
ar
X

iv
:h

ep
-t

h/
04

12
19

0v
2 

 1
2 

Ja
n 

20
05

hep-th/0412190

December, 2004

On massive tensor multiplets

Sergei M. Kuzenko

School of Physics, The University of Western Australia,

35 Stirling Highway, Crawley W.A. 6009, Australia

kuzenko@cyllene.uwa.edu.au

Abstract

Massive tensor multiplets have recently been scrutinized in hep-th/0410051 and

hep-th/0410149, as they appear in orientifold compactifications of type IIB string

theory. Here we formulate several dually equivalent models for massive N = 1, 2

tensor multiplets in four space-time dimensions. In the N = 2 case, we employ

harmonic and projective superspace techniques.
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1 Introduction

Recently, there has been renewed interest in 4D N = 1 massive tensor multiplets and their

couplings to scalar and vector multiplets [1, 2]. Such interest is primarily motivated by

the fact that massive two-forms naturally appear in four-dimensional N = 2 supergravity

theories obtained from (or related to) compactifications of type II string theory on Calabi-

Yau threefolds in the presence of both electric and magnetic fluxes [3, 4]. This clearly

provides enough ground for undertaking a more detailed study of massive N = 1 and

N = 2 tensor multiplets.

In N = 1 supersymmetry, the massive tensor multiplet (as a dual version of the

massive vector multiplet) was introduced twenty five years ago [5], and since then this

construction1 has been reviewed in two textbooks [8, 9]. In the original formulation [5],

the mass parameter, m2, in the action

Stensor = −
1

2

∫

d8z G2 − 1

2

{

m2

∫

d6z ψαψα + c.c.

}

(1.1)

was chosen to be real. Here

G =
1

2
(Dαψα + D̄α̇ψ̄

α̇) , D̄α̇ψα = 0 , (1.2)

where the dynamical variable ψα is an arbitrary chiral spinor superfield, and the (massless

gauge) field strength G is a real linear superfield, D2G = D̄2G = 0. The choice of a real

mass parameter seemed to be natural in the sense that, for M = m, the above system is

dual to the massive vector multiplet model2

Svector =
1

4

∫

d6z W αWα +
1

2
M2

∫

d8z V 2 , Wα = −1
4
D̄2DαV , V = V̄ , (1.3)

which involves an intrinsically real mass parameter. The mass parameter is also intrinsi-

cally real in the vector-tensor realization [5] (inspired by [11])

Sv−t = −
1

2

∫

d8z G2 +
1

4

∫

d6z W αWα +M

∫

d8z GV

= −1
2

∫

d8z G2 +
1

4

∫

d6z W αWα −
1

2
M

{
∫

d6z W αψα + c.c.

}

, (1.4)

1The work of [5] is actually more famous for the massless tensor multiplet (as a dual version of the

chiral scalar multiplet) introduced in it, see also [6, 7].
2This duality is a supersymmetric version of the duality between massive one- and two-forms [10].
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which describes the same multiplet on the mass shell (massive superspin-1/2), and which

possesses both the tensor multiplet gauge freedom

δψα =
i

4
D̄2DαK , K = K̄ (1.5)

and the vector multiplet gauge freedom

δV = Λ + Λ̄ , D̄α̇Λ = 0 . (1.6)

It was recently pointed out [1, 2], however, that giving the mass parameter in (1.1) an

imaginary part,3

m2 −→ m(m+ ie) , (1.7)

leads to nontrivial physical implications, for the mass can now be interpreted to have

both electric and magnetic contributions which are associated with the two possible mass

terms B ∧ ∗B and B ∧ B for the component two-form. The dual vector multiplet is

then characterized by the mass M =
√
m2 + e2. What makes the replacement (1.7)

really interesting is that the complex mass parameter can be interpreted as a vacuum

expectation value for chiral scalars [12],

m(m+ ie)

∫

d6z ψαψα ←−
∫

d6z F (φ)ψαψα , (1.8)

with φ some chiral scalars, D̄α̇φ = 0.

In the massive case, the gauge freedom (1.5) is broken if one does not use the vector-

tensor formulation (1.4). It can be restored, however, if one implements the standard

Stueckelberg formalism, as was done in [1, 2], and replaces the naked chiral prepotential

ψα everywhere by

ψα −→ ψα +
i

m
Wα , (1.9)

where the compensating vector multiplet has to transform as δV = mK under (1.5). The

gauge symmetry thus obtained can be treated as a deformation of the transformations

(1.5) and (1.6).

In this note we continue the research started in [1, 2] and provide further insight into

the structure of massive tensor multiplets. In section 2 we consider aspects of N = 1

tensor multiplets in curved superspace and introduce a model for the massive improved

3Unlike the scalar multiplet, this imaginary part cannot be eliminated by a rigid phase transformation

of ψα as long as the explicit form of the linear scalar G, in terms of ψα and its conjugate, is fixed.
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tensor multiplet. Unlike the ordinary tensor multiplet [5], the (massless) improved ten-

sor multipet [13] is superconformal in global supersymmetry and super Weyl invariant in

curved superspace. There are at least two reasons why the improved tensor multiplet is

interesting: (i) it describes the superconformal compensator in the new minimal formu-

lation of N = 1 supergravity, see [8, 9] for reviews; (ii) it corresponds to the Goldstone

multiplet for partial breaking of N = 1 superconformal symmetry associated with the

coset SU(2, 2|1)/(SO(4, 1)× U(1)) which has AdS5 as the bosonic subspace [14, 15]. As

we demonstrate below, a remarkable feature of the improved tensor multiplet is that its

super Weyl invariance remains intact in the massive case.

In section 3 we introduce several realizations for the massive N = 2 tensor multiplet,

describe its duality to the massive N = 2 vector multiplet, and also sketch possible self-

couplings and couplings to vector multiplets. Section 4 is devoted to the description of

the reduction of manifestly N = 2 supersymmetric actions to N = 1 superspace. The list

of N = 2 superspace integrations measures is given in the appendix.

Our N = 1 supergravity conventions correspond to [9]. They are very similar to those

adopted in [16]. The conversion from [9] to [16] is as follows: E−1 → E and R→ 2R.

2 N = 1 tensor multiplets

It is known that 4D N = 1 new minimal supergravity can be treated as a super Weyl

invariant dynamical system describing the coupling of old minimal supergravity to a real

covariantly linear scalar superfield L constrained by (D̄2 − 4R)L = (D2 − 4R̄)L = 0, see

[8, 9] for reviews.4 The new minimal supergravity action

SSG,new =
3

κ2

∫

d8z E−1
L lnL , E = Ber(EA

M) (2.1)

is invariant with respect to the super Weyl transformation5 [17]

Dα → eσ/2−σ̄
(

Dα − (Dβσ)Mαβ

)

, D̄α̇ → eσ̄/2−σ
(

D̄α̇ − (D̄β̇σ̄)M̄β̇α̇

)

(2.2)

4In old minimal supergravity, the superspace covariant derivatives are DA = (Da,Dα, D̄α̇) =

EA
M (z) ∂M + ΩA

βγ(z)Mβγ + ΩA
β̇γ̇(z) M̄β̇γ̇ , with Mβγ and M̄β̇γ̇ the Lorentz generators. They obey

the (modified) Wess-Zumino constraints, and the latter imply that the torsion and the curvature are

expressed in terms of a vector Ga = Ḡa and covariantly chiral objects R and Wαβγ subject to some

additional Bianchi identities.
5Under (2.2), the full superspace measure changes as d8z E−1 → d8z E−1 exp(σ+ σ̄), while the chiral

superspace measure transforms as d8z E−1/R→ d8z (E−1/R) exp(3σ).
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accompanied with

L → e−σ−σ̄
L . (2.3)

where σ(z) is an arbitrary covariantly chiral scalar parameter, D̄α̇σ = 0. The super Weyl

transformation of L is uniquely fixed by the constraint (2.6). The dynamical system (2.1)

is classically equivalent to old minimal supergravity described by the action

SSG,old = − 3

κ2

∫

d8z E−1 . (2.4)

Modulo sign, the functional (2.1) coincides with the action for the so-called improved

tensor multiplet [13]

S = −µ
∫

d8z E−1G ln(G/µ) , (2.5)

with G obeying the same constraint as L above,

(D̄2 − 4R)G = (D2 − 4R̄)G = 0 . (2.6)

In the family of tensor multiplet models [5] of the form

S = µ2

∫

d8z E−1F(G/µ) , (2.7)

the action (2.5) is singled out by the requirement of super Weyl invariance. In particular,

the free massless tensor multiplet action

S = −1
2

∫

d8z E−1G2 (2.8)

is not super Weyl invariant. Upon reduction to flat superspace, the action (2.5) becomes

superconformal.

As is well known, the general solution of (2.6) is

G =
1

2
(Dαψα + D̄α̇ψ̄

α̇) , D̄α̇ψα = 0 , (2.9)

with an arbitrary covariantly chiral spinor superfield ψα. The super Weyl transformation

of the prepotential ψα turns out to be uniquely fixed [9]:

G → e−σ−σ̄ G =⇒ ψα → e−3σ/2 ψα . (2.10)

As a result, adding a mass term to the action (2.5) does not spoil its super Weyl invariance.

That is, the action

S[ψ, ψ̄] = −µ
∫

d8z E−1G ln(G/µ)− 1

2
m

{

(m+ i e)

∫

d8z
E−1

R
ψ2 + c.c.

}

(2.11)
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is invariant under arbitrary super Weyl transformations. The latter property uniquely

singles out this model in the family of actions

S = µ2

∫

d8z E−1F(G/µ)− 1

2
m

{

(m+ i e)

∫

d8z
E−1

R
ψ2 + c.c.

}

. (2.12)

Therefore, the action (2.11) defines the massive improved tensor multiplet. This is a

nontrivial theory, unlike the massless improved tensor multiplet that is known to be free.

Upon reduction to flat superspace, the action turns into a superconformal model.

Let us consider a dual formulation for the theory introduced in (2.11). We follow

the procedure given in [5, 8, 9] and first relax the linear constraints (D̄2 − 4R)G =

(D2 − 4R̄)G = 0 by introducing the “first-order” model

Sauxiliary = −µ
∫

d8z E−1G
(

ln(G/µ)− 1
)

+M

∫

d8z E−1 V
(

G− 1

2
(Dαψα + D̄α̇ψ̄

α̇)
)

−1
2
m

{

(m+ i e)

∫

d8z
E−1

R
ψ2 + c.c.

}

, (2.13)

with

M2 = m2 + e2 . (2.14)

Here both scalars G and V are real unconstrained, and G is not related to ψα and its

conjugate. To preserve the super Weyl invariance, however, V should transform as follows:

V → V − µ

M
(σ + σ̄) . (2.15)

Varying Sauxiliary with respect to V brings us back to (2.11). On the other hand, varying

Sauxiliary with respect to G and ψα allows one to express these variables in terms of V and

the vector multiplet strength

Wα = −1
4
(D̄2 − 4R)DαV , D̄α̇Wα = 0 , DαWα = D̄α̇W

α̇ . (2.16)

One ends up with

S[V ] =
1

4

∫

d8z
E−1

R
W 2 + µ2

∫

d8z E−1 exp
(M

µ
V
)

. (2.17)

This action is invariant under the super Weyl transformations (2.2) and (2.15). It is worth

pointing out that the inhomogeneous piece on the right of (2.15) does not show up in the

transformation of Wα:

Wα → e−3σ/2Wα . (2.18)

The super Weyl transformations of the chiral spinors ψα and Wα are clearly identical.
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Employing the Stueckelberg formalism, the action (2.17) can be replaced by the

classically-equivalent one

S[V,Φ, Φ̄] =
1

4

∫

d8z
E−1

R
W 2 + µ2

∫

d8z E−1 Φ̄ e(M/µ)V Φ , (2.19)

with Φ a compensating chiral scalar possessing a non-vanishing v.e.v. This action is

invariant under the U(1) gauge transformation

δV = Λ + Λ̄ , δΦ = − µ

M
ΛΦ , D̄α̇Λ = 0 . (2.20)

The super Weyl transformation (2.15) turns into

V → V , Φ → e−σ Φ . (2.21)

The model (2.17), or its equivalent realization (2.19), describes the dynamics of a massive

improved vector multiplet in curved superspace.

The mass term in (2.11) breaks the massless gauge symmetry [5]

δψα =
i

4
(D̄2 − 4R)DαK , K = K̄ (2.22)

that leaves the field strength (2.9) invariant. Nevertheless, inspired by [11], one can

preserve the gauge symmetry in the massive case by considering the following vector-

tensor model

S[ψ, ψ̄, V ] = −µ
∫

d8z E−1G ln(G/µ) +
1

4

∫

d8z
E−1

R
W 2 +M

∫

d8z E−1GV . (2.23)

This action possesses both the tensor multiplet (2.22) and vector multiplet (2.20) gauge

symmetries. This action can also be seen to be super Weyl invariant provided V is chosen,

say, to be inert under such transformations. By inspecting the equations of motion, one

can check that the theory (2.23) is classically equivalent to (2.11) if M is chosen as in

(2.14). One can also establish the duality of (2.23) to the improved vector multiplet

(2.19) by dualizing the linear superfield G into a chiral scalar and its conjugate according

to [5, 7].

In the massive case, following Stueckelberg, the gauge invariance (2.22) can be restored

by introducing a compensating Abelian vector multiplet (with the gauge field V and the

chiral field strength Wα) and replacing ψα in (2.12) by

ψα −→ ψα +
i

m
Wα , Wα = −1

4
(D̄2 − 4R)DαV , V = V̄ . (2.24)

6



Here V transforms as δV = mK under (2.22) such that the combination mψα + iWα is

gauge invariant. The modified mass term remains to be super Weyl invariant. Since

Im

∫

d8z
E−1

R
W2 = 0 ,

we then obtain

im

∫

d8z
E−1

R

(

ψ +
i

m
W

)2

+ c.c. = i

∫

d8z
E−1

R

(

mψ2 + 2iψW
)

+ c.c. (2.25)

3 N = 2 tensor multiplets

To generalize the previous consideration to the case of N = 2 supersymmetry, it is ad-

vantageous (in some respect, necessary) to make use of the N = 2 harmonic superspace

R
4|8 × S2 [18, 19]. It extends conventional N = 2 superspace R

4|8 (paramerized by coor-

dinates Z = (xa, θαi , θ̄
i
α̇), with i = 1̂, 2̂) by the two-sphere S2 = SU(2)/U(1) parametrized

by harmonics, i.e., group elements

(ui
− , ui

+) ∈ SU(2) , u+i = εiju
+j , u+i = u−i , u+iu−i = 1 . (3.1)

For simplicity, our consideration will be restricted to the study of globally supersymmetric

theories only.

Let us start by recalling the model for a free massive N = 2 vector multiplet [18, 19].

Its dynamical variable V ++(Z, u) is a real analytic superfield, D+
αV

++ = D̄+
α̇V

++ = 0,

where the harmonic-dependent spinor covariant derivatives D±
α and D̄±

α̇ are defined in eq.

(A.5). The action6 is

Svector =
1

2

∫

d8ZW 2 − 1

2
M2

∫

dζ (−4) (V ++)2

=
1

2

∫

d12Z dudu′
V ++(u) V ++(u′)

(u+u′+)2
− 1

2
M2

∫

dζ (−4) (V ++)2 , (3.2)

see [19] for the definition of harmonic distributions of the form (u+1 u
+
2 )

−n, where (u+1 u
+
2 ) =

u+1
iu+2 i. HereW (Z) is the (harmonic independent) chiral field strength of theN = 2 vector

multiplet [20],

D̄i
α̇W = 0 , DαiDj

αW = D̄i
α̇D̄

jα̇W̄ , (3.3)

6The various N = 2 superspace integration measures are defined in the Appendix.
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which is expressed via the analytic prepotential V ++(Z, u) as follows [19, 21]:

W (Z) =
1

4

∫

du (D̄−)2 V ++(Z, u) =
1

4
(D̄+)2 V −−(Z, u) , (3.4)

V −−(Z, u) =

∫

du′
V ++(Z, u′)

(u+u′+)2
.

The equation of motion is
1

4
(D+)2W −M2 V ++ = 0 , (3.5)

where one should keep in mind that the Bianchi identity is equivalent to (D+)2W =

(D̄+)2W̄ . This equation implies that V ++ is an N = 2 linear superfield:

D++V ++ = 0 −→ V ++(Z, u) = V (ij)(Z)u+i u
+
j , (3.6)

where V ij obeys the constaints

D(i
αV

jk) = D̄
(i
α̇V

jk) = 0 ←− D+
αV

++ = D̄+
α̇V

++ = 0 , (3.7)

as a consequence of the analyticity of the dynamical variable. It is now easy to arrive at

(✷−M2)V ++ = 0 −→ (✷−M2)W = 0 . (3.8)

In the massless case, M = 0, the action (3.2) is invariant under the gauge transforma-

tion [18, 19]

δV ++ = D++λ , (3.9)

with the gauge parameter λ(Z, u) a real analytic superfield, D+
αλ = D̄+

α̇λ = 0. This

transformation leaves the field strength (3.4) invariant.

Let us now turn to the massless N = 2 tensor multiplet [22] formulated in harmonic

superspace in [23, 19]. The free action is

S =
1

2

∫

dζ (−4) (G++)2 , (3.10)

where G++(Z, u) is a restricted real analytic superfield under the constraints (3.6) and

(3.7). One can can express G++(Z, u) = Gij(Z) u+i u
+
j in terms of an unconstrained chiral

superfield Ψ(Z) and its conjugate:

G++(Z, u) =
1

8
(D+)2Ψ(Z) +

1

8
(D̄+)2 Ψ̄(Z) , D̄i

α̇Ψ = 0 . (3.11)

This superfield remains invariant under the gauge transformation

δΨ = iΛ , D̄i
α̇Λ = 0 , DαiDj

αΛ = D̄i
α̇D̄

jα̇Λ̄ . (3.12)
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As is seen, the chiral gauge parameter Λ satisfies the same constraints as the vector

multiplet field strength.

Recalling the construction of [11], the massive tensor (or vector) multiplet can be

described by the action

Sv−t =
1

2

∫

dζ (−4) (G++)2 +
1

2

∫

d8ZW 2 +M

∫

dζ (−4)G++ V ++ (3.13)

=
1

2

∫

dζ (−4) (G++)2 +
1

2

∫

d8ZW 2 +
1

2
M

{
∫

d8Z WΨ+ c.c.

}

, (3.14)

which is invariant under the gauge transformations (3.9) and (3.12). The corresponding

equations of motion are

1

4
(D̄−)2G++ +MW = 0 ,

1

4
(D+)2W +MG++ = 0 , (3.15)

as well as the complex conjugate of the first equation.

Of primary importance for us will be another massive extension of (3.10)

Stensor =
1

2

∫

dζ (−4) (G++)2 − 1

4
m
{

(m+ ie)

∫

d8Z Ψ2 + c.c.
}

. (3.16)

This action generates the following equations of motion

1

4
(D̄−)2G++ −m(m+ ie) Ψ = 0 ,

1

4
(D−)2G++ −m(m− ie) Ψ̄ = 0 , (3.17)

which imply

(✷−M2)G++ = 0 , M =
√
m2 + e2 . (3.18)

The dynamical systems (3.2) and (3.16) turn out to be dual to each other provided M

is chosen as above. The corresponding “first-order” action, which establishes the duality

between these theories, is

Sauxiliary =
1

2

∫

dζ (−4) (G++)2 +
1

8
M

∫

dζ (−4) V ++
(

8G++ − (D+)2Ψ− (D̄+)2 Ψ̄
)

− 1

4
m
{

(m+ ie)

∫

d8Z Ψ2 + c.c.
}

, (3.19)

where both real analytic superfields V ++ and G++ are unconstrained. Varying V ++ brings

us back to (3.16). On the other hand, varying Sauxiliary with respect to G++ and Ψ and

using the equations obtained to eliminate these superfields, we end up with (3.2).
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One can also establish duality between (3.2) and the gauge-invariant model (3.13) by

using the known duality between the massless tensor multipet and the ω-hypermultiplet

[23]. Consider the “first-order” action

S̃v−t =

∫

dζ (−4)

{

1

2
(G++)2 +MG++ V ++ +G++D++ω

}

+
1

2

∫

d8Z W 2 , (3.20)

in which G++ and ω are real unrestricted analytic superfields. Varying ω gives D++G++ =

0, and then (3.13) is reproduced. On the other hand, varying G++ and then eliminating

it from S̃v−t, we arrive at the action

Ŝvector =
1

2

∫

d8ZW 2 − 1

2
M2

∫

dζ (−4)
(

V ++ +
1

M
D++ω

)2

, (3.21)

and this is simply the Stueckelbergization of (3.2).

In the massive case, the gauge freedom (3.12) is broken. It can be restored, following

Stueckelberg, by introducing a compensating Abelian vector multiplet (with the gauge

field V++ and the chiral field strength W) and replacing the naked prepotential Ψ as

follows:

Ψ −→ Ψ+
i

m
W , δW = −mΛ . (3.22)

The combination mΨ+iW is invariant under the gauge transformations (3.12). One then

obtains

m i

∫

d8Z
(

Ψ+
i

m
W

)2

+ c.c. = i

∫

d8Z
(

mΨ2 + 2iΨW
)

+ c.c. (3.23)

Up to this point, the use of N = 2 harmonic superspace has allowed us to keep a complete

analogy with the N = 1 case previously considered.

Let us turn to possible generalizations to generate (self-)interactions. A natural

extension7 of the kinetic term (3.10) is [23, 19]

1

2

∫

dζ (−4) (G++)2 −→ SH =

∫

dζ (−4) L(+4)(G++, u+, u−) . (3.24)

Here L(+4) is an arbitrary (real analytic) function of the field strength G++ and the har-

monics u± carrying U(1) charge +4. In particular, the improved N = 2 tensor multiplet

[24, 7, 25, 23] is generated by [23, 19]

L(+4)
impr(G

++, u) = µ2
( G++

1 +
√
1 + G++ c−−

)2

, G++ = G++/µ− c++ , (3.25)

7One can also add two supersymmetric gauge-invariant terms Re
{

c1
∫

dζ(−4)G++(θ+)2+c2
∫

d8Z Ψ
}

,

with c1,2 complex parameters, which trigger spontaneous supersymmetry breaking.
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with c++ a holomorphic vector field on S2,

c±±(u) = cij u±i u
±
j , cijcij = 2 , cij = const . (3.26)

The corresponding action takes a simpler form in the so-called projective superspace

[25, 26].

We can introduce the massive improved tensor multiplet

Simpr =

∫

dζ (−4)L(+4)
impr(G

++, u)− 1

4
m
{

(m+ ie)

∫

d8Z Ψ2 + c.c.
}

. (3.27)

Here the kinetic term is known to be invariant under the N = 2 superconformal group

[23, 19]. The mass term turns out to be superconformally invariant as well. In fact,

the above action is the most general superconformal action without higher derivatives.

Instead of (3.27), we can work with the gauge-invariant action

S ′
impr =

∫

dζ (−4) L(+4)
impr(G

++, u) +
1

2

∫

d8ZW 2 +M

∫

dζ (−4)G++ V ++ , (3.28)

which respects the gauge symmetries (3.9) and (3.12). The linear superfield G++ in

(3.28) can be further dualized into a real analytic superfield ω (ω-hypermultiplet), thus

converting the action (3.28) into that for a massive improved vector multiplet.

The mass term in (3.16) admits a natural generalization of the form

m(m+ ie)

∫

d8Z Ψ2 −→
∫

d8Z Υ(Ψ,W) , (3.29)

where Υ is a holomorphic function, and W stands for the chiral field strength(s) of some

vector multiplet(s). Unlike the N = 1 supersymmetric case, where the chiral prepoten-

tial ψα was anticommuting, here we have no inherent reasons to insist that Υ(Ψ,W) be

quadratic in Ψ.

4 From N = 2 superfields to N = 1 superfields

Here we describe the reduction of N = 2 tensor multiplet models to N = 1 superspace.

The latter is parametrized by the coordinates z = (xa, θα, θ̄α̇) related to the N = 2

superspace coordinates Z = (xa, θαi , θ̄
i
α̇), with i = 1̂, 2̂, as follows:

θα = θ1̂
α , θ̄α̇ = θ̄1̂α̇ . (4.1)
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The N = 1 spinor covariant derivatives (Dα, D̄
α̇) are related to the N = 2 covariant

derivatives (Di
α, D̄

α̇
i ) in a similar fashion,

Dα = D1̂
α , D̄α̇ = D̄1̂

α̇ . (4.2)

For any N = 2 superfield U(Z) = U(x, θi, θ̄
j), we define its N = 1 projection

U | = U(z) = U(x, θi, θ̄
j)
∣

∣

∣

θ
2̂
=θ̄2̂=0

. (4.3)

Start with the N = 2 tensor multiplet strength

Gij = Gji =
1

8
DiDj Ψ+

1

8
D̄iD̄j Ψ̄ , D̄i

α̇Ψ = 0 , (4.4)

which obeys the constraints

D(i
αG

jk) = D̄
(i
α̇G

jk) = 0 . (4.5)

The prepotential Ψ(Z) reduces to the three N = 1 chiral components:

σ = Ψ| , iψα =
1

2
D2̂

αΨ| , ρ = −1
4
D2̂D2̂Ψ| . (4.6)

Then, for the components of Gij we get

G2̂2̂| ≡ Φ = −1
2

(

ρ− 1

4
D̄2σ̄

)

, G2̂1̂| = i

2
G , G1̂1̂| = Φ̄ , (4.7)

with G the N = 1 tensor multiplet strength, eq. (1.2).

Now, for the N = 2 chiral mass-like term (3.29) with W = 0 we obtain
∫

d8Z Υ(Ψ) = −
∫

d8z σ̄I ΥI(σ) +

∫

d6z
{

ψIψJ ΥIJ(σ)− 2ΦI ΥI(σ)
}

, (4.8)

where we have specialized to the case of several tensor multiplets. This is, of course, very

similar to the N = 1 form of the holomorphic prepotential in the Seiberg-Witten theory.

To reduce the free kinetic term for the tensor multiplet, eq. (3.10), to N = 1 super-

space, one can use the identity [27]
∫

dζ (−4) F++G++ =

∫

d8z
{

F 1̂1̂|G2̂2̂|+ F 2̂2̂|G1̂1̂|+ 4F 1̂2̂|G1̂2̂|
}

, (4.9)

with F++ a linear superfield (i.e. an analytic superfield under the same constraints that

G++ obeys). This gives

1

2

∫

dζ (−4) (G++)2 =

∫

d8z
{

Φ̄Φ− 1

2
G2

}

. (4.10)
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More general kinetic terms for the tensor multiplet, eq. (3.24), are easier to analyze

using the projective superspace techniques [25, 26]. In projective superspace, the N = 2

supersymmetric action involves integration over a closed loop in the complex plane C,

unlike the harmonic superspace action (3.24) that involves integration over S2. The

projective-superspace action for the N = 2 tensor multiplet [25, 26] is

SP =
1

2πi

∮

γ

dw

w

∫

d8z L(Σ(w), w) + c.c. (4.11)

Here L is an arbitrary “good” function, γ an appropriately chosen contour, and

Σ(w) = Φ + wG− w2 Φ̄ . (4.12)

The action (4.11) can be shown to be N = 2 supersymmetric, in spite of the fact that

it involves integration only over the N = 1 superspace. The relationship between the

harmonic action SH in (3.24) and the projective action (4.11) was studied in [28].

As an example, let us consider the special choice [29] that corresponds to the so-called

c-map [30]: L(Σ, w) = Ξ(Σ)/w2, with Ξ a holomorphic function. In addition, the contour

γ in (4.11) should now enclose the origin. Then we obtain

1

2πi

∮

γ

dw

w

∫

d8z
Ξ(Σ(w))

w2
= −

∫

d8z Φ̄I ΞI(Φ) +
1

2

∫

d8z GIGJ ΞIJ(Φ) , (4.13)

where we have specialized to the case of several tensor multiplets. Comparing the first

terms on the right of (4.8) and (4.13), we see that they are of the same functional form.

We therefore believe that N = 2 supersymmetric theories of the form

S =
1

2πi

∮

γ

dw

w

∫

d8z
Ξ(Σ(w))

w2
+

∫

d8Z Υ(Ψ,W) + c.c. (4.14)

that are generated by two holomorphic potentials, Ξ and Υ, deserve further study.

In the main body of this note, we studied models for a single massive tensor multiplet

in N = 1 and N = 2 supersymmetry. The results can be clearly extended to the case of

several mutiplets.

Shortly before the submission of this note to the hep-th archive, we received a new

paper [31] in which the supersymmetric Freedman-Townsend models [7, 32] (see also [35])

and their generalizations [33] were made massive by extending the non-supersymmetric

construction of [34].
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A N = 2 superspace integration measures

Here we introduce various N = 2 superspace integration measures used throughout this

paper. They are defined in terms of the spinor covariant derivatives Di
α and D̄α̇

i , with

i = 1̂, 2̂,

{Di
α, D

j
β} = {D̄α̇

i , D̄
β̇
j } = 0 , {Di

α, D̄jβ̇} = −2i δij (σm)αβ̇ ∂m , (A.1)

and the related fourth-order operators

D4 =
1

16
(D1̂)2(D2̂)2 , D̄4 =

1

16
(D̄1̂)

2(D̄2̂)
2 . (A.2)

Integration over the chiral subspace is defined by

∫

d8Z Lc =

∫

d4xD4Lc , D̄i
α̇Lc = 0 . (A.3)

Integration over the full superspace is defined by

∫

d12Z L =

∫

d4x D̄4D4L . (A.4)

In terms of the harmonic-dependent spinor derivatives

D±
α = Di

α u
±
i , D̄±

α̇ = D̄i
α̇ u

±
i , (A.5)

and the related fourth-order operators

(D+)4 =
1

16
(D+)2(D̄+)2 , (D−)4 =

1

16
(D−)2(D̄−)2 , (A.6)

integration over the analytic subspace is defined by

∫

dζ (−4) L(+4) =

∫

d4x

∫

du (D−)4L(+4) , D+
αL

(+4) = D̄+
α̇L

(+4) = 0 . (A.7)

Integration over the group manifold SU(2) is defined according to [18]

∫

du 1 = 1

∫

du u+(i1 · · ·u
+
in u

−
j1
· · ·u−jm) = 0 , n +m > 0 . (A.8)
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