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Abstract

The visible Universe is largely characterised by a single mass scale, namely, the proton mass,mp. Contemporary theory

suggests thatmp emerges as a consequence of gluon self-interactions, which are a defining characteristic of quantum

chromodynamics (QCD), the theory of strong interactions in the Standard Model. However, the proton is not

elementary. Its mass appears as a corollary of other, more basic emergent phenomena latent in the QCD Lagrangian,

e.g. generation of nuclear-size gluon and quark mass-scales, and a unique effective charge that may describe QCD

interactions at all accessible momentum scales. These remarks are explained herein, and focusing on the distribution

amplitudes and functions of π and K mesons, promising paths for their empirical verification are elucidated.

Connected therewith, in anticipation that production of J/ψ -mesons using π and K beams can provide access to the

gluon distributions in these pseudo-Nambu-Goldstone modes, predictions for all π and K distribution functions are

provided at the scale ζ = mJ/ψ .

1 Introduction
In looking at the known Universe, one could be awed

by the many complex things it contains. Even the Earth

itself is complicated enough to generate questions in the

minds of we observers; basic amongst them are those

which focus on our own existence and composition. Here,

too, there are many levels to be explored, right down to

the nuclei at the core of every atom and molecule, and

even deeper, to the neutrons and protons (nucleons) that

constitute those nuclei. Faced with all this, physicists nev-

ertheless assume that a few succinct mathematical rules

should be sufficient to provide a complete explanation of

everything we can now perceive and which might become

perceptible in future. That may be correct or it might be

hubris [1], but it would be a bold observer who today

offered a definitive answer.

Whether or not Nature can be reduced to an explana-

tion expressed in a few mathematical rules, this approach

has been remarkably successful in many areas. Given that

most of the audience will be reading this document on a
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laptop, after having retrieved it from a remote server, no

other illustration is necessary.

So, what is the most fundamental Lagrangian that sci-

ence has developed to the point that testing is a reality and

falsification has thus far been evaded? Here the definition

of “most fundamental” might be contentious, but a fair

candidate is the Standard Model of particle physics (SM).

This theory was made complete by discovery of the Higgs

boson at the large hadron collider in 2012 [2, 3], resulting

in the subsequent award of the Nobel Prize in Physics to

Englert and Higgs [4, 5] “. . . for the theoretical discovery of

a mechanism that contributes to our understanding of the

origin of mass of subatomic particles . . . ”.

As Nature is now understood, the Higgs boson, or

something like it,1 is essential to the formation and evolu-

tion of our Universe. For instance, the Higgs mechanism

provides large masses to the weak-force gauge bosons,

thereby ensuring that weak interactions are short range

and protecting against the destabilising influence of elec-

trically charged bosons that propagate over great dis-

tances, and making down (d) quarks more massive than

1It was long ago suggested that all J = 0 bosons may be [6] “. . . secondary
dynamical manifestations of strongly coupled primary fermion fields and
vector gauge fields . . . ”, in which case the SM’s elementary Higgs boson might
also be composite.
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up (u) quarks, so helping to ensure stability of the proton

and constraining the rate of big bang nucleosynthesis.

Notwithstanding these andmany other influences of the

Higgs boson, when looking at Nature one is struck by the

fact that the vast bulk of visible matter is characterised by

a single measurable mass, viz. 1.673×10−27 kg. This is the

proton mass, which translates into natural units (defined

such that � = 1 = c) as mp = 0.939GeV. Where is the

Higgs here? The masses of the u- and d-quarks are more

than 100 times smaller thanmp [7]; hence, more than 98%

of the proton mass is seemingly “missing” from the SM

Lagrangian.

The origin of the proton mass, and with it the basic

mass-scale for all nuclear physics, is one of the most pro-

found puzzles in Nature. Since the question addresses the

proton, the first place to look is within the strong inter-

action sector of the SM, i.e. quantum chromodynamics

(QCD), which appeared as the culmination of efforts by a

large number of people over many years [8, 9].

2 Nonperturbative quantum chromodynamics
QCD is a local, Poincaré-invariant quantum gauge field

theory with interactions built upon the non-Abelian

group SU(3). The Lagrangian is concise:

LQCD =
∑

j=u,d,s,...

q̄j
[

γμDμ + mj

]

qj +
1
4G

a
μνG

a
μν , (1a)

Dμ = ∂μ + ig 1
2λ

aAa
μ , (1b)

Ga
μν = ∂μA

a
ν + ∂νA

a
μ − gf abcAb

μA
c
ν , (1c)

where qj are the quark fields, with j = u, d, . . . run-

ning over the six known quark flavours and mj being

their Higgs-generated current-quark masses; {Aa
μ | a =

1, . . . , 8} are the eight gluon fields, with {λa} being the gen-
erators of SU(3) in the fundamental representation; and g

is the unique QCD coupling.

It is only the underlined term in Eq. (1c) that fun-

damenally distinguishes LQCD from the Lagrangian of

quantum electrodynamics (QED), but whereas QED is

ultraviolet incomplete, possessing a Landau pole at some

very large spacelike momentum (see, e.g. Ref. [10, Ch. 13]

and Refs. [11–13]), QCD appears empirically to be well-

defined at all momenta. After all, owing to asymptotic

freedom [14–16], its ultraviolet behaviour is under con-

trol, and given our existence, there seem to be no prob-

lems at infrared momenta either. Gluon self interactions,

introduced by the underlined term in Eq. (1c), are cer-

tainly the origin of asymptotic freedom and theymust also

be the source of QCD’s infrared stability.

The particular importance of gluon self-interactions

was noted long ago. Consequently, QCD’s gauge sector

has been the focus of intense scrutiny for more than

40 years. In some quarters, a primary motivation for this

attention was the claim that pure-glue QCD possesses

a mass gap,2 i.e. the massless gluons in Eq. (1) come to

be described by a momentum-dependent mass-function,

whose value at infrared momenta is mg = 0.5 ± 0.2GeV

[18]. If this is correct, then it must be a large part of

any answer to the questions surrounding the origin of the

proton mass.

The emergence of a gluon mass-scale is surprising

for many reasons. The objection most frequently raised

derives from a fear that mg �= 0 would somehow vio-

late QCD’s gauge symmetry. However, it is readily seen

that this is not an issue. Interaction-induced dressing of a

gauge boson is expressed in its 2-point Schwinger func-

tions (Euclidean space propagator) through the appear-

ance of a nonzero value for the associated polarisation

tensor, 	μν(q). The generalisation of gauge symmetry to

the quantised theory is expressed in Slavnov-Taylor iden-

tities [19, 20], one of which requires qμ	μν(q) = 0 =
	μν(q)qν , but this is ensured so long as:

	μν(q) =
[

δμν − qμqν/q
2
]

	
(

q2
)

. (2)

In these terms, the interacting gauge boson propagator

is expressed as:

Dμν(q) =
[

δμν − qμqν/q
2
] 1

q2
[

1 + 	
(

q2
)] , (3)

where any gauge parameter dependence is trivial, hence,

omitted here. A gauge-symmetry-preserving mass-scale

appears when limq2→0 q
2	

(

q2
)

= m2
g . This possibility is

realised in two-dimensional QED [6] and the effect is now

called the Schwinger mechanism of gauge-boson mass

generation.

A potentially more powerful objection is found in the

observation that if one removes the Higgs-generated

current-quark masses from Eq. (1), then the four-

dimensional classical action defined by this Lagrangian

is scale invariant. How can a theory that is invariant

under arbitrary mass-scale dilations support any unique

mass scale? Here the answer is quantisation [21]. Local

four-dimensional quantum gauge field theories possess

ultraviolet divergences. In order to define any such theory,

these divergences must be regularised, following which a

renormalisation scheme is introduced to enable the reg-

ularisation scale to be traded for renormalised values of

couplings and masses. Physical matrix elements can then

be expressed in terms of these renormalised quantities,

with true observables being independent of the scheme.

In the renormalisation of a quantum gauge field the-

ory, every quantity that was constant in the classical

Lagrangian acquires a dependence on the renormalisation

scale, ζ . Consequently, the trace of the theory’s stress-

2A prize of $1,000,000 has been offered for a rigourous mathematical proof of
the existence of a mass gap in QCD [17]. Notwithstanding the fact that the
computer-assisted arguments described herein are excluded, they are
compelling.
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Fig. 1mg(k)—solid blue curve: renormalisation-group-invariant (RGI) gluon running-mass obtained, following the method described in Ref. [28],

from the gluon 2-point Schwinger function computed using the lattice-QCD configurations in Refs. [24–26]. The barely visible blue band expresses

extraction uncertainty from all sources. (Curve provided by J. Rodríguez-Quintero.)M0(k)—dot-dashed green curve: RGI chiral-limit quark

running-mass obtained by solving the quark gap equation with the modern kernels described elsewhere [29–31]. The width of the associated green

band expresses existing uncertainties in the dressed gluon-quark vertex [32]

energy tensor, Tμμ, which is zero in the classical theory,

becomes anomalous:

Tμμ = β (α (ζ )) 1
4G

a
μνG

a
μν =: 0 , (4)

where β(α(ζ )) is QCD’s β-function and α(ζ ) is the asso-

ciated running-coupling [22]. Eq. (4) reveals that a mass-

scale exists in every renormalised four-dimensional quan-

tum gauge field theory, but it does not prescribe its size.

The value ofmg in QCD remains a dynamical question. In

principle, mg could be smaller than the current masses of

the light quarks or larger than the top (t) quark mass, and

the answer is not contained within the SM.

How can the size of mg be uncovered? There is only

one answer: methods applicable to nonperturbative phe-

nomena in QCD must be developed to the point that

tight links can be drawn between the properties of QCD’s

gauge sector andmeasured observables. This has been the

work of 40 years so that, today, a combination of tools,

exploiting the various strengths of continuum and lattice

formulations of QCD, have arrived at a determination of

the ζ -independent gluon mass scale [23]:3

m0 = 0.43(1)GeV. (5)

The associated renormalisation group invariant (RGI, ζ -

independent) gluon mass function is depicted in Fig. 1.

3 This result was obtained using lattice configurations for QCD generated
with three domain-wall fermions at a physical pion mass and a lattice scale set
by computing the mass of the ρ- and ω-mesons [24–26]. It was tested [27] by
verifying that the scale setting choice simultaneously produces a value of the
perturbative QCD running coupling at the Z -boson mass in agreement with
the world average [7].

There were many important steps along the way to

reaching this point, crucial amongst them being a unifi-

cation of the bottom-up (matter sector based) and top-

down (gauge sector focused) approaches to understanding

QCD’s interactions [33], and perspectives are provided

in several contemporary sources [32, 34–39]. With both

the existence and value of the emergent gluon mass scale

having been established by theory, challenges and oppor-

tunities arise with the need to elucidate observable con-

sequences: the picture of emergent hadronic mass (EHM)

must be tested empirically.

3 QCD’s running coupling
One can first consider the question of a Landau pole in

QCD. At one-loop order in perturbation theory, the QCD

running coupling is:

α
(

k2
)

=
2π

−β1 ln k2/�
2
QCD

, (6)

where “k” is the momentum transfer associated with the

process; β1 = −CG
2 11/6 + nf /3, with CG

2 = 3 for SU(3)

being a measure of the number of gluon fields (8 =
32 − 1) and nf counting the active quark flavours; and

�QCD ≃ 0.2GeV is the RGI mass scale introduced to

align perturbative-QCD predictions with experiment. (In

a complete solution of QCD, the value of �QCD would

be fixed by m0 in Eq. (5) and vice versa: in the absence

of Higgs couplings, the theory has one mass scale, whose

value specifies those of all others currently treated as

independent.)
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The perturbative coupling diverges at s = �2
QCD. (This

is true at all orders in perturbation theory.) Were that

physically true, then measurable cross-sections would

exhibit destabilising infrared divergences and we wouldn’t

be here to observe them. Hence, if QCD is the correct

theory for strong interactions in the SM, then there must

be a nonperturbative infrared stabilising mechanism. The

gluon mass scale in Eq. (5) plays this role.

Following reconciliation of the bottom-up and top-

down approaches to QCD’s gauge sector, it became

apparent that one could define and calculate a process-

independent (PI) running coupling for QCD, α̂(s) [40].

This charge is a unique QCD analogue of the Gell-Mann–

Low effective charge in QED [41], being completely deter-

mined by the gluon vacuum polarisation. The prediction

obtained using the most up-to-date continuum and lat-

tice analyses of QCD’s gauge sector is depicted in Fig. 2.

Several key features are readily apparent.

(i) The PI coupling is a smooth function of spacelike

momenta, saturating in the infrared:

α̂(s = 0)/π = 0.97(4). The value of the PI charge at

s = �2
QCD, the location of the once-was Landau pole,

defines a screening mass: ζH ≈ 1.4�QCD. On s � ζ 2
H ,

interactions between coloured objects are roughly

scale invariant; hence, the theory is effectively

conformal once again. These properties owe to the

emergence of the gluon mass scale in Eq. (5), which

ensures that long wavelength gluon modes are

screened, playing effectively no dynamical role. ζH
marks a border between soft (nonperturbative) and

hard (perturbative) physics. Hence, it is a natural

choice for the “hadronic scale”, viz. the
renormalisation scale at which one formulates and

solves the continuum bound state problem in terms

of quasiparticle degrees-of-freedom [23, 43–46].

(ii) So far as available data can reveal, α̂(s) is practically

identical to αg1(s), the process-dependent effective
charge [42, 47, 48] defined in terms of the Bjorken

sum rule. There are sound mathematical reasons for

this, explained elsewhere [40]. The Bjorken sum rule

provides a basic constraint on knowledge of nucleon

spin structure as measured in deep inelastic

scattering. Thus, the link between α̂(s) and αg1(s)

points to a potentially important role for α̂(s) in

connecting data with calculations of hadron

light-front distribution amplitudes and functions

[23, 43–46].

(iii) In being process independent, α̂(s) fulfils a wide range

of purposes, unifying a large array of observables. It is

thus a strong candidate for that function which

represents QCD’s interaction strength at any

accessible momentum scale [48]. Moreover, its

properties justify a conclusion that QCD is a well-

defined quantum field theory in four dimensions. As

such, QCD becomes a candidate for use in SM

extensions based on attributing compositeness to

particles that may today seem elementary.

Fig. 2 QCD’s process-independent running coupling, α̂(k2)/π , obtained by combining the best available results from continuum and lattice

analyses [23]. World data on the process-dependent charge αg1 [42], defined via the Bjorken sum rule, are also depicted, with sources detailed

elsewhere [23] (image courtesy of D. Binosi)
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4 Emergence and evolution of constituent quarks
More than 50 years ago, the constituent quark model

(CQM) [49, 50] brought order to a rapidly expanding col-

lection of strong interaction bound states (hadrons): π , K,

ρ . . .mesons; and neutron (n), proton (p), � . . . baryons.

The approach established that many gross features of

the hadron spectrum can be understood by positing the

existence of constituent-quarks with nuclear-size masses:

MU ≈ MD ≈ 0.4GeV, MS ≈ 0.5GeV, etc. Given the

success of this idea, it is natural to ask whether it has a

foundation in QCD. In the past vicennium, an affirmative

answer has emerged.

The current-quarks in Eq. (1) are strongly interacting.

Thus, compared with free-fermion behaviour, one may

expect material changes in their propagation characteris-

tics. Attempts to compute these changes began with the

formulation of QCD [51, 52]. They progressively became

more sophisticated as experience grew with formulat-

ing and solving the quark gap (Dyson [53]) equation

and as computational methods and power improved for

lattice-regularised QCD. It is now known that even in the

absence of Higgs couplings into QCD, quarks acquire a

running mass that is large at infrared momenta (see, e.g.

Refs. [54–56] and citations thereof). This is dynamical

chiral symmetry breaking (DCSB), a corollary of EHM:

perturbatively massless quarks acquire a large infrared

mass through interactions with their own gluon field.

Typical solutions of the quark gap equation are depicted

in Fig. 1. The curves were obtained using modern ker-

nels [29–31], whose development was crucial to arriving

at an understanding of QCD’s gauge sector [33]. Some

quantitative uncertainty remains and is being eliminated

as more is learnt about the dressed gluon-quark vertex

[32, 57–59]; but the gross features are robust: M0(0) ∼
mp/3; and M0(k) runs as a logarithm-corrected 1/k2

power-law into the ultraviolet. When Higgs couplings are

reinstated, the mass function becomes flavour dependent

and its value at the origin is roughly the sum ofM0(0) and

the appropriate current-quark mass [60].

Explaining many of the spectroscopic successes of the

constituent-quark picture is now straightforward. Hadron

masses are global, volume-integrated properties. Hence,

studied as bound states in quantum field theory, their val-

ues are largely determined by the infrared size of the mass

function of the hadron’s defining valence quarks [61]. This

feature is emphasised by the fact that even a sensibly for-

mulated momentum-independent interaction produces a

good overall description of hadron spectra [62, 63]. The

infrared scales needed are provided by the mass function

in Fig. 1 and related forms for the different quark flavours,

and those scales are generated by the effective charge in

Fig. 2 augmented by Higgs-boson contributions.

Whilst hadron masses are largely insensitive to the run-

ning of the dressed-quark mass, this feature becomes vital

for dynamical, structural properties, inter alia: elastic and

transition form factors [64–66] and parton distribution

functions and amplitudes [23, 43–46, 67–70].

5 Nambu-Goldstonemodes
There is a class of bound-states whose masses and prop-

erties cannot be explained using CQMs, namely, the SM’s

pseudoscalar mesons: π , K, η, η′. In the absence of Higgs

couplings into QCD, the π and K mesons are Nambu-

Goldstone (NG) modes. The η and η′ would also be

NG modes if it were not for the non-Abelian anomaly

[71]. In NG modes, the mass-scale that characterises

all visible matter is hidden, and its manifestation in the

physical π and K mesons is very different from that in

all other hadrons (see, e.g. Fig. 3 and Ref. [73, Sec. V]).

These are two quite particular consequences of EHM:

the chiral-limit masking owes to the axial-vector Ward-

Green-Takahashi identity and, in the presence of Higgs-

Fig. 3Mass budgets for the proton, K-meson and π -meson. The differences are stark. Owing to EHM, the proton’s mass is large in the chiral limit, as

indicated by the blue domain, which constitutes 94% ofmp . Conversely and yet still owing to EHM via its DCSB corollary, the K and π are massless in

the absence of quark couplings to the Higgs boson, hence, no blue domain. Switching on Higgs boson couplings to lighter quarks, two new

contributions appear: grey shows the sum of Higgs-generated valence-quark/antiquark current-masses in each hadron; and orange indicates the

contribution generated by constructive interference between EHM and Higgs-boson (HB) effects. 5% ofmp owes to EHM+HB. On the other hand,

EHM+HB interference is responsible for 95% of the physical π mass. The K lies between these extremes. It is a would-be NG mode, so there is no

blue-domain, but the sum of valence-quark and valence-antiquark current-masses in the K amounts to 20% of its measured mass—four times more

than in the pion, with EHM+HB interference producing 80% (units MeV, Poincaré-invariant separation at ζ = ζ2 = 2GeV, breakdowns produced

using information from Refs. [7, 72])
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Fig. 4 DAs charting the light-front momentum distribution of the

u-quark in a mesonM: pion, solid blue curve; kaon—dot-dashed

green curve within like-coloured bands; asymptotic DA,

ϕas(x) = 6x(1 − x)—dashed black curve. All ground-state meson

DAs approach ϕas(x) asmp/ζ → 0, where ζ is the energy scale of the

given experiment. However, at the scales accessible in contemporary

experiments, realistic meson DAs are broadened as a consequence of

EHM, and in systems defined by valence-quarks with different

Higgs-produced current-masses, the peak is shifted away from x = 0.5

quark couplings, the actual meson masses result from

constructive interference between EHM and Higgs-boson

effects. Expressed at the most fundamental level within

the SM, a necessary and sufficient condition for the exis-

tence of NG modes is [74, 75]:

f 0NGE
0
NG

(

k,P;P2 = 0
)

= B0

(

k2
)

, (7)

where, with all quantities evaluated in the chiral limit: f 0NG
is a measure of the NGmode’s wave function at the origin

in configuration space; E0NG(k,P;P2 = 0) is the dom-

inant term in the NG mode’s Bethe-Salpeter amplitude

(a relativistic relative of the Schrödinger wave function),

with k the relative momentum between the two valence

constituents and P the total bound-state momentum; and

B0(k
2) is the scalar piece of the dressed-quark’s self energy,

which is simply connected toM0(k) in Fig. 1.

Equation (7) is remarkable and revealing: the former

because it is a mathematical statement of equivalence

between the one-body and pseudoscalar two-body prob-

lems in chiral-limit QCD, problems which are normally

considered to be completely independent, and the latter

because it states that the cleanest expressions of EHM in

the SM are located in the properties of the massless NG

modes. It is worth highlighting here that in the absence

of Higgs couplings, all properties of π- and K-mesons are

identical. At realistic Higgs couplings, measurable prop-

erties of the π and K are windows onto EHM and its

modulation by the Higgs boson. Stated differently, the SM

has two mass generating mechanisms and the properties

of π andK mesons provide clear and direct access to both.

6 Higgs-modulation of EHM
Following the advent of quantum mechanics, science

has understood that all properties of a bound state are

expressed in its wave function. In relativistic quantum

field theory, many appealing features of Schrödinger wave

functions are preserved if one works with the light-front

projections of their covariant analogues [76]. The simplest

such object is a bound-state’s leading-twist distribution

amplitude (DA), which describes the probability that a

given parton carries a fraction x of the meson’s total light-

Fig. 5 Low-order ζ = ζ2 Mellin moments of the π and K DFs, drawn from Table 1. The horizontal dashed lines are drawn to highlight the pattern of

SU(3)-flavour symmetry breaking: compared with the u-quark-in-π values, 〈x〉uK is reduced by 6%, 〈x〉s̄K is increased by 11%, 〈x2〉uK is reduced by 9%,

and 〈x2〉s̄K is increased by 16%
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Table 1 Low-order Mellin moments of the π and K DFs at

ζ = ζ2 = 2 GeV (row 1) and ζ = ζ3 = 3.1 GeV (row 2), computed

following Refs. [45, 46]

〈x〉uπ 〈x〉u
K

〈x〉s̄
K

〈x2〉uπ 〈x2〉u
K

〈x2〉s̄
K

ζ2 0.24(2) 0.23(2) 0.27(2) 0.094(13) 0.086(12) 0.11(2)

ζ3 0.22(2) 0.21(2) 0.25(2) 0.085(11) 0.078(10) 0.097(12)

The indicated uncertainties express that in the value of α̂(0)—see Fig. 2 (despite

20 years of improvement in understanding and practice, the π results listed here are

practically identical to those obtained 20years ago [93])

front momentum. At scales ζ ≫ mp, this DA assumes its

asymptotic profile [77–79]: ϕas(x) = 6x(1 − x).

At scales appropriate to contemporary measurements,

the π and K DAs have been computed, with the results

depicted in Fig. 4 and discussed in Ref. [46]. Two features

are readily apparent: the real-world DAs are very different

from ϕas(x) and this is a consequence of EHM [30], and

the Higgs-generated disparity in size between the current-

quark masses of the strange (s) quark and the light u, d

quarks, which is roughly a factor of 25 [7], is manifested as

merely a 20% shift in the peak location of the K DA.

In quantum field theory as in quantum mechanics,

DAs/wave-functions cannot be directly measured. How-

ever, in terms of the meson’s complete leading-twist

dressed-parton light-front wave function, ψ
↑↓
Mu

(

x, k; ζH

)

,

the meson’s DA is obtained as follows:

fM ϕu
M(x; ζH) =

1

16π3

∫

d2k⊥ ψ
↑↓
Mu

(

x, k2⊥; ζH
)

, (8)

Fig. 6 Valence-quark distribution functions: uπ—solid blue curve; uK—long-dashed green curve; and s̄K—dot-dashed maroon curve. The upper

panel features uπ , with the blue band indicating the estimated uncertainty owing to that in α̂(0), whereas the lower panel features uK , s̄K with their

uncertainties (the pointwise form of xuπ (x) is practically identical to that obtained 20 years ago [93] using a more phenomenological approach)
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where fM is the meson’s leptonic decay constant, with

the DA of the partner valence constituent, h̄, obtained

via ϕh̄
M (x; ζH) = ϕu

M(1 − x; ζH). The related distribution

function is defined as [80]:

uM(x; ζH) =

∫

d2k⊥ |ψ
↑↓
Mu

(

x, k2⊥; ζH
)

|2. (9)

This quantity, as the modulus-squared of the wave func-

tion, is measurable. Profiting now from the fact that a

factorised approximation to ψ
↑↓
Mu

(x, k2⊥; ζH) is reliable for

integrated quantities when the wave function has fairly

uniform support [81], one can write:

ψ
↑↓
Mu

(x, k2⊥; ζH) = ϕu
M(x; ζH)ψ

↑↓
Mu

(

k2⊥; ζH
)

, (10)

where the optimal choice for ψ
↑↓
Mu

(k2⊥; ζH) is determined

by the application. Then:

uM(x; ζH) ∝ |ϕu
M(x; ζH)|2, (11)

with the constant of proportionality fixed by the normali-

sation condition on ψ
↑↓
Mu

(x, k2⊥; ζH).

This approach has been used to make the DAs in

Fig. 4 the foundation for predictions of all π and K DFs

[45, 46], i.e. the momentum-fraction probability distribu-

tions for valence-quarks, sea-quarks and glue within π , K.

It is thereby enabling measurable connections to be drawn

between EHM and Higgs modulation on the one hand

and, on the other, the sort of high-energy experiments that

first delivered proof for the existence of quarks and glu-

ons [82–84] and are now being exploited to draw images

of hadronic interiors [85–88]. Given that the expression

of EHM in almost-NG modes differs so greatly from that

in the proton (see Fig. 3), the approach enables one to

address many questions of long-standing interest, e.g. how

is the π-meson’s light-front momentum shared amongst

its constituents; how are the distributions different in the

K-meson; and are these in-NG-mode distributions very

different from those in the proton?

If one wishes to escape the full complexity of scale

evolution in QCD [89–91], then the valence-quark distri-

butions are best to calculate. They have been the subject

of many studies (see, e.g. Ref. [92] and citations therein

and thereto). When considering momentum fractions, it

is usual to compute Mellin moments of the DFs:

〈xm〉
q
M =

∫ 1

0
dx xm qM(x; ζ ) ; (12)

and typical to quote results at ζ = ζ2 = 2GeV. Using

the DAs in Fig. 4, the relation in Eq. (11), and the all-

orders ζH → ζ -evolution procedure explained in Refs.

[23, 44–46], one obtains the values of these low order

moments depicted in Fig. 5 and listed in Table 1.

At the scale ζ2, valence quarks carry a fraction 0.47(3) of

the π-meson’s light-front momentum, whereas they carry

0.49(3) in the kaon. That valence-quarks carry more of the

kaon’s momentum is explained by the fact that s-quarks

are heavier than u- and d-quarks. However, once again,

the impact of the Higgs-generated current-quark mass

differences is very much damped by EHM.

7 Glue distributions from J/ψ production
Since gluons are electrically inert, direct empirical access

to glue distributions in hadrons is difficult if one uses elec-

tron/positron beams. A promising alternative is the study

of J/ψ-meson production using π or K beams incident on

a proton target [94–96] because this process is expected to

proceed via gluon+gluon fusion. The resolving scale rel-

evant to such measurements is ζ3 = mJ/ψ = 3.1GeV;

hence in order to assist with future analyses of existing

and anticipated data, it is worth calculating the valence,

sea and glue distributions in the π and K at ζ3.

Using the DAs in Fig. 4, Eq. (11), and the all-orders ζ -

evolution procedure explained in Refs. [23, 44–46], one

obtains the valence quark distributions depicted in Fig. 6.

The curves are interpolated by:

qM(x) = nqM xα(1 − x)β

×
[

1 + ρ xα1/4(1 − x)β1/4 + γ xα1/2(1 − x)β1/2
]

,

(13)

where nqM ensures baryon number conservation and

the powers and coefficients are listed in Table 2. They

express the x ≃ 1 behaviour predicted by QCD analyses

[97–99] based on the known behaviour of hadron

wave functions at large valence-quark relative momenta

[51, 52, 74, 75, 79]. At ζ3, the valence degrees-of-freedom

carry 45(3)% of the π momentum and 46(3)% in the K.

Again following Refs. [45, 46] and using the valence DFs

already presented, the ζ = 3.1GeV π-meson glue and

sea-quark DFs can be calculated. The results are depicted

Table 2 Coefficients and powers that provide interpolations for

the computed valence-quark distribution functions depicted in

Fig. 6, when used in Eq. (13)

uπ nuπ α β α1 β1 ρ γ

137 0.119 3.09 0.145 0.903 −1.95 0.971

ζ3 118 0.0443 3.21 0.129 0.906 −1.93 0.950

96.9 −0.0450 3.35 0.109 0.911 −1.90 0.925

uK nuK α β α1 β1 ρ γ

65.8 0.179 3.09 0.358 1.39 −2.08 1.16

ζ3 57.1 0.119 3.21 0.375 1.46 −2.11 1.20

47.4 0.0421 3.35 0.374 1.52 −2.11 1.21

s̄K ns̄K α β α1 β1 ρ γ

79.7 0.259 3.03 0.235 1.39 −1.92 0.975

ζ3 69.0 0.199 3.14 0.228 1.39 −1.90 0.960

58.8 0.132 3.27 0.222 1.39 −1.89 0.956

The scale is ζ3 = 3.1 GeV
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Fig. 7 Upper panel: a Solid green curve, p = g—prediction for the pion’s glue distribution, and dot-dashed red curve, p = S—predicted sea-quark

distribution. Lower panel: b K/π DF ratios: p = g—solid green curve; p = S—dot-dashed red curve; and p = u—long-dashed blue curve. For

comparison, this figure also depicts uK (x; ζ3)/u
π (x; ζ3). Normalisation convention: 〈x[ 2uπ (x; ζ3) + gπ (x; ζ3) + Sπ (x; ζ3)] 〉 = 1. (The uncertainty

bands bracketing the results in Panela reflect the uncertainty in α̂(0). This uncertainty cancels in the ratios depicted in Panelb. Results at ζ = 3.1 GeV)

in Fig. 7a, wherein the curves are effectively interpolated

using the following functional form [100]:

xp(x) = A xα(1 − x)β
[

1 + ρ x1/2 + γ x
]

, (14)

p = g, S, with the coefficients in Table 3. The associated

momentum fractions are (ζ = ζ3):

〈x〉πg = 0.43(2) , 〈x〉πsea = 0.12(2) . (15)

The ζ3 glue and sea-quark distributions in the K-meson

can likewise be obtained. A good way to describe the

predictions is through comparison with the analogous

π-meson results in Fig. 7a. Hence, Fig. 7b depicts the

Table 3 Coefficients and powers that reproduce the computed

pion’s glue and sea-quark distribution functions depicted in

Fig. 7a when used in Eq. (14)

ζ3 A α β ρ γ

0.462 −0.539 4.09 −0.296 0.229

g 0.735 −0.494 4.21 −1.54 1.36

0.295 −0.638 4.35 2.23 −5.08

0.144 −0.488 5.09 0.956 −2.36

S 0.127 −0.538 5.21 2.20 −4.82

0.108 −0.595 5.35 3.54 −7.50
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following ratios: pK (x)/pπ (x), p = g , S , which are well

described by the following functions:

RKπ
g =

1.00 − 0.842x

1 − 0.786x
, RKπ

S =
1.00 − 0.462x

1 − 0.197x
. (16)

Evidently, the K and π glue and sea-quark DFs are quite

similar on x � 0.2, but there are noticeable differences on

x � 0.2, i.e. the domain of valence-quark/antiquark dom-

inance. These differences are generated by Higgs-boson

couplings into QCD and are on the order of ≈ 33% at

x = 1 cf.: 1− f 2π /f 2K −1 ≈ 0.3, where fM is a measure of the

size of the meson’s wave function at the origin in config-

uration space, and 1−[Mu(0)/Ms(0)]
2 ≈ 0.3 [45], where

Mq(k) is the dressed-quark mass function, whose chiral

limit form is drawn in Fig. 1.

8 Epilogue
René Descartes, the seventeenth century mathematician

and philosopher, is widely celebrated for introducing the

notion that all which is not human is merely the sum of

its parts. This first statement of a reductionist position is

largely held to be the foundation for modern science. It

leads to the question posed at the outset, namely, is there

a Lagrangian for Nature, LN ? If so, then it must contain

and define the natural mass (length) scale for all materials.

Further, if LN exists, then logic, as expressed in mathemat-

ics, is not something invented to describe Nature; instead,

it is innate to Nature or even the essence of Nature. If this

is true, then there are answers to all questions that have

been asked and also to those questions that have not yet

arisen. This is worth considering.

The far lesser issues discussed herein also focus on

mass: why is the protonmass roughly 2 000 times the elec-

tron mass; and why is its cousin, the π-meson, so much

lighter in comparison? An intimately related question was

not explicitly addressed, viz. why is the proton absolutely

stable? This relates to the question of gluon and quark

confinement; and the perspective related herein links con-

finement directly with the emergence of hadronic mass.

As detailed elsewhere [38], the dynamical generation of

nuclear-size gluon and quark masses and their associated

running mass functions is necessary and sufficient for a

dynamical realisation of confinement.

The current paradigm for addressing this array of ques-

tions is quantum chromodynamics (QCD). As sketched

above, QCD is plausibly (probably?) a mathematically

well-defined quantum field theory in four spacetime

dimensions, the only such theory science has ever pro-

duced. Consequently, it can potentially serve as an

archetype for extending the Standard Model to cover

those perceived phenomena which physics cannot yet

explain.

Although QCD is defined by a seemingly simple

Lagrangian, it specifies a problem that has defied solu-

tion for more than 40 years. The key challenges in modern

nuclear and high-energy physics are to reveal the observ-

able content of strong QCD and, ultimately, therefrom

derive the properties of nuclei. That progress which has

already been made was delivered by an amalgam of exper-

iment, phenomenology, and theory. The successes have

inspired the construction and planning of new-generation

facilities. Science will only profit from these investments

if existing synergies between those three branches are

exploited and expanded.
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