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On Marangoni convective patterns driven by an exothermic chemical
reaction in two-layer systems
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This article is devoted to the investigation of Marangoni-driven pattern formation at the interface
between two immiscible fluids filling a Hele-Shaw cell, each of them containing a reactant of an
exothermic neutralization reaction. In such a system, convective patterns arise when one reactant
diffuses through the interface to react with the other chemical species in one of the fluids. A
chemo-hydrodynamical pattern appears due to Marangoni instabilities taking place because of heat
and solutal driven changes of the surface tension. The mathematical model we develop consists in
a set of reaction-diffusion-advection equations ruling the evolution of concentrations and
temperature coupled to Navier–Stokes equation, written in a Hele-Shaw approximation. In our
analysis, the time-dependent convectionless reaction-diffusion base state is first obtained and
studied in detail. Next, we perform a linear stability analysis of this base state with regard to thermal
and solutal Marangoni effects to determine the parameter values beyond which convection occurs.
Finally, we perform numerical simulations of the fully nonlinear system and study the influence
of the different parameters on pattern formation. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1648641#
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I. INTRODUCTION

In recent years binary liquid–liquid and gas–liquid sy
tems with an interfacial chemical reaction have been the s
ject of increased fundamental investigations of the inter
tion between reaction-diffusion phenomena and p
hydrodynamic instabilities. In such systems, hydrodynam
instability of the fluid interface may generate local conve
tive fluxes and thereby markedly affect the reaction as w
as the interface heat and mass transfers. In these cases
organization processes may lead to a specific dissipation
tern formation of chemo-hydrodynamic nature.

The recent book by Nepomnyashchy, Velarde, a
Colinet1 provides a comprehensive bibliography for the stu
ies devoted to all variety of interfacial phenomena. So,
skip in this review the numerous studies on pure heat
mass transfer processes occurring along or across an i
face and focus our attention on such systems where a ch
cal reaction takes place.

Experimental evidence in liquid–liquid systems of inte
facial convection exhibiting a high degree of ordering
interfacial turbulence, when mass transfer is accompanie
chemical reaction, has been reported in the literature for
actions of different types. Probably the first description
such phenomena is that of Quincke,2 who observed sponta
neous emulsification when a solution of lauric acid in oil
brought in contact with an aqueous solution of NaOH. Mo
recently Sherwood and Wei3 observed spontaneous turb
lence in the extraction of acetic acid from an organic solv
into an alkaline solution and acceleration of the interfac
reaction by convection. Dupeyrat and Nakache4–6 also ob-
served interfacial turbulence related to the reaction of
1081070-6631/2004/16(4)/1082/15/$22.00
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alkyl ammonium ion with picric acid at an oil–aqueous i
terface.

Another example of spontaneous turbulence at the in
face was found in the area of nuclear fuel reprocess
Thomsonet al. observed interfacial instabilities during th
extraction of uranyl nitrate from its nitric acid solution.7 One
more example was given by Avnir and Kagan who have st
ied pattern formation at liquid–gas interfaces driven by ph
tochemical reactions.8 Kai et al.9 have studied the dynamic
of chemically driven nonlinear waves and oscillations at
oil–water interface.

Very recently, new phenomena attributed to heat and
lutal effects due to an exothermic neutralization reaction
terplaying with a liquid–liquid interface and convection w
observed experimentally by Eckert and Grahn.10 These au-
thors reported about a novel instability occurring when
organic solution containing an acid is in contact with
aqueous solution in which NaOH is dissolved. Resulti
self-sustained dynamics and pattern formation in the form
plumes and fingers were suggested to originate from the c
pling between different hydrodynamic instabilities, such
boundary layer and double diffusion instabilities. An impre
sive regular structure in the form of long self-growing ce
with one side keeping contact with the interface and
other side propagating in the direction out of the interface
observed in the same system when NaOH is replaced b
organic base.11 In these recent experiments, several mec
nisms of instability ~surface tension driven or buoyanc
driven ones! may compete. The use of an organic base
stead of NaOH allows for possible increased influence
Marangoni effects as the salt formed is of increased ch
length. It is the purpose of this article to investigate to wh
2 © 2004 American Institute of Physics
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extent Marangoni effects alone are sufficient to drive a
instability in such chemo-hydrodynamic pattern formation
a Marangoni mechanism turns out to be possible, we
also to understand which effect, thermal or solutal, is m
important for the system.

To finish the review of experimental study, let us me
tion one more recent work. Ermakovet al.12 have used a
system similar to that of Eckertet al., concentrating their
attention on measuring changes in the kinetic laws of m
transfer in the system.

Numerous theoretical studies concerned with the ef
of chemical reaction on interfacial instability have focus
for the most part on the linear analysis of conditions un
which the instability develops. Ruckenstein and Berben13

were the first to conduct such an analysis. They studied
stability of a two-phase system where a first-order reactio
taking place in one of the phases and found that no gen
criteria, which would be similar to that earlier derived b
Sternling and Scriven14 for a nonreactive two-layer system
with a single solute diffusing from one layer to anoth
could be established because each particular type of rea
requires a separate consideration for the derivation of in
facial stability criteria. The effect on the system’s stability
different types of reactions, which occur solely on the int
face, was analyzed in the papers of Steinchen
Sanfeld15,16 and Hennenberget al.17 They concluded that a
chemical instability due to an interfacial reaction can indu
a mechanical instability and vice versa. A similar approa
was applied by Mendez-Tatsis and Perez De Ortiz to
liquid–liquid system with a reversible interfacial reaction o
curring in some metal extraction processes.18 Let us also
mention one more recent study by Texier-Picard, Pojm
and Volpert19 devoted to the investigation of polymerizatio
fronts converting a liquid monomer into liquid polymer a
sumed as immiscible. They were interested to study the
fluence of interfacial tension on the front stability taking in
account the exothermicity of the polymerization reaction.

The nonlinear aspects of the effect of chemical reacti
on the development of interfacial convection and mass tra
fer have yet received little attention. Among the nonline
studies a series of papers by Buyevichet al.20,21 investigated
the conditions of appearance and nonlinear developmen
concentrational capillary instability at the interface betwe
two liquids in the presence of an interfacial reaction of s
ond order. The Marangoni instability driven by chemical r
actions in systems with liquid–liquid interface has been st
ied not only in layer geometries. Velarde22 gives a wide
review of the results on Marangoni instability occurrin
when a liquid drop is immersed in another immiscible liqu
In this case the instability induced by chemical reactio
leads to self-propelled drop motion, overcoming visco
drag. It is also worthy to mention two recent papers whi
though do not deal with chemical reactions, study the eff
of strong heat generation occurring at the interface. In
first of them, Skurygin and Dilman23 perform a linear stabil-
ity analysis of a gas–liquid interface during the combin
process of desorption and evaporation. In the second pa
Nepomnyashchy and Simanovskii24 carry out numerical
simulation of finite-amplitude convective regimes for a tw
Downloaded 09 Mar 2004 to 164.15.131.92. Redistribution subject to AIP
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liquid system with joint action of external heating and he
sources distributed on the interface between layers. The la
model some aspects of exothermal chemical reactions oc
ring on the interface.

In the majority of these articles, the chemical reaction
assumed interfacial, i.e., taking place solely on the interfa
As we shall show here, the possibility for chemical species
diffuse and react in the bulk of one of the fluids leads imm
diately to a new kind of instability driven by the joint actio
of exothermic chemical reaction, diffusion processes and
pendence of surface tension on heat and mass gradients

The purpose of the present work is to focus on the p
ticular role of Marangoni instabilities in chemo-convectiv
patterns as experimentally observed in Refs. 10, 11.
Earth, Marangoni effects are difficult to separate from oth
sources of instability such as buoyancy driven Rayleig
Taylor, Rayleigh–Be´nard or double diffusive mechanisms.
is therefore important to understand each of these insta
ties and their respective coupling with chemical reactio
separately. Pure Marangoni effects should be observe
Hele-Shaw cells oriented horizontally with regard to grav
or ideally in zero-gravity conditions. In this article, we an
lyze the coupling between a simple exothermic neutralizat
reaction with pure Marangoni driven convection in a set
similar to that experimentally analyzed by Eckertet al.10,11

assuming that gravity does not play any role. We investig
the coupling between the chemical reactions and hydro
namics both by linear stability analysis and nonlinear sim
lations.

The paper is organized as follows: in Sec. II we form
late the problem and discuss all aspects of the propo
mathematical model. In Sec. III we obtain the reactio
diffusion base state and, then, apply the linear analysis
study its stability wit regard to convection in Sec. IV. Th
details of the numerical method and numerical results
given in Sec. V. Section VI summarizes the results and p
vides some discussion.

II. THEORETICAL MODEL

We consider a two-layer system consisting of two im
miscible incompressible liquid solvents, separated by a p
and nondeformable interface with pinning contact lines, a
confined by two vertical parallel solid plates~see Fig. 1!. We
assume that carboxylic acidA dissolved in the upper organi
solvent~such as cyclohexane!, diffuses through the interface
to react with a baseB, dissolved in the lower aqueous laye
to form a salt under the production of water. Such a neut
ization reaction can be described by the simplified equat
A1B→S, whereS denotes the salt. This reaction is accom
panied by heat releaseQ and takes place solely in the lowe
aqueous phase as the base is immiscible in the upper org
phase. The rate of reaction is characterized by the reac
rate constantK.

We assume further that the gap-width 2d between the
plates is much smaller than their lateral extension wh
leads us to use a Hele-Shaw approximation for velocity a
temperature fields, i.e., we assume that they follow a pa
bolic profile along the gap:
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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ui~x,y,z!5
3

2 S 12
y2

d2D vi~x,z!,

~1!

Q i~x,y,z!5
3

2

Bi

~31Bi! S 2

Bi
112

y2

d2D Ti~x,z!,

satisfying the boundary conditions at the solid plates:

u50,
]Q i

]~y/d!
6Bi~Q i2Q0!50 for y56d, ~2!

whereui(ux ,uy ,uz) and vi(vx ,vz) are the three- and two
component vector fields, respectively,Q i andTi are tempera-
ture fields before and after the procedure of averaging,
spectively. The reference temperatureQ0 is room
temperature, and indexesi 51,2 refer to the lower (z,0)
and upper (z.0) layer, respectively. The dimensionless B
number Bi, is defined as Bi5dgT /k1 , wheregT is the heat
exchange coefficient between the fluid and the solid w
andk1 is the coefficient of thermal conductivity of water i
the lower layer. Depending on the plates composition a
thicknessl, the Biot number Bi may take a value from
~thermo-isolated plates! to ` ~highly conductive plates!.

Evolution equations in the Hele-Shaw approximation
obtained by inserting~1! into the standard three-dimension
Navier–Stokes equations coupled to heat and react
diffusion equations, and averaging with respect to
y-space direction perpendicular to the solid plates.25 This
procedure reduces the system geometry to two semi-infi
two-dimensional regions filled by two fluids and separa
by a linez50. In the absence of gravity, the governing equ
tions take the following form:

¹•vi50,

]vi

]t
1

6

5
vi•¹vi52

1

r i
¹pi1n iDvi23

n i

d2
vi ,

FIG. 1. Geometrical configuration of the two-layer system and coordin
axes.
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]Ti

]t
1

3

5

~512Bi!

~31Bi!
vi•¹Ti5x iDTi2

x i

d2

3Bi

~31Bi!
Ti

2d iK
Q

cpir i
AiB,

~3!
]Ai

]t
1vi•¹Ai5DAiDAi2d iKAiB, i 51,2,

]B

]t
1v1•¹B5DBDB2KA1B,

]S

]t
1v1•¹S5DSDS1KA1B,

wherepi is the pressure,Ai , B, andSare acid, base, and sa
concentrations, respectively. The parameterd i takes the val-
ues d151, d250 implying that the reaction takes plac
solely in the lower layer. The densities, dynamic, and kin
matic viscosities, heat conductivities, temperature diffus
ties, diffusivities of acid, base and salt are, respective
equal tor i , h i , n i , k i , x i , DAi , DB , DS . The boundary
conditions are

z→2`: v150, T150, A150, B5B0 , S50,

z→1`: v250, T250, A25A0 ,

z50: v15v2 , T15T2 , A15A2 ,

k1

]T1

]z
5k2

]T2

]z
, DA1

]A1

]z
5DA2

]A2

]z
,

]B

]z
50,

]S

]z
50,

]s

]x
5h1

]vx1

]z
2h2

]vx2

]z
,

s5s02sTT2sAA2sSS,

where A0 and B0 are the initial concentration of acid an
base ands is the surface tension.

Let us outline explicitly the assumptions we make:

~1! The gap between the vertical plates is small enough
that the fluid flow may be considered as quasi-tw
dimensional.

~2! The concentrations of chemical speciesA, B, andS are
small enough so that the properties of the fluid are in
pendent on concentration.

~3! The three chemical species have the same diffusion
efficient, i.e.,DB5DS5DA1 in the aqueous phase.

~4! The acid-partition ratio is assumed to be equal to un
~5! The effects of baro- and thermo-diffusion~such as the

Soret effect! are negligible.
~6! The baseB and saltSdo not dissolve in the upper laye
~7! The base does not produce any surface effect, whic

motivated by experimental observations.11

~8! The surface tensions depends linearly on the tempera
ture and concentrations of acid and salt.

~9! Surface tension is presumed to be high enough to ren
the interface surface resistant to any deformation.

te
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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~10! The contact lines of the interface are assumed to
pinned, i.e., they are unable to move.

To nondimensionalize the problem, we assume t
chemical and diffusion processes occur on the same
scale. We choose therefore the following characteri
scales: for timetR51/KA0 , for lengthh5ADA1tR, for ve-
locity ADA1 /tR, for pressure 3r1n1DA1 /d2, for concentra-
tionsA0 , for temperatureQDA1A0 /k1 and obtain the dimen
sionless equations for the lower layer,

¹•v150, ~4!

e

ScS ]v1

]t
1

6

5
v1•¹v1D52¹p11eDv12v1 , ~5!

e

Le S ]T1

]t
1

3

5

~512Bi!

~31Bi!
v1•¹T1D

5eDT12
Bi

~31Bi!
T11eA1B, ~6!

]A1

]t
1v1•¹A15DA12A1B, ~7!

]B

]t
1v1•¹B5DB2A1B, ~8!

]S

]t
1v1•¹S5DS1A1B, ~9!

for the upper layer:

¹"v250, ~10!

e

ScS ]v2

]t
1

6

5
v2•¹v2D52

1

r
¹p21neDv22nv2 , ~11!

e

Le S ]T2

]t
1

3

5

~512Bi!

~31Bi!
v2•¹T2D

5xeDT22x
Bi

~31Bi!
T2 , ~12!

]A2

]t
1v2•¹A25DDA2 , ~13!

with boundary conditions:

z→2`: v150, T150, A150, B5
1

g
, S50,

~14!

z→1`: v250, T250, A251, ~15!

z50: vz15vz250, vx15vx2 , T15T2 ,

A15A2 , ~16!

]T1

]z
5k

]T2

]z
,

]A1

]z
5D

]A2

]z
,

]B

]z
50,

]S

]z
50, ~17!

]vx1

]z
5h

]vx2

]z
2M

]T1

]x
2MA

]A1

]x
2MS

]S

]x
. ~18!
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The full list of dimensionless parameters, which appear
Eqs. ~5!–~18!, is given in Table I. Let us discuss the equ
tions we obtain in more detail. First of all, let us note that
the experiments,10 the Schmidt number is Sc'900 while the
Lewis number is Le'100, which allows us to neglect th
left-hand side of~5!–~6! and~11!–~12!. It means that hydro-
dynamic and heat processes are here quick compare
reaction-diffusion processes.

Equations~5! and ~11! differ from the two-dimensional
Navier–Stokes equations by the additional dissipative te
proportional to velocitiesv1 and v2 , respectively. These
terms may be interpreted as the average friction force du
the presence of the plates and are analogous to Darcy
arising in equations for fluid filtration in porous medium.
the parametere is small enough, the Stokes term in~5! can
be neglected and we recover Darcy’s law. In facte
5d2/3h2 compares the gap-width 2d of the Hele-Shaw cell
to the characteristic length scaleh5ADA1 /KA0 of the
chemo-hydrodynamic pattern. Experimentally, convect
patterns appearing at early times have a length scale rou
2–3 times the gap-width 2d. This gives a valuee;0.1 show-
ing that diffusion of velocity and temperature should
taken into account. As a matter of fact, the presence of s
Stokes second-order term is crucial, because the thermo
illary flow is driven by shear stresses and can therefore
general not be potential.26 Thus, in all our calculations we
keep the valuee50.1. The specific choice ofe50.1 results
from the fact that diffusion and reactive processes are
sumed here to occur on the same time scale, i.e., the
between the chemical timetR51/KA0 and the diffusive time
tdiff5h2/DA15(ADA1tR)2/DA1 is chosen to be equal to one
This assumption is made because the kinetic constantK is
not known. In this way we decrease the number of dim
sionless parameters to concentrate on parameters which
be changed during the experiment such asg and the Ma-
rangoni numbers which can all be tuned by varying the c
centrations.

Similarly to motion equations, heat equations~6! and
~12! differ from standard two-dimensional heat equations
the additional Darcy-type term BiT/(31Bi). This term re-
lates to the process of dissipation of heat through the s
plates. The difference with the Darcy term discussed abov
that this term vanishes if the plates are made from therm

TABLE I. List of dimensionless parameters.

e5d2/3h2 Aspect ratio of gap-width to scale of convective pa
Sc5n1 /DA1 Schmidt number
Le5x1 /DA1 Lewis number
M5sTA0uQuh/k1h1 Thermal Marangoni number
MA5sAA0h/DA1h1 Solutal Marangoni number related to acid
MS5sSA0h/DA1h1 Solutal Marangoni number related to salt
Bi5dgT /k1 Biot number
r5r2 /r1 Density ratio
k5k2 /k1 Heat conductivity ratio
x5x2 /x1 Heat diffusivity ratio
n5n2 /n1 Kinematic viscosity ratio
h5h2 /h1 Dynamic viscosity ratio
D5DA2 /DA1 Acid diffusivity ratio
g5A0 /B0 Initial concentration ratio
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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isolated material for which Bi50. If the plates are highly
conductive, the dissipation rate is maximal and Bi5`. Let us
estimate the Biot number for the experimental setup use
Ref. 10. The heat exchange coefficientgT may be estimated
as gT'ks / l , where ks is the thermal conductivity of the
solid plates andl is their thickness~Fig. 1!. Taking into ac-
count thatl'd and that plates are made of glass, the c
ductivity of which is close to the conductivity of water fillin
the lower layer where the reaction occurs, we obtain Bi;1,
which means that heat dissipation during the experimen
quite intensive. For the sake of generality, we consider
limiting cases: Bi50 and Bi5`.

As the diffusivity of the base is supposed to be equa
that of the saltDB5DS , we can derive an important relatio
reflecting a conservation law for species concentrations.
adding Eqs.~8! and~9! and taking into account the bounda
conditions we obtain

B1S5
1

g
, ~19!

which is used when the system is studied numerically.
By taking these notes into account, we can reduce

system of Eqs.~5!–~13! to the following form:

D2C12
1

e
DC150, D2C22

1

e
DC250,

DT12
1

e

Bi

~31Bi!
T152A1B,

DT22
1

e

Bi

~31Bi!
T250,

]A2

]t
1

]~C2 ,A2!

]~z,x!
5DDA2 ,

~20!
]A1

]t
1

]~C1 ,A1!

]~z,x!
5DA12A1B,

]B

]t
1

]~C1 ,B!

]~z,x!
5DB2A1B,

]S

]t
1

]~C1 ,S!

]~z,x!
5DS1A1B,

where

]~a,b!

]~z,x!
5

]a

]z

]b

]x
2

]a

]x

]b

]z
,

and with boundary conditions:

z→2`: C150,
]C1

]z
50, T150, A150,

B5
1

g
, S50;

z→1`: C250,
]C2

]z
50, T250, A251;
Downloaded 09 Mar 2004 to 164.15.131.92. Redistribution subject to AIP
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z50: C15C250,
]C1

]z
5

]C2

]z
,

]2C1

]z2
5h

]2C2

]z2
2M

]T1

]x
2MA

]A1

]x
2MS

]S

]x
,

T15T2 ,
]T1

]z
5k

]T2

]z
, A15A2 ,

]A1

]z
5D

]A2

]z
,

]B

]z
50,

]S

]z
50,

where the stream functionC is defined as

vx5
]C

]z
, vz52

]C

]x
.

To conclude the discussion of the proposed model, le
enumerate the parameters which we keep constant in all
calculations and the values of which are inspired by
experiments:10,11 h50.4996, k50.2482, D52.807, and
e50.1.

III. BASE STATE

In a first step we analyze the one-dimensional reacti
diffusion base state of the system assuming that there is
fluid flow. In that case, we look for the base sta
(Ai

0(t,z),B0(t,z),S0(t,z),Ti
0(t,z)) solution of ~20! with C i

50, which satisfies the following set of equations:

]2T1
0

]z2
2

1

e

Bi

~31Bi!
T1

052A1
0B0,

]2T2
0

]z2
2

1

e

Bi

~31Bi!
T2

050,

]A1
0

]t
5

]2A1
0

]z2
2A1

0B0,
]A2

0

]t
5D

]2A2
0

]z2
, ~21!

]B0

]t
5

]2B0

]z2
2A1

0B0,
]S0

]t
5

]2S0

]z2
1A1

0B0,

and boundary conditions

z→2`: T1
050, A1

050, B05
1

g
, S050,

z→1`: T2
050, A2

051,

z50: T1
05T2

0,
]T1

0

]z
5

]T2
0

]z
k, A1

05A2
0,

]A1
0

]z
5D

]A2
0

]z
,

]B0

]z
50,

]S0

]z
50.

Because of the quadratic nonlinearity in the chemical kin
ics, no analytic solution can be obtained for the reactio
diffusion state, and the system is studied numerically. T
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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important relationB01S051/g holds, which helps to sim-
plify calculations. In order to integrate system~20! with
C50, we use an explicit finite-difference method~see Sec.
V!. Instead of the boundary conditions at infinity in~20!, the
simulations are done in the finite range2L,z,L, whereL
is varied from 1 to 10 to be sure that the obtained results
independent ofL.

As we want to investigate the influence of the reactio
on the hydrodynamical Marangoni instability, it is most na
ral to analyze the effect of the parameterg, the ratio between
initial acid and base concentrationA0 /B0 . Two important
cases that manifest different dynamics are considered:
case g<1, for which the initial concentration of acid i
smaller or equal to that of the base, and the caseg.1, for
which the acid concentration is in excess. As we shall s
the resulting dynamics are strongly affected byg as, for
g<1, the reaction front remains located near the interf
and is practically steady while, forg.1, the reaction front
moves away from the interface. Let us examine these
situations considering successively the casesg51 andg510.

A. Quasisteady reaction front: gÄ1

The base state profiles for the concentrations and t
perature as a function of time are presented in Figs. 2~a! and
2~b!, respectively, in the case of highly conductive walls~Bi
5`!. Profiles are plotted with time intervalDt51, starting
from t50 up to t514. As we see in Fig. 2~a!, in the case
where initial concentrations of acid and base are equa~g
51!, the dynamics of acid in the lower reactive layer tends
some quasisteady state reflecting the balance between
sumption of the reactant and its supply from the upper la
In contrast to that, the concentrations of base and salt cha
quickly: the base concentration decreases, while the salt
centration increases asS051/g2B0. While concentration
profiles look like expected, the temperature profiles show
Fig. 2~b! have a remarkable feature, i.e., the presence
maximum located below the interface. The existence of
maximum in the bulk can be evidenced not only numerica
but also analytically. Indeed, the temperature profileT2

0(t,z)
in the upper layer can be readily derived:

T2
0~ t,z!5j~ t !expS 2

Bi

31Bi

z

Ae
D ,

wherej(t) denotes the temperature at the interface. The t
perature gradient at the interface in the lower layer can t
be written as]T1

0/]zuz5052k Bi j(t)/Ae(31Bi), i.e., it is
always negative~excepting the case of perfect thermal ins
lators Bi50!, which means that the temperature must feat
a maximum between the interface andz→2`, where T
50. The time-dependent dynamics of this gradient is sho
in the inset of Fig. 2~b!. As we see, the absolute value of th
gradient first grows from zero att50 to its maximum at
about t50.5, and then decreases slowly in time. A simi
behavior is followed by the temperature profile itself. Th
result could have been anticipated if we are reminded tha
reaction occurs in the upper layer. It means that the h
produced by the reaction must diffuse into the upper la
causing heat loss in the domain close to the interface.
Downloaded 09 Mar 2004 to 164.15.131.92. Redistribution subject to AIP
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final balance between diffusion of heat through the interfa
diffusion of heat through the solid plates~dissipation!, and
generation of heat by the reaction leads to the tempera
maximum located below the interface. This temperat
maximum corresponds to the front of reaction. As we s
from Fig. 2~b!, in the caseg51, the reaction front tends to
steady position whent.0.5.

The case Bi50 is singular if one assume simultaneous
the infinite range2`,z,` and immediate response of th
heat field to any disturbances in the system (]T/]t50). In
the numerical simulation, when the finite geometry was c
sidered, this singularity disappeared and we observed the
mation of the temperature maximum in the lower layer, to

The existence of a temperature maximum at a given
tance below the interface is a key ingredient to get an in
bility of Marangoni-type. Indeed, let us imagine that a h
spot appears spontaneously at the interface between the
ids. Then the resulting surface tension gradient will induc
fluid movement along the interface directed out of the sp
In this case, the element of fluid rising towards the interfa
from the bulk makes the spot hotter giving rise to the ins
bility.

FIG. 2. Base state profiles for concentrations~a! and temperature~b! for
g51. The inset in~b! shows the time-dependent dynamics of the tempe
ture gradient at the interface in the lower layer.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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B. Moving reaction front: gÄ10

The profile dynamics for concentrations and temperat
for the caseg510 are presented in Figs. 3~a! and 3~b!, re-
spectively. We see that the behavior of the system
changed qualitatively. When the initial concentration of a
is higher than that of the base, the acid profile in the low
layer is no more quasisteady as before: the acid does
meet enough base to react and diffuses quickly far awa
the interface inducing a movement of the reaction front
the same direction. The front movement manifests itsel
the movement of the temperature maximum shown in F
3~b!.

To summarize, two different base states are observe
the system depending whether the acid is in excess or no
shown in Fig. 4, the reaction front corresponding to a te
perature maximum remains stationary close to the interf
up to a critical value of the order ofgcr;2. Beyond this
value, the temperature maximum moves away of the in
face after an initial transient.

The same phenomenon is observed experimentally,11 i.e.,
both traveling and quasistanding reaction front are obser
depending on the initial concentrations of acid and base

In the conclusion of this section, we note that the mo

FIG. 3. Base state profiles for concentrations~a! and temperature~b! for
g510. The inset in~b! is as in Fig. 2~b!.
Downloaded 09 Mar 2004 to 164.15.131.92. Redistribution subject to AIP
e

s

r
ot
of

n
.

in
As
-
e

r-

d

-

ment of the temperature maximum implies a possible
namic change of the wavelength of the convection patter
time. The importance of the two different reaction-diffusio
base states for the stability properties of the system will
made clear in the next section.

IV. LINEAR STABILITY ANALYSIS

A. Equations and solution method

The next step in our analysis involves finding the con
tions under which the reaction-diffusion solution loses sta
ity to give rise to convective solutions. To do so, we analy
the stability of the base state by linearizing the origin
system of Eqs. ~20! around the base stat
(Ai

0(t,z),B0(t,z),S0(t,z),Ti
0(t,z)) determined in the previ-

ous section. First, we assume that small, monotonic dis
bances periodic in thex-direction are superimposed upon th
base state~21! in the following manner:

S C i~ t,x,z!

Ti~ t,x,z!

Ai~ t,x,z!

B~ t,x,z!

S~ t,x,z!

D 5S 0
Ti

0~ t,z!

Ai
0~ t,z!

B0~ t,z!

S0~ t,z!

D 1S w i~ t,z!

q i~ t,z!

ai~ t,z!

b~ t,z!

s~ t,z!

D eIkx, i 51,2

~22!

wherew i , q i , ai , b, s are the amplitude of the disturbance
of the stream function, temperature, acid, base, and salt
centrations, respectively, whilek is their wave number.

The linearized equations governing the evolution of d
turbances are derived by introducing~22! into Eqs.~20! and
neglecting nonlinear terms. We get the following eigenva
problem:

D2w12
1

e
Dw150, D2w22

1

e
Dw250,

Dq12
1

e

Bi

~31Bi!
q152A1

0~z,t !b2B0~z,t !a1 ,

FIG. 4. Time-dependent dynamics of the temperature maximum shown
different values ofg.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Dq22
1

e

Bi

~31Bi!
q250,

]a1

]t
5Da12A1

0~z,t !b2B0~z,t !a12w18
]A1

0~z,t !

]z
,

]a2

]t
5DDa22w28

]A2
0~z,t !

]z
, ~23!

]b

]t
5Db2A1

0~z,t !b2B0~z,t !a12w18
]B0~z,t !

]z
,

]s

]t
5Ds1A1

0~z,t !b1B0~z,t !a12w18
]S0~z,t !

]z
,

D5
]2

]z2
2k2,

wherew i852Ikw i and with boundary conditions:

z→2`: w150,
]w1

]z
50, q150, a150,

b50, s50,

z→1`: w250,
]w2

]z
50, q250, a250,

z50: w15w250,
]w1

]z
5

]w2

]z
,

]2w1

]z2
5h

]2w2

]z2
2k2~Mq11MAa11MSs!,

q15q2 ,
]q1

]z
5k

]q2

]z
, a15a2 ,

]a1

]z
5D

]a2

]z
,

]b

]z
50,

]s

]z
50.

The flow equations in~23! are splitted out from the rest o
the system and the equations forw1 and w2 can thus be
solved independently and analytically. We get

w1~ t,z!5
ek2

11h
~Mq1uz501MAa1uz501MSsuz50!

3~ekz2ezAk211/e!,

w2~ t,z!52
ek2

11h
~Mq1uz501MAa1uz501MSsuz50!

3~e2kz2e2zAk211/e!. ~24!

There are two methods commonly used to determine the
bility of a time-dependent flow:~a! the quasisteady-state ap
proximation~QSSA!, in which we freeze the time and dete
mine the growth constant as if the base state is steady;
~b! the solution of the initial value problem~IVP! for small
disturbances. The first method neglects the rate of chang
the base state and leads to an eigenvalue problem with
appearing as a parameter. The second method is an e
Downloaded 09 Mar 2004 to 164.15.131.92. Redistribution subject to AIP
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solution for the initial value problem, which brings the initia
data into consideration. Tan and Homsy have shown for
cous fingering problems in Ref. 27 that the initial value c
culation gives essentially the same results as the quasiste
state approach, except for a short period of time in which
base state changes rapidly. In our case the system bec
unstable only after some critical period of time. Therefore
is reasonable for us to use the method of initial value cal
lations.

Thus, in order to find stability conditions, Eqs.~23! and
~24! are numerically integrated together with the equatio
for the base state~21! to compute the growth ratel for a
given wave numberk. Repeating the calculations for varyin
k enables us to describe the growth of small disturban
over a range of wave numbers. As is known, the growth r
for time-dependent stability problems is both time and sp
dependent and is no longer uniquely defined. However,
find, like previous authors,27 that choosing different defini-
tions of the growth rate does not affect the character of
solutions. We present here stability results obtained by ini
value calculations of the growth ratel defined similarly to a
Lyapunov exponent:

l~ t !5
1

N (
j 51

N
1

Dt
ln

a1 j~ t1Dt !

a1 j~ t !
, ~25!

whereDt is the integration time step andN is the number of
independent realizations~typically N is equal to 10–15!. Be-
cause the growth ratel is sensitive to the given initial data
each independent integration starts from white noise with
amplitude less than 1024. We have fixed the occurrence o
instability to the time whenl(t) averaged over several rea
izations changes sign from negative to positive.

The typical growth rate of flow perturbation plotted ve
sus time for the particular caseg51, Bi5`, M530000,k
50.4 is shown as the inset to Fig. 5~a!. One can see that no
unusual growth, which is so characteristic for nonmod
resonance phenomena@Trefethenet al.28#, occurs at the be-
ginning, which implies that no pseudomodes exist the
When the reaction just starts, the system is stable, all pe
bations decay. The growth becomes positive at about
'2.5, and again negative att'6.5. The nature of this growth
is quite simple and is related with Marangoni instability~will
be discussed below in more detail!.29–31 Let us discuss now
the results we have obtained for different sources of insta
ity.

B. Pure thermal instability

To begin, let us determine the sensitivity of the system
a Marangoni instability of pure thermal nature, whenMA

50 andMS50. Two different cases will be considered: th
first one is the case of highly conductive sidewalls Bi5` and
the second one is the case of perfect thermal insula
Bi50. Neutral curves for the former case are plotted in
plane time versus wave number in Figs. 5~a! and 5~b! for
both g51 andg510, respectively~note that instability oc-
curs inside the balloons!. One can see that the critical wave
length of the convective pattern does not depend practic
on variation ofg. In both cases the instability pattern star
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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from k'0.4 and arises at aboutt'1. But as for other fea-
tures, Figs. 5~a! and 5~b! show rather different behavior o
the system. The main difference is that the thermally-driv
instability is more easily triggered in the case of equal init
concentrations of acid and base. Indeed forg51, convection
may already occur atM52.5•104 @Fig. 5~a!# while in the
caseg510 it happens only atM51.4•105 @Fig. 5~b!#. It

FIG. 5. Neutral curves for pure thermal Marangoni instability for Bi5`
@~a!, ~b!# and Bi50 ~c! for g51 @~a!, ~c!# andg510 ~b!. The variation of the
absolute value of growth ratel versus time for the caseM530 000, k
50.4 is shown in a logarithmic scale in the inset to~a! ~the corresponding
cross section in the figure itself is plotted as a dashed line!.
Downloaded 09 Mar 2004 to 164.15.131.92. Redistribution subject to AIP
n
l

means that for a given system with some fixed reactant
decrease of the initial base concentration stabilizes the
tem with respect to a thermally-driven Marangoni instabili

In fact, this result might have been expected from t
base state calculations presented in the previous section
deed, when the initial concentration of acid is higher th
that of the base andg.1, a part of the acid cannot find bas
to produce salt. The total heat release therefore decrea
which manifests itself@see Fig. 3~b!# by a decrease of the
temperature gradient at the interface~which can be treated a
a local heat Marangoni number!.

Another effect seen in Fig. 5, comparing pictures a a
b, is that the instability atg51 lasts longer: if one may
expect atg51 the instability in the time range 1,t,100
~for M53•105), the same system atg510 is unstable only
in the range 2,t,8. The explanation for that is als
straightforward: when initial concentrations of reactants
equal, the reaction front stays in a quasisteady position n
the interface@see Fig. 2~b!#, and most of the heat release
there. Forg.1, the reaction front begins to move farawa
from the interface at aboutt'6 @see Fig. 3~b!#. The tempera-
ture maximum follows this movement weakening the h
Marangoni effect at the interface.

Now let us see what happens when Bi50. Neutral curves
for this case are plotted in Fig. 5~c! for g51. One can notice
the important difference with the previous case: when ti
exceeds some critical value, the long-wave modek50 be-
comes unstable as well. By varying the Marangoni num
M and parameterg, we find nevertheless that long-wave in
stability never happens first, i.e., the primary instability
always short-wave.

C. Pure solutal instability

Let us now turn to the pure solutal instability, whenM
50. There are two cases which are interesting:
Marangoni effect driven only by saltMA50 and the same
effect driven only by acidMS50.

Neutral curves for solutal Marangoni instability due
salt are presented in Figs. 6~a! and 6~b!, where a and b refer
to the casesg51 andg510, respectively. We see that the sa
produces a Marangoni instability with a higher wave numb
compared to the thermal instability. As for other features,
situation is the same as in the previous case: the instab
starts at aboutt'1, i.e., the disturbances need a similar tim
to grow. The most intensive and long lasting instability aris
for g51 @Fig. 6~a!# rather than forg510 @Fig. 6~b!#. In the
first case,MS'240 is sufficient to induce convection. Th
explanation is the same as above: as the salt is the produ
reaction, a higher concentration of salt is produced if
initial concentrations of acid and base are equal. It is rema
able that the critical values of the solutal Marangoni num
MS , at which instability can occur for the casesg51 and
g510 differ approximately by a factor of 10, i.e., exactly th
same ratio asg. Thus, we can conclude that increasingg
results in a system which is more stable with regard to th
mal and salt-driven solutal Marangoni instabilities.

Let us discuss now what happens when the Marang
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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effect is driven only by acid. Figure 6~c! summarizes all
results concerning the role of acid. The acid-driven insta
ity has features which are qualitatively different from t
cases discussed above. The instability due to the interfa
effect of acid starts from the very beginning, already at ab

FIG. 6. Neutral curves for pure solutal Marangoni instability induced by
for g51 ~a! andg510 ~b!. Curves for pure acid-driven solutal Marango
instability is shown in~c!, where results forg51 andg510 are indicated by
dotted ~only for MA522000) and solid lines, respectively. To clarify th
process at early time, the curves are also presented in a logarithmic sc
the inset.
Downloaded 09 Mar 2004 to 164.15.131.92. Redistribution subject to AIP
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ial
t

t'5•1023 ~for MA522000). This fact can be explained b
the higher concentration of acid present from the very beg
ning of the process. In contrast, the temperature and the
concentration as products of the reaction need some
~about 1 unit of time! to grow from zero up to an amoun
above which instability becomes possible.

The wave number of the pattern at onset strongly
pends on the solutal Marangoni numberMA . The critical
wave number tends to infinitykcr→` as the Marangoni
number grows toMA→2`. Hence, for very high Ma-
rangoni numbers the wavelength of the pattern eventu
becomes smaller than the Hele-Shaw gap width making
Hele-Shaw approximation senseless. The estimation of
largest possible wave number compatible with our He
Shaw model gives the valuek* '6. The neutral curves show
that the wave number of the pattern tends to zero (kcr→0) as
time goes by. The instability induced by acid is compa
tively short-living with regard to that induced by salt. Fo
example, forMA521200 the system becomes stable w
respect to acid-driven disturbances already aftert'0.5 @Fig.
6~c!#.

We can see from Fig. 6~c!, that the parameterg has on
the instability induced by acid an effect reverse to that
duced by salt: increasingg destabilizes the system with re
gard to the acid as the most intensive consumption of a
occurs if g→1 for which the interfacial effect of acid de
creases.

Let us note that the Marangoni instability induced by t
acid may be qualitatively described as follows: a disturba
that increases the interfacial concentration of the acid, s
as fluid from the bulk of the upper layer reaching the int
face, will produce a local increase (]s/]A.0) in interfacial
tension leading to attracting movements. In the bulk, th
movements penetrate deeper in the phase of higher visco
i.e., in the lower layer. Thus fluid from the upper layer r
placing the displaced interfacial elements will come from
area closer to the interface than the fluid from the low
layer. Finally, transfer of the acid through the interface d
ing flow along the interface will cause an increase in t
interfacial concentration maintaining the surface tension g
dient. As a result, the system will be unstable. This pictu
looks like the instability induced by the solute diffusing fro
a phaseA to a phaseB with parametersDA /DB.1, nA /nB

,1 discussed in the article by Sternling and Scriven,14 who
predicted a stationary cellular instability for that case.
should be noted, however, that such qualitative considera
must be conducted very carefully when chemical reacti
take place close to the interfacial region.

Another complexity originates from the following fac
Sternling and Scriven14 have considered the system wi
fixed gradients of concentration near the interface. In
case, the gradients of all quantities are transient. This tu
the steady pattern into a dynamical one developing in tim
There are two mechanisms competing here: first the grad
G of concentration~or of heat! near the interface and secon
the characteristic sizeD of instability zone. Both quantities
are included in a local Marangoni number which can be w
ten asM loc(t)5aG(t)D2(t) ~a is some time-independen
coefficient!. At the beginning of the process@see Fig. 2~a!,

lt

in
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acid profile in the base state#, the gradient of acid near th
interface is large, but the instability zone~the range where
acid concentration is nonuniform! is close to zero. As a re
sult, we have a smallM loc(t) and stability of the system—
this is why all disturbances decay at the start. As time g
by, the acid gradientG decreases due to diffusion, but th
characteristic sizeD grows much faster. As a consequen
M loc(t) also grows and finally exceeds some critical valu
As a result, the convection starts. Note that, in the cours
time, whenD grows steadily, the wavelength of the patte
also increases monotonically. This is why we observe
pattern with growing wavelength described in the paper.

Summarizing our findings, we can conclude that in t
range 0,t,1 the destabilizing effect of acid is dominant. A
later stage this effect decreases, while heat and salt-dr
Marangoni effects become then more important for the s
tem.

D. Mixed-mode instability

To conclude the discussion on linear stability, let us g
some examples of mixed-mode instability, when two or ev
all three possible mechanisms, which were described ab
act simultaneously in the system. Figure 7 shows how co
plicated the coupling of different modes may be even wit
the linear analysis. Neutral curves in the case where b
thermal and acid-driven solutal effects are present are sh
in Fig. 7~a! for g510. One can see that even a weak prod
tion of heat can have a strong effect on the solutal instab
induced by acid: increasing the thermal Marangoni num
leads to a more stable system with smaller wave numb
Figure 7~b! shows the joined action of the two solutal mode
both effects help each other resulting in a wider instabi
balloon. And, at last, the interesting coupling of all thr
modes of instability is shown in Fig. 7~c!. It turns out that a
sufficiently strong dependence of surface tension on t
perature can fully protect the system from the instability
duced by acid at earlier times.

As already noted by Ibanez and Velarde,32 it is of interest
to mention the relative role of reaction~R!, diffusion ~D!,
and convection~C!. Whereas each pair of them leads to
ther full stability ~RD, RC! or short living weak instability
~DC!, all together the three mechanisms produce a m
stronger effect leading to reaction-diffusion-convection p
terns.

V. NONLINEAR DYNAMICS

A. The solution method

In order to perform nonlinear simulations of the tw
dimensional system, we use the vorticity-stream function
mulation of the governing Eqs.~20!, where the vorticity is
defined as

F i52DC i .

We solve the system of equations in the domain 0,x,H,
2L,z,L with z50 being the interface between the upp
Downloaded 09 Mar 2004 to 164.15.131.92. Redistribution subject to AIP
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and lower layers. No-slip boundary conditions for the velo
ties and the requirement that the normal derivatives of
temperature and concentrations vanish are applied at
horizontal boundaries:

FIG. 7. Neutral curves for mixed-mode instabilities:~a! thermal-solutal
~acid! two-mode instability forg510, ~b! solutal acid-salt two-mode insta
bility for g510, ~c! thermal-solutal acid/salt three-mode instability forg51.
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z52L: C150,
]C1

]z
50,

]T1

]z
50,

]A1

]z
50,

]B

]z
50,

]S

]z
50,

z52L: C250,
]C2

]z
50,

]T2

]z
50,

]A2

]z
50.

At the vertical boundaries we apply periodic boundary co
ditions. At the interface the normal components of the vel
ity vanish and the continuity conditions for tangential co
ponents of velocity and viscous stresses, temperatures,
fluxes and species concentrations also apply:

z50: T15T2 , A15A2 ,
]T1

]z
5k

]T2

]z
,

]A1

]z
5D

]A2

]z
,

]B

]z
50,

]S

]z
50,

C150, C250,
]C1

]z
5

]C2

]z
,

F15hF21M
]T1

]x
1MA

]A1

]x
1MS

]S

]x
.

As the initial state we use

t50: C i50, Ti50, A150, A251,

B5
1

g
, S50, i 51,2

and a vorticity field characterized by one or more small o
vortex structures of intensityF'1023 located randomly
close to the interface in each layer. We have checked in
cases the independence of our results on the initial condit

The described boundary value problem is solved by
nite difference methods. Equations and boundary conditi
are approximated on a uniform mesh using a second o
approximation for the spatial coordinates. The nonlin
equations are solved using an explicit scheme on a recta
lar uniform mesh. For example, forH56, L52 a uniform
m
d

ie
w
ry
ity
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2403160 mesh is used. In order to ensure the stability of
numerical scheme, the time step was calculated by the
mula

Dt5
Dx2

2~21max~ uC i u,uF i u!!
.

The Poisson equations are solved by the iterative Liebm
successive over-relaxation method in each time step: the
curacy of the solution is fixed to 1024. The Kuskova and
Chudov formulas,33 providing second order accuracy, a
used for the evaluation of the vorticities at the horizon
boundariesx56L considered as solid:

F1~x,2L !5
1

2Dz
~C1~x,2L12Dz!

28C1~x,2L1Dx!!,

F2~x,L !5
1

2Dz
~C2~x,L22Dz!28C2~x,L2Dx!!.

At the interface the expression for the vorticity is appro
mated with second-order accuracy for spatial coordinates
the formula:

F2~x,0!52
2~C1~x,2Dz!1C2~x,Dz!!

Dz2~11h!

2
M

11h

]T1

]x
~x,0!2

MA

11h

]A1

]x
~x,0!

2
MS

11h

]S

]x
~x,0!,

F1~x,0!5hF2~x,0!1M
]T1

]x
~x,0!1MA

]A1

]x
~x,0!

1MS

]S

]x
~x,0!.

HereDx, Dz are the mesh sizes for the corresponding co
dinates. The temperature and acid concentration at the in
face are calculated by the second-order approximation
mula:
T1~x,0!5T2~x,0!5
4T1~x,2Dz!2T1~x,22Dz!1k~4T2~x,Dz!2T2~x,2Dz!!

3~11k!
,

A1~x,0!5A2~x,0!5
4A1~x,2Dz!2A1~x,22Dz!1D~4A2~x,Dz!2A2~x,2Dz!!

3~11D !
.

iu
red

ion,
on-
The numerical scheme we use is similar to a sche
proposed in Ref. 33, but generalizes it by considering ad
tional concentration fields for the reacting chemical spec
To test both accuracy and convergence of our program
have performed calculations of pure thermo-capilla
convection in two-layer systems with non-vanishing grav
e
i-
s.
e

and without gravity recovering results reported by L
et al.34 Our code was also successfully tested and compa
with results by Nepomnyashchy and Simanovskii24 for two-
layer systems with heat release at the interface. In addit
the code recovers known dynamics of the simple reacti
diffusion system.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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B. Numerical results

In this section we present the results of the numer
solution of Eqs.~20! subjected to the boundary and initi
conditions described in the previous section. The parame
are those for a system consisting in cyclohexane and w
with following values of parameters:h50.4996,k50.2482,
D52.807, Bi5`, ande50.1. All other parameters such asg,
the set of Marangoni numbers and the parameters of dom
geometryH, L have been varied during the simulations.

As it was shown in the previous section, at the beginn
the Marangoni instability driven by acid is leading, but
time goes by, the instabilities induced by salt and heat, pr
ucts of the reaction, become more and more important
order to show how they affect the nonlinear properties of
system, two cases are considered. First of all, we presen
results of simulations when only the acidA has an interfacial
effect destabilizing the system. Next, we see what happe
both the saltSand the acidA are surface active resulting in
mixed-mode instability.

First, we consider the values of parameters:M50, MA

522000, MS50, and g510. The domain of calculation
(H56, L52) is chosen to be long in thex-direction in order
to trace the dynamics of initial disturbances in more detail
to long-wave patterns (klim'1).

Figure 8~a! shows the time dependence of the wa
number of the pattern versus time computed from the n
linear simulations and compared to the results of the lin
stability analysis. Because of the dynamical character of
process, we plot here the wave number of the leading vor
The variation with time of the stream function maximum
shown in Fig. 8~b! where the inset is a zoom on the begi
ning of the evolution.

The intensity of the convective flow first increases rea
ing its maximum at aboutt50.8, and then slowly decrease
up to zero. The initial disturbances decrease slowly upt
'0.006, and after that they start to grow@Fig. 8~b!#. This
scenario is in good agreement with the linear analysis wh
gives a similar value for instability onset. Figure 8~a! shows
that the wave number of the pattern is located within
balloon of instability predicted by linear analysis except
the very beginning of process. As time goes by, the wa
length grows up toklim'1 at t51.4, which is the limit fixed
by the geometry of the numerical realization.

The acid penetrating the lower layer through the int
face and producing a solutal Marangoni effect at the in
face causes a permanent increase of the wavelength o
pattern through disappearance of weaker vortexes
growth of more vigorous ones. The Marangoni driven co
vective instability leads to a distortion of the reaction fro
At the beginning, the acid penetrates in the lower la
through the whole liquid–liquid interface because of diff
sion. Later on, after convection has started, the acid flu
are concentrated only in locations periodically distribut
along the interface where the higher acid concentration
tensifies the solutal Marangoni effect~the fluid tends to move
towards places with high concentration of acid!, and ampli-
fies the instability. As the income of fresh acid goes on,
reaction front begins to propagate slowly downwards
Downloaded 09 Mar 2004 to 164.15.131.92. Redistribution subject to AIP
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away from the interface. As this happens, the Marang
effect is weakened and finally disappears. This results in
weakening of the convective pattern located near the in
face and its full disappearance at timet'10. The system
then returns to its initial state, i.e., the one-dimensio
reaction-diffusion state.

Let us now concentrate our attention on the effect of s
production during the reaction. If the product of reactio
salt, was previously assumed not to be surface active, no
can influence the system dynamics through the Marang
mechanism. This influence is governed by the solutal M
rangoni numberMS . We assume also that the salt cann
cross the interface and can evolve solely in the lower lay
In order to feel the difference with the previous case,
keep all the values of parameters as before, and fix now
salt Marangoni number toMS521500. We find@see Figs.
8~a! and 8~b!# that the salt does not change the general e
lution of the system: as before, the system evolves from
short-wave pattern to a much longer structure through
permanent growth of the most vigorous vortexes. The co
puted streamlines~left!, density plots for acid~center! and

FIG. 8. Nonlinear simulation forg510: wavelength selection~a! and evo-
lution of stream function maximum~b!. The inset in~b! is a zoom on the
evolution at early time.
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salt ~right! concentration for successive times are presen
in Fig. 9. By taking into account the conservation law~19!,
the last column in Fig. 9 may be also interpreted as
density plot for the distribution of the base.

Nevertheless, the salt slightly modifies the system
namics. First of all, the Marangoni effect produced by s
intensifies the process@Fig. 8~b!#, because the interfacial ten
sion gradients become larger~the distribution of salt in the
lower layer follows the distribution of acid, and the Ma
rangoni effects produced by acid and salt have the s
sign!. As a result of the resulting more vigorous fluid mov
ment along the interface, the width of locations where a
enters the lower layer becomes narrower, and the trans
of convective pattern towards larger wavelength slows do
@Fig. 8~a!#. The final stage of the system evolution is simil
to that without salt production.

We found also that the heat effect does not change qu
tatively the described scenario, but rather accelerates the
tem evolution to patterns with a longer wavelength, since
thermal Marangoni instability occurs at smaller wave nu
bers than the solutal one.

VI. DISCUSSION AND CONCLUSIONS

The main objective of this article is to highlight the ro
of Marangoni instabilities in pattern formation observ
when chemical reactions are at play close to the interf
between two immiscible fluids.

We have shown that Marangoni patterns may arise a
result of a complicated interplay between diffusion, chemi

FIG. 9. Evolution of the stream function~left!, density plots of acid~center!
and salt~right! concentration from an initially perturbed base state to
convective pattern forMA522000,MS521500,g510. White and black
in the density plot correspond to zero and maximal concentration, res
tively. The frames~a!, ~b!, ~c!, ~d! pertain to timest50.0036, 0.4, 1.5, 2.7,
respectively.
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reactions giving rise to heat release and convection in
bulk close to the interface. Let us describe this process
detail. An important role in the occurrence of the instabil
is played by the diffusion of one of the reactant, acidA, from
one layer to the other. This gives the onset of the exother
chemical reaction in the fluid below the interface where
acid meets a baseB to provide a saltS in a neutralization
reaction. When the acid crosses the liquid–liquid interface
immediately gives rise to solutal Marangoni convection ch
acterized at early times by a short-wave pattern if the aci
surface active.

As the system evolves in time, the products of the re
tion, heat and salt, become increasingly important for
system stability when their amount reaches the level ab
which thermal and salt-driven Marangoni effects come in
play. Finally, the system is self-organized as follows: conv
tion brings fresh reactant from the upper layer to the low
one intensifying mass transfer in the system. This speed
the reaction and raises the heat release leading to a self
tained chemo-hydrodynamic pattern.

Nevertheless, the resulting pattern can exist only dur
a finite time as the underlying reaction-diffusion base stat
not steady. As time goes by, the reaction front travels
away from the interface. The convection driven solely
Marangoni mechanisms can not be further supported and
cays eventually. Hydrodynamical instabilities could be fu
ther sustained only if gravity could come into play allowin
for new mechanisms such as Rayleigh–Be´nard or double
diffusion ones to relay Marangoni effects.

Let us finally estimate the critical values for the M
rangoni numbers, for example, for the system experiment
studied in Ref. 11 in order to be sure that the instabil
considered in the present paper is realistic. Taking i
account that the value for the change of the surface ten
of water with the salt concentration sS50.51
31023 N/~m* mol/l) and other physical characteristics a
Q525, 73104 J/mol, A0'0.1 mol/l, k150.6 W/~m* K),
DA151029 m2/s, h151023 Pa* s, h;1023 m, the solutal
Marangoni number due to salt may be estimated asMS

;2104. For the thermal Marangoni number we obtainM
;104. By comparing these values with those presented
Figs. 5 and 6, we see that the discussed system is m
sensible to the solutal Marangoni effect than to thermal o
but anyway the thermal Marangoni instability can also occ
All the critical conditions of the instability correspond t
physically realistic values of parameters. The wavelength
the resulting pattern at onset is approximately equal to 2
times the gap-width of the Hele-Shaw cell, i.e., 2–3 m
followed by increase of its size in time. The averaged to
lifetime is about 10–20 min~1–2 units of dimensionless
time!. The described pattern formation should therefore
observed experimentally either in horizontal Hele-Shaw c
on Earth or ideally in zero-gravity.
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