can be identified. The
ranking step is to provide measurable result that fits in the metric space for
ranking partial matches.

29

5.4 Ranking Partial Matches

As defined previously, the structural feature of a process variant is represented
by its process model. In order to produce a quantitative measure for ranking
partial matching variants, we take into consideration both the model similar-
ity and the execution behaviour of the models. To evaluate two given process
models, we take a list of typical task execution sequences, and evaluate how
similar the two models behave in terms of the possibility to produce the whole
or partial sequences as in the list. The more sequences the two models sup-
port in common, the more similar they are. As a result, a similarity measure is
produced. We complete the ranking procedure when this comparison has been
repeated between the query process model and each different process model
among the partial matching process variants. Which means, the process vari-
ants sharing the same process model will be assigned the same ranking.

In particular, the ranking technique, called RANK-STRUCTURAL, calculates
the structural similarity between a reduced variant process model RW and the
query process model W Q, with reference to a set of execution sequences S.
When given the candidate set of process variants CV Q containing reduced
partial matching models RW , the set of all execution sequences S is the col-
lection of all different execution sequences (sW) from each process variant V in
CV Q 2 . Each sequence s ∈ S is calibrated with the number of times it appears
or appearance count(s) in CV Q, and is collectively denoted by ∆ (cf. Table
3). The algorithm repetitively compares the two models according to how well
each different execution sequence fits in both models. In this way, applying
RANK-STRUCTURAL for RW and W Q produces a relative similarity score
with regard to the rest of reduced variant models RW in CV Q. After applying
this algorithm to each different process model in CV Q, the ranking for each
partial matching process variant can be produced.

The algorithm as shown in Fig. 16 takes as inputs a reduced process variant
model RW , the query process model W Q, and ∆, and produces a similarity
score sim between RW and W Q with reference to ∆. Given a process model
W and a task Ti ∈ T :

• Trigger(W, Ti) denotes the set of tasks that can be triggered by task Ti in W
as the result of execution. E.g., Trigger(We, T1) = {T2} (cf. Fig. 12). For
tasks followed by a fork or a choice coordinator, it is considered that all sub-
sequent tasks after the coordinator can be triggered. E.g., Trigger(Wa, T1)
= Trigger(Wb, T1) = {T2, T3};
• Disable(W, Ti) denotes the set of tasks disabled as the consequence of exe-

cuting Ti, which is defined to realize the semantics of the Choice coordinator.

2 Note: the actual execution sequence of a process variant is a feature defined in
the variant schema, cf. Definition 3.

30

For example, Disable(Wb, T2) = {T3} and Disable(Wb, T3) = {T2}, which
means either T2 or T3 is executed but not both.

Procedure RANK-STRUCTURAL

Input: RW ,W Q, ∆

Output: sim

Method:

1. sim, counter ← 0

2. TW, TQ← ∅

3. for each different sequence s in ∆

4. for each task Tj in s, j ← 0, . . . , |s− 1|

5. TW ← (TW − {Tj} −Disable(RW, Tj)) ∪ Trigger(RW, Tj)

6. TQ← (TQ− {Tj} −Disable(W Q, Tj)) ∪ Trigger(W Q, Tj)

7. counter ← counter +
(

|TW∩TQ|
|TQ|

)

8. sim← sim +
(

count(s)
|s|
× counter

)

9. counter ← 0

10. return sim←
(

sim

|
∑

count(s)|

)

Fig. 16. RANK-STRUCTURAL

The algorithm repetitively takes a unique sequence s from ∆ for comparison
(step 3). Then for every task Tj in each different sequence s (step 4), TW
is given the current set of triggered tasks as the result of executing task Tj

in RW (step 5). Similarly, TQ is given the current set of triggered tasks as
the result of executing task Tj in W Q (step 6). For each task Tj in s, the
proportion of tasks in W Q triggered by Tj, which are also triggered by Tj in
RW is accumulated (step 7). Next the similarity score (resulting from counter)
for RW and W Q is accumulated in each sequence s, which is weighted by the
number of appearance of s in CV Q divided by the length of s (step 8). After
all different sequences in ∆ have been accounted for, the final similarity score
is scaled according to the total number of sequences in ∆ and returned. Note
that |TQ| may evaluate to 0 (step 10). It is postulated that in such case 0

0
= 0,

and 1
0

= 0.

Discussion: The algorithm is adapted from the so-called behavioural precision
and recall approach from [4] for ranking partial structural matches. In our
case, we use the reduced process models as the structural feature to compare
the process variant similarity. The list of common execution sequences that

31

is extracted from the reduced process models is used as a benchmark for the
comparison. The complexity of the algorithm is bound by the number of tasks
in W Q and the number of different sequences in ∆. Note that the structural
comparison is built upon a native model definition (cf. Definition 1). However,
it can be naturally extended to support other graphical model definitions such
as BPMN [29] with exclusive gateways (simple merge and join) and parallel
gateways (parallel split and join). Furthermore, the algorithm supports multi-
ple control flow patterns in the process model, including sequence and parallel
execution, as well as arbitrary loops. This is because 1) any execution of ar-
bitrary loop in the process variant model is reflected by the logged execution
sequence, and 2) the algorithm compares the two models by trying to repro-
duce the same sequence on both models and check for the degree of overlap.
Hence, in general cases similarity is higher if both models contain a similar
loop structure in the appropriate location, which would reproduce similar ex-
ecution sequences with repeated tasks. Note that the measure is asymmetric,
i.e., sim(RW, W Q) 6= sim(W Q, RW).

5.5 Example

Suppose it is required to retrieve process variants that any performer of role
senior engineer was involved in executing a process model similar to W Q

a ,

and its execution duration is less than 3 hours. A query Q =
{

F Q
1 , F Q

2 , F Q
3

}

containing multi-dimension features is formulated. F Q
1 ={senior engineer} is

the resource feature. F Q
2 = {< 3 hours} is the temporal feature derived from

the task level features in T . Lastly, F Q
3 = W Q

a is the structural feature of Q,
as defined by the query user.

The initial candidate set CV Q = {V1, V2, . . . , Vm} is first chosen from PVR.

∀Vi ∈ CV Q, Vi =
{

F Vi

1 , F Vi

2 , F Vi

3

}

, where F Vi

1 = role(V i), F Vi

2 = duration(V i),

and F Vi

3 = Wi. role is a function defined to extract the roles of performers
in Res for a given process variant (case) V . duration is a function giving the
execution duration of V . These functions can be defined in an application-
specific way, e.g., duration(V) = |T+

n − T−
l |, where T+

n is the completion time
stamp of the last task executed in W of V and T−

l is the start time stamp of
the first task in its execution sequence. It can start filtering process variants
in CV Q by F Vi

1 . Applying simF1
(Vi, Q) for each Vi ∈ CV Q the set of complete

matching variants can be identified, i.e., simF1
(Vi, Q) = 1 if F Vi

1 =F Q
1 =senior

engineer . As we are only interested in exact matches in F Q
1 and F Q

2 , CV Q

is updated with the set of process variants having complete matching feature
F Vi

1 (when all partial matching variants are removed from CV Q). Similarly,
CV Q is further filtered by applying simF2

(Vi, Q) for each remaining Vi ∈ CV Q.
Suppose |CV Q| = 150 after filtering by F Q

1 and F Q
2 , and for all F Vi

3 in CV Q

32

there are 5 common process models {Wa, Wb, Wc, Wd, We} as shown in Fig.
12.

Table 3
The list of all execution sequences S and their counters from reduced partial match-
ing process models (∆)

s count(s)

〈T1, T2, T2, T3, T4, T5〉 5

〈T1, T2, T3, T4, T5〉 30

〈T1, T3, T2, T4, T5〉 25

〈T1, T3, T4, T2, T5〉 45

〈T1, T2, T3, T4〉 15

〈T1, T2, T3, T5〉 10

〈T1, T2, T5〉 20

To filter by the structural feature F Q
3 , we first aggregate all Vi in CV Q ac-

cording to F Vi

3 , i.e., Wi (cf. the first two columns in Table 4). Then apply-
ing SELECTIVE-REDUCE to each different Wi, yields reduced variant mod-
els {RWa, RWb, RWc, RWd, RWe} (cf. Fig. 14). The equivalent relationship
between RWc and W Q

a is identified. As a result, for all Vi ∈ CV Q where
F Vi

3 = Wc are complete matches to F Q
3 , and the rest are partial matches. Ap-

plying RANK-STRUCTURAL to the partial matches against W Q
a provides

the similarity ranking. The collection of execution sequences S and counters
∆ from all Wi in CV Q is generated as shown in Table 3. In this case S contains
7 different execution sequences, from 150 process variants.

Table 4 shows the structural similarity ranking after applying RANK-
STRUCTURAL to the each partial matches Wi against W Q

a . A pre-defined
similarity threshold (e.g., sim ≥ 0.72) may be set to define the minimal match-
ing score. In this case, for all Vi ∈ CV Q where F Vi

3 ∈ {Wc, Wa, Wd}, e.g.,
{V2, V1, V8, V3, V5, . . .} remain in the final result set CV Q.

Table 4
Similarity ranking details for reduced partial matching process models against W

Q
a

W Variant V structural similarity

Wc {V2, . . .} 1.00

Wa {V1, V8, . . .} 0.90

Wd {V3, V5, . . .} 0.73

Wb {V4, . . .} 0.71

We {V6, V7 . . .} 0.67

33

6 Related Work

The requirements for providing flexibility in process models and execution
stem from the need for change in business processes, which have been recog-
nised for over a decade [9,16]. Instance level change is regard as the major
strength of flexible workflows and has been receiving much attention in recent
years. Industrial standard modeling language BPMN [29] provides a construct
called ad hoc sub-process to cater for such a requirement. The introduction
of flexible components into process models requires the ability of the business
process to execute on the basis of a loosely, or partially specified model, where
the full specification is made at runtime. An early attempt in this direction
is the flexible sequence in the MOBILE approach [18]. Since then, there have
been many proposals offering various solutions [3,5,7,8,12,19,27,31,35].

The proposals for supporting instance level changes can be classified into three
major classes, namely, late selection, late modeling and late composition [37].

Late selection is the approach that allows for selecting the implementation
for a particular process step at run-time either based on predefined rules or
user decisions. Worklets [5] is an example of such an approach. A worklet is
a discrete process fragment that is designed to handle a specific action (task)
in a larger, composite activity (process). An extensible repository (repertoire)
containing a number of different worklets is maintained for a worklet-enabled
activity, such that at runtime a preferred worklet is contextually chosen to ful-
fill the activity goal. The selection of worklets is guided by a set of ripple down
rules which associates a worklet with a series of instance-specific conditions.

Late modeling is the approach where parts of the process schema have not been
defined at design time, but are modeled at runtime for each process instance.
For this purpose, placeholder activities are provided, which are modeled and
executed during run-time. The modeling of the placeholder activity must be
completed before the modeled process fragment can be executed. Pocket of
flexibility [35] is an example of such approach. A pocket is a placeholder ac-
tivity which contains a set of unstructured inner activities. A fundamental
feature is specification of build constraints which essentially control the mod-
eling of the unstructured activities. Late modeling starts when the pocket is
instantiated. Then a domain expert defines a corresponding process fragment
using a restricted set of modeling elements. The inner activities can be mod-
eled to execute in sequence or parallel, as long as the build constraints are not
violated. Upon completion of late modeling the newly defined process frag-
ment is instantiated. Pocket of flexibility presents fundamental concepts on
a constraint-based or declarative approach for late modeling. A set of basic
constraint types has been identified to provide a flexible means for designing a
large number of instance-specific process models. The BPCN framework pre-

34

sented in this paper is its natural extension, which further provides a richer
taxonomy of process constraints with rigorous support for verification based
on an underlying formal theory.

Recently, there have been further developments in such declarative approached
to process modeling [30], which further re-enforces the need for transferring
some of the modeling effort to domain experts at runtime.

Late composition is the paradigm where the instance-specific process model is
composed at runtime. This is realized by on-the-fly definition of the control
flow dependencies between a set of process fragments at runtime time.

The issue of managing business processes as an information resource was first
brought into attention by [20], and has become an important and challeng-
ing problem in the field of advanced BPM techniques. [20] points out that
process models containing constraints, procedures and heuristics of cooperate
knowledge should be regarded as intellectual assets of enterprises. The collec-
tion of process models are often regarded as the knowledge base for enterprise
operations.

Traditionally this corporate knowledge is represented in process models in var-
ious cooperate information systems. However, it is quite often nowadays that
a large amount of variances are produced during business process execution.
Managing such process variants and subsequently reusing the knowledge from
the variants needs to be supported explicitly. In many cases, the source of these
variants is the system execution log that stores event-based data for traces of
different process executions. As a result, various process mining techniques [2]
have been proposed, aiming at reconstructing meaningful process models from
executional data. The reconstructed process models can then be used to fa-
cilitate a range of process redesign and auditing activities such as to compare
with the design models such that the runtime behaviors such as exception
handling and derivations can be discovered and diagnosed. In addition, more
specific techniques have been proposed to represent and utilize change logs
[32] which specifically capture the events and conditions of changes and trace
of modification to the process model.

The proposed approach is different from the process mining approach, with the
emphasis on supporting knowledge acquisition and process discovery in BPM.
In particular, it supports the reuse of past instances of process execution to
achieve new operational goals in similar situations. Compared to a typical pro-
cess execution log, the repository in PVR has a richer schema defined to pro-
vide an appropriate characterization to describe the preferred work practices
represented through process variants, and subsequently facilitate processing
queries with complex requirements for process variants retrieval.

An essential concept in process retrieval is the definition of process equiva-

35

lence, particularly regarding the structural similarity between two given pro-
cess models. There have been many proposals for defining process equivalence
based on single aspect, such as structural similarity [39], or (execution se-
quence as) behavioral similarity [4], and contextual similarity [36]. One of
the important contributions of this paper is to formally address the issue of
similarity definition with regard to process variant properties in multiple di-
mensions.

Similarity continues to pose several challenges in a number of areas such as
string matching, document matching, audio/video matching etc. Noteworthy
contributions that enable a better understanding of the notion of similarity
from a process perspective include [13] where a classification of process differ-
ences is presented, [14] where process similarity is studied based on so-called
causal footprints, and [15] that tackles the problem from a metadata per-
spective. Complementary work on process quality [26] is also relevant here, as
various model characteristics (e.g. node density, coupling, cohesion etc) impact
on the complexity of similarity detection computations. Recently introduced
re-factoring [38] of process models may assist in this regard, although further
research is warranted before practical solutions can be fully supported.

7 Conclusion and Future Work

Variations in work practice often represent the competitive differentiation
within enterprise operations. In this paper we have argued for acknowledg-
ing the value of variants in business process management platforms. We have
presented how process constraints can be used to express minimal restrictions
on the selection and ordering of tasks for variants of the targeted business
process. The selection and scheduling constraints are specified at design time,
through intuitive constraint notations. With the graphical notations, the con-
straint specification can be used to provide visual support for domain experts
to design compliant process variants during instance adaptation. We have also
presented an approach for managing such process variants as an information
resource, thus providing a whole-of-cycle solution. The presented methods
provide effective means of searching and matching process variants against
a given query from simple to complex aspects, and generate result sets that
can be conveniently ranked, thereby empowering process designers to tap into
effective precedents. In our future work we are planning to implement the
query processing approach so that empirical evaluation can be performed and
scalability and complexity analysis can be rigorously conducted.

36

References

[1] van der Aalst, W. M. P., ter. Hofstede, A. H. M., Weske, M.: Business Process
Management: A Survey. In. van der Aalst, W. M. P., H. M. ter Hofstede,
A., Weske, M. (Eds.): Proc. of International Conference on Business Process
Management (2003)

[2] van der Aalst, W. M. P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm,
G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches.
Data & Knowledge Engineering, Vol.47 (2003) 237 - 267

[3] van der Aalst, W. M. P., Weske, M.: Case handling: a new paradigm for business
process support. Data & Knowledge Engineering, Vol.53(2) (2006) 129-162

[4] van der Aalst, W. M. P., de Medeiros, A.K. Alves., Weijters, A.J.M.M.: Process
Equivalence: Comparing Two Process Models Based on Observed Behavior.
In Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (Eds.): Proc. of 4th International
Conference on Business Process Management (2006)

[5] Adams, M., ter Hofstede, A. H. M., Edmond, D., van der Aalst., W. M. P.:
Implementing Dynamic Flexibility in Workflows using Worklets. BPMcenter.org
(2006)

[6] Allen, J.: Maintaining knowledge about temporal intervals. Communications of
the ACM, vol.26 (1983) 832-843

[7] Berens, P.: The FLOWer Case-Handling Approach: Beyond Workflow
Management. In Marlon Dumas, A. H. M. ter. Hofstede., Process-Aware
Information Systems. John Wiley & Sons, Inc. (2005) 363-395

[8] Browne, E., Schrefl, M., Warren, J.: Goal-Focused Self-Modifying Workflow
in the Healthcare Domain. In Proc. 37th Hawaii International Conference on
System Sciences (HICSS-37) (2004)

[9] Casati, F., Sanchez, G., Pernici, B., Pozzi, G., Vonk, J.: Workflow Conceptual
Model, Database Support for Workflow Management: the WIDE Project,
Kluwer Academics Publishers (1999)

[10] Casati, F.: Industry Trends in Business Process Management: Getting Ready
for Prime Time. Proc. DEXA’05 Workshops (2005) 903-907

[11] Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)

[12] Dias, P., Vieira, P., Rito-Silva, R.: Dynamic Evolution in Workflow Management
Systems. In Proc. 14th International Workshop on Database and Expert
Systems Applications (DEXA’03) (2003) 254-260

[13] Dijkman, R.: A Classification of Differences between Similar Business Processes.
In Proc. 11th IEEE EDOC Conference (EDOC2007) (2007) 37-50

[14] van Dongen, B., Dijkman, M., Mendling, J.: Measuring Similarity between
Business Process Models. In Proc. 20th International Conference on Advanced
Information Systems Engineering (CAiSE’08) (2008) 450-464

37

[15] Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between
semantic business process models. In Proc. the fourth Asia-Pacific conference
on Conceptual modelling, Ballarat, Australia (2007) 71-80

[16] Ellis, C. A., Keddara, K., Rozenberg, G.: Dynamic change within workflow
systems. In Proc. COOCS’95 (1995) 10-21

[17] Indulska, M., Chong, S., Bandara, W., Sadiq, S., Rosemann, M.: Major issues in
business process management: A vendor perspective. In Proc. the Pacific Asia
Conference on Information Systems (PACIS2007) (2007)

[18] Jablonski, S.: MOBILE: A Modular Workflow Model and Architecture. In Proc.
Int’l Working Conference on Dynamic Modelling and Information Systems,
Nordwijkerhout, 1994 (1994)

[19] Kammer, P., Bolcer, G., Taylor R., Bergman, M.: Techniques for Supporting
Dynamic and Adaptive Workflow. In: Computer Supported Cooperative Work
(CSCW), Vol.9(3-4) (2000)

[20] Leymann, F., Altenhuber, W.: Managing Business Processes as an Information
Resource. IBM Systems Journal, 33(2) (1994)

[21] Lu, R., Sadiq, S.: Managing Process Variants as an Information Resource.
In Proc. 4th International Conference on Business Process Management
(BPM2006), Vienna, Austria (2006)

[22] Lu, R., Sadiq, S., Padmanabhan, V., Governatori, G.: Using a Temporal
Constraint Network for Business Process Execution. In Proc. 17th Australasian
Database Conference (ADC2006), Hobart, Australia (2006)

[23] Lu, R., Sadiq, S.: A Reference Architecture for Managing Business Process
Variants. In Proc. of 9th International Conference on Enterprise Information
Systems (2007)

[24] Lu, R.: Constraint Based Flexible Business Process Management. PhD Thesis,
School of Information Technology and Electrical Engineering, The University
of Queensland. Awarded 15 May 2008 (2008)

[25] Madhusudan, T., Zhao, L., Marshall, B.: A Case-Based Reasoning Framework
for Workflow Model Management. Data Knowledge Engineering, Vol.50(1)
(2004) 87-115

[26] Mendling, J.: Detection and Prediction of Errors in EPC Business
Process Models. PhD Thesis, Vienna University of Economics and Business
Administration (2007)

[27] Muller, R., Greiner, U., Rahm, E.: AGENT WORK: a workflow system
supporting rule-based workflow adaptation Data Knowl. Eng., Elsevier Science
Publishers B. V., Vol.51 (2004) 223-256

[28] OASIS. Business process execution language for web services version 1.1
(bpel4ws 1.1) specification. Standardisation, Organization for the Advancement
of Structured Information Standards (OASIS) (2006).

38

[29] Object Management Group (OMG): Business Process Modeling Notation
(BPMN) Specification 1.0 (2006)

[30] Pesic, M., Schonenberg, M. H., Sidorova, N., van der Aalst, W. M. P.: Constraint
based workflow models: Change made easy. In Proc. OTM Confederated
International Conferences CoopIS, DOA, ODBASE, GADA, and IS 2007 (2007)
77-94

[31] Reichert, M, Dadam, P.: ADEPTflex-Supporting Dynamic Changes of
Workflows Without Losing Control. J. Intell. Inf. Syst. Vol.10(2) (1998) 93-129

[32] Rinderle, S., Reichert, M.: Data-Driven Process Control and Exception
Handling in Process Management Systems. In Proc. 18th International
Conference on Advanced Information Systems Engineering (2006)

[33] Sadiq, W., Orlowska, M.: Applying Graph Reduction Techniques for Identifying
Structural Conflicts in Process Models. In Proc. of 11th International
Conference on Advanced Information Systems Engineering (CAiSE’99) (1999)
195-209

[34] Sadiq, W., Orlowska, M.: On Business Process Model Transformations. In
Laender, A, Liddle, S., Storey, V. (Eds.): In Proc. of 19th International
Conference on Conceptual Modeling (2000) 267-280

[35] Sadiq, S., Sadiq, W., Orlowska, M.: A Framework for Constraint Specification
and Validation in Flexible Workflows. Information Systems, Vol.30(5) (2005)

[36] Weber, B., Wild, W., Breu, R.: CBRflow: Enabling adaptive workflow
management through conversational case-based reasoning. In Proc. 9th
European Conference on Case-Based Reasoning (ECCBR2004) (2004) 434448

[37] Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support
Features in Process-Aware Information Systems. In Proc. 19th International
Conference on Advanced Information Systems Engineering (CAiSE’07) (2007)
574-588

[38] Weber, B., Reichert, M.: Refactoring Process Models in Large Process
Repositories. In Proc. 20th International Conference on Advanced Information
Systems Engineering (CAiSE’08) (2008) 124-139

[39] Wombacher, A., Rozie, M.: Evaluation of Workflow Similarity Measures in
Service Discovery. In Schoop, M., Huemer, C., Rebstock, M., Bichler, M. (Eds.):
Service Oriented Electronic Commerce. LNI, Vol.80. GI (2006)

A SELECTIVE-REDUCE algorithm

The goal of the original algorithm in [33] is to reduce a process graph into
an empty graph in order to verify structural correctness. In our approach, the
algorithm is modified to reduce a variant that has an equivalent or subsume

39

relationship with the query, into a structurally identical graph (not empty) as
the query. A detail description of the original algorithm can be found in [33].

The following terms and functions will be used to present the method. For a
given process model W (N, F):

• size[W] = size[N] + size[F] represents the total number of nodes (N) and
flows (F) in W .

For each flow f ∈ F , following basic attributes are defined:

• fromNode[f] = n where n ∈ N represents from node of f .
• toNode[f] = n where n ∈ N represents to node of f .

For each node n ∈ N , following basic attributes are defined:

• nodeType[n] ∈ {task, coordinator} represents type of n.
• coordinatorType[n] ∈ {fork, synchronizer}.
• dout[n] = out degree of n, i.e., number of outgoing flows from n.
• din[n] = in degree of n, i.e., number of incoming flows to n.
• OutF lows[n] = {f : f ∈ F, fromNode[f] = n}, i.e. the set of outgoing flows

from n.
• InF lows[n] = {f : f ∈ F, toNode[f] = n}, i.e. the set of incoming flows to

n.
• OutNodes[n] = {m : m ∈ N, f ∈ F, fromNode[f] = n, toNode[f] = m}, i.e.

the set of succeeding nodes that are adjacent to n.
• InNodes[n] = {m : m ∈ N, f ∈ F, toNode[f] = n, fromNode[f] = m}, i.e.

the set of preceding nodes that are adjacent to n.
• F [W] = {f : f ∈W}, i.e. the set of flows in process model W .
• N [W] = {n : n ∈ N}, i.e. the set of nodes in process model W .
• delete n is a procedure that removes n from N [W] and the set of outgoing

flows OutF lows[n] from n.

The algorithm is presented as follows:

Procedure SELECTIVE-REDUCE

Input: Process model W , query graph Q

Output: Reduced process model RW

Method:

if N [Q] ⊆ N [W] then

lastsize← size[W] + 1

40

while lastsize > size[W] do

lastsize← size[W]

/*Terminal-reduces first and last non-query task nodes*/

for each node n ∈ N [W], n /∈ N [Q], do

if din[n] + dout[n] ≤ 1 then

delete n

/*Sequential-reduces nodes with one incoming and one outgoing flow*/

else if din[n] = 1 and dout[n] = 1 then

toNode[top[InF lows[n]]]← top[OutNodes[n]]]

delete n

/*Adjacent - merges adjacent forks or syncs*/

else if din[n] = 1 and dout[n] > 1 and nodeType[n] = nodeType[top[InNodes[n]]]

then

for each transition f ∈ OutF lows[n] do

fromNode[f]← top[InNodes[n]]

delete n

else if dout[n] = 1 and din[n] > 1 and nodeType[n] = nodeType[top[OutNodes[n]]]

then

for each transition f ∈ InF lows[n] do

toNode[f]← top[OutNodes[n]]

delete n

end if

end while

/*Closed - reduces redundant flow from fork to sync*/

if lastsize = size[W] then

41

for each node n ∈ N [W], n /∈ [Q], do

if nodeType[n] = fork and dout[n] > 1 then

NodeSet← ∅

for each transition f ∈ OutF lows[n] do

if nodeType[toNode[f]] = synchronizer then

if toNode[f] /∈ NodeSet then

NodeSet← NodeSet ∪ {toNode[f]}

else

delete f

end if

end if

end if

end if

end if

42

