
 
 

University of Birmingham

On martingale tail sums in affine two-color urn
models with multiple drawings
Kuba, Markus; Sulzbach, Henning

DOI:
10.1017/jpr.2016.89

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Kuba, M & Sulzbach, H 2017, 'On martingale tail sums in affine two-color urn models with multiple drawings',
Journal of Applied Probability, vol. 54, no. 1, pp. 96-117. https://doi.org/10.1017/jpr.2016.89

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 21. Aug. 2022

https://doi.org/10.1017/jpr.2016.89
https://doi.org/10.1017/jpr.2016.89
https://birmingham.elsevierpure.com/en/publications/6e727d2f-36b5-40d7-8b49-e3a0b3843d30


ON MARTINGALE TAIL SUMS IN AFFINE TWO-COLOR URN MODELS WITH

MULTIPLE DRAWINGS

MARKUS KUBA AND HENNING SULZBACH 1

ABSTRACT. In two recent works, Kuba and Mahmoud (arXiv:1503.090691 and arXiv:1509.09053) introduced

the family of two-color affine balanced Pólya urn schemes with multiple drawings. We show that, in large-index

urns (urn index between 1/2 and 1) and triangular urns, the martingale tail sum for the number of balls of a

given color admits both a Gaussian central limit theorem as well as a law of the iterated logarithm. The laws

of the iterated logarithm are new even in the standard model when only one ball is drawn from the urn in each

step (except for the classical Pólya urn model). Finally, we prove that the martingale limits exhibit densities

(bounded under suitable assumptions) and exponentially decaying tails. Applications are given in the context

of node degrees in random linear recursive trees and random circuits.

1. INTRODUCTION

Pólya urn schemes are useful mathematical toy models for growth processes with a wide range of appli-

cations in several areas including the analysis of random trees, graphs and algorithms, population genetics

and the spread of epidemics. For a discussion of these and further applications, we refer to the monographs

of Johnson and Kotz [26] and Mahmoud [34]. Instances of urn models with multiple drawings were first

discussed by Mahmoud and Tsukiji [45] in the context of random circuits. The model was then further de-

veloped in several recent contributions by Johnson, Kotz and Mahmoud [27], Chen and Wei [7], Renlund

[41], Mahmoud [35], Moler, Plo and Urmeneta [37], Chen and Kuba [8], Kuba, Mahmoud and Panholzer

[31] and Kuba and Mahmoud [32, 33].

Let us describe the details of the evolution of the two-color urn process. For convenience, we use the

colors white and black. In each step, we take a sample of m ≥ 1 balls from the urn. Here we distinguish two

scenarios: in modelM, balls are drawn without replacement; whereas, in modelR, the sample is obtained

with replacement. The pick is then put back in the urn together with a certain number of additional white

and black balls determined as follows: given that the sample contained k white and m− k black balls, we

add am−k white and bm−k black balls. Here, ak, bk, 0 ≤ k ≤ m are integers, where negative values are

allowed and correspond to removing balls from the urn. By M, we denote the ball replacement matrix of

this process,

M =















a0 b0
a1 b1
...

...

am−1 bm−1

am bm















. (1)

As usual, Wn and Bn describe the number of white and black balls in the urn after n draws. Further, we

let Tn = Wn+Bn be the total number of balls at time n. An urn scheme is called balanced if, at each step,

the total number of added balls σ ≥ 1 is constant. In other words, ak + bk = σ, 0 ≤ k ≤ m. In balanced

urns, we have, almost surely, Tn = T0 + σn. We call the scheme tenable, if, almost surely, the process of

drawing balls and updating the urn configuration can be continued forever. Throughout the work, we only

consider balanced and tenable urn models. We also assume that both W0 and B0 are deterministic.

Date: November 28, 2016.
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2 M. KUBA AND H. SULZBACH

1.1. Affine models. For m = 1, the classical analysis of the composition of Pólya urns is based on the

observation that, for suitable real-valued sequences αn, βn, n ≥ 1, the conditional expectation of Wn

exhibits the following affine structure

E
[

Wn | Fn−1

]

= αnWn−1 + βn, n ≥ 1. (2)

Here, Fn denotes the σ-algebra generated by the first n draws from the urn. In urn schemes with multiple

drawings, the conditional expectation of Wn generally involves higher powers of Wn−1 which complicates

the situation drastically. We believe that the analysis of the general model requires new techniques and do

not approach this problem here. Following [32, 33], in order to maintain the familiar structure (2) from the

case m = 1, we call an urn scheme with multiple drawings affine if (2) is satisfied for some deterministic

sequences αn, βn, n ≥ 1. By [32, Proposition 1], balanced urn models are affine if and only if the entries

in the first column of the replacement matrix M satisfy the recurrence:

ak = (m− k)(am−1 − am) + am, for 0 ≤ k ≤ m.

It follows that, in affine models, the matrix M can be expressed only in terms of the parameters am−1, am,

and the balance factor σ. Similarly, αn and βn in (2) can be given in terms of am−1, am and σ (see [32,

Proposition 1]) which we do not repeat here since αn and βn are of no relevance in our work.

In the case m = 1, it is well-known that the eigenvalues of the replacement matrix play an important

role in the classification of different urn schemes. This transfers directly to the case of multiple drawings

upon defining Λ1 ≥ Λ2 to be the two eigenvalues of the submatrix

(

am−1 bm−1

am bm

)

, compare Theorem 1

below. We define the urn index by

Λ :=
mΛ2

Λ1
=

m

σ
(am−1 − am) ∈ (−∞, 1]. (3)

As for m = 1, urn schemes can be divided in the following three fundamentally different cases:

i) Urn schemes with am ≥ 1, b0 ≥ 1 and small index Λ ≤ 1/2, the case Λ = 1
2 being critical,

ii) Urn schemes with am ≥ 1, b0 ≥ 1 and large index 1
2 < Λ < 1,

iii) Triangular urn models with am = 0 or b0 = 0 and arbitrary 0 < Λ ≤ 1. The special case Λ = 1
corresponds to the so-called generalized Pólya urn model introduced in [7, 8]. Here, am = b0 = 0.

In the context of triangular urn models, the relation Bn = Tn − Wn allows us to restrict ourselves to

urns with am = 0 and b0 ≥ 0. For small-index urns, we always exclude the case Λ = 0 from the results

since it implies a deterministic evolution of the urn composition. Similarly, in triangular urns, we always

assume W0 ≥ 1, and, additionally, B0 ≥ 1 if Λ = 1.

1.2. Known results. The main results of the two works [32, 33] can be summarized in the following

theorem which is well-known and classical for m = 1. Here, and throughout the work, we abbreviate

ζ =
am

1− Λ
, Q =

Γ(T0

σ + Λ)

Γ(T0

σ )
. (4)

Note that, tenability of the scheme depends on the matrix M, the initial configuration (W0, B0) and the

model under consideration. For a discussion, see Lemma 1 in Section 3.1.

Theorem 1. Let Wn be the number of white balls at time n in an affine balanced and tenable two-color

urn model (modelM or modelR) with replacement matrix M given in (1) and fixed initial configuration

(W0, B0).

i) For small-index urns with 0 6= Λ ≤ 1/21, we have, in distribution,

Wn − ζn√
nℓn

→ N (0, γ2
1), ℓn =

{

1 if Λ < 1/2,

log n if Λ = 1/2.

1In [32, Theorem 3], the authors impose the additional condition T0 +m(am−1 − am) > 0. It is not hard to see that the result

holds without making this assumption. In fact, the relevant argument is stated on page 5 in [32].
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Here, N (0, γ2
1) denotes a zero-mean normal random variable with variance γ2

1 > 0 where

γ1 =







Λ
1−Λ

√

amb0
m(1−2Λ) if Λ < 1/2,

√

amb0
m if Λ = 1/2.

(5)

ii) For large-index urns with 1/2 < Λ < 1, we have, almost surely,

Q · (Wn − ζn)

nΛ
→ W∞, E[W∞] = 0.

iii) For triangular urns with 0 < Λ ≤ 1 and am = 0, we have, almost surely,

Q ·Wn

nΛ
→ W∞, E[W∞] = W0.

The convergence for large-index and triangular urns holds with respect to all moments and the random

variables W∞,W∞ are not almost surely constant.

We shortly discuss the theorem in the classical case m = 1. The central limit theorems for small-index

and large-index balanced urns go back to Athreya and Karlin [1] under the assumption that a0, b1 ≥ −1,

the important case of Friedman’s urn had earlier been solved earlier by Freedman [16]. Bagchi and Pal

[2] proved the Gaussian central limit theorem in small-index urns in the general case using the method

of moments. By similar techniques as adopted in this work, Gouet [17] showed functional central limit

theorems covering the statement for small- and large-index urns as well as for triangular urns. Variants

of Theorem 1 i), ii) have been obtained based on substantially different techniques: Flajolet, Gabarró and

Pekari [14] and Flajolet, Dumas and Puyhaubert [13] used singularity analysis, Pouyanne [40] applied

purely algebraic methods in the context of large-index urns, and, very recently, Neininger and Knape [30]

worked out an approach based on the contraction method. Janson’s comprehensive work [23] based on

a strengthening of the ideas in [1] also treats certain non-balanced urn models and contains an elaborate

summary of works in the context of Theorem 1 i), ii). Properties of the law of the martingale limit W∞

such as characteristic functions, densities, moments and characterizing stochastic fixed-point equations

were studied by Chauvin, Pouyanne and Sahnoun [5], Neininger and Knape [30], as well as by Chauvin,

Pouyanne and Mailler [6]. Similarly, in triangular urn schemes, the law of W∞ was studied by Janson

[24, 25] and in [14]. Note that, [24] contains a full characterization of the limiting distributions in triangular

urns covering all cases of zero-balanced and unbalanced schemes. For more references and results on large

deviations and convergence rates, we refer to the discussions in the literature cited.

For general m ≥ 1, explicit expressions for the (positive integer) moments of the non-normal limits

in large-index and triangular urns, that is W∞ and W∞ in Theorem 1, have been obtained in [33]. It is

important to note that the structure of higher moments for multiple drawings m > 1 is significantly more

involved compared to the case m = 1 where simplifications occur (see also the discussion in [8]). Note

that the main results of this work show that these limiting distributions have exponentially small tails.

1.3. Aim of the paper. For a martingale (Yn) converging almost surely to a random variable Y∞, the

sequence (Yn − Y∞) is called martingale tail sum. A classical result for urn models is the central limit

theorem and the law of the iterated logarithm by Heyde [22] for the martingale tail sum in the original Pólya

urn model with sample size m = 1. Again, for m = 1, central limit theorems for the tail sums in balanced

small- and large-index urns as well as in triangular urns are contained in the functional limit theorems in

[17]. A corresponding law of the iterated logarithm for small-index urns was given by Bai, Hu and Zhang

[3]. A classical result for urn models is the central limit theorem and the law of the iterated logarithm by

Heyde [22] for the martingale tail sum in the original Pólya urn model with sample size m = 1. Again,

for m = 1, central limit theorems for the tail sums in balanced small- and large-index urns as well as in

triangular urns are contained in the functional limit theorems in [17]. A corresponding law of the iterated

logarithm for small-index urns was given by Bai, Hu and Zhang [3]. Recently, several articles analyzing

related random discrete structures have been devoted to martingale tails sums: Móri [38] obtained a central

limit theorem for maximum degree of the plane-oriented recursive trees. Neininger [29] proved a central

limit theorem for the martingale tail sum of Régnier’s martingale for the path length in random binary

search trees. Fuchs [15] reproved this result using the method of moments; a refinement of this result is
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given by Grübel and Kabluchko [19]. Sulzbach [43] generalized the result for binary search trees to a

family of increasing trees containing amongst others binary search trees, recursive trees and plane-oriented

recursive trees, also obtaining a law of the iterated logarithm.

In this work we derive central limit theorems and laws of the iterated logarithm for the martingale tail

sums arising in large-index and triangular affine urn models for general m ≥ 1. Note that, even for m = 1,

the laws of the iterated logarithm are new except for the case Λ = 1. We also extend the results in [7, 8] to

show that the martingale limits in all models admit densities and exponentially small tails. Throughout the

work, we exclusively use tools from discrete-time martingale theory as summarized in Sections 3.4 and 3.5.

For m = 1, the urn model allows for a continuous-time multi-type branching process embedding [1, 23]

as well as for recursive distributional decompositions [30, 6] leading to much stronger results about the

limiting random variables. Since these techniques seem not to be directly applicable for m > 1, we leave

it as an open problem to derive more precise information about the limit laws such as infinite divisibility,

smoothness of densities, unbounded support or characterizations based on stochastic-fixed point equations.

1.4. Notation. We denote by xk the kth falling factorial, x(x−1) . . . (x−k+1), k ≥ 0, with x0 = 1. For

real-valued sequences an, bn, we write an ∼ bn if an/bn → 1 as n → ∞ (almost surely, if the sequences

are random). Further, we use the big-O Landau notation for sequences as n → ∞. By N we denote a

standard normal random variable. We call a random variable X Subgaussian if there exist c, C > 0, such

that,

P(|X| ≥ t) ≤ Ce−ct2 , t > 0.

By bin(n, p) we denote the binomial distribution with parameters n ∈ N (number of trials) and p ∈ [0, 1]
(success probability). Similarly, we use hyp(N,K,m) to denote the hypergeometric distribution counting

the number of white balls in a sample of size m ∈ N balls taken from urn containing N ≥ m balls,

m ≤ K ≤ N among them being white.

2. RESULTS

Our main results concern the asymptotic behavior of Wn in large-index urns and triangular urns. Our

results cover both modelM and modelR. We refer to Lemma 2 for an explicit formula for E[Wn]. Let

gn =

(

n−1+
T0

σ

n

)

(

n−1+
T0

σ
+Λ

n

)

= Qn−Λ
(

1 +O
( 1

n

))

, n ≥ 1, (6)

with Q given in (4) and Λ given in (3).

Theorem 2 (Large-index urns). Let Wn be the number of white balls at time n in a large-index urn with

1/2 < Λ < 1. Then, Wn := gn(Wn − E[Wn]) is an almost surely convergent martingale. Its limit W∞

is Subgaussian and admits a bounded density on (−∞,∞). In distribution and with convergence of all

moments,

αnΛ−1/2(Wn −W∞) → N , α =
(1− Λ)

QΛ

√

m(2Λ− 1)

amb0
. (7)

Almost surely,

lim sup
n→∞

αnΛ−1/2(Wn −W∞)√
2 log log n

= 1, lim inf
n→∞

αnΛ−1/2(Wn −W∞)√
2 log log n

= −1.

Theorem 3 (Triangular urns). Let Wn be the number of white balls at time n in a triangular urn with

Λ ≤ 1 and am = 0. Then, Wn := gnWn is an almost surely convergent martingale. Its limit W∞ admits

a density on (0,∞) which is bounded if W0 ≥ am−1,Λ < 1 or W0, B0 ≥ am−1,Λ = 1. For Λ > 1/2, it

is Subgaussian, where W∞ ≤ T0 for Λ = 1. For Λ ≤ 1/2, it has a finite momentum-generating function

in some non-empty open interval containing zero. In distribution (and with convergence of all moments in

the second display for Λ > 1/2) ,

βηnΛ/2(Wn −W∞) → N , βnΛ/2(Wn −W∞) → (η′)−1N , (8)
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where η′,N are independent and η′ is distributed like η given in (9). Almost surely,

lim sup
n→∞

βηnΛ/2(Wn −W∞)√
2 log log n

= 1, lim inf
n→∞

βηnΛ/2(Wn −W∞)√
2 log log n

= −1.

Here,

β =

{
√

W0

am−1

if Λ < 1,
√

mE[W∞(T0 −W∞)] if Λ = 1.
η =

{

W
−1/2
∞ if Λ < 1,

(W∞(T0 −W∞))−1/2 if Λ = 1.
(9)

Let us give a detailed discussion of the results. For m > 1, almost sure convergence of the martingales

were established in [32], compare also Theorem 1, where special cases had been considered earlier [7, 8,

45]. Asymptotic statements about the martingale tail sums are novel for m > 1 and so are the properties

of the limiting distribution with the exception of the generalized Pólya urn studied in [7, 8]. For m = 1,

the laws of iterated logarithm for large-index and triangular urns with Λ < 1 are new; for the remaining

results, compare the discussion in the introduction. For m = 1, the moments of W∞ exhibit simple explicit

expressions [24, Theorem 1.7]. From these results, it is easy to see that Theorem 3 is optimal in the sense

that, for m = 1 and Λ < 1/2, W∞ is not Subgaussian2. In the critical case Λ = 1/2, we believe that

W∞ is Subgaussian for any m > 1 but our methods are not sufficiently strong to deduce this. Similarly,

by the results in [25, Section 9], for m = 1, the density of W∞ is unbounded if Λ < 1,W0 < c or

Λ = 1,min(W0, B0) < c. Finally, note that the first convergence in (8) is mixing in the sense of Rényi and

Révész [42]. This property allows to deduce the second convergence.

For the sake of completeness, we briefly discuss balanced affine small-index urns with 0 6= Λ ≤ 1/2.

Recall the martingale central limit theorem for Wn in Theorem 1 i) which is Theorem 3 in [32]. Note that,

by Corollary 1 in [20], this convergence is with respect to all moments. Further, analogously to the results

presented in this work and relying on the same martingale methods, that is Theorem 1, Corollary 1 and

Corollary 2 in [22], the following laws of the iterated logarithm hold: for 0 6= Λ < 1/2, recalling γ1 in (5),

almost surely,

lim sup
n→∞

Wn − E[Wn]

γ1
√
2n log log n

= 1, lim inf
n→∞

Wn − E[Wn]

γ1
√
2n log log n

= −1. (10)

For Λ = 1/2, with γ1 as in (5), almost surely,

lim sup
n→∞

Wn − E[Wn]

γ1
√
2 log n log log log n

= 1, lim inf
n→∞

Wn − E[Wn]

γ1
√
2 log n log log log n

= −1. (11)

Since we are focused on large-index and triangular urns in this paper, we do work out the proofs here.

The following two tables give a schematic summary of the main results of this work and [32]. To be

more precise, our work adds the third order term in the third column of the first table and the second order

term in both columns of the second table. Here, we write Xn = Yn +ZnN when Z−1
n (Xn − Yn) → N in

distribution. Further, we recall ζ and Q from (4) and Λ from (3).

0 6= Λ < 1/2 Λ = 1/2 1/2 < Λ < 1

Wn = ζn+ γ1
√
nN Wn = ζn+ γ1

√
n log nN Wn = ζn+ (W∞ + ϑ)nΛ + α−1

√
nN

γ1 given in (5) γ1 given in (5) ϑ given in (13), α given in (7)

TABLE 1. Behavior of Wn in small- and large-index balanced affine urns.

Λ < 1 Λ = 1

Wn = Q−1
W∞nΛ + (βQ)−1

√
W∞nΛ/2N Wn = Q−1

W∞n+ (βQ)−1
√

W∞(T0 −W∞)
√
nN

β given in (9) β given in (9)

TABLE 2. Behavior of Wn in triangular balanced affine urns.

2More precisely,
(

E[Wp
∞]

)1/p
∼ cp1−Λ as p → ∞ where c = c(a0, σ).
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Note that W∞,W∞ as well as α, β, ϑ and Q depend on the initial configuration of the urn (W0, B0).
Further, the distributions of the W∞ and W∞ depend on the sampling scheme.

2.1. Application I: Degrees in increasing trees. We present an application in the case m = 1 for trian-

gular urn schemes in the context of random linear recursive trees. These can be constructed as follows:

at time n = 1, we start with a tree T1 consisting of a single node. At time n ≥ 2, given a tree Tn−1

of size n − 1, we choose a node v proportionally to 1 + ̺dv , where dv denote its out-degree (that is,

its number of children) and ̺ ∈ N0. The tree Tn is then obtained by connecting an additional node to

v. The most important models are ̺ = 0 (random recursive tree) and ̺ = 1 (plane-oriented recursive

tree). By D
(i)
n , n ≥ 0, we denote the out-degree of the i-th inserted node at time n + i. By construc-

tion, W
(i)
n := ̺D

(i)
n + 1 is equal to the number of white balls in a two-color Pólya urn model with

m = 1, a0 = ̺, b0 = 1, a1 = 0, b1 = ̺ + 1,W0 = 1, B0 = (̺ + 1)(i − 1). In fact, D
(i)
n counts the

number of times we sample a white ball from the urn. From now on, assume ̺ ≥ 1. Obviously, Theorem

1 iii) applies and we denote the martingale limit by W
(i)
∞ . An expression for the density of W

(i)
∞ in terms

of an infinite sum is given in [25, Theorem 9.1]. For i = 1, the term simplifies and the limit law is directly

related to a distribution of Mittag-Leffler type. The cases α = 1, i ≥ 1 were studied in more detail by

Peköz, Röllin and Ross [39] who give bounds on the convergence rates in the Kolmogorov distance and

observe an interesting distributional identity for W
(i)
∞ [39, Proposition 2.3]. In the next corollary, we only

state the law of iterated logarithm, the novel contribution in our work (for m = 1). Here, as before, we

write W
(i)
n for the martingale corresponding to W

(i)
n defined as in Theorem 3.

Corollary 1. For ̺, i ≥ 1, almost surely,

lim sup
n→∞

n̺/(2(̺+1))(W
(i)
n −W

(i)
∞ )

√

2̺W
(i)
∞ log log n

= 1, lim inf
n→∞

n̺/(2(̺+1))(W
(i)
n −W

(i)
∞ )

√

2̺W
(i)
∞ log log n

= −1.

The case ̺ = 0 is substantially different. Here, D
(i)
n can be expressed as the sum of independent

Bernoulli random variables with success probabilities 1/j, j = i, . . . , n+ i−1. Therefore, expectation and

variance of D
(i)
n are logarithmic and both central limit theorem as well as laws of the iterated logarithm are

classical.

2.2. Application II: Degrees in preferential attachment graphs. Linear recursive trees are special in-

stances of so-called preferential attachment graphs which play an important role in modeling scale-free

networks with applications in sociology, neurology and computer science (e.g. the webgraph). This ac-

tive research topic was initiated by the seminary work of Barabási and Albert [4]. Many authors studied

dynamic networks in which new nodes are linked to several vertices in the graph. This leads to the con-

struction of the following random circuit or directed acyclic (multi-)graph. At time n = 1, the graph G1

consists of a single node. Given the directed graph Gn−1 at time n ≥ 2, we choose two nodes v, v′ in-

dependently, each of which proportionally to 1 + ̺dv, ̺ ∈ N0, where dv counts the number of directed

edges emanating from v. Gn is obtained by adding an additional node and directed links from both v and

v′ to the latter. For ̺ = 0, various quantities in the resulting network have been studied, compare Dı́az et

al. [11], Tsukiji and Xhafa [44], Devroye and Janson [10] for the height and Tsukiji and Mahmoud [45]

for node degrees. As above, we denote by D
(i)
n , n ≥ 0, the out-degree of the i-th inserted node at time

n+ i. Then, W
(i)
n := ̺D

(i)
n + 1 is equal to the number of white balls in a two-color Pólya urn model with

m = 2, a0 = 2̺, b0 = 1, a1 = ̺, b1 = ̺ + 1, a2 = 0, b2 = 2̺ + 1,W0 = 1, B0 = (2̺ + 1)(i − 1). The

almost sure convergence in the next corollary follows immediately from Theorem 1 iii) while the main

theorems in this work give the Gaussian limit law, law of the iterated logarithm and the properties of the

limiting random variable.
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Corollary 2. Let ̺, i ≥ 1 and Λ = 2̺/(2̺ + 1), Q = (i − 1)!/Γ(i − Λ). Then, almost surely and with

convergence of all moments,

Q ·W (i)
n

nΛ
→ W

(i)
∞ ,

where the limit random variable has unit mean and its distribution admits a density and Subgaussian tails.

The density can be chosen bounded for ̺ = 1. In distribution and with convergence of all moments,

nΛ/2(n−ΛQ ·W (i)
n −W

(i)
∞ ) →

√

̺W
(i)
∞ · N ,

where W
(i)
∞ and N are independent. Finally, almost surely,

lim sup
n→∞

nΛ/2(n−ΛQ ·W (i)
n −W

(i)
∞ )

√

2̺W
(i)
∞ log log n

= 1, lim inf
n→∞

nΛ/2(n−ΛQ ·W (i)
n −W

(i)
∞ )

√

2̺W
(i)
∞ log log n

= −1.

Again, for ̺ = 0, node degrees grow logarithmically and one obtains similar results as in the case of

random recursive trees, compare Mahmoud [36].

2.3. Application III: Leaves in random circuits. In this section, we consider the graph Gn constructed

as above with ̺ = 0 and the modification that, in each step, the parent nodes v and v′ are chosen without

replacement. Denote by Ln the number of leaves (nodes with out-degree zero) in the graph. By observing

that Ln coincides with the number of white balls in a two-color Pólya urn model (at time n − 2) with

m = 2, a0 = −1, b0 = 2, a1 = 0, b1 = 1, a2 = 1, b2 = 0,W0 = 1, B0 = 1, a Gaussian central limit

theorem for Ln is proved in [45]. This also follows immediately from Theorem 1 i). The next corollary

states the accompanying law of the iterated logarithm and follows from (10).

Corollary 3. Almost surely,

lim sup
n→∞

Ln − n/3√
n log log n

=
2
√
10

15
, lim inf

n→∞

Ln − n/3√
n log log n

= −2
√
10

15
.

2.4. Generalizations and outlook. There are several possibilities to generalize and strengthen our results.

First, distributional and almost sure convergence theorems remain valid for random initial configurations

both on a conditioned and unconditioned level assuming tenability. Furthermore, our results can be ex-

tended to models with non-integer values of am−1, am and σ, such that ak ≥ 0, 0 ≤ k ≤ m, assuming

W0, B0 ∈ [0,∞) such that W0+B0 ≥ m for modelM and W0+B0 ≥ 1 for modelR ensuring tenability.

We expect that our methods also apply to the study of the one-dimensional limit random variables and their

laws in linear affine balanced models with r ≥ 2 colors. This will be content of future work.

3. PRELIMINARIES

3.1. Tenability. Tenable urn schemes in the two-color case and m = 1 were classified in [2]. In multiple

drawings schemes, sufficient conditions for tenability were formulated by Konzem and Mahmoud [28]. In

the following lemma, we characterize tenability in the models considered in this work. Since the result is

not at the core of our work, we defer its proof to the appendix.

Lemma 1. Let M be the replacement matrix of a balanced affine urn process with Λ 6= 0 and initial

configuration (W0, B0). Let ga = gcd(a0, . . . , am), gb = gcd(b0, . . . , bm) and, for z ∈ Z, y ∈ N,

abbreviate [z]y := z mod y ∈ {0, . . . , y − 1}.

i) Under modelR, the scheme is tenable, if and only if, a1, . . . , am, b0, . . . , bm−1 ≥ 0 and

a0 ∈ {z ∈ −N : z|W0, z|(am−1 − am)} ∪ N0,

bm ∈ {z ∈ −N : z|B0, z|(am−1 − am)} ∪ N0.
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ii) Under modelM, the scheme is tenable, if and only if, ak ≥ −(m− k), 1 ≤ k ≤ m and bk ≥ −k, 0 ≤
k ≤ m− 1, and

a0 ∈ [−m,∞) ∪ ([−m− ga + 1,−m) ∩ {z ∈ −N : [W0]ga ∈ {[−z]ga , [−z + 1]ga , . . . , [m+ ga − 1]ga})
bm ∈ [−m,∞) ∪ ([−m− gb + 1,−m) ∩ {z ∈ −N : [B0]gb ∈ {[−z]gb , [−z + 1]gb , . . . , [m+ gb − 1]gb})
3.2. Forward equations. Following the notation introduced in [32], we write 1n(W

kBm−k) for the in-

dicator function of the event that k white balls and m − k black balls are drawn in the nth step. By the

dynamics of the urn process, we have

Wn = Wn−1 +∆n, ∆n =

m
∑

k=0

am−k 1n(W
kBm−k), n ≥ 1. (12)

Thus,

pn;m,k = P
(

∆n = am−k | Fn−1

)

= E[1n(W
kBm−k) | Fn−1],

where the conditional probabilities pn;m,k are given by

pn;m,k =

{

(

Wn−1

k

)(

Bn−1

m−k

)

/
(

Tn−1

m

)

for modelM,
(

m
k

)

W k
n−1B

m−k
n−1 /Tm

n−1 for modelR.

3.3. The mean number of nodes. We recall results on the mean number of white balls and a strong law

of large numbers from [32].

Lemma 2 ([32]). For both models R and M and n ≥ 1, we have E[Wn] =
am

gn

∑n
j=1 gj +W0

1
gn

with gn
in (6). For large-index and triangular urns with Λ < 1, it holds

E[Wn] =
am
(

n+ T0

σ

)

1− Λ
+
(

W0 −
amT0

σ

1− Λ

)

(

n−1+
T0

σ
+Λ

n

)

(

n−1+
T0

σ

n

)

= ζn+ ϑnΛ +O(1), ϑ =
(

W0 −
amT0

σ

1− Λ

) Γ(T0

σ )

Γ(T0

σ + Λ)
. (13)

For triangular urns with Λ = 1, we have

E[Wn] = W0
nσ + T0

T0
.

For large-index urns, we have, almost surely,

Wn

n
→ ζ. (14)

3.4. Martingale tail sums and central limit theorems. The following proposition on martingale tail

sums is essentially a restatement of Theorem 1, Corollary 1 and Corollary 2 in Heyde [22]. The result

concerning convergence of moments follows from Theorem 3.5 in Hall and Heyde [21], compare also

Theorem 1 in Hall [20] for the case η = 1.

Proposition 1. Let Zn, n ≥ 0, be a zero-mean, L2-bounded martingale with respect to a filtration Gn, n ≥
0. Let Xn = Zn − Zn−1, n ≥ 1, X0 := 0, and s2n =

∑∞
i=n E[X

2
i ]. Denote Z the almost sure limit of Zn.

Assume that, for some non-zero and finite random variable η, we have, almost surely,

s−2
n

∞
∑

i=n

E[X2
i |Gi−1] → η2, (15)

and, for all ε > 0,

s−2
n

∞
∑

i=n

E[X2
i 1{|Xi|≥εsn}] → 0. (16)

Then,

(ηsn)
−1(Zn − Z) → N , s−1

n (Zn − Z) → η′N , (17)

in distribution, where η′ and N are independent and η′ is distributed like η. If
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L1.
∑∞

i=1 s
−1
i E[|Xi|1{|Xi|≥εsi}] < ∞ for all ε > 0,

L2.
∑∞

i=1 s
−4
i E[X4

i ] < ∞,

then, almost surely,

lim sup
n→∞

Zn − Z

ηsn
√

2 log log s−1
n

= 1, lim inf
n→∞

Zn − Z

ηsn
√

2 log log s−1
n

= −1.

Finally, if for all p ∈ N sufficiently large,

P1. Zn is bounded in Lp,

P2. s−2p
n

∑∞
i=n E[X

2p
i ] → 0,

P3. s−2
n

∑∞
i=n E[X

2
i |Gi−1] is bounded in Lp,

then the second convergence in (17) is with respect to all moments.

3.5. Martingale concentration inequalities. In order to show that the limits W∞ and W∞ have light

tails, we need the following two tail bounds for martingales. The first is a well-known variant of Azuma’s

inequality.

Proposition 2. Let M0,M1, . . . be a martingale with respect to a filtration G0,G1, . . . Assume that, for all

n ≥ 1, there exist constants cn ≥ 0 and Gn−1 measurable random variables Zn, such that, almost surely,

0 ≤ Mn −Mn−1 − Zn ≤ cn. Then,

P(|Mn −M0| ≥ t) ≤ 2 exp

(

− t2

2
∑n

i=1 c
2
i

)

, t > 0.

The next proposition is a variant of Bennett’s inequality for martingales which improves on the previous

proposition when the conditional variances of the martingale differences are significantly smaller than their

essential suprema.

Proposition 3 (Chung and Lu [9], Theorem 7.3). Let M0,M1, . . . be a martingale with respect to a

filtration G0,G1, . . . where M0 is almost surely constant. Assume that there exists a constant M > 0
and, for all n ≥ 1, non-negative constants σn, φn such that, almost surely, Mn − Mn−1 ≤ M and

E[(Mn −Mn−1)
2|Gn−1] ≤ σn + φnMn−1. Then,

P(Mn −M0 ≥ t) ≤ exp

(

− t2

2(Mt/3 +
∑n

i=1 σi + (M0 + t)
∑n

i=1 φi)

)

, t > 0. (18)

4. PROOFS OF THE MAIN RESULTS

We start be recalling that the process Wn and Wn are martingales [32, Proposition 4]. To unify the

notation, let Yn and en be defined as

Yn = gn(Wn − en), with en =

{

0 for triangular urn models,

E[Wn] for large-index urn models,

such that

Yn =

{

Wn for triangular urn models,

Wn for large-index urn models.

In the remaining of the paper, we denote by Xn the martingale difference

Xn = Yn − Yn−1, n ≥ 1.
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4.1. Martingale differences: bounds and moments. Aiming at applications of Proposition 1 we investi-

gate the martingale differences Xn, n ≥ 1. By the simple Lemma 3 in [32] which applies to all our models,

there exists a deterministic constant K such that, for all n ≥ 1, we have

|Xn| ≤ Kn−Λ. (19)

It turns out that this rather trivial bound is of the right order for large-index urns with 1/2 < Λ < 1 and

triangular urns with Λ = 1. Therefore (19) is sufficient to verify conditions L2, P2 and P3 in Proposition

1. In the case of triangular urns, condition L2 can be checked with the help of (19) for Λ > 1/2. It is

only the case of triangular urns with Λ ≤ 1/2 where more precise estimates are required. For the sake of

completeness, we give the first order terms of E[X4
n] in all cases below in Lemma 4. Further, (19) also

settles (16) and condition L2 as will become clear in the proof of the main theorems below.

Our starting point to compute second and fourth moments is the following observation which can be

verified by means of direct computations:

Xn+1 = gn+1

(

Ŷn +∆n+1 − am
)

, Ŷn =
( 1

gn
− 1

gn+1

)

Yn + en − en+1 + am,

with ∆n as given in (12). By the forward equation (12), it follows that the conditional distribution of Xn+1

given Fn is

P

(

Xn+1 = gn+1

(

Ŷn + k
σ

m
Λ
) ∣

∣

∣Fn

)

= pn+1;m,k, 0 ≤ k ≤ m. (20)

In the following we collect the asymptotic expansions of the conditional and unconditional expected

value of the second moment.

Lemma 3. We have the following asymptotic statements for both modelM and modelR :

• For triangular urn models with Λ = 1:

E[X2
n+1 | Fn] ∼

T 2
0

mn2

(

W∞

T0

(

1− W∞

T0

)

)

, E[X2
n+1] ∼

T 2
0

mn2
· E
[

W∞

T0

(

1− W∞

T0

)

]

.

and

s2n ∼ T 2
0

mn
· E
[

W∞

T0

(

1− W∞

T0

)

]

.

• For triangular urn models with Λ < 1:

E[X2
n+1 | Fn] ∼ n−Λ−1σQΛ2

m
W∞, E[X2

n+1] ∼ n−Λ−1σQΛ2W0

m
.

and

s2n ∼ n−Λam−1ΛQW0.

• For large-index urns:

E[X2
n+1 | Fn] ∼ n−2Λ amb0Q

2Λ2

m(1− Λ)2
, E[X2

n+1] ∼ n−2Λ amb0Q
2Λ2

m(1− Λ)2
,

and

s2n ∼ n−2Λ+1 amb0Q
2Λ2

m(2Λ− 1)(1− Λ)2
.

Proof. First, we derive an exact representation of the second moment in terms of Ŷn and Yn. By (20),

almost surely,

E[X2
n+1 | Fn] = g2n+1

m
∑

k=0

(

Ŷn + k
σ

m
Λ
)2

pn+1;m,k = g2n+1

m
∑

k=0

(

Ŷ 2
n + 2Ŷn

σ

m
Λk +

σ2Λ2

m2
k2
)

pn+1;m,k.

The sums are readily evaluated using the basic properties of the binomial and the hypergeometric distribu-

tions. We obtain the expression

E[X2
n+1 | Fn] = g2n+1

[

Ŷ 2
n + 2Ŷn

(

Yn

gn
+ en

)

σΛ

Tn

]

(21)
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+ g2n+1

σ2Λ2

mTn

(

Yn

gn
+ en

)

×







(

m−1
Tn−1

(

Yn

gn
+ en − 1

)

+ 1
)

for modelM,
(

m−1
Tn

(

Yn

gn
+ en

)

+ 1
)

for modelR.
(22)

We continue with the case of triangular urn models with am = 0, en = 0. From the last display, it follows

E[X2
n+1 | Fn] = g2n+1

[

Ŷ 2
n + 2Ŷn

Yn

gn

σΛ

Tn

]

+ g2n+1

σ2Λ2

mTn

Yn

gn
×







(

m−1
Tn−1

(

Yn

gn
− 1
)

+ 1
)

for modelM,
(

m−1
Tn

Yn

gn
+ 1
)

for modelR.

(23)

Assume first that Λ = 1, such that Ŷn = − σ
T0

Yn. We get

E[X2
n+1 | Fn] = −g2n+1

σ2

T 2
0

Y 2
n + g2n+1

σ2

mT0
Yn ×







(

m−1
Tn−1

(

YnTn

T0

− 1
)

+ 1
)

for modelM,
(

m−1
Tn

YnTn

T0

+ 1
)

for modelR.

Since Yn converges with respect to all moments [33], for both sampling schemes, we deduce

E[X2
n+1 | Fn] ∼ g2n+1

[

− σ2

T 2
0

W
2
∞ +

σ2

mT0
W∞

(

(m− 1)
W∞

T0
+ 1
)]

, (24)

which gives the stated result recalling (6). For Λ < 1, first note that

gn+1

gn
= 1− Λ

n+ T0/σ + Λ
. (25)

It is easy to identify the leading term in the expansion (23) which suffices to prove the statement. However,

for later purposes, we state a more precise result. Applying (25) to the summands in (23), we have

E[X2
n+1 | Fn] = Λam−1gn+1

Yn

n
− Y 2

n

mn2
+O(n−1−2Λ), (26)

the O-term being deterministic. By (6), as n → ∞, the first summand dominates. For large-index urns,

since (25) remains valid in this model, we have Ŷn ∼ en − en+1 + am. Using (13), we observe that

Ŷn ∼ − amΛ

1− Λ
.

From the explicit representation (22) we collect the dominant contributions and obtain the model-independent

expansion

E[X2
n+1 | Fn] ∼ g2n+1

[ Λ2a2m
(1− Λ)2

− 2
Λ2a2m

(1− Λ)2
+

σ2Λ2

mσ
· am
1− Λ

(

1 +
m− 1

σ
· am
1− Λ

)]

∼ Q2n−2Λ−amΛ2(am + Λσ − σ)

m(1− Λ)2
= n−2Λ amb0Q

2Λ2

m(1− Λ)2
. (27)

Note that we have used (14) here. Since the convergence of Yn is with respect to all moments [33, Theorem

1], the equivalences in (24) and (27) as well as the expansion (26) also hold in mean. The expansions of s2n
are readily obtained using the Euler-MacLaurin summation formula. �

In the following lemma, denote by r(m, p) the fourth central moment of the binomial distribution

bin(m, p).

Lemma 4. For n → ∞ the fourth moment E[X4
n+1] of the martingale difference satisfies for both

modelM and modelR :

• For triangular urn models with Λ = 1:

E[X4
n+1] ∼

T 4
0

m4
E

[

r

(

m,
W∞

T0

)]

n−4.

• For triangular urn models with Λ < 1:

E[X4
n+1] ∼

σ3Q3W0

m3
n−3Λ−1.
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• For large-index urns:

E[X4
n+1] ∼

(

σΛ

m

)4

r

(

m,
ζ

σ

)

n−4Λ.

Proof. By (20), in modelR,

E[X4
n+1] = g4n+1E

[

(

Ŷn +
σΛ

m
Bin

(

m,
Wn

Tn

))4
]

, (28)

where Bin(m, p) denotes a random variable with distribution bin(m,p). In the triangular case with Λ = 1,

since Yn converges with respect to all moments,

E[X4
n+1] ∼ g4n+1E

[

(

− σ

T0
W∞ +

σ

m
Bin

(

m,
W∞

T0

))4
]

.

The assertion now follows from (6). For large-index urns, by the same arguments,

E[X4
n+1] ∼ g4n+1E

[

(

−ζΛ +
σΛ

m
Bin

(

m,
ζ

σ

))4
]

.

Since the binomial distribution bin(m, p) is the distributional limit of the hypergeometric distribution

hyp(a(n), b(n),m) as b(n)/a(n) → p, the same results hold under modelM. Note however, that the

limiting random variable W∞ depends on the sampling scheme. For triangular urns with Λ < 1, one needs

to be more precise. First, applying the binomial theorem to (28) gives

g−4
n+1E[X

4
n+1] =

4
∑

k=0

(

4

k

)(

σΛ

m

)4−k

E

[

Ŷ k
n

(

Bin

(

m,
Wn

Tn

))4−k
]

.

Upon bounding the Binomial random variable from above by m, it follows that the summands k = 2, 3, 4
are of the order at most n2Λ−2 and turn out to be asymptotically negligible. Regarding the summand k = 1,

note that

E

[

n1−ΛŶn

(

Bin

(

m,
Wn

Tn

))3
]

→ 0, n → ∞.

This follows by the theorem of dominated convergence since it holds in probability for the integrand which

it is moreover bounded from above by m2am−1. Finally, for the last summand k = 0, we compute

g4n+1E

[

σ4

Λ4m4

(

Bin

(

m,
Wn

Tn

))4
]

∼ σ3Q3W0

m3
n−3Λ−1.

Here, we have used that E
[

Bin(m, p)4
]

∼ mp+O(p2) as p → 0. This finishes the proof for modelR. For

modelM, again by approximating the hypergeometric distribution by the binomial distribution, we obtain

the analogous result. �

In the case of triangular urns with Λ = 1 in Lemma 3 and 4 we have implicitly assumed that 0 <
W∞ < T0 almost surely. This will be justified later when we show that W∞ has a density on [0, T0]
without relying on any results in the lemmas. Analogously, we will show that W∞ > 0 almost surely for

Λ < 1 needed in Lemma 3.

4.2. Proofs of Theorems 2 and 3. We start with the central limit theorems and the laws of the iterated

logarithm relying on Proposition 1 postponing the verification that the martingale limits have non-atomic

distributions. First of all, (15) with η given as in the theorems as well as condition L2 can be checked

directly with the help of Lemmas 3 and 4. Using the expansion of sn in Lemma 3 and the bound (19),

it is easy to see that, in all three urn models and for any ε > 0, there exists n0 ∈ N such that, for all

n ≥ n0, we have |Xn| < εsn. This verifies conditions (16) and L1. It remains to check conditions P1,

P2, P3 in Theorem 2 (and in Theorem 3 for Λ > 1/2). The moment convergence P1 was proved in [33,

Theorem 1], it also follows from the fact that the limiting random variables have exponentially small tails as
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shown below. P2 immediately follows from (19). Similarly, P3 follows by an application of Minkowski’s

inequality.

We move on to the tail bounds on the limiting random variables. To this end, note that

Xn − (gn − gn−1)Wn−1 = gn(Wn −Wn−1)− amgn−1.

Hence, choosing C > 0 such that gn ≤ C(n+ 1)−Λ and denoting q = max |ak|, by Proposition 2,

P(|Wn| ≥ t) ≤ 2 exp

(

− 2t2
∑n

i=1 q
2(gi + gi−1)2

)

≤ 2 exp

(

− t2

2q2C2
∑n

i=1 i
−2α

)

.

Thus, W∞ has Subgaussian tails. The claim follows analogously in the case of triangular urns for Λ > 1/2.

For triangular urns with Λ ≤ 1/2, by Proposition 3, using (19), in order to show a bound of the form (18)

for Wn, it is enough to verify that, almost surely,

E[X2
n+1|Fn] ≤ σn + φnWn, n ≥ 0, (29)

with deterministic, non-negative and summable sequences σn, φn. It is here where we need the full strength

of expansion (26). By the triangle inequality, upon bounding one of the factors Yn in the second term from

above by gnTn, there exists a deterministic number C > 0, such that, for all n ≥ 0,

E[X2
n+1|Fn] ≤ Q(Λam−1 + σ)Wnn

−1−Λ + Cn−1−Λ.

Thus, (29) is satisfied with φn = O(n−1−Λ) and σn = O(n−1−Λ).

In order to show the existence of a density for W∞, we roughly follow the ideas in [7]. By the postponed

Lemma 5, we need to show that

pn := max
0≤k≤m(n+1)

P(Wn = W0 + kam−1) = O(n−Λ). (30)

Let

s∗(k, n) :=
∑

i∈Sn

P(Wn+1 = W0 + kam−1|Wn = W0 + (k − i)am−1),

where Sn denotes the set of integers 0 ≤ i ≤ m with P(Wn = W0 + (k − i)am−1) > 0. Decomposing

with respect to the position of the Markov chain Wn at time n− 1 gives rise to

pn ≤ max
0≤k≤m(n+1)

s∗(k, n)pn−1 ≤
n
∏

i=1

max
0≤k≤m(i+1)

s∗(k, i) ≤ exp

(

−
n
∑

i=1

(

1− max
0≤k≤m(i+1)

s∗(k, i)

)

)

.

For a set A ⊆ [0, n + 1] := {0, 1, . . . , n, n + 1}, let s(A) := supk∈A s∗(k, n). Then, (30) follows if we

can show that,

s([0, n+ 1]) = 1− Λ

n
+O(n−2). (31)

Note that,

s({0}) = s∗(0, n) =

(

1− W0

Tn

)m

= 1− mW0

nσ
+O(n−2), (32)

and

s({n+ 1}) = s∗(n+ 1, n) =

(

1− B0

Tn

)m

= 1− mB0

nσ
+O(n−2), (33)

Next, for i ∈ Sn,

P(Wn+1 = W0 + am−1k|Wn = W0 + am−1(k − i))

=
1

Tm
n

(

m

i

)

(W0 + (k − i)am−1)
i
(Tn −W0 − (k − i)am−1)

m−i
.

We start with the case Λ < 1. Since σ > mam−1, there exists n0 such that, for all n ≥ n0, we have

Tn −W0 − (k − i)am−1 ≥ 0. For these n, we can bound s∗(k, n) ≤ s(k, n) with

s(k, n) =

min(k,m)
∑

i=0

1

Tm
n

(

m

i

)

(W0 + (k − i)am−1)
i
(Tn −W0 − (k − i)am−1)

m−i
. (34)
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Direct computations show that

s([1,m]) = 1− Λ

n
+O(n−2). (35)

For k ≥ m the same expansion is essentially given in Lemma 4.2 in [8]; however, the arguments there are

incomplete. By an application of the binomial theorem, we arrive at an expression computed on page 1182

in [8]: for k ≥ m,

s(k, n) =
1

Tm
n

m
∑

ℓ=0

am−ℓ
m−1T

ℓ
n

(

m

ℓ

)m−ℓ
∑

i=0

(

m− ℓ

i

)

(−1)m−ℓ−i(W0/am−1 + k − i)m−ℓ.

From here, we use the following identity, compare equation (5.42) in Graham, Knuth and Patashnik [18],

∑

i≥0

(

j

i

)

(−1)i(d0 + d1i+ · · ·+ dji
j) = (−1)jj!dj , j ∈ N0, (36)

with arbitrary coefficients dℓ, in order to evaluate the inner sum

m−ℓ
∑

i=0

(

m− ℓ

i

)

(−1)m−ℓ−i(W0/am−1 + k − i)m−ℓ = (−1)m−ℓ(m− ℓ)!.

Consequently, we obtain

s(k, n) =
m!

Tm
n

m
∑

ℓ=0

(−1)m−ℓam−ℓ
m−1

T ℓ
n

ℓ!
.

In particular, we make the crucial observation that, for k ≥ m, s(k, n) is independent of k. (Note that it is

also independent of W0.) Hence,

s([m,m(n+ 1)]) = 1− mam−1

Tn
+O(n−2) = 1− Λ

n
+O(n−2). (37)

Combining the last display, (32) and (35), since W0 ≥ am−1, we have proved (31). For Λ = 1, we can use

the bound (34) only for k ≤ mn+ B0/am−1. Thus, s([m,mn+ ⌊B0/am−1⌋]) = 1− Λ
n +O(n−2). For

mn+ ⌊B0/am−1⌋ < k ≤ m(n+ 1)− 1, we can bound

s∗(k, n) ≤
m
∑

i=k−mn

1

Tm
n

(

m

i

)

(W0 + (k − i)am−1)
i
(Tn −W0 − (k − i)am−1)

m−i
.

Again, by direct computation one can check that only the summands i = m,m − 1 are of relevance and

lead to a bound of the right order. (31) now follows as in the case Λ < 1 where we additionally need (33)

and B0 ≥ am−1.

We move on to the case W0 < am−1,Λ < 1, and use the notation W∞(w, b) for the martingale limit

when the process is started with w white and b black balls. Let ℓ > 0 and j ≥ am−1 such that P(Wℓ =
j) > 0. Conditioned on the event {Wℓ = j}, by the Markov property of Wn, the limit W∞(W0, B0)
is distributed like W∞(j, Tℓ − j) (modulo a deterministic factor due to the normalization). Therefore, it

has a bounded density. Hence, the distribution of W∞(W0, B0) (now, unconditionally) admits a (possibly

unbounded) density if Wℓ → ∞ almost surely as ℓ → ∞. This follows from the central limit theorem

noting that, in probability, Wℓ can be bounded from below by the sum of independent Bernoulli variables

with success probabilities W0/Ti, 1 ≤ i ≤ n. Alternatively, this also follows from an application of a

conditional version of the second Borel-Cantelli Lemma as worked out in [7]. For W0, B0 < am−1 and

Λ = 1, the proof runs along the same lines.

For modelM, similar arguments apply and we only consider the details in the main regime where

m ≤ k ≤ m(n + 1) assuming for simplicity that Λ < 1. Here, we improve upon an argument from [7]:

similarly to (34), for all n sufficiently large, we define

s(k, n) =
m
∑

i=0

(

W0+(k−i)am−1

i

)(

Tn−W0−(k−i)am−1

m−i

)

(

Tn

m

)
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=
1

T
m
n

m
∑

i=0

(

m

i

)

(

Tn −W0 − (k − i)am−1

)m−i(
W0 + (k − i)am−1

)i
.

By the binomial theorem for the falling factorials, we obtain after a change of summation

s(k, n) =
1

T
m
n

m
∑

ℓ=0

(

m

ℓ

)

T ℓ
n

m−ℓ
∑

i=0

(−1)m−i−ℓ
(

−W0 − (k − i)am−1

)m−i−ℓ(
W0 + (k − i)am−1

)i
.

The product of the falling factorials is a polynomial in the variable i of degree m−ℓ with leading coefficient

(−1)m−ℓam−ℓ
m−1; the concrete values of the other coefficients are of no importance. By identity (36), we

obtain

m−ℓ
∑

i=0

(−1)m−i−ℓ
(

−W0 − (k − i)am−1

)m−i−ℓ(
W0 + (k − i)am−1

)i
= (−1)m−ℓam−ℓ

m−1(m− ℓ)!,

such that

s(k, n) =
m!

T
m
n

m
∑

ℓ=0

(−1)m−ℓam−ℓ
m−1

T
ℓ
n

ℓ!
.

This directly leads to the desired expansion (37) for modelM.

Considering large-index urns, by the same argument applied to Wn−E[Wn], the existence of a bounded

density for W∞ follows if, uniformly in 0 ≤ k ≤ m(n+ 1), as n → ∞,

m
∑

i=0

P(Wn+1 = W0 + (n+ 1)am + hk|Wn = W0 + nam + h(k − i)) = 1− Λ

n
+O(n−2),

where we abbreviated h = am−1 − am. The latter follows by the same calculation as above. This finishes

the proof.

Lemma 5. Let Xn be a sequence of random variables and gn a real-valued sequence such that, for all

n ≥ 1, the difference Xn − gn is integer-valued. Assume that, for some α > 0 and some finite random

variable X , we have n−αXn → X in distribution. If,

K := lim inf
n→∞

nα max
m∈Z

P(Xn − gn = m) < ∞,

then X admits a density on (−∞,∞) which can be bounded uniformly by K.

Proof. For −∞ < a < b < ∞, by the Portmanteau Lemma,

P(a < X < b) ≤ lim inf
n→∞

P(anα < Xn < bnα)

≤ lim inf
n→∞

max
m∈Z

P(Xn − gn = m)(b− a)(nα + 2) = K(b− a).

Thus, the distribution function of X is Lipschitz and therefore absolutely continuous. For any density f ,

the last display implies that f ≤ K Lebesgue almost everywhere. The claim follows by modifying f on a

null-set if necessary. �

5. APPENDIX

Proof of Lemma 1. A scheme is tenable if and only if, almost surely, for all n ≥ 1, both Wn−1 ≥ −am−Rn

and Bn ≥ −bRn
, where Rn denotes the number of white balls in the sample obtained in step n. Hence,

under modelR, the process is tenable if all coefficients of M are non-negative. Similarly, tenability follows

in modelM if ak ≥ −(m− k), bk ≥ −k for all 0 ≤ k ≤ m. For a tenable urn scheme, we define R as the

range of the Markov chain Wn, that is, the set of integers ℓ ∈ N0 with P(Wn = ℓ) > 0 for some n ≥ 0.

We consider modelR, assume that W0, B0 ≥ 1, aj < 0 for some 0 ≤ j ≤ m and tenability. Then,

ai < aj for 0 ≤ i ≤ j − 1. If j > 0, then, at time t = ⌈−W0/aj⌉ − 1, we have 0 < Wt ≤ −aj with

positive probability. This contradicts tenability. Hence, j = 0. It is clear that a0|z for all z ∈ R. In

particular, a0|W0 and a0|(W0 + (am−1 − am)), hence a0|(am−1 − am). The same arguments apply for

b0, . . . , bm. The cases W0 = 0 or B0 = 0 can be treated analogously. Finally, it is obvious that the urn
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process is tenable if a0, bm satisfy the conditions stated in the theorem and all remaining coefficients are

non-negative. This finishes the proof of i).

We move on to modelM. If am−1 − am ≥ −1, then, since am ≥ 0, we have a0 ≥ −m. Hence,

the only interesting case is when h := am−1 − am ≤ −2 and ak < −(m − k) for some 0 ≤ k ≤ m.

Assume the scheme is tenable and let j be maximal with aj < −(m − j). If j ≥ 1, then a1 < −m + 1
and m− h− 1 < −a0. As ∆ < 0, the urn is of small index. We have Wn, Bn → ∞ almost surely. Given

a sufficiently large number of white and black balls in the urn, upon first drawing ℓ1 samples containing

m white balls and then ℓ2 samples containing m − 1 white balls, we remove −ℓ1a0 − ℓ2a1 white balls

from the urn. Therefore, there exists r ∈ R with m ≤ r ≤ m + h − 1. But then r < −a0 violating

tenability. It follows that j = 0, that is, a0 < −m and ak ≥ −(m − k) for k = 1, . . . ,m. Obviously,

R∩ [m,∞] ⊆ (W0+gaZ)∩ [m,∞]. For r ≥ m with r = W0+cga, c ∈ Z, we have r ∈ R if r−da0 ∈ R
for some d ∈ N. Again, since the urn is of small index, r − da0 ∈ R holds for all d sufficiently large.

Hence, R ∩ [m,∞] = (W0 + gaZ) ∩ [m,∞]. Obviously, we must have ga ≥ −a0 − m + 1. In that

case, tenability implies that [W0]ga /∈ {[m]ga , . . . , [−a0 − 1]ga}. On the other hand, if a0 < −m and

[W0]ga /∈ {[m]ga , . . . , [−a0 − 1]ga}, then [m,−a0 − 1] ∩R = ∅. Thus, Wn−1 ≥ −am−Rn
almost surely

for all n ≥ 1. The same arguments apply for black balls. �
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