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ON MANIFOLDS OF TENSORS OF FIXED TT-RANK

SEBASTIAN HOLTZ, THORSTEN ROHWEDDER, AND REINHOLD SCHNEIDER

Abstract. Recently, the format of TT tensors [19, 38, 34, 39] has turned out to be a

promising new format for the approximation of solutions of high dimensional problems.

In this paper, we prove some new results for the TT representation of a tensor U ∈

R
n1×...×nd and for the manifold of tensors of TT-rank r.

As a first result, we prove that the TT (or compression) ranks ri of a tensor U are

unique and equal to the respective seperation ranks of U if the components of the TT

decomposition are required to fulfil a certain maximal rank condition. We then show that

the set T of TT tensors of fixed rank r forms an embedded manifold in R
n

d

, therefore

preserving the essential theoretical properties of the Tucker format, but often showing an

improved scaling behaviour. Extending a similar approach for matrices [7], we introduce

certain gauge conditions to obtain a unique representation of the tangent space TUT of

T and deduce a local parametrization of the TT manifold. The parametrisation of TUT

is often crucial for an algorithmic treatment of high-dimensional time-dependent PDEs

and minimisation problems [33]. We conclude with remarks on those applications and

present some numerical examples.

1. Introduction

The treatment of high-dimensional problems, typically of problems involving quantities

from R
d for larger dimensions d, is still a challenging task for numerical approxima-

tion. This is owed to the principal problem that classical approaches for their treatment

normally scale exponentially in the dimension d in both needed storage and computa-

tional time and thus quickly become computationally infeasable for sensible discretiza-

tions of problems of interest. To circumvent this “curse of dimensionality” [5], alternative

paradigms in their treatment are needed. Recent developments, motivated by problems in

data compression and data analysis, indicate that concepts of tensor product approxima-

tion, i.e. the approximation of multivariate functions depending on d variables x1, . . . , xd

by sums and products of lower-dimensional quantities, often offer a flexible tool for the
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data sparse approximation of quantities of interest.

In particular, this approach sheds new perspectives on the numerical treatment of PDEs

in high dimensions, turning up in various applications from natural sciences as for exam-

ple in the simulation of chemical reactions and in quantum dynamics, in the treatment

of the Fokker-Planck equation or of boundary value problems with stochastic data. In

particular, the treatment of the stationary electronic Schrödinger equation has recently

received a lot of attention. In this case, the incorporation of antisymmetry constraints

stemming from the Pauli principle causes additional technical difficulties; in the treatment

of the nuclear Schrödinger equation in quantum dynamics, the symmetry constraints are

therefore often disregarded, i.e. atoms are treated as distinguishable particles [4].

Unfortunately, besides from the elementary (matrix) case d = 2, the two classical concepts

from tensor product approximation [28], i.e. the canonical or Kronecker decomposition

also known as CANDECOMP or PARAFAC, and so-called Tucker decomposition, suffer

from different shortcomings. The canonical format, although surely scaling linearly with

respect to the order d, the dimension n of the vector space and the canonical rank r,

thus being ideal with regard to complexity, carries a lot of theoretical and practical draw-

backs: The set of tensors of fixed canonical rank is not closed, and the existence of a best

approximation is not guaranteed [11]. Although in some cases the approximation works

quite well [13], optimization methods often fail to converge as a consequence of uncon-

trollable redundancies in the parametrisation, and an actual computation of a low-rank

approximation can thus be a numerically hazardous task. In contrast to this, the Tucker

format, in essence corresponding to orthogonal projections into optimal subspaces of R
n,

still scales exponentially with the order d, only reducing the basis from n to the Tucker

rank r. It thus still suffers from the curse of dimensionality – but provides a stable format

from the perspective of practical computations: A quasi-optimal approximation of a given

tensor can be computed by higher order SVD (HOSVD) [9]; an optimal approximation

of a given tensor can be computed by higher order orthogonal iteration (HOOI, [10]),

or by the Newton-Grassmann approach introduced in [12, 40]. Alternatively, usage of

alternating least square (ALS) approaches is also recommendable for computation of a

best approximation [23, 24, 29].

Most importantly, the Tucker is also well applicable to the discretization of differential

equations, e.g. in the context of the MRSCF approach [22] to quantum chemical problems

or of multireference Hartree and Hartree-Fock methods (MR-HF) in quantum dynamics.
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From a theoretical point of view, the set of Tucker tensors of fixed rank forms an embed-

ded manifold [27], and the numerical treatment therefore follows the general concepts of

the numerical treamtent of differential equations on manifolds [20].

On the whole, one is faced with an unsatisfactory situation, confirmed by experiences

made through the past decade: On one hand, the canonical format gives an unstable rep-

resentation of ideal complexity, which cannot be recommended without serious warnings.

On the other hand, the stable Tucker format provides the basis for systematic discretiza-

tion of e.g. inital value problems, but still carries the curse of dimensionality. Recent

developments in the field of tensor approximation now seem to offer a way out of this

dilemma: Based on the framework of subspace approximation, Hackbusch and Kühn [19]

have recently introduced a hierarchical Tucker (HT) format in which only tensors of at

most order 3 are used for representation of an order-d-tensor. An according decomposition

algorithm using hierarchical singular value decompositions and providing a quasi-optimal

approximation in the ℓ2-sense has been introduced by Grasedyck [18]; Hackbusch has also

recently shown the existence of a best approximation [15]. Independently, the TT format

(abbreviating “tree tensor” or “tensor train”), a special case of the above hierarchical

HT structure, was recently introduced by Oseledets and Tyrtyshnikov [34, 38, 39]. This

format offers one of the simplest kinds of representation of a tensor in the HT format,

and although we conjecture that the results given in this paper can be generalized to

the hierarchical tensor format, we will confine ourselves to the particular case of the TT

format throughout this work for sake of simplicity.

Without reference to these recent developments, the basic ideas of these new formats

format have interestingly enough already been used for the treatment of various problems

of many particle quantum physics since almost 20 years, e.g. in quantum dynamics [4],

in the computation of finitely correlated states (FCS, [16]) and valence bond solid states

(VBS, [25]), in the context of the DMRG algorithm [47], and under the name of matrix

product states (MPS, [46]) utilized in the description of spin systems in quantum infor-

mation theory [42]. A generalization of these ideas are the so-called tensor networks [45],

and although the viewpoints on the problems generally posed and solved in physics may

be quite different, we think that it is not only of historical interest to mention and utilize

the intimate relationship between those developments in different communities.

With this paper, we wish to make a contribution to the approximation of solutions of

high-dimensional problems by TT tensors of fixed rank r (see Section 2 for the defini-

tion). After a review of the TT decomposition and the introduction some notation, we
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will start in Section 3 by showing that for a tensor U ∈ R
n1×...×nd , its TT rank (some-

times also termed compression rank) can be uniquely defined in terms of in some sense

optimal TT decompositions of U (i.e. decompositions of minimal rank), and equals the

so-called separation rank of U , see Section 2.5 and Theorem 3.1. We then continue by

analysing the set T of tensors of fixed TT rank r, forming a nonlinear manifold. For a

formulation of algorithms on T, it is helpful to understand the analytical structure of T,

in particular that of its tangent space: If we take the approach persued e.g. in [26] for

the low rank approximation of solutions of high dimensional differential equations, or as

for other manifolds in [27, 33], the original problem is in each iteration step solved on

the tangent space TUT of T, taken at the current iterate U – an approach which can be

viewed as a Galerkin approximation with the approximation space TUT depending on the

current iterate U . Therefore, we show in Section 4 that the tangent space TUT of the

TT manifold T of fixed maximal rank r, taken at some U ∈ T, can be uniquely repre-

sented by introducing gauge conditions similar to those used in [20, 33], see Theorem 4.2.

From our result, we also deduce a unique local parametrization of the TT manifold T

in Section 5, Theorem 5.2. Roughly speaking, our main result states that the manifold

of TT format locally provides an embedded manifold, therefore preserving the essential

properties of the Tucker format with a complexity scaling linearly with respect to n and

d, but only quadraticly with respect to the ranks. Section 6 finally uses the results of

Section 4 and 5 to exemplify the scope of algorithmic applications of the tangent space

TUT in the context of approximating solutions of optimization problems and differential

equations in high-dimensional spaces.

U1 U2 U3 U4 U5

r1 r2 r3 r4

n1 n2 n3 n4 n5

Figure 1. Examples of graphical representations of tensors, see Section 2.1.



ON MANIFOLDS OF TENSORS OF FIXED TT-RANK 5

2. Review of the TT-Tensor Representation; Notations and definitions

In this section, we will first of all review the basic idea and the various formats used

in the different contexts utilizing the TT approximation. As the treatment of tensors

naturally involves multi-index quantities, notational matters often tend to make the basic

ideas hard to grasp, while they are sometimes conveyed in a clearer way by means of a

graphical representation. We will therefore – alongside with the “classical” notation – use

a graphical notation inspired by [45] and similar approaches in quantum chemistry, see

e.g. [8, 43], and this notation will also be introduced in this section.

2.1. General notes; graphical representation. In the present paper, we are dealing

with the representation or approximation of tensors U ∈ R
n1×...×nd by tensors given in

the TT tensor format. In this, the order (or dimension) d ∈ N as well as n1, . . . , nd,

determining finite index sets Ii := {1, . . . , ni} for all i ∈ {1, . . . , d}, will be fixed in the

following. For convenience of exposition, we will only treat real-valued tensors here. We

will often regard a tensor U as a multivariate function depending on d variables x1, . . . , xd,

xi ∈ Ii, and write in the form

U : I1 × · · · × Id → R, x = (x1, . . . , xd) 7→ U(x1, . . . , xd). (2.1)

If not prone to arouse confusion, we will sometimes denote U : x 7→ U(x) by U(x) for

sake of brevity.

Using the graph notation introduced in [45], a tensor U of the above form (2.1) is repre-

sented by a dot with d “arms”, depicting the d free variables x1, . . . , xd. For example, a

tensor (2.1) for which d = 5 can be symbolized as in Figure 1 (a). Picture (b) and (c)

illustrate the special cases d = 1 and d = 2, i.e. that of a vector x ∈ R
n1 and a matrix

A ∈ R
n1×n2 , respectively. Many operations of multilinear algebra involve summations

over one or more of the indices (or variables) xi = 1, . . . , ni, and such summations are

conveniently depicted in the graph representation by joining the respective “arms” of the

involved tensors. Thus, a matrix-vector multiplication looks as in (d), yielding again an

one-index quantity corresponding to one “free arm”, while an SVD may depicted as in

(e), with the white two-armed dots representing orthogonal matrices. A globalisation of

the SVD is the so-called Tucker decomposition [44] as depicted in (f).

2.2. The TT format. A representation of a tensor U ∈ R
n1×...×nd in the TT tensor

format rewrites an order-d tensor of the form (2.1) as a suitable product of two matrices

and d− 2 tensors of order 3: Each order-d-tensor U of the form (2.1) can be decomposed
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into a TT tensor, so that U(x) = U(x1, . . . , xd) can be written as

U(x) =

r1∑

k1=1

. . .

rd−1∑

kd−1=1

U1(x1, k1)
( d−1∏

µ=2

Uµ(kµ−1xµ, kµ)
)
Ud(kd−1, xd), (2.2)

where for 2 ≤ i ≤ d − 1, Ui ∈ R
ni−1×ni×ri ,

Ui : (ki−1, xi, ki) 7→ Ui(ki−1, xi, ki) ∈ R
ri−1×ni×ri

is a tensor of order 3, and matrices

U1 : (x1, k1) 7→ U1(x1, k1) ∈ R
n1×r1 ,

Ud : (kd−1, xd) 7→ Ud(kd−1, xd) ∈ R
rd−1×nd

form the “ends” of the TT tensor. The numbers ri are the so-called compression ranks,

determining the sparsity of the representation (2.2). The (probably more accessible)

graphical representation of the TT tensor (2.2) is given in Figure 1(g).

Note that auxiliary variables ki, i = 1, . . . , d − 1 have been introduced, “connecting” the

single components Ui(ki−1, xi, ki) depending on solely one of the old variables xi. By the

above TT decomposition, the storage requirements can usually be reduced dramatically,

e.g. from nd to no more than r2
maxnd, where rmax is the maximum over ri, i = 1, . . . , d−1.

A decomposition of U of the form (2.2) can for instance be computed by successive singular

value decompositions, see [34] or Section (3.2). Note also that a decomposition of U of

the form (2.2) is highly non-unique, see the remarks in Section 2.3.

2.3. Component functions and matrix product representation. In (2.2), the ma-

trices
[
U1(x1, k1)

]
,
[
Ud(kd, xd)

]
can be interpreted as vector-valued functions

U1 : I1 → R
r1 , U1(x1) :=

[
U1(x1, k1)

]T

k1
,

Ud : Id → R
rd−1 , Ud(xd) :=

[
Ud(kd−1, xd)

]
kd−1

respectively. Analogously, for 2 ≤ i ≤ d − 1, the 3-d tensors Ui can be seen as matrix-

valued functions

Ui : Ii → R
ri−1×ri , xi 7→ Ui(xi) :=

[
Ui(ki−1, xi, ki)

]
ki−1,ki

. (2.3)

We will call these functions the component functions of the TT representation (2.2) of

the tensor U . The cases i = 1 and i = d are formally included in the notation (2.3) by

letting r0 = 1 and rd = 1, respectively. We will also from time to time use the sets

Ci := { Ui : Ii → R
ri−1×ri } (2.4)
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of all i-th component functions. The value U(x) of U at x = (x1, . . . , xd) ∈ I1 × . . . × Id

can now conveniently be written in the matrix product representation,

U(x) = U1(x1)U2(x2) · . . . · Ud−1(xd−1)Ud(xd), (2.5)

and we will rather use the notation (2.5) than that in (2.2) in the following. Note that for

fixed x, U1(x1) ∈ R
1×r1 is a row vector and Ud(xd) ∈ R

rd−1×1 is a column vector, so that

U(x) can be evaluated by a repeated computation of matrix-vector products, explaining

the terminology. As introduced here, we will use bold-faced letters for all matrices, vectors

and matrix- or vector-valued functions throughout this work.

In the representation (2.5) of a tensor U , multiplication of the component function Ui

from the right with any invertible matrix A ∈ R
ri×ri and simultaneously of Ui+1 with A−1

from the left yields a different TT decomposition for U , showing that a decomposition

of U of the form (2.2) is highly non-unique. In Section 3, we will formulate conditions

under which we obtain a certain uniqueness of the TT decomposition of a tensor U , see

Theorem 3.1.

2.4. Left and right unfoldings. For the treatment of TT tensors due in the following

chapters, we will use some terminology concerned with unfoldings of the above component

functions, given in the following.

The left unfolding of a component function (2.3) is the matrix obtained by taking the

indices ki−1, xi of the tensor (ki−1, xi, ki) 7→ Ui(ki−1, xi, ki) as row indices and the indices

ki as column indices,

L(Ui) ∈ R
(ri−1ni)×ri , L(Ui)

(
(ki−1, xi), ki

)
:= Ui(ki−1, xi, ki).

See also Fig. 2 for an illustration of the quantities Ui and L(Ui). The unfolding mapping

L : Ui 7→ L(Ui) (2.6)

defines a linear bijection between Ci and R
(ri−1ni)×ri . We define the left rank of a compo-

nent function Ui(·) as the rank of the matrix L(Ui) ∈ R
ri×ri , i.e. the number of linearly

independent column vectors of its left unfolding.

Figure 2. Illustration of the quantities Ui,L(Ui), [Ui,Ui]G.
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Analogously to the above, we define the right unfolding R(Ui)

∈ R
ri−1×(niri) of Ui as the matrix obtained by taking the indices ki−1 of Ui as row indices

and the indices xi, ki as column indices, and the right rank of Ui as the rank of R(Ui).

Cf. also Fig. 2 for an illustration of the quantities Ui and L(Ui).

2.5. TT decompositions of minimal rank, full-rank-condition, TT rank and

separation rank. Let U ∈ R
n1×...×nd be an arbitrary tensor. A TT decomposition

U(x) = U1(x1)U2(x2) · . . . · Ud−1(xd−1)Ud(xd) (2.7)

of the tensor U will be called minimal or fulfilling the full-rank-condition if all component

functions Ui have full left and right rank, i.e. the rank of the left unfolding of Ui is ri and

the rank of the right unfolding of Ui is ri−1. For sake of brevity we will sometimes denote

the tensor U given pointwise by (2.7) as U = U1 · . . . ·Ud. If (2.7) is a given minimal TT

decomposition of U , consisting of component functions Ui : Ii → R
ri−1×ri having full left

rank ri and full right rank ri−1, we will call (2.7) a decomposition of TT rank

r := (r1, . . . , rd−1) (2.8)

of U .

Note that a priori, there may be different TT decompositions (2.7) of U , having different

TT ranks r, so that the TT rank is a property of a particular decomposition of U , not if

U itself. In the next section, we will show though that for any minimal TT decomposition

of U , the TT rank of this minimal decomposition r is equal to the separation rank s of U ,

defined next – thus, a minimal r is uniquely determined for each tensor U ∈ R
n1×...×nd ,

and the TT rank of a tensor U will be defined as this minimal r in Theorem 3.1.

By

Ai

(
(x1, . . . , xi), (xi+1, . . . , xd)

)
= U(x1, . . . , xi, xi+1, . . . , xd) (2.9)

we denote the i-th canonical unfolding (or matrification) of U , i.e. the matrix obtained

by taking the indices x1, . . . , xi of U as row indices and the indices xi+1, . . . , xd as column

indices, see e.g. [28] for details. The unfolding or matrification of a tensor is used several

times in this paper in different circumstances where indices xi are replaced by other indices

ki etc. The i-th separation rank si of U is then defined as the rank of the i-th canonical

unfolding Ai. The vector

s := (s1, . . . , sd) (2.10)

will be called the separation rank of U .
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2.6. Orthogonality constraints. We will say that Ui and Wi are mutually left-orthogonal

with respect to an inner product induced by some symmetric positive definite matrix

G ∈ R
(ri−1ni)×(ri−1ni) iff

[Ui,Wi]G :=
(
L(Ui)

)T
GL(Wi) = 0 ∈ R

ri×ri , (2.11)

i.e. the columns of the left unfoldings of Ui and Wi are mutually orthogonal with respect

to the inner product induced by G. See also Fig. 2 for a graphical representation of

[Ui,Wi]G.

A component function Ui will be called left-orthogonal (with G = I ∈ R
ri−1ni×ri−1ni) iff

[Ui,Ui] := [Ui,Ui]I = I ∈ R
ri×ri (2.12)

holds, i.e. if the columns of L(Ui) are an orthonormal system. In the same way we define

that Ui is right-orthogonal iff

R(Ui)
(
R(Ui)

)T
= I ∈ R

ri−1×ri−1 . (2.13)

holds.

Without going into much detail, we note that a tensor may be represented in various

TT formats being special cases or equivalent representations of (2.5). For example, the

canonical proceeding of SVD from left to right gives a tensor with the components Ui being

left-orthogonal for i = 1, . . . , d, as depicted in Fig. 3(a), where the dots being white at the

arms belonging to the indices ki−1, xi indicate left-orthogonality. More globally, one can

pick i ∈ {1, . . . , d} and decompose U by SVDs from the left and the right into a TT tensor

the components of which are left-orthogonal for j < i and right-orthogonal for j > i, cf.

(b). Subsequent QR-decomposition of Ui yields another equivalent representation with

invertible D, as given in (c). The index i chosen above may even vary during some

algorithmic applications, as is for instance the case in the intermediate stages of the

DMRG algorithm used in quantum physics (cf. [47]).

Figure 3. Different formats for TT decompositions.
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3. Uniqueness statements for the TT rank r and for TT decompositions

In this section, we prove the following theorem. Part (a) is an extension of results from

the two publications [34, 35], where existence of TT decompositions with TT ranks ri ≤ si

and ri = si, respectively, is proven. It shows that for of each minimal TT decomposition,

its TT rank coincides with the separation rank and thus is a uniquely defined quantity for

each tensor U . In (b), we then give a certain uniqueness statement for TT decompositions

of minimal rank of a tensor U . Part (c) shows that in practice, a minimal rank TT

decomposition can be computed by successive SVDs, i.e. by the algorithm proposed by

Oseledets in [36].

Theorem 3.1. (Uniqueness of TT decompositions; the TT rank of a tensor)

Let U ∈ R
n1×...×nd an arbitrary tensor.

(a) There is exactly one rank vector r such that U admits for a TT decomposition

U : x 7→ U(x) = U1(x1) · . . . · Ud(xd),

of minimal rank r. If s = s(U) denotes the (unique) separation rank of U , there

holds

r = s. (3.1)

Therefore, the separation rank r = s will also be called the TT rank of the tensor U .

(b) The TT decomposition (3.1) of U of minimal rank can be chosen such that the

component functions are left-orthogonal,

[Ui,Ui] = I ∈ R
ri×ri (3.2)

for all i = 1, . . . , d − 1 (see [34] for the constructive proof). Under this condition,

the decomposition (3.1) is unique up to insertion of orthogonal matrices: For any

two left-orthogonal minimal decompositions of U (for which

U(x) = U1(x1) · . . . · Ud(xd) = V1(x1) · . . . · Vd(xd) (3.3)

holds for all x = (x1, . . . , xd) ∈ I1× . . .×Id), there exist orthogonal Q1, . . . ,Qd−1,

Qi ∈ R
ri×ri such that

U1(x1)Q1 = V1(x1), QT
d−1Ud(xd) = Vd(xd),

QT
i−1Ui(xi)Qi = Vi(xi) for i = 2, . . . , d − 1, x ∈ I1 × . . . × Id.

(3.4)
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(c) Let U 6= 0. In Figure 4, we reproduced the SVD-based TT decomposition algo-

rithm introduced in Oseledets [34]. This algorithm, when applied to U without

truncation steps and in exact arithmetic, returns a minimal TT decomposition

with left-orthogonal component functions Ui (see (3.2)).

Remark 3.2. Theorem 3.1 uniquely defines a minimal TT rank r for any tensor U . This

rank r is attained by any TT decomposition of U fulfilling the full-rank -condition (see Sec.

2.5). Note that r is not invariant under permutations of indices (because the separation

rank is not). In particular, the arrangement of indices might influence the complexity of

the storage needed to represent U in the TT format.

Also, Theorem 3.1 implies a new (without further information sharp) bound on the TT

rank of a tensor U : Because

mi := min
{ i∏

j=1

nj,
d∏

j=i+1

nj

}
(3.5)

defines the maximal rank possible for an SVD of the i-th canonical unfolding, Theorem

3.1 shows

ri ≤ mi (3.6)

Figure 4. The successive SVD-algorithm for computing a TT decomposition.

Input: U ∈ R
n1×...×nd ; Output: Ui ∈ Ci, i = 1, . . . , d.

Set B(1) = A1 (A1 is the first canonical unfolding)

Set r1 := rankB(1)

Compute the SVD B(1) =
[∑r1

k1=1 U1(x1, k1)V(1)(k1, (x2, . . . , xd))
]
x1,(x2,...,xd)

with left-orthogonal U1

for i = 2, . . . , d − 1 do

Set B(i)((xi, ki−1), (xi+1, . . . , xd)) = V(i−1)(ki−1, (xi, . . . , xd))

Set ri := rankB(i)

Compute the SVD

B(i) =
[∑ri

ki=1 Ui((xi, ki−1), ki)V(i)(ki, (xi+1, . . . , xd))
]
(xi,ki−1),(xi+1,...,xd)

with left-orthogonal Ui

end for

Set Ud(xd, kd−1) := V(d)(kd−1, xd)
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for all i = 1, . . . , d − 1.

Before we approach the proof of Theorem 3.1, we finally note that the uniqueness state-

ments of Theorem 3.1 hold analogously if for fixed i ∈ {1, . . . , d}, the left-orthogonality

conditions (3.2) are replaced by left-orthogonality in the first j < i components and by

the according right-orthogonality condition R(Uj)
(
R(Uj)

)T
= I for j > i, so that tensors

are required to be of the form depicted in Fig. 3 (b). Analogous globalisations hold for

Theorem 4.2, Theorem 5.2 (with the gauge condition (4.6) modified appropriately). ¤

3.1. Notations for left and right parts of a TT tensor. For the proof of Theorem

3.1 and also in the later chapters, we will need some more formal notation concerned with

certain unfoldings of parts of U , and they are introduced in the following.

For i ∈ {1, . . . , d} we define the i-th left part

U≤i =
[
U≤i

(
(x1, . . . , xi), ki

)]
(x1,...,xi),ki

∈ R
(n1·...·ni)×ri (3.7)

as the unfolding of the tensor (U1 · · ·Ui) ∈ R
n1×...×ni×ri given pointwise by

[
U1 · · ·Ui

]
x1,...,xi,ki

:=

r1∑

k1=1

. . .

ri−1∑

ki−1=1

U1(x1, k1)
i∏

µ=2

Uµ(kµ−1, xµ, kµ), (3.8)

obtained by taking x1, . . . , xi as row indices and ki as column index. Analogously, the

i-th right part

U≥i =
[
U≥i

(
ki−1, (xi, . . . , xd)

)]
ki−1,(xi,...,xd)

∈ R
ri−1×(ni·...·nd)

of U is the unfolding of the tensor (Ui · · ·Ud) ∈ R
ri−1×ni×...×nd given pointwise by

[
Ui · · ·Ud

]
ki−1,xi,...,xd

:=

ri∑

ki=1

. . .

rd−1∑

kd−1=1

( d−1∏

µ=i

Uµ(kµ−1, xµ, kµ)
)
Ud(xd, kd−1),

taking xi, . . . , xd as column indices and ki as row index. For formal reasons, we addition-

ally define U≤0 := (1) =: U≥d+1. Note that U≤d and U≥d yield a vectorization of the

tensor U as a column vector and as a row vector, respectively.

For two given TT representations of tensors U, V and i ∈ {0, . . . , d}, we define the i-th

left half product matrix JU, V K≤i := (U≤i)TV≤i ∈ R
ri×ri by

q
U, V

y≤i
(ki, k

′
i) =

n1∑

x1=1

. . .

ni∑

xi=1

U≤i
(
(x1, . . . , xi), ki

)
V≤i

(
(x1, . . . , xi), k

′
i

)
(3.9)

for ki, k
′
i ∈ {1, . . . , ri}.
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For formal reasons, we additionally define U≤0 := 1 =: U≥d+1. Note that U≤d and U≥d

yield a vectorization of the tensor U as a column vector and as a row vector, respectively.

Analogously, we introduce for i ∈ {1, . . . , d + 1} the i-th right half product matrix,
q
U, V

y≥i
:= U≥i(V≥i)T ∈ R

ri−1×ri−1 .

Fig. 5 (a), (b) illustrate the quantities U≤i and JU, V
y≤i

.

The following recursive formula will play a central role later:

For i ∈ {1, . . . , d}, there holds with Gi :=
q
U,U

y≤i−1
⊗ Ini×ni

q
U,U

y≤i
(ki, k

′
i) =

[
L(Ui)

T
(
JU,UK≤i−1 ⊗ Ini×ni

)
L(Ui)

]
ki,k′

i

=

ri−1∑

ki−1=1

ri−1∑

k′

i−1
=1

ni∑

x′

i
=1

ni∑

x′

i
=1

Gi(ki, xi, k
′
i, x

′
i)Ui(ki−1, xi, ki)Ui(k

′
i−1, x

′
i, k

′
i).

(3.10)

where for two matrices A, B, A⊗B denotes the Kronecker product of A and B here and

in the following.

Figure 5. (a) Illustration of U≤i. (b),(c) Two ways to obtain
q
U, V

y≤i
.

3.2. Proof of Theorem 3.1(a). We start the proof of Theorem 3.1(a) by showing the

existence of a TT decomposition of minimal rank. First of all, we note that the zero

tensor 0 ∈ R
n1×...×nd can be written as an elementary tensor built up from the zero

vectors 0(i) ∈ R
ni , giving a minimal TT decomposition for 0. We now show that for a

non-trivial tensor U 6= 0, a TT representation of minimal rank can be computed by the

algorithm given in Fig. 4.

Lemma 3.3. For a given non-trivial tensor U ∈ R
n1×...×nd, the algorithm in Fig. 4

returns (in exact arithmetic) a TT decomposition (U1, . . . ,Ud) ∈ C1 × . . . × Cd with full
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left and right rank for each component function Ui, i = 1, . . . , d.

Also, the component funtions Ui, i = 1, . . . , d − 1 are left-orthogonal.

Proof. From the properties of the SVD, it is clear that the algorithm gives back a represen-

tation with full left rank and left-orthogonal component functions U1, . . . ,Ud−1. Assume

that for some i ∈ {1, . . . , d}, a component function Ui is without full right rank. If i = 1,

U is the zero tensor in contradiction to the assumption that U is non-trivial. If we have

r̂ := rankR(Ui) < ri−1 for i > 1, an SVD of R(Ui) yields

R(Ui) = VW, V ∈ R
ri−1×r̂, W ∈ R

r̂×niri .

Setting Ûi−1 := L−1
(
L(Ui−1)V

)
and Ûi := R−1(W), there holds

Ûi−1(xi−1)Ûi(xi) = Ui−1(xi−1)Ui(xi).

For the unfolded matrix B(i−1) from the algorithm in Fig. 4, this implies that

r̂∑

k̂=1

Ûi−1(ki−2, xi−1, k̂)
( ri∑

ki=1

. . .

rd−1∑

kd−1=1

Ûi(k̂, xi, ki)
d∏

µ=i+1

Uµ(kµ−1, xµ, kµ)
)

represents also a rank-r̂-SVD of B(i−1). Because of the uniqueness of SVD ranks, this

would mean that the left rank ri−1 of Ui−1 equals r̂, a contradiction. ¤

The preceding lemma already proves part (c) of Theorem 3.1. For the proof of (a), it

remains to show uniqueness of the TT rank r = r(U) for a given tensor U . The proof

bases essentially on the observation (a) in the next lemma. The statement made in (b)

will also be used later to prove the central Theorem 4.2 of Section 4.

Lemma 3.4. Let U ∈ T be a minimal TT-tensor of rank r.

(a) For all i ∈ {1, . . . , d − 1}, the matrices U≤i,U≥i+1 have rank ri.

(b) The matrices

Gi :=
q
U,U

y≤i−1
⊗ Ini×ni

∈ R
(ri−1ni)×(ri−1ni) (3.11)

and

Pi := JU,UK≥i ∈ R
ri−1×ri−1 (3.12)

are symmetric and positive definite for all i ∈ {1, . . . , d}.
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Proof. If U ∈ T is a minimal TT-tensor, the component functions Ui have full left and

right ranks ri resp. ri−1 for all 1 ≤ i ≤ d. We only show that if Uj has full left rank

for all 1 ≤ j < i (i.e. L(Uj)
TL(Uj) has full rank rj), then JU,UK≤i−1 := (U≤i−1)TU≤i−1

and Gi are positive definite; in particular, we then obtain that U≤i has full rank ri for

all 1 ≤ i ≤ d− 1. An analogous argument applies to R(Ui)
(
R(Ui)

)T
, finishing the proof.

We proceed by induction. For i = 1, JU,UK≤0 = (1) and G1 are positive definite. For the

induction step, let the hypothesis hold for (U≤i−1)TU≤i−1 and Gi, and let L(Ui)
TL(Ui)

have full rank. Then, the columns of G
1/2
i L(Ui) are linearly independent. This means

that the Gramian matrix (G
1/2
i L(Ui))

T (G
1/2
i L(Ui)) is positive definite, i.e. there holds

(
G

1/2
i L(Ui)

)T
(G

1/2
i L(Ui)) > 0.

Using the recursion formula (3.10), JU,UK≤i can be rewritten inductively as

q
U,U

y≤i
= L(Ui)

T
(
JU,UK≤i−1 ⊗ Ini×ni

)
L(Ui)

= (G
1/2
i L(Ui))

T (G
1/2
i L(Ui)) > 0,

which also implies that Gi+1 := JU,UK≤i⊗Ini+1×ni+1
> 0 holds, completing the proof. ¤

We are now in the position to show that for any minimal TT decomposition, its TT rank

is equal to the separation rank of U : The i-th canonical unfolding Ai of U can be written

as the matrix product

Ai = U≤iU≥i+1

of the i-th left part and the (i + 1)-th right part of U , both having full rank ri according

to Lemma 3.4(a). We use the QR-decompositions

U≤i = QiSi, (U≥i+1)T = Q′
i+1S

′
i+1,

where Si,S
′
i+1 ∈ R

ri×ri have full rank ri, to obtain

Ai = QiSi(S
′
i+1)

T (Q′
i+1)

T =: QiS(Q′
i+1)

T (3.13)

with Qi,Q
′
i+1 having orthonormal columns, and S having full rank ri. Diagonalization of

the right hand side of (3.13) yields an SVD of Ai; thus

si = rank Ai = ri.

¤
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3.3. Proof of Theorem 3.1 (b). The proof of part (b) uses the following simple lemma.

Lemma 3.5. Let M1,N1 ∈ R
p×r, M2,N2 ∈ R

r×q matrices of rank r. If

M1M2 = N1N2 and MT
1 M1 = NT

1 N1 = I ∈ R
r×r, (3.14)

there is an orthogonal matrix Q such that

M1 = N1Q, M2 = QTN2. (3.15)

Proof. There holds M2 = MT
1 N1N2 and therefore

N2 = NT
1 N1N2 = NT

1 M1M2 = NT
1 M1M

T
1 N1N2

= NT
1 M1(N

T
1 M1)

TN2

This implies that Q := NT
1 M1 ∈ R

r×r is an orthogonal matrix because the columns of

N2 span R
r. Using M2 = MT

1 N1N2 again yields M2 = QTN2 and also

N1N2 = M1M2 = M1Q
TN2

which implies M1Q
T = N1 due to the full rank of N2. ¤

The assertion of Theorem part (b) now follows by inductively applying the result of

the Lemma 3.5 to the sequence of matrices (QT
i−1 ⊗ I)L(Ui) ∈ R

ri−1·ni×ri , U≥i+1 ∈

R
ri×(ni+1·...·nd) formed from the component functions Ui belonging to the left represen-

tation of U in (3.3) (where Q0 = (1)), and to Vi, V≥i+1 analogously formed from the

right hand representation: We at first note that Lemma 3.4(a) ensures that these matrices

have rank ri. Further, if Qi−1 is orthogonal, Qi−1 ⊗ I is orthogonal. Thus, the conditions

(3.14) of Lemma 3.5 are satisfied. If (3.3) holds, we thus get inductively that

L(U1) = L(V1)Q1, L(Ui) = (QT
i−1 ⊗ I)L(Vi)Qi

U≥2 =
[
U2(·) · . . . · Ud(·)

]
=

[(
QT

1 V2(·)
)
· V3(·) · . . . · V(·)d

]
;

U≥i+1 =
[
Ui+1(·) · . . . · Ud(·)

]
=

[(
QT

i Vi+1(·)
)
Vi+2(·) · . . . · Vd(·)

]
,

which proves the assertion by the observation that

L(Ui) = (QT
i−1 ⊗ I)L(Vi)Qi ⇐⇒ Ui(xi) = QT

i−1Vi(xi)Qi

for all xi ∈ {1, . . . , ni}

In the final step i = d − 1, we obtain U≥d = R(Ud) = QT
d−1R(Vd), finishing the proof.

¤
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4. The manifold of tensors of fixed TT rank and its tangent space

4.1. The manifold of tensors of fixed TT rank r. From this point on, we will be

concerned with the manifold Tr formed by the d-dimensional TT tensors U ∈ R
n1×...×nd

of fixed rank r = (r1, . . . , rd),

T := Tr := {U ∈ R
n1×...×nd is tensor of TT rank r}. (4.1)

Theorem 3.1 implies that R
n1×...nd is the disjoint union of the manifolds Tr, with the

possible values of r restricted by (3.5).

Before we mainly turn our attention to the tangent space of T in the subsequent sections,

we make the following observation:

Lemma 4.1. Let a rank vector r = (r1, . . . , rd−1) be given, r0 = rd = 1 as before. For

fixed d, n1, . . . , nd ∈ N, Tr is a manifold of dimension

dim T =
d∑

i=1

ri−1niri −

d−1∑

i=1

r2
i . (4.2)

Proof. The assertion follows from Theorem 3.1: Let us define

f : ×d
i=1Ci → R

n1×...×nd ,

given by
(
x1 7→ U1(x1), . . . , xd 7→ Ud(xd)

)
7→

(
(x1, . . . , xd) 7→ U1(x1) · . . . · Ud(xd)

)
,

and an equivalence relation ∼ on ×d
i=1Ci by

(U1(·), . . . ,Ud(·)) ∼ (V1(·), . . . ,Vd(·))

⇐⇒ (3.4) holds for some orthogonal Qi ∈ R
ri×ri , i = 1, . . . , d.

Note that f is also well defined on the factorized space V := ×d
i=1Ci/ ∼ (by application

to arbitrary representants). Let us define an auxiliary manifold M ⊆ V by the constraint

conditions

gi(U1, . . . ,Ud) := [Ui,Ui] = I ∈ R
ri×ri , i = 1, . . . , d − 1. (4.3)

The set GL(ri×ri) of invertible matrices A ∈ R
ri×ri is open and the mappings Ui 7→ [Ui,Ui],

Ui 7→ R(Ui)
TR(Ui) are continuous; thus, for any (U1, . . . ,Ud) for which the Ui have full

left and right rank, there is a neighbourhood Nδ such that for

(W1, . . . ,Wd) ∈ Nδ, each Wi still has full left and right rank. For D := M ∩ Nδ,
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the restriction f |D : D → f(D) therefore maps to T. Obviously, f |D is continuous, and

bijective by Theorem 3.1. Thus, a further restriction of f |D to a compact subset K of

D with nonempty interior possesses a continuous inverse. Yet another restriction f |L to

an open subset L ⊆ K containing U gives a local chart for T containing U , and a suit-

able collection of such restrictions for all U ∈ T thus constitutes an M-atlas [31] of T.

Thus, the dimensions of T and M coincide. To determine the latter, we first note that

orthogonal R
ri×ri-matrices are determined by ri(ri − 1)/2 degrees of freedom, so that the

factorization with respect to ∼ gives that for V ,

dim V =
d∑

i=1

ri−1niri −

d−1∑

i=1

ri(ri − 1)

2
.

In analogy to the constraint conditions imposed on the Stiefel manifold (see e.g. [20]),

it is not hard to see that the constraint (4.3) yields ri(ri + 1)/2 independent constraint

conditions in each component, so that the Jacobian of accordingly constructed constraint

function g has full rank
∑d−1

i=1 ri(ri + 1)/2. This implies (see also [20], IV.5.1) that

dim T = dim M = dim V −

d−1∑

i=1

ri(ri + 1)

2
=

d∑

i=1

ri−1niri −

d−1∑

i=1

r2
i ,

completing the proof. ¤

4.2. Representations for the tangent space of T – main result. In approximative

algorithmic treatment of high dimensional problems by

means of tensor approximation, it is often the general ansatz to fix a certain tensor rank

and thus a corresponding manifold M, i.e. Tr in our case, and then to compute a – in

some sense – best approximation of the solution of the problem on the given manifold M.

In many cases, knowledge of a (non-redundant) representation the tangent space TUM

of this manifold is needed for the design of according algorithms, see e.g. [20, 33, 41] and

also Section 6 for examples. In the remainder of this section, we shall prove the below

Theorem 4.2, which gives a unique representation of the tangent space TUT taken at U .

We will proceed as in [20, 33], introducing gauge conditions to obtain uniqueness of the

representation. Although these conditions are similar to the ones used for matrix case

treated in [26] and for the Tucker format [27], the proof of existence and uniqueness in

the present situation will be a little more subtle due to the more complicated structure

of the TT tensors.
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Theorem 4.2. Let U ∈ T, δU ∈ TUT, and let (Gi)
d−1
i=1 a gauge sequence, i.e. a sequence

of symmetric positive definite matrices Gi ∈ R
(ri−1ni)×(ri−1ni), i = 1, . . . , d − 1.

There are unique component functions Wi(·) ∈ Ci, i ∈ {1, . . . , d}, such that the tensors

δUi, given pointwise by

δUi(x) := U1(x1) . . .Ui−1(xi−1)Wi(xi)Ui+1(xi+1) . . .Ud(xd), (4.4)

fulfil both

δU = δU1 + . . . + δUd (4.5)

and the gauge conditions

[Ui,Wi]Gi
= 0 ∈ R

ri×ri , (4.6)

for all i = 1, . . . , d − 1, i.e. the column vectors of the left unfoldings of Ui and Wi are

orthogonal in the inner products induced by the gauging matrices Gi.

These unique component functions (W1, . . . ,Wd) will be called the (Gi)-

gauged representation of δU ∈ TUT.

Remark 4.3. Note that in particular, by choosing Gi = I ∈ R
(ri−1ni)×(ri−1ni) for all

i = 1, . . . , d − 1, elements of the tangent space have a unique (I)−gauged representation

given by component functions Wi : xi 7→ Wi(xi) for which

[Ui,Wi] := L(Ui)
TL(Wi) = 0 ∈ R

ri×ri , (4.7)

i.e. the column vectors of L(Ui) and L(Wi) are orthogonal with respect to the standard

inner product on R
ri−1ni. ¤

To begin the proof Theorem 4.2, let U ∈ T and a gauge sequence (Gi)
d−1
i=1 be given.

We remind the reader that any δU ∈ TUT can be represented as the derivative of a

continuously differentiable curve γ on T, i.e.

TUT =
{

γ′(t)|t=0 | γ ∈ C1(] − δ, δ[, T),

γ(t) = U1(·, t) · . . . · Ud(·, t), γ(0) = U(x)
}
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up to isomorphisms. For technical reasons, we will at first work with the set

T̂UT :=
{

γ′(t)|t=0 ∈ TUT | t 7→ Ui(·, t) is C1(] − δ, δ[, Ci)

for all i = 1, . . . , d
}

⊆ TUT

(with Ci the spaces of component functions from (2.4)) and prove Theorem 4.2 for all

δU ∈ T̂UT. At the end of this section, a dimensional argument will prove T̂UT = TUT (in

contrast to the fact that there are C1-curves γ the components of which are not all C1)

– Theorem 4.2 thus holds for all δU ∈ TUT as asserted.

In Section 4.3, we prove the existence of a (Gi)-gauged representation of δU ∈ T̂UT;

uniqueness will be proven in Section 4.4. Finally, the equality of T̂UT and TUT is subject

to Section 4.5.

4.3. Proof of existence of a (Gi)-gauged representation. Let δU ∈ T̂UT be given.

There holds for x = (x1, . . . , xd),

δU(x) ≃ (γ′(t)|t=0)(x) =U′
1(x1, 0)U2(x2) · . . . · Ud(xd) +

U1(x1)U
′
2(x2, 0) · . . . · Ud(xd) + . . . +

U1(x1) · . . . · Ud−1(xd−1)U
′
d(xd, 0).

(4.8)

This yields a representation of the form (4.5) for δU ; alas, the gauge condition (4.6) does

not need to be satisfied. Therefore, we now utilize the following basic lemma to transform

the component functions U′
1(·, 0), . . . ,U′

d(·, 0) to a (Gi)−gauged representation of δU .

Lemma 4.4. For i ∈ {1, . . . , d}, let M,U : Ii → R
ri−1×ri component functions, and let

G ∈ R
(ri−1ni)×(ri−1ni) a symmetric positive definite matrix. Then there exists a unique

component function W ∈ Ci, W : Ii → R
ri−1×ri and a matrix Λ ∈ R

ri×ri such that

M(xi) = U(xi)Λ + W(xi) (4.9)

and

[U,W]G = 0 ∈ R
ri×ri , (4.10)

i.e. the column vectors of the left unfoldings of U : xi 7→ U(xi) and W : xi 7→ W(xi) are

mutually orthogonal in the inner product induced by G. If U has full left rank, Λ is also

unique.
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Proof. Let m1, . . . ,mr ∈ R
m denote the columns of the left unfolding L(M) and l1, . . . , lr ∈

R
m denote the columns of L(U). For each i ∈ {1, . . . , r}, we express mi as

mi =
r∑

j=1

λi,jlj + wi,

with suitably chosen coefficients λi,j ∈ R and unique wi ∈ R
m from the G-orthogonal

complement of span{l1, . . . , lr}. Letting Λ = (λj,i)
r
i,j=1 and L(W) = [w1, . . . ,wr] yields

L(M) = L(U)Λ + L(W)

and thus, by applying the inverse of the left unfolding mapping L(·), the representation

(4.9). Finally, we note that if U has full left rank, the coefficients λi,j also are unique. ¤

We can now continue the proof of Theorem 4.2. We apply Lemma 4.4 to G = G1,

xi 7→ M(xi) = U ′
1(x1, 0), xi 7→ U(x1) = U1(x1), and obtain that for suitable Λ1 ∈ R

r1×r1

and a component function W1 ∈ R
n0×r1 for which W1 is left-orthogonal to U1 in the

G1-inner product (see (4.10)), the relation

M1(x1) = U1(x1)Λ1 + W1(x1)

holds; thus, for x = (x1, . . . xd),

δU(x) = W1(x1)U2(x2) · . . . · Ud(xd)︸ ︷︷ ︸
=: δU1(x)

+

U1(x1)
(
Λ1U2(x2) + U′

2(x2, 0)
)
· . . . · Ud(xd) + . . . +

U1(x1) · . . . · Ud−1(xd−1)U
′
d(xd, 0).

Now, we successively apply Lemma 4.4 to

i = 2, . . . , d, G = Gi, Mi(xi) = Λi−1Ui(xi) + U′
i(xi, 0), U(xi) = Ui(xi).

We obtain

δU(x) = W1(x1)U2(x2) · . . . · Ud(xd)︸ ︷︷ ︸
=: δU1(x)

+U1(x1)W2(x2)U3(x3) · . . . · Ud(xd)︸ ︷︷ ︸
=: δU2(x)

+ . . . + U1(x1) · . . . · Ud−1(xd−1)(Λd−1Ud(xd) + U′
d(xd, 0))︸ ︷︷ ︸

=: δUd(x)

for suitable W2, . . . ,Wd−1 and Λd−1, where (4.6) is fulfilled for all

i = 1, . . . , d − 1. Letting Wd(xd) = Λd−1Ud(xd) + U′
d(xd, 0) completes the proof for
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the existence of a (Gi)-gauged representation for any δU ∈ T̂UT and any gauge sequence

(Gi)
d−1
i=1 . ¤

4.4. Proof of uniqueness of a (Gi)-gauged representation. To prove uniqueness of

a (Gi)-gauged representation for δU ∈ T̂UT , we will use the following lemma, which

shows that it suffices to show uniqueness of representation with respect to one gauging

sequence.

Lemma 4.5. Let δU ∈ T̂UT, (Gi)
d−1
i=1 , (Hi)

d−1
i=1 be gauge sequences, and

(W1, . . . ,Wd) and (V1, . . . ,Vd) be (Gi)− and (Hi)−gauged representations of δU , re-

spectively. Then, if (W1, . . . ,Wd) is a unique (Gi)−gauged representation, (V1, . . . ,Vd)

also is a unique (Hi)−gauged representation.

Proof. Suppose that there exist two distinct (Hi)−gauged representations

(V1, . . . ,Vd), (Ṽ1, . . . , Ṽd)

for δU . Analogously to the proceeding in the above existence proof, we use Lemma 4.4 to

obtain two different (Gi)−gauged representation for δU : We again write δU recursively

as

δU(x) =
i−1∑

j=1

δUj(x) + U1(x1) · . . . · (Λi−1Ui(xi) + Vi(xi)) · . . . · Ud(xd)

+
d∑

j=i+1

U1(x1) · . . . · Vj(xi) · . . . · Ud(xd)

for i = 1, . . . , d, where the summands δUj are gauged with respect to the matrices Gi, and

as a corresponding expression for the second gauge sequence, with suitable (Gi)−gauged
˜δU j, j < i and Λ̃i−1, and with Ṽj in place of Vj for j ≥ i. For i ∈ {1, . . . , d} chosen

minimal such that Vi 6= Ṽi, we have δUj = ˜δU j for j < i and also Λi−1 = Λ̃i−1 due to the

uniqueness of the expressions yielded by application of Lemma 4.4 (Note that Ui have

full left rank by definition of Tr). Thus there holds

Mi(xi) := Λi−1Ui(xi) + Vi(xi) 6= Λi−1Ui(xi) + Ṽi(xi) =: M̃i(xi).

Applying Lemma 4.4 to Mi, M̃i and the gauge matrix Gi gives left-orthogonal decompo-

sitions in the Gi-product

Mi = UiΛi + Wi 6= UiΛ̃i + W̃i = M̃i,
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for which Λi 6= Λ̃i or Wi 6= W̃i due to left-orthogonality of the summands with respect

to the Gi-product. An easy inductive argument now shows that if we proceed as in the

above existence proof to obtain (Gi)−gauged representations, this implies δUj 6= ˜δUj for

some j ≥ i, finishing the proof. ¤

To complete the proof of Theorem 4.2, we note that the matrices

Gi :=
q
U,U

y≤i−1
⊗ Ini×ni

∈ R
(ri−1ni)×(ri−1ni), (4.11)

defined in (3.11) form a gauge sequence by Lemma 3.4; we will now show that for this

particular gauge sequence, the (Gi)−gauged representation of δU is unique. As a final

preparation for the proof thereof, we give a decomposition for 〈V, W 〉 in the following

remark.

Remark 4.6. Let V, W ∈ T be tensors, and let 〈·, ··〉 denote the usual Euclidean inner

product on R
n1×...×nd. By splitting up JV, W

y≤d
into an i-left and i + 1-th right part, it

is not hard to see (e.g. by writing out sums or by usage of the diagrams for
q
V, W K≤i,

JV, W
y≥i+1

) that

〈V, W 〉 =
q
V, W

y≤d
= 〈

q
V, W

y≤i

︸ ︷︷ ︸
∈R

ri×ri

,
q
V, W

y≥i+1

︸ ︷︷ ︸
∈R

ri×ri

〉

=
〈

(L(Wi)
T (JV, W

y(≤i−1)
⊗ Ini×ni

)L(Vi),
q
V, W

y≥i+1 〉
,

in which the last line follows from (3.10). In particular, if for some j ∈ {1, . . . , d}, V and

W coincide in the first j − 1 components, i.e.

V (x) = U1(x1) . . .Uj−1(xj−1)Vj(xj) . . .Vd(xd),

W (x) = U1(x1) . . .Uj−1(xj−1)Wj(xj) . . .Wd(xd)

for some component functions Ui(xi), then for all i ≤ j

〈V, W 〉 :=
〈

(L(Wi)
TGiL(Vi),

q
V, W

y≥i+1 〉
(4.12)

=
〈

[Vi,Wi]Gi
,
q
V, W

y≥i+1 〉

with Gi defined as by (4.11). ¤
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We are now in the position to prove uniqueness of the (Gi)-gauged representation

δU =
d∑

i=1

δUi,

δUi(x) = U1(x1) · . . . · Ui−1(xi−1)Wi(xi)Ui+1(xi+1) · . . . · Ud(xd)

(4.13)

for δU ∈ T̂UT, where the component functions Wi fulfil the gauge condition (4.6) with

the gauge sequence (Gi) defined via (4.11) by the tensor U . To do so, we have to show

that for i = 1 . . . , d, the component functions Wi are uniquely determined by δU . We

start by noting that Wi is uniquely determined iff L(Wi) is unique, which in turn by

Lemma 3.4 is the case iff the matrix

GiL(Wi)Pi+1 ∈ R
(ri−1·ni)×ri

is uniquely determined (where we let G1 = In1×n1
and Pd+1 = (1) ∈ R

1×1 for convenience).

Cast into a weak formulation, this is the case if and only if for any component function

Vi : R
ni → R

(ri−1×ri), the Euclidean inner product

〈GiL(Wi)Pi+1,L(Vi)〉 = 〈L(Vi)
TGiL(Wi),Pi+1〉, (4.14)

(taken on R
ri−1niri−1) is uniquely determined by δU . If we define for any component

function Vi a corresponding tensor

Vi(x) := U1(x1) · . . . · Ui−1(xi−1)Vi(xi)Ui+1(xi+1) . . . · Ud(xd), (4.15)

we can use (4.12), (4.13) and (4.15) to rewrite (4.14) as

〈(L(Vi))
TGiL(Wi),Pi+1〉 = 〈δUi, Vi〉, for all Vi ∈ Ci (4.16)

and we now use the gauge condition to show that for fixed test component function

Vi, 〈δUi, Vi〉 is indeed uniquely determined by δU . To this end, we observe that for all

1 ≤ j < i ≤ d,

〈δUj, Vi〉 = 〈 (L(Wj))
TGjL(Uj),

q
δUj, Vi

y≤j+1
〉 = 0 for all Vi ∈ Ci

by (4.12) and the gauge condition (4.6), and that therefore

〈δU, Vi〉 =
d∑

j=i

〈δUj, Vi〉, for all i = 1, . . . , d. (4.17)

Starting with i = d, we obtain the uniquely solvable linear equation

〈(L(Vd))
TGdL(Wd),Pd+1〉 = 〈δU, Vd〉
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for L(Wd), with the right hand side fixed by δU . We now proceed recursively: Once

L(Wi) and thus Wi, i = d, d − 1, . . . , is computed, the values 〈δUi, Vi〉 are computable.

Wi−1 is then fixed by (4.16) with

〈δUi, Vi〉 = 〈δU, Vi〉 −
d∑

j=i+1

〈δUj, Vi〉, for all i = d, . . . , 1, (4.18)

uniquely determining the right hand side, so that L(Wi−1) and thus Wi−1 are unique as

solution of (4.16). ¤

Remark 4.7. We note that the preceeding proof mainly relies on the fact that the full-

rank-condition imposed on the TT decomposition of U implies that the matrices Gi, Pi+1

are symmetric and positive definite by Lemma 3.4, thus allowing for a unique solution of

the weak equations yielded by (4.17). Those equations can be restated as

〈(Gi ⊗ Pi+1) vec(Wi), vec(Vi)〉 = 〈δUi, Vi〉, (4.19)

in which vec(Ui) denotes the vectorisation of a component function Ui. The matrices

Gi, Pi+1, often termed density matrices in the context of quantum physics and DMRG

calculations, thus play a role similar to that of the analogous density matrices in [27].

In practical TT computations, the treatment of problems as computation of best approx-

imations or solution of linear equations often boils down to solution of equations similar

to (4.19); in particular, when computing the i-th component of a best approximation, one

can choose the component functions Uj left-orthogonal for j < i and right-orthogonal

for j > i, so that the density matrices are given by the identity. See the forthcoming

publication [21] for further details.

4.5. A parametrization of the tangent space TUT. Finally, we now show T̂UT = TUT,

by which Theorem 4.2 is then proven. To this end, observe at first that dimTUT = dimT is

given by (4.2). We show that T̂UT ⊆ dimTUT possesses the same dimension, thus proving

T̂UT = TUT. The more general statement of the below Lemma 4.8 will also be useful

in the next section. At first, we define within the spaces Ci of component functions the

(linear) left-orthogonal spaces of Ui,

U ℓ
i := {Wi ∈ Ci, [Ui,Wi]Gi

= 0}.

for 1 ≤ i ≤ d − 1, and

X := U ℓ
1 × . . . × U ℓ

d−1 × Cd. (4.20)
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Obviously, due to the ri orthogonality constraints imposed on each of the column vectors

of L(Wi) for i ∈ {1, . . . , d − 1}

dim U ℓ
i = ri−1niri − r2

i ; and dim Cd = rd−1nd,

dimX =
d∑

i=1

ri−1niri −

d−1∑

i=1

r2
i .

The following lemma is now an immediate corollary of the existence and uniqueness results

proven in Section 4.3 and 4.4.

Lemma 4.8. The mapping

τ : X → T̂UT, (W1, . . . ,Wd) 7→ δU (4.21)

where

δU(x) =
d∑

i=1

U1(x1) · . . . · Ui−1(xi−1)Wi(xi)Ui+1(xi+1) · . . . · Ud(xd),

is a linear bijection between X and the tangent space TUT, taken at U . In particular,

dim T̂UT = dim TUT, T̂UT = TUT. (4.22)

5. A local parametrization for the manifold T

In this section, we use the just proven representation

(W1, . . . ,Wd) ∈ X, i.e. [Ui,Wi]Gi
= 0

for TUT and the statement given in Lemma 4.8 to set up a local parametrization of T and

to define local charts for T. The results are collected in Theorem 5.2. As before, we fix

U ∈ T and a gauging sequence (Gi).

Lemma 5.1. Let X be defined as in (4.20), and let

Ψ : X → R
n1×...×nd , (W1, . . . ,Wd) 7→

(U1 + W1) · . . . · (Ud + Wd), (5.1)

where the matrix product representation is understood pointwise as above. There is an

open neighbourhood Nδ = Nδ(0) of 0 ∈ X such that Ψ(Nδ) is an open subset of T, and

such that the restriction

Ψ|Nδ
: Nδ 7→ Ψ(Nδ) (5.2)

is a diffeomorphism.
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Proof. We utilize the inverse mapping theorem for manifolds, cf. e.g. [32], Theorem 2.25.

We note at first that with the same arguments as in the proof of Lemma 4.1, restriction

of Ψ to a suitable open neighbourhood Ñ of 0 gives a mapping Ψ : Ñ → Ψ(Ñ) ⊆ T. A

straightforward computation shows that the tangent map TUΨ belonging to Ψ (also see

e.g. [32]) is given by the bijection (4.21). Thus the conditions of the inverse mapping

theorem for manifolds are fulfilled, yielding the asserted statement. ¤

Because of Lemma 4.8, any set C = (C1, . . . , Cd) of coordinate mappings Ci : U ℓ
i →

R
ri−1niri−r2

i for i = 1, . . . , d − 1, Cd : Cd → R
rd−1nd , defines an isomorphism between X

and R
D,

D :=
d∑

i=1

ri−1niri −

d−1∑

i=1

r2
i .

We can therefore combine (5.1) with the coordinate mappings to obtain a local parametriza-

tion of T by letting C = (C1, . . . , Cd), ψ := C−1 ◦ Ψ : R
D → T. The properties of this

parametrization and some more implications are collected in the next theorem, finishing

this section.

Theorem 5.2. For all U ∈ T, there exists an open neighbourhood

NU ⊂ R
n1×...×nd of U , an open neighbourhood Nδ(0) of 0 ∈ R

D and differentiable functions

ψ = ψU : Nδ(0) → R
n1×...,×nd , g = gU : NU → R

c, c :=
d−1∑

i=1

r2
i

such that

NU ∩ T = ψ(Nδ(0)) = {U ∈ R
n1×...,×nd : g(U) = 0} (5.3)

and the above parametrisation ψ is an embedding (i.e. an immersion that is a homeomor-

phism onto its image), that is, NU ∩ T is a regular submanifold of R
n1×...×nd. ¤

Proof. The local parametrization ψ was already constructed above. The proof of Lemma

5.1 shows that the tangent mapping of ψ is an injection, making ψ an immersion. Lemma

5.1 also states that ψ is a homeomorphism onto its image. This also implies the existence

of a local constraint function g characterizing T on a neighbourhood of U , see e.g. [20],

IV.5.1. The last statement follows from the fact that ψ is an embedding, cf. e.g. [32],

Theorem 3.5. ¤
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6. Examples of problems posed on the manifold of TT tensors

To illustrate the range of applications, we now review a well-known ansatz [20, 26, 33] for

how partial differential equations and optimisation problems posed in high-dimensional

spaces R
n1×...×nd may be solved approximately on a given approximation manifold, in our

case on the manifold T of TT tensors.

Let a differential equation

du

dt
= f(u) (6.1)

for a high dimensional function u : t 7→ u(t) ∈ R
n1×...×nd be given, e.g. stemming from the

Galerkin discretization time-dependent PDE formulated on a high-dimensional function

space. Our goal is the approximation of the solution u by a (usually much more sparsely

representable) TT tensor-valued function U(t) ∈ T = T(r) of fixed rank r chosen in

advance. To this end, we replace the equation (6.1) by a related differential equation

posed on the approximation manifold T, i.e. for all starting values U(0) = U0 ∈ T, the

solution fulfils U(t) ∈ T. This is achieved as follows: If a manifold T possesses a local

embedding ψ = ψU for each U ∈ T, as the TT manifold does by Theorem 5.2, a differential

equation U̇ = F (U) is a differential equation on T if and only if

F (U) ∈ TUT

holds for all U ∈ T, see e.g. [20], Theorem 5.2; in particular, we have U(t) ∈ T for all

t > 0. Therefore, (6.1) can be solved approximately by projecting f(U) on the tangent

space TUT for each U ∈ T, i.e. by defining

F (U) := PTU
f(U) ∈ TUT,

where PTU
projects on the tangent space TUT, and by then solving the projected differ-

ential equation

dU

dt
= F (U), (6.2)

that, by the above reasoning, is a differential equation posed on the manifold T. Note

that the solution U(t) is a curve in T, so by definition dU/dt is contained in the tangent

space TUT. Thus PTU
dU/dt = dU/dt, which implies that

dU

dt
− F (U) = 0 ⇐⇒

〈dU

dt
− f(U), δU

〉
= 0 for all δU ∈ TUT, (6.3)

i.e. (6.2) can therefore be interpreted as the Galerkin projection of the original problem

onto the state dependent test space TUT. In the context of time-dependent quantum
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chemistry, the above proceeding is well-known as the Dirac-Frenkel time dependent varia-

tional principle, see [33]. The projected problem can now be solved by applying standard

methods [30] to the equivalent differential equation

dz

dt
= τ−1

(
F (ψ(z))

)
, (6.4)

with τ from (4.21) and ψ being a local parametrization. On the whole, problem (6.1) on

R
n1×...×nd is thus replaced by a differential equation in the (linear, much lower-dimensional)

coordinate space R
D, also cf. [20] for details.

The above problem of solving the partial differential equation (6.1) includes the notewor-

thy special case of the standard minimisation problem

J (u) → min for differentiable J : R
n1×...×nd → R, (6.5)

which by the choices

J (u) =
〈Au, u〉

〈u, u〉
, J (u) = ‖Au − b‖2, J (u) = ‖f(u)‖2

for instance includes the problem of finding the lowest eigenvalue for a symmetric positive

definite A, solution of linear equations for such A, nonlinear equations and also, by letting

A = Â
1

2 for Â > 0, b = Â
1

2 b̂, the problem of finding a best approximation to given b̂ with

respect to the Â inner product. Defining the gradient flow of J by the differential equation

du

dt
= −J ′(u), (6.6)

the problem (6.5) is equivalent to computation of the long-term behaviour limt→∞ u(t) of

a solution of (6.6). The variational formulation on T, obtained in the above way, reads

〈dU

dt
+ J ′(U), δU

〉
= 0 for all δU ∈ TUT, (6.7)

and a solution U(t) ∈ T to (6.6) can be computed by the above mentioned methods.

7. Numerical examples

In this section, we present some numerical experiments for the TT format. We compare

two different approaches to obtain a TT tensor representation from a given full tensor:

One is the full to tt method from the TT-Toolbox, introduced in [34]. The method

creates a TT tensor by computation of successive SVDs, afterwards truncated at a chosen

bound relative to the Frobenius norm of the full tensor. The second algorithm is a
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modified alternating least square algorithm inspired by the DMRG algorithm used in

quantum physics, where in each inner iteration, two component functions are optimized

and then decomposed by truncated SVDs to update one of the component functions.

The algorithm, starting with a random TT approximation of rank one and referred to

as MALS in the following, will be discussed at more length in a forthcoming paper [21].

The bound for the SVD truncations was set to 10−12 in full to tt and to 10−9 for MALS.

All algorithms were implemented in Matlab using only the build-in functions and the

TT-Toolbox [37], using an AMD processor with four 2,6 GHz cores and a total 16 GB

RAM. In the following we describe two experiments. They confirm that the full to tt

method works stably due to the use of SVDs; also, in contrast to ALS for the canonical

format, the MALS variation for TT works very well in many cases: It seems to be as stable

as the direct SVD full to tt method, while often being much faster than full to tt.
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Figure 6. TT approximations of random tensors of different ranks r.

7.1. Restoring a tensor with specific TT rank. In the first experiment, we converted

a TT tensor of given rank r to a full tensor in R
n1×...×nd and investigated if the full tensor is

restored by a full to tt/MALS TT approximation of the same rank. As appoximand, we

used tensors of ranks r with ri = r = 1, . . . , 25 for i = 2, . . . , d−2, r1 = rd−1 = min{r, n1},

having order d = 10, spatial dimensions n1 = . . . = nd = 5 and Frobenius norm 100. Both

methods gave back a tensor with the same rank as the initial random tensor in all cases,

where MALS only needed one iteration step in all experiments. The results are displayed in
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Fig. 6. Plot (a) shows the absolute error of the approximation. The precision is measured

by the function tt dist 2 from the TT toolbox, giving back the Frobenius norm of the

distance between two TT tensors. While both are sufficiently close to machine precision,

the MALS method is about 10 times more precise than full to tt. Plot (b) shows the

time needed to compute the TT decomposition. Here, the advantage of the MALS variation

becomes apparent: With growing rank, the SVDs used in full to tt have to be computed

for increasingly bigger matrices, while for MALS, the growth of computational resources

needed is moderate.
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Figure 7. TT approximations of Friedman data sets.

7.2. Variation of the Friedman1 data set. In the second experiment, we approxi-

mated synthetic data obtained from the combination of continuous functions. We use a

variation of the Friedman1 data set [17] for example used in [6]. For d = 5 and ni = n

with n ∈ {3, . . . , 20}, we use index sets

I
(n)
1 = . . . = I

(n)
5 = {

k

n
| k = 0, . . . , n}.

We approximate the tensor given by

U (n) : I
(n)
1 × . . . × I

(n)
5 → R,

U(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5.
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Note that the Frobenius norm of U grows exponentially with n, see Fig. 7 (a). The

algorithms full to tt and MALS both produce TT approximations with ranks r2 = r3 =

r4 = 2. The results for r1 are depicted in Fig. 7 (b). In (c), the absolute approximation

errors (in the Frobenius norm) are displayed. The plot (b) shows that for some values of

n, MALS computes an approximation for which the rank r1 is bigger than that computed by

full to tt, corresponding a better approximation precision in (c). Figure (d) compares

the computation times needed for both decompositions.

8. Conclusion

We have shown that the set Tr of tensors of fixed TT rank, being the simplest special case

of the hierarchical HT format [19], locally forms an embedded submanifold of R
nd

. This

is analogous to according results for the Tucker format [27], and similar methods for the

approximation of high dimensional problems as differential equations and optimisation

problems may now be utilized. In particular, we have parametrized the tangent spaces

of T uniquely by introducing appropriate gauge conditions similar to those in [33]. Thus,

persuing the quasi-Galerkin approach introduced in Section 6, the according projectors

on the respective tangent spaces – needed for a numerical treatment in this vein – may

now be computed explicitly. Although we have only recently started the development

and implementation of such algorithms, our preliminary numerical examples given in this

paper show that in practice, the stability of TT format is competitive with the Tucker

format; in particular, the MALS algorithm, being closely related to the DMRG approach

successfully applied in quantum chemistry, shows some advantages in comparison with

the ALS approach. Its potential for the treatment of high-dimensional problems will be

explored further in a forthcoming publication.
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ysis, Zürich Lectures in advanced mathematics, EMS, 2008.

[34] I. Oseledets, Compact matrix form of the d-dimensional tensor decomposition, submitted to SIAM

J. Sci. Comput., 2009.

[35] I. Oseledets, On a new tensor decomposition, Doklady Math. 427, no. 2, 2009.

[36] I. Oseledets, Tensors inside matrices give logarithmic complexity, Preprint 2009-04, IMA RAS April

2009, accepted at SIAM J. Matrix Anal. Appl.

[37] I. Oseledets, TT Toolbox 1.0: Fast multidimensional array operations in MATLAB, Preprint 2009-06,

INM RAS, August 2009

[38] I. Oseledets, E. E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to use SVD in many

dimensions, ICM HKBU Research Report 09-03, February 2009 (www.math.hkbu.edu.hk/ICM); SIAM

J. Sci. Comput., 2009, to appear.

[39] I.V. Oseledets; E.E. Tyrtyshnikov, Tensor tree decomposition does not need a tree, Submitted to

Linear Algebra Appl., 2009.

[40] B. Savas, L.-H. Lim, Quasi-Newton methods on Grassmannians and multilinear approximations of

tensors, ARXIV, eprint arXiv:0907.2214, http://arxiv.org/abs/0907.2214, 2009, also accepted in SIAM

Journal on Scientific Computing 2010.



ON MANIFOLDS OF TENSORS OF FIXED TT-RANK 35

[41] R. Schneider, T. Rohwedder, J. Blauert, A. Neelov, Direct minimization for calculating invariant

subspaces in density functional computations of the electronic structure, Journal of Comp. Math. 27, p.

360, 2009.
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