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Abstract

On Matching Faces with Temporal Variations using Representation Learning

by

Daksha Yadav

Developing automatic face recognition algorithms which are robust to intra-subject

variations is a challenging research problem in the computer vision research community.

Apart from the well-studied covariates such as pose and expression, temporal variations in

the facial appearance also lead to a decline in the performance of face recognition systems.

This research focuses on analyzing the temporal variations in facial features due to facial

aging, facial plastic surgeries, and prolonged illicit drug abuse. The contributions of this

dissertation are fivefold: (i) behavioral and neuroimaging studies are conducted to understand

the human perception of faces affected by temporal variations, specifically facial aging; (ii)

a novel generative adversarial network-based solution is proposed to match age-separated

faces; (iii) the influence of temporal variations in faces altered by plastic surgery procedures

is examined and a novel framework for detecting and verifying such faces is proposed; (iv)

the effect of illicit drug abuse on face images is introduced and a new Illicit Drug Abuse Face

(IDAF) database is created for the research community; and (v) a novel algorithm for single-

image based detection of faces with plastic surgery and illicit drug abuse is proposed and its

utilization as soft biometric in enhancing face recognition performance is demonstrated.

This research attempts to evaluate how humans perceive facial age and their ability to

recognize age-separated faces. To accomplish this objective, two human studies (behavioral

and neuroimaging) are conducted. The findings from these studies suggest that regular

faces are processed differently from age-separated faces, highlighting the need for build-

ing specialized face recognition algorithms for processing such faces. Motivated by this

observation, we propose a novel deep learning algorithm for matching faces with temporal

variations caused by age progression. The proposed algorithm utilizes a unified framework

which combines facial age estimation and age-separated face verification using generative

adversarial networks. The key idea of this approach is to learn the age variations across time

by conditioning the input image on the subject’s gender and the target age group to which

the face needs to be progressed. We demonstrate the efficacy of the proposed architecture on

different facial age databases for age-separated face recognition.

We also analyze the temporal variations with respect to facial plastic surgeries. A novel

solution is proposed to differentiate plastic surgery faces from regular faces by learning



representations of local and global plastic surgery faces using multiple projective dictionaries.

Experimental results on the plastic surgery database show that the proposed framework is

able to detect plastic surgery faces with a high accuracy of around 98%. To verify the identity

of a person, the detected plastic surgery faces are divided into local regions of interest that

are likely to be altered by a particular plastic surgery followed by distance metric calculation

of feature representations. The proposed framework for face verification is combined with

two commercial systems to demonstrate an improvement in face verification performance.

In this research, the impact of prolonged illicit drug abuse on face recognition is also

introduced. Certain drugs, when taken continuously in large quantities, can cause physio-

logical changes in the skin. For instance, the long-term effects of methamphetamine and

heroin can cause severe weight loss and skin sores while addiction to opiates may lead

to accelerated aging. We demonstrate that these physiological variations induced due to

extensive substance abuse dramatically decrease the performance of current face recognition

algorithms by increasing the intra-class distance between the facial appearance of a subject.

This research also proposes a novel projective dictionary learning based illicit drug abuse

face classification framework to effectively detect and separate faces affected by drug abuse

from normal faces.

Lastly, two novel algorithms for single-image based detection of faces with temporal

variations, specifically, plastic surgery and illicit drug abuse are proposed. In the proposed

formulations, the variations in different local regions of these faces are analyzed by in-

corporating deep learning based multi-instance learning. The proposed approaches also

utilizes multi one-shot metric to encode inter-class and intra-class variations leading to higher

face image classification accuracy. Moreover, the classification scores from the proposed

algorithms are utilized as soft biometric information to enhance the performance of existing

face recognition algorithm.
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Chapter 1

Introduction

Processing and recognizing faces is a fundamental cognitive ability of humans which is

essential for identifying and interacting in social space [96]. This cognitive skill makes

social interaction extremely effortless and provides an evolutionary advantage to humans as

a species [45]. Even though the human face contains discriminatory information for unique

identification, it may undergo different transformations due to inter-subject or intra-subject

variations. The inter-subject variations can be associated with factors such as race or gender

and intra-subject transformations can be attributed to the change in expressions, pose, and

temporal variations. It has been established that the face processing network in the human

brain is robust to the majority of the real-world transformations such as the change in view

angle [42, 101] and illumination variations [70, 118]. This remarkable ability of the visual

cortex system has motivated computer vision researchers to utilize these cues as the building

blocks to artificially replicate the face processing abilities.

In the computer vision community, developing automatic face recognition algorithm

which is robust to intra-subject variations is a challenging research problem. As reported

in the Face Recognition Vendor Test conducted by National Institute of Standards and

Technology [40], the performance of current face recognition algorithms is remarkable on

faces acquired in controlled conditions with limited variations (as seen in Figure 1.1). A

thorough evaluation of various commercial face recognition systems revealed that their

performance on face images acquired in the wild was lower as compared to the controlled
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Figure 1.1: Face images of two subjects captured under constrained environment with

limited/no wild variations.

Facial Aging

Facial Disguises

Facial Plastic Surgery

Cross-Resolution

Figure 1.2: Examples of some intra-subjects variations which hamper the performance of

face recognition algorithms.

faces. Figure 1.2 showcases some challenges associated with face images captured in the

wild. To mitigate the impact of wild variations, a multitude of algorithms have been proposed
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Figure 1.3: Face images of two subjects showcasing the facial aging variations. The top row

illustrates the variations during the formative years of the individual. The bottom row shows

that more textural variations are evident during the later years.

to handle variations in illumination, pose, expressions [54, 99, 124, 149]. Apart from these

traditional covariates, temporal variations (or time-based changes) such as age progression,

plastic surgery, and illicit drug abuse also contribute to wild variations.

During the lifetime of an individual, temporal variations alter the facial appearance in

diverse ways. Different studies have reported that every person has a personalized aging

pattern depending on numerous factors including ethnicity, environmental conditions, and

stress level [30, 80]. Moreover, the aging pattern varies across different age groups. During

the formative years of a person, the variations in the shape of a face are more prominent

while in the later stages of life, texture variations such as wrinkles and pigmentation are more

visible [98, 107]. Figure 1.3 shows face images of an individual with age variations which

articulate these observations.
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Before After Before After Before After

Figure 1.4: Sample before and after plastic surgery face images of different subjects.

Before After

Cheek Surgery

Before After

Rhinoplasty (Nose Surgery)

Before AfterBefore After

Global Face Surgery Facelift

Figure 1.5: Sample before and after face images of different plastic surgeries illustrating

local and global variations in the facial features.

Additionally, temporal/time-based variations are also evident when the face undergoes

plastic surgery. Plastic surgery procedures are becoming prevalent due to their low cost and

aesthetic appeal. According to the American Society of Plastic Surgeons, more than $16

billion was spent on cosmetic plastic surgery in 2016 [3]. Figure 1.4 shows the alterations in

the facial features caused due to such plastic surgeries. Local plastic surgeries are targeted
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towards modifying a specific local facial region in order to enhance its aesthetic appeal or

to rectify an anomaly. These surgeries lead to localized alterations but the overall face may

appear to be the same. Examples of local plastic surgeries are lip augmentation where lips are

made fuller, Rhinoplasty where the nose is altered, and Blepharoplasty where the appearance

of eyelids is improved. Global plastic surgeries, on the other hand, result in large regions

of the facial structure being modified by altering the facial geometry as well as the skin

texture, which may lead to facial rejuvenation. As observed in Figures 1.4 and 1.5, such

surgical alterations increase the intra-class distance between before and after face images of

the subjects which contribute to a decrease in the face matching performance.

As part of this dissertation, we demonstrated that prolonged illicit drug abuse has the

temporal influence leading to significant alterations in the facial features. Illicit drug abuse

has become one of the primary health and social concerns in today’s world. According to

the World Drug Report [4], it is estimated that a total of 246 million people aged 15-64 have

used illicit drugs, mainly substance belonging to cannabis, cocaine or amphetamine-type

stimulants. The problem of illicit drug abuse is becoming more apparent, considering that 1

out of 10 drug users is a problem drug user, who is suffering from drug dependence. Certain

drugs, when taken continuously in large quantities, can cause physiological changes in the

skin. For instance, the long-term effects of methamphetamine (meth) and heroin can cause

severe weight loss and skin sores. Reece [106] noted the evidence of accelerated aging

due to the addiction to opiates. A sample of such images is shown in Figure 1.6 where the

accelerated aging and formations of scars are very evident. It was also showcased that these

physiological variations induced due to extensive substance abuse dramatically decrease the

performance of current face recognition algorithms by increasing the intra-class distance

between the facial appearance of a subject.
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Figure 1.6: Illustrating the significant effect of illicit drug abuse on faces. Noticeable

variations can be seen in the facial features of the after images of these subjects.
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1.1 Problem Statement

In this dissertation, the problem of matching faces with temporal variations is defined as

verifying if the given pair of face images belong to the same individual when the faces have

been impacted by temporal/time-based physiological variations. In this context, temporal

variations can be caused due to age progression, facial plastic surgery procedures, or pro-

longed illicit drug abuse. The key challenge associated with this problem is the increased

intra-class variations as well as numerous factors such as genetics and environmental settings

that can impact the facial features. Moreover, this research problem also suffers from the

lack of any large-scale labeled face databases which capture these variations in the facial

appearance during the lifetime of different subjects.

1.2 Related Work

In this section, we will discuss the relevant studies published in the literature for the three

aspects of faces with temporal variations: facial aging, plastic surgery, and illicit drug abuse.

The approaches for face recognition across age progression are categorized as generative

and discriminative [68]. Generative methods involve inducing the changes in the input facial

images to incorporate aging variations and project the images at a common age. Table 1.1

summarizes age progression algorithms in the literature.

Ramanathan and Chellappa [104] focused on young faces and developed a craniofacial

growth based approach which modeled growth related shape variations observed in the

formative years. They modeled the facial growth using different growth parameters defined

over facial landmarks which are popular in anthropometric studies. Ramanathan et al. [105]

proposed an aging model which incorporated facial growth statistics (facial measurements

across different ages), demographic information, and alternate wrinkle patterns to estimate

other wrinkle patterns that may have been observed on the subject.

Park et al. [93] utilized a 3-dimensional facial aging model to compensate for age

variations evident in 2-dimensional face images. They evaluated their approach on three face
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Table 1.1: Overview of face age progression (generative) algorithms in the literature.

Authors Approach
Verification (V) /

Identification (I)

Ramanathan and

Chellappa [104]
Craniofacial growth based modeling I

Ramanathan et al.

[105]

Craniofacial growth and wrinkle based

modeling
I

Park et al. [94] 3D aging modeling technique V

Wang et al. [127] Tensor space based analysis I

Shu et al. [113]
Multiple aging dictionaries for different age

groups
V

Sagonas et al.

[110]

Expressing face image as a superposition of

age and common components
V

Antipov et al. [9]
Age progression with conditional generative

adversarial networks
I

Sagonas et al.

[111]

Joint and individual variance explained

method
V

aging databases to demonstrate its efficacy. Wang et al. [127] simulated facial aging by using

super-resolution in tensor space and active appearance model. The synthetic faces generated

using this approach are evaluated using different metrics such as perceived age group and

identity information of the synthetic image.

Shu et al. [113] learned age-group specific dictionaries for age-separated face verification

by generating aging faces. They defined the aging layer to model the aging characteristics

and the personalized layer to capture the personalized characteristics of a subject. Sagonas

et al. [110] recovered low-rank age and low-rank common components from different age

groups. Next, these components are used to age/rejuvenate an input face a in bidirectional

manners.

Recently, generative adversarial networks (GANs) are being utilized to generate synthetic

images using convolutional neural networks. Due to their popularity, different approaches

based GANs have been proposed for facial age simulation. For instance, Antipov et al. [9]

used GANs conditioned on age group with identity-preserving optimization. Wang et al.

[126] changed faces across different ages by learned the intermediate transition states using

a recurrent neural network. However, a major drawback of this approach was that it required
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Table 1.2: Overview of age-invariant face recognition (discriminative) algorithms in the

literature.

Authors Approach
Verification (V) /

Identification (I)

Ling et al. [69] Gradient orientation pyramid with SVM V

Biswas et al. [12]
Scale invariant feature transform with feature

drift
V

Li et al. [68]

Multi-feature discriminant analysis with

scale invariant feature transform and

multi-scale local binary patterns

I

Yadav et al. [139] Bacteria foraging based fusion I

Yadav et al. [138] Human perception based fusion scheme I

Chen et al. [17] Cross-age reference coding based approach I

Li et al. [67]

Local pattern selection descriptor with a

hierarchical model based on two-level

learning

I

Wen et al. [130]
Latent factor based convolutional neural

networks
I

multiple face images at various ages per subject. Zhang et al. [147] used a conditional

adversarial autoencoder to learn the face manifold. This face manifold was traversed to

realize age progression and age regression simultaneously. Duong et al. [29] developed

different approaches for the short-term age progression and long-term age progression. For

short-term age progression, they mapped the data densities of two neighboring age groups

using ResNet blocks. For long-term age progression, the synthesis was performed by chaining

short-term stages. However, it did not consider any personality/identity information which

resulted in varying identity in the generated faces. Yang et al. [140] proposed a GAN based

approach to progress face images with <30 age to older age groups.

On the other hand, non-generative (discriminative) methods do not involve any changes

but they find the age-invariant signatures from the input faces and use it for recognition

(summarized in Table 1.2). Ling et al. [69] proposed the use of gradient orientation pyramid

to learn a robust representation of faces as they age. In conjunction with support vector

machines, they modeled the age-invariant face recognition problem as a two-class problem.

Biswas et al. [12] analyzed the drifts of facial features with age progression for the matching
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task. Lanitis et al. [62, 63] proposed utilizing the training images for finding the relationship

between the coded face representation and the facial age of the subject. This relationship is

then utilized for estimating the age of a facial image and simulating the facial appearance at

any given age.

In the algorithm proposed by Yadav et al. [139] for face recognition across age progres-

sion, they mitigated the effect of facial changes caused due to aging by combining the local

binary pattern features of global and local facial regions at match score level, by means of

the bacteria foraging fusion technique. Li et al. [68] proposed a discriminative model for

age-invariant recognition. They developed an approach involving the use of scale-invariant

feature transform, multi-scale local binary pattern as local descriptors, and multi-feature

discriminant analysis. Guo et al. [43] studied the relationship between face recognition

accuracies and age intervals on MORPH-II, a face database. They observe that when the age

gap between the gallery and probe images is more than 15 years, the performance decreases

much more as compared to within 15 years. They also observe that the use of soft biometric

features can help in improving face recognition across age progression. Chen et al. [17]

developed a cross-age reference coding framework to learn the low-level features of a face

image with an age-invariant reference subspace.

More recently, deep learning based approaches have been proposed to build age-invariant

face recognition systems. Wen et al. [130] developed a new model which constructed a

latent identity analysis module to train the convolutional neural network parameters. Li et

al. [66] created a new distance metric optimization approach for training the deep-learning

framework for age-invariant face recognition. Xu et al. [135] utilized encoders to model the

aging and de-aging process.

Next, we present a summary of papers published for matching faces altered by plastic

surgery. Table 1.3 summarizes the algorithms published for mitigating the impact of plastic

surgery on face recognition. The effect of plastic surgery on face recognition algorithms was

first demonstrated by Singh et al. [115, 116]. They identified plastic surgery as a challenging

research area in face recognition and also presented the results of face recognition algorithms
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Table 1.3: Summary of face recognition algorithms designed for matching faces altered by

plastic surgery.

Authors Approach
Verification (V) /

Identification (I)

Singh et al.

[116, 115]

Demonstrated the performance of existing

face recognition algorithms
I

Bhatt et al. [11]
Used evolutionary algorithm to compute

optimal weights for face granules
I

Jillela and Ross

[53]

Fused information from the face and the

ocular region
I

Aggarwal et al.

[5]

Used Sparse representation of part-wise

facial regions
I

Sun et al. [119]
Used Structural Similarity Index to model

variations
I

De Marsico et al.

[24, 25]

Employed fractals and localized version of

correlation measure for region-based

approaches

I

Gupta et al. [44]
Utilized invariant scattering transform

based feature extraction
I

Suri et al. [120]

Combined supervised classifier and

task-independent network to encode basic

visual cues such as color, shape, and texture

I

Kohli et al. [57]
Used multiple projective dictionary learning

to detect plastic surgery for face verification
V

on the plastic surgery database. They observed that six existing face recognition techniques

show a significant decrease in the performance if they are applied to plastic surgery database.

These findings motivated researchers to develop algorithms which can mitigate the effect of

variations in faces due to various plastic surgery procedures.

Bhatt et al. [11] proposed an evolutionary algorithm to compute optimal weights for

face granules during the face matching process. Their algorithm focused on extracting

discriminatory information from face patches obtained at different levels of granularity. Next,

an evolutionary approach using genetic algorithm was utilized to find the optimal feature

extractors for each face granule as well as weights for each face granule for face matching.

Jillela and Ross [53] proposed a computationally less intensive approach where they fused

information from the face and the ocular region. Their proposed scheme improved face
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recognition performance without using any training based approach. Aggarwal et al. [5]

utilized a sparse representation of part-wise facial regions to tackle variations arising due

to plastic surgery. To handle the limited number of images for training, images having

facial regions most similar to each subject in the gallery were utilized. Sun et al. [119]

used Structural Similarity Index (SSIM) to model variations arising due to plastic surgery

procedures. They developed a weighted fusion scheme where different face patches were

assigned a weight based on SSIM. They reported a performance comparable with the state-

of-the-art algorithm.

De Marsico et al. [24, 25] proposed face recognition against occlusion and expression

variations (FARO) and face analysis for commercial entities (FACE) algorithms based on

fractals and localized version of a correlation measure to employ region-based approaches

for plastic surgery invariant face recognition algorithm. In their results, they reported a

recognition rate for different surgeries and demonstrated better performance than state-of-

the-art algorithms. As part of this dissertation, we proposed a novel solution to discriminate

plastic surgery faces from regular faces by learning representations of local and global

plastic surgery faces using multiple projective dictionaries and using compact binary face

descriptors [57]. Gupta et al. [44] used invariant scattering transform based feature extraction

to learn plastic surgery invariant facial features. They also used principal component analysis

and linear discriminant analysis to reduce dimensionality, reduce intra-class variations, and

increase inter-class variations. Suri et al. [120] combined supervised learning with a task-

independent network to encode visual cues such as color, shape, and texture for matching

faces with plastic surgery.

Lastly, we describe the literature related to the third aspect of the face with temporal

variations, i.e. illicit drug abuse which is a comparatively newer field of research. In this

dissertation, we introduced the Illicit Drug Abuse Face dataset and presented the effect of

illicit drug abuse as another challenge of face recognition [137]. Using experimental results,

we showed the deterioration in the performance of commercial face recognition algorithms as

well as commonly used face descriptors when illicit drug abuse face images were added to the
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database of regular faces. Pandey et al. [92] used scattering transform and autoencoder-style

mapping function with scattering transform for face recognition under illicit drug abuse

variations.

1.3 Research Contributions

This research focuses on developing novel algorithms to mitigate the effect of temporal

variations on face recognition accuracy. We focus on three factors related to temporal

variations, i.e. facial aging, plastic surgery, and illicit drug abuse. Specifically, the research

contributions of this dissertation are:

• Unraveling and understanding the human skills in processing faces with tempo-

ral variations: An extensive human study is conducted to understand the behavioral

and neural correlates of how humans process and match faces with temporal variations.

In this research, we investigate which facial cues are utilized by humans for estimating

the age of people belonging to various age groups. We also analyze how various facial

regions such as binocular and mouth regions influence age estimation and recognition

capabilities. We also conduct the first study to utilize fMRI for analyzing the neural

correlates of age-separated face verification task by humans to investigate the evidence

of a face age-processing module in the brain. These studies are described in-depth in

Chapter 2 of this dissertation. The findings from these studies indicate that humans

process age-separated faces differently as compared to regular faces. This highlights

the need for specialized automatic face recognition algorithms to handle such faces.

• Matching age-separated face images using the proposed age gap reducer genera-

tive adversarial network: Next, we propose a novel solution for matching faces with

temporal variations induced by facial aging. In this, a unified solution is proposed

which incorporates facial age estimation and age-separated face verification using

GANs. The key idea of this approach is to model the age variations across time by

conditioning the input image on the individual’s gender as well as the target age group
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to which the input face needs to be progressed. Additionally, the training critic simulta-

neously learns the age group of an input image while estimating how realistic the faces

appear. An additional constraint is placed on the loss function of the proposed GAN

to account for keeping the consistent identity across age progression by embedding

the generated face closer towards the input image in a face space. This algorithm is

presented in Chapter 3 of this dissertation.

• Recognizing faces affected by plastic surgery using multiple projective dictionary

learning: In Chapter 4 of this dissertation, we focus on another aspect of temporal

variations on faces, i.e. plastic surgery. We propose a novel solution to discriminate

plastic surgery faces from regular faces by learning representations of local and global

plastic surgery faces using multiple projective dictionaries and by using compact binary

face descriptors. To verify the identity of a person, the detected plastic surgery faces

are divided into local regions of interest that are likely to be altered by particular

plastic surgery. The cosine distance between the compact binary face descriptors is

computed for each ROI in the detected plastic surgery faces. In addition, we compute

the human visual system feature similarity score based on phase congruency and

gradient magnitude between the same regions of interest. The cosine distance scores

and the feature similarity scores are combined to learn a support vector machine model

to verify if the faces belong to the same person. We integrate our proposed framework

for face verification with two commercial systems to demonstrate an improvement in

verification performance on a combined database of plastic surgery and regular face

images.

• Introducing illicit drug abuse as a face recognition covariate with temporal vari-

ations: In Chapter 5 of this dissertation, we introduce the illicit drug abuse face dataset

and present the effect of illicit drug abuse as another challenge of face recognition.

Experiments are performed to show the deterioration in the performance of commercial

face recognition algorithms as well as commonly used face descriptors when illicit
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drug abuse face images are added to the database of regular faces. The results clearly

demonstrate the need to further study and mitigate the effect of illicit drug abuse on

face recognition algorithms. We also propose a detection framework to seamlessly

classify in real-time using multiple dictionaries if a given face image is a regular face

or a drug-abuse face and improve the face recognition performance. This framework

can act as a crucial pre-processing step in mitigating the effect of such images. The

proposed framework gives a classification accuracy of 88.81% when applied on a

combined database of illicit drug abuse faces as well as regular faces.

• Detecting faces affected by temporal variations using deep adaptive multi-one

shot similarity based multiple instance learning: In faces affected by temporal

variations, different local regions may be impacted differently. For instance, various

plastic surgeries target different local regions to enhance its appearance and different

disguises such as sunglasses occlude different local regions. Similarly, for faces

affected by illicit drug abuse, sores may appear in the forehead region and wrinkles

may be more prominent in the chin area. Therefore, it is imperative to examine

the contribution of different local regions for detecting these face images. In this

research, we present a novel single-image based algorithm for detecting such faces

which incorporates deep features in a multi-instance learning framework to capture the

variations across different local facial regions. To encode the diversity in these faces, we

incorporate Laplacian Score to determine k representatives from these faces and multi-

one shot similarity metric learning approach is employed to determine the similarity of

an input face with the k representatives, which increases the discriminability power of

the classifier. We utilize the scores from this proposed algorithm as a soft biometric

for enhancing the face recognition performance of current systems. This algorithm is

described in Chapter 6 of this dissertation.
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Chapter 2

Understanding Human Capabilities in Processing

Faces with Temporal Variations

In day to day interactions, humans are able to perceive and verify face identities effortlessly.

However, with the increasing focus on decoding the face processing network of the human

brain, there is a limited emphasis on analyzing the process of face verification. Understanding

how the brain perceives and makes a determination if the given two face images belong to

the same person or not can provide valuable insight about identity processing mechanism

in the brain. Correctly verifying faces may be required in critical scenarios such as law

enforcement, airport security, and border control where officers daily match the images in

the presented ID or passport to the person in front of them.

Given a pair of face images, if both the face images belong to the same person, the face

pair is classified as a genuine; otherwise, it is termed as an imposter (as shown in Figure

2.1). In an ideal case, it is expected that the face images in the genuine face pair should

be as similar to each other as possible. However, in real-world scenarios, the genuine pair

face images may have variations such as age progression, disguises, expression changes, and

variable illumination. Studies have demonstrated that these variations may affect the face

recognition performance of humans [26, 89, 90, 138]. Some researchers have explored these

covariates independently due to their relevance in high-stakes scenarios as mentioned above.
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Figure 2.1: Sample genuine and imposter age-separated face pairs illustrating notable

variations between the two images of the respective face pairs.

In this research, we focus on the facial aging aspect of temporal variations to understand

the correlates of how humans perform such a complex face verification task. With this aim,

two studies are conducted: (i) behavioral study to analyze human skills of age-separated

face matching and (ii) fMRI based neuroimaging study to understand the neural correlates

responsible for this task. The experiment design and the analysis from both these studies are

explained subsequently.

2.1 Behavioral Study to Unravel Human Perception of Fa-

cial Aging

The objective of this research is to study the process of facial aging from the perspective

of human cognition. As per our knowledge, this research is the first one to analyze various

aspects of facial aging such as which facial cues are utilized by humans for estimating the

age of people belonging to various age groups, how various facial regions influence age

estimation and recognition capabilities.
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2.1.1 Methods

Ethics Statement

The study was conducted at Amazon’s Mechanical Turk (MTurk), which is an online crowd-

sourcing platform. At MTurk, only individuals who are above 18 years of age can register

and work as participants. We follow the policies of MTurk which clearly transfer the rights

of any survey to the requester and it is informed to the participants at the time of their

online registration. The participants’ consent to fill and submit the survey is taken as their

willingness to participate in our study. Further, at the beginning of the study, we also inform

the participants that their responses would be used for research and analysis purposes. All

the procedures used in the current study are approved by the IIIT-Delhi Ethics Board.

Participants

Amazon’s MTurk is a platform that enables researchers to conduct research by offering

features such as a unified participant compensation model, participants having diverse

demographics, an efficient procedure of study design, participant enrollment, and data

gathering. MTurk allows the researchers or the ‘requesters’ to post tasks such as surveys,

studies, and experiments which are, in turn, completed by the participants or ‘workers’.

The participants are paid an amount fixed by the requester upon successful completion of

the task. Research conducted by Buhrmester et al. [14] on the effectiveness of MTurk

suggests that MTurk not only offers a rich pool of diverse participants but can also be used

for economically acquiring a large amount of good quality data over a short span of time. In

our study, 482 individuals participated, out of which there were

• 366 Indian adults (M1 = 33.45 years, SD2 = 11.67 years, 149 males, 217 females),

• 81 Caucasian adults (M = 35.39 years, SD = 10.74 years, 43 males, 38 females),

• 29 Asian (non-Indians) adults (M = 28.13 years, SD = 6.93 years, 6 males, 23 females),

1M = Mean Age
2SD = Standard Deviation in Age
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Figure 2.2: Sample facial regions that are presented to participants for age group estimation.

• 3 African adults (M = 30.33 years, SD = 8.17 years, 2 males, 1 female), and

• 3 participants with undisclosed ethnicity (M = 27.12 years, SD = 1.7 years, 1 male, 2

females).

The responses from all the participants have been analyzed in the study in order to preserve

the diversity in the responses.

Stimuli

The stimuli faces have been selected from 36 male and 18 female subjects from the FG-Net

Facial Aging Database [61] and IIIT-Delhi Facial Aging Database [123]. The creators of

FG-Net database have allowed the use of these images for research purposes. Out of a total of

54 distinct subjects, there is an equal number of Indian and Caucasian subjects. The number

of images per subject varies from 1 to 4. The chosen images represent the unconstrained

nature of real-world conditions.

For evaluation, 10 sets of assignments are created and one set is randomly assigned to

every participant. Each set contains three questions.

1. The first question contains five facial images and the participants are asked to estimate

the age group from the given face image. Similar to a previous research [15], the age

of face stimuli belongs to one of the following 10 age groups: 0−5, 6−10, 11−20,

21−30, 31−40, 41−50, 51−60, 61−70, 71−80, and >80.
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Figure 2.3: Sample images presented to the participants for the task of recognizing age-

separated images of individuals.

2. Five images of various facial regions such as the T-region, binocular region, chin

region, eyes portion masked, and T-region masked are shown to the participants. They

have to estimate the age group corresponding to every facial part individually. Figure

2.2 shows some example images that are presented to the participants belonging to

each facial region. These images also belong to one of the 10 earlier mentioned age

groups.

3. In the last set of questions, five pairs of age-separated images are shown to the par-

ticipants and they are asked to determine if the pair of images belong to the same

individual or not. Some sample images are shown in Figure 2.3.

Procedure

Each participant is randomly assigned one of the 10 sets. The participant is supposed

to answer the three questions in the Stimuli section. There is no time constraint on the

participant to submit the responses. Each participant sees a face image and an identity only

once to ensure there is no bias. In all the questions, a mixture of stimuli from different ethical

groups and ages is presented to each participant.

2.1.2 Results and Discussion

The analysis of responses obtained are classified into four categories and key observations

are discussed in this section.
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Table 2.1: Confusion matrix showing comparison between actual and predicted age group in

the task of age estimation.

Stimuli

Age

Group

Predicted Age Group

0−5
6−
10

11−
20

21−
30

31−
40

41−
50

51−
60

61−
70

71−
80

>80

0−5 211 32 0 1 0 0 0 1 0 0

6−10 8 193 43 2 0 0 0 0 0 0

11−20 0 1 121 104 17 2 1 0 1 0

21−30 0 2 77 110 48 5 0 0 0 0

31−40 0 1 0 8 107 59 12 1 0 0

41−50 0 0 0 0 17 63 51 35 8 0

51−60 0 0 0 1 6 47 105 71 7 0

61−70 0 0 0 0 0 4 31 36 5 0

71−80 0 0 1 2 3 15 56 80 52 15

> 80 0 0 0 0 0 6 12 12 3 16

Table 2.2: Analyzing the performance for estimating the age group of shown face stimulus.

The results show that highest accuracy is obtained when the stimuli faces are in the range of

0 to 5 years.

Analysis of Perceptual Discrimination of Age Groups by Humans

Auto-

matic

Algo

Age

Group

of Face

Stimuli

Sensitiv-

ity

(%)

Speci-

ficity

(%)

d′

Stimu-

lus

Entropy

(bits)

Noise

Entropy

(bits)

Info

En-

tropy

(bits)

Face++

(%)

0−5 86.12 99.52 2.7500 0.3782 0.0612 0.3171 100

6−10 78.46 97.86 2.3971 0.3790 0.1072 0.2718 100

11−20 48.99 92.80 1.4453 0.3798 0.1735 0.2063 60

21−30 45.46 93.00 1.3422 0.3758 0.1978 0.1780 20

31−40 56.92 94.77 1.6776 0.3275 0.1595 0.1680 80

41−50 36.21 92.13 1.0658 0.3132 0.2127 0.1005 20

51−60 44.30 90.36 1.3085 0.3717 0.2208 0.1509 20

61−70 47.37 89.20 1.3981 0.1839 0.1226 0.0613 20

71−80 23.21 98.59 0.6292 0.3608 0.2030 0.1578 0

>80 32.65 99.20 0.9543 0.1347 0.0856 0.0491 0

Age Group Prediction Accuracy

The responses on predicting age group based on the face stimuli presented to participants

are summarized in a stimulus-response confusion matrix shown in Table 2.1. The confusion
21



matrix is used to determine various performance measures of participants to accurately

predict the age group category of the face stimulus shown. The performance is evaluated in

terms of:

1. sensitivity,

2. specificity, and

3. information entropy.

Sensitivity (or accuracy) represents the true positive performance [8]. However, it alone

may not fully represent the performance of the participants. We are also interested in the

performance of the participants in accurately predicting if a face stimulus does not belong to

a particular age group. This information can be obtained from specificity [8] which represents

the true negative performance. Table 2.2 summarizes the sensitivity and specificity values

for each age group. It shows that the age groups for which the participants were able to best

estimate the face stimuli were age groups 0−5 and 6−10 with an accuracy of 86.12% and

78.46% respectively. In contrast, the two lowest age group categories that the participants had

difficulty in estimating the face stimulus were age groups 70−80 and >80 with accuracies

of 23.21% and 32.65% respectively. The specificity for these two age groups is 98.59% and

99.20% respectively indicating that participants are highly confident about a face image not

belonging to these age groups. These measures provide valuable insights into age prediction

judgments by humans.

In response to different visual stimuli, the participants need to make a decision on

the correct age group. For each face stimulus shown, the participants have to be able

to discriminate one among ten age groups which represent the perceptual judgment of

each participant. The strongest response denotes the signal and represents the actual age

group while the remaining nine alternatives denote noise or uncertainty distributed among

other response categories. The distance between the means of the signal and the noise

distributions are compared against the standard deviation of the noise distribution to compute

the discriminability index (d′) [78, 82]. The d′ values calculated for each age group stimulus
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is shown in Table 2.2. Higher values of d′ signify that the participants are able to discriminate

a particular age group category better. From Table 2.2, the results show that participants

were able to discriminate the two age group categories 0−5 and 6−10 better than any other

category and the d′ values for these correspond to 2.7500 and 2.3971 respectively. It is also

observed that the d′ values for all age groups are positive, representing that the responses

obtained are better than random guesses.

The process of choosing a specific age group based on the visual stimulus presented

depends on the information perceived in the stimulus by the participants. The perceived

information can be quantitatively represented by the information entropy [85]. The perceptual

information may have some residual uncertainty due to noise in the actual stimulus leading

to incorrect predictions by the participants. The uncertainty is also introduced when the

number of response categories is more. From the stimulus-response confusion matrix (Table

2.1), face stimulus entropy H(S) (Equation (1)) and noise or equivocation denoted by H(S|r)

(Equation (2)) are calculated for each age group where S denotes the stimulus, r denotes the

response of the participants, and p(.) represents probability of respective terms. Information

entropy I(S|r) for each age group category is calculated by subtracting the noise, H(S|r)

from the signal, H(S) (Equation (3)).

H(S) =−
n

∑
j=1

p(S j)log(p(S j)) (2.1)

H(S|r) =−
n

∑
j=1

n

∑
k=1

p(S j,rk)log(p(S j|rk)) (2.2)

I(S|r) = H(S)−H(S|r) (2.3)

The values of the stimulus entropy, noise and information entropy for each age group are

expressed in bits and are summarized in Table 2.2. The larger value of information entropy

of an age group indicates that participants can accurately predict the stimulus belonging to

that age group as the residual uncertainty is low. The results in Table 2.2 confirm that the two
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age groups 0−5 and 6−10 have the highest information entropy of 0.3171 bits and 0.2718

bits respectively.

Low values of accuracy for older age groups such as 71−80 and >80 can be attributed to

various factors which affect facial age progression of an individual. The factors including

but not limited to gender, ethnicity, stress levels, dietary habits, facial aging patterns of

kin combine to form a personalized facial age progression function for each person. Large

variances in these factors may lead to an incorrect perception of facial age by humans.

We also compared the human performance with an independently trained automatic

algorithm. The same images are evaluated using Face++ [50], a face recognition tool built

using deep face representation. An overall age group prediction of 42% is obtained on the

same set of images. Upon further analysis, it is observed that images belonging to age groups

of 21−30, 41−50, 51−60, and 61−70 achieved only 20% accuracy which is lower than

responses of participants. Images belonging to 71−80 and >80 yielded an accuracy of 0%

(none of the images of these age groups were correctly estimated). This suggests that there

is a large scope for further improvement in current automated age prediction algorithms,

especially if we are able to emulate the way humans perceptually estimate facial age.

Effect of Facial Regions in Age Estimation

For understanding which facial region is most effective for estimating the age group of a

given image, five facial regions are presented to the participants and the age is to be estimated

on the basis of the given facial region. As shown in Figure 2.2, the five facial regions are

T-region, T-region masked, binocular region, eyes portion masked, and chin-mouth region.

The results for the same are presented in Table 2.3. It can be observed that the information

contained in the chin and mouth regions is sufficient to yield an accuracy of 100% for infants

and toddlers (0−5 years age group). The reason for such a high accuracy is based on the

fact that the lower jaw region of individuals in this age group is significantly different from

other age groups. With the T-region obfuscated, maximum correct responses are obtained for

6−10 years age group, indicating that humans can show good performance if the features of
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Table 2.3: Analyzing the effect of an individual facial region shown for predicting the age

group of the stimuli. The results show that the chin region of children belonging to 0 to 5

years age is most prominent for age prediction.

Age Groups
Facial Region (Accuracy in %)

T Region T-Region Masked Binocular Eyes Masked Chin

0−5 50.00 50.00 95.92 76.00 100

6−10 76.00 85.42 26.00 77.08 68.75

11−20 56.09 32.00 59.09 63.26 23.68

21−30 51.02 22.22 54.00 35.42 42.00

31−40 32.00 40.81 45.83 50.00 46.81

41−50 39.13 55.55 22.22 39.13 39.02

51−60 48.84 24.49 24.49 33.33 41.67

61−70 46.81 56.01 36.36 57.14 54.00

71−80 12.50 53.48 38.09 26.83 14.58

> 80 11.90 19.04 20.83 20.93 20.93

the T-region for this age group are masked. A similar trend is also observed for age groups

41− 50 and 71− 80. These results indicate that if one source of information (i.e. facial

region) is occluded, the performance of age estimation is not completely degraded [35, 36].

Table 2.4: Face recognition accuracy achieved with respect to stimuli age group and type of

facial region shown. The values in the bold show which region is the most discriminating

for recognizing the stimuli’s belonging to the given age groups. It can be observed that in

general, the whole face yields the highest accuracy whereas, for children and elderly people,

binocular and chin regions are the most prominent respectively.

Age Groups

Facial Region (Accuracy ± Standard Deviation in %)

Full Face Binocular T Region
T-Region

Masked
Chin

(0−5,6−
10)

60.41 ±
1.13

67.02 ±
0.27

59.37±
2.10

33.33 ±
0.14

50.55 ±
0.13

(6−
10,11−20)

81.52 ±
0.01

69.47 ±
2.11

76.59 ±
0.91

69.38 ±
0.04

66.67 ±
2.61

(11−
20,21−30)

87.00 ±
0.38

68.89 ±
3.00

67.34 ±
1.07

65.21±
0.02

43.75 ± 0.3

(31−
50,51−70)

76.53 ±
2.31

54.08 ±
0.45

63.33 ±
1.71

57.14 ±
1.01

59.13 ±
1.26

(51−70,>

70)
70.83 ±

0.98

55.10 ±
0.42

72.00 ±
0.36

66.30 ±
1.22

80.61 ±
0.02
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Face Recognition across Age Progression

After assessing the ability to estimate the age group, the next step is to understand how

efficient humans are in recognizing age-separated images of an individual. As shown in

Figure 2.3, the participants are presented with a pair of age-separated images and they are

asked to determine if the two images belong to the same individual. The results are described

in Table 2.4. The column ‘Stimuli Age Group’ represents the age group of the two presented

images.

On analyzing the accuracies for various age group pairs, it can be observed that it is

more challenging to identify individuals during the formative years of their lives. The

row ‘0− 5, 6− 10’ of Table 2.4 shows that the accuracy obtained for these image pairs

belonging to the two age groups is lower compared to any other age group. For this pair,

the maximum accuracy of 67.02% is achieved for the binocular region. This is the least

among the maximum accuracies obtained by all the age group pairs. The results indicate that

during this time period, the face of an individual undergoes a significant amount of variations

leading to difficulty in recognizing age-separated images. The best performance of 87% is

attained when the pair of images belong to ‘11−20, 21−30’ years of age category.

It can be seen that for the majority of the cases, the maximum accuracy is obtained when

the presented pair of images contains the full face of the individual, signifying that humans

use the information present in the entire face for recognizing people. Z-test of proportions

[32] at 95% confidence level, also supports this claim. It is also observed that the binocular

region for ‘0− 5, 6− 10’ years age group contains invariant features which are required

for recognition. In this scenario, the participants achieve an accuracy of 67.02%. Similar

performance is observed when the participants are shown age-separated images of lower

facial (chin) region belonging to ‘51−70 and >70’ years age groups. In order to compare

the performance of human evaluation with an independently trained algorithm, the pairs of

face image stimuli are evaluated using Face++ [50]. Using the same experimental setting,

this tool yields the verification accuracy of 60% at Equal Error Rate (EER) of 40%. It is

observed that when the gap between the images is too high or one of the images belongs
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to the childhood of the subject, Face++ yields incorrect output. This result suggests that

machine learning algorithms can incorporate cues from human perception and improve the

accuracy of current face recognition systems.

2.2 Neural Correlates of Face Verification due to Facial

Aging

In the previous section, it was showcased that humans are able to accurately verify age-

separated images even after the stimuli face images have undergone these progressions.

The task of face verification becomes challenging when the age difference between the two

genuine face images is large. It is crucial to examine and understand this neural processing

network because if this network fails to function, it can cause an inability to verify faces,

leading to serious face processing related social impairment [56, 59]. To the best of our

knowledge, this is the first research exploring the neural correlates of verification task of

faces altered due to aging (gradual temporal changes).

2.2.1 Methods

Participants

Blood Oxygenation Level Dependent (BOLD) fMRI scans of 21 healthy and right-handed

participants were collected for this study. The ethnicity of 9 participants was Indian (5 males,

4 females, age range = 18-28 years) and the ethnicity of 12 participants was Caucasian (6

males, 6 females, age range = 18-40 years). The study was approved by West Virginia Uni-

versity Institutional Review Board and IIIT-Delhi Ethics Board. All research was performed

in accordance In the previous section, it was showcased that humans are able to accurately

verify age-separated images even after the stimuli face images have undergone these progres-

sions. The task of face verification becomes challenging when the age difference between

the two genuine face images is large. It is crucial to examine and understand this neural
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processing network because if this network fails to function, it can cause an inability to verify

faces, leading to serious face processing related social impairment [56, 59]. To the best of

our knowledge, this is the first research exploring the neural correlates of the verification

task of faces altered due to aging (gradual temporal changes).with relevant guidelines and

regulations. The participants were informed about the experimental task and the nature of

stimuli. Written consent to participate in this study was obtained from each participant.

Experimental Design

For the purpose of this study, a stimulus consisted of a pair of facial images presented together.

Two categories of visual stimuli were utilized: genuine face pairs and imposter face pairs.

Genuine and imposter face stimuli pairs were developed using face pairs with age progression

referred to as age-separated face stimuli pairs representing gradual temporal changes. 120

age-separated frontal images from FG-Net Facial Aging Database [61] and MORPH [108]

database were selected to create the age-separated face pairs stimuli set. All the images were

converted to grayscale and the background noise (non-face area) was suppressed by applying

an elliptical mask on the face stimuli images.

The experiment was designed as a face verification task which involved detecting whether

the two face images shown on the screen belong to the same person or not. The participants

were asked to respond “Yes” or “No” using a two-button controller provided to them. Each

participant was presented 60 face stimuli pairs while lying inside the fMRI scanner. The

paradigm used in the fMRI experiment was an event-related face-matching task such that

one verification task was performed in a segment of 4.5 seconds. One stimulus pair of face

images was shown per segment. Figure 2.4, in each segment, the first face image of the

pair was shown for 1 second, followed by both the images being displayed, for a maximum

of 2.5 seconds. Participants were instructed to respond within these 2.5 seconds. As soon

as a response was recorded, a blank screen was displayed to jitter the stimulus-response

interval. The remaining time was treated as the Inter-Stimuli Interval (ISI) where no image

was presented. The stimuli were displayed in this manner in order to minimize the head
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Figure 2.4: Protocol for face verification task. The response time is marked in red and the

maximum limit on response time is 2.5 seconds. The screen turned blank after the participant

provided response until 4.5 seconds.

movement of participants while matching, emulating real-world face verification scenarios

without relying on prior memory like in n-back experimental protocol. The age-separated

and disguised stimuli face pairs were presented alternatively in 4 runs comprising of such

segments.

After fMRI data acquisition, each subject was instructed to participate in a behavioral

study where the participant was required to indicate their prior familiarity/unfamiliarity with

all the face stimuli pairs shown as some of the stimuli were celebrity face images. These

responses were collected outside the scanner as this might lead to noise in the event-based

experimental design.
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Functional Localizer

One functional localizer [100] task run was designed to isolate face verification specific

regions of interest (ROIs) in the human brain. The experimental setup for this localizer was

similar to the experimental design described above. 60 full-frontal regular face images were

collected from popular face databases [33, 84] to create the stimuli face pairs of this task.

60 face pairs were selected from unique (non-repeating) individuals out of which 39 face

pairs were genuine and 21 face pairs were imposter. This experimental setup was also an

event-related format where one verification task was performed in a segment of 4.5 seconds

with 60 such face verification segments. The participants were instructed to press the “Yes"

button if they determined that the displayed face pair stimulus was genuine or to press the

“No" button, otherwise.

Data Acquisition

fMRI experiments were performed using a standard 32-channel head coil. The imaging for

Caucasian participants was performed using a 3 Tesla (T) Siemens scanner while the imaging

for Indian participants was performed using a 3T General Electric scanner. The imaging

sequence was an interleaved T2*-weighted echo planar sequence (from negative to positive

direction) with 35 axial slices (slice thickness = 3.5 mm, slice spacing = 0.0 mm, repetition

time (TR) = 2 seconds, echo time (TE) = 30 ms, flip angle = 65°, field of view = 224 mm,

and matrix = 64×64) and 128 volumes were captured per run (each volume was captured in

2 seconds with no gap of time between volumes).

High-resolution isometric (1 mm3) anatomical T1-weighted MRI volume scan of the

entire head was also obtained for each subject (TR = 600 ms; flip angle = 10°, and field of

view = 224 mm).
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2.2.2 Preprocessing and Statistical Analysis

The fMRI signals were preprocessed and analyzed using SPM12 toolbox (Statistical Paramet-

ric Mapping Toolbox (http://www.fil.ion.ucl.ac.uk/spm/). The functional volumes underwent

slice timing correction for assigning all the slices within a single volume to the same time

point to account for the acquisition timing differences. Realignment was performed to elimi-

nate the motion artifacts within and between session motion artifacts in each subject. The first

image volume was utilized as the reference volume and all the time series images within the

subject were aligned with respect to the reference image using a least square minimization

and a 6-parameter (rigid body) transformation. The preprocessed data generated during and

analyzed during the current study are available from the corresponding author on reasonable

request.

In order to compare data across all the subjects included in the study, all the functional

images were normalized to the same 3D space. A standard EPI template was used as the

reference image to which all the realigned images across all the sessions were matched and

then resliced into Montreal Neurological Institute (MNI) space. A Gaussian kernel of FWHM

(Full Width at Half Maximum) of 5mm was used for spatial smoothing to remove any noise

present in the images. The quality of acquired fMRI data of each participant was measured

using Artifact Repair Toolbox (ART) [81]. Next, fMRI data was analyzed using statistical

models in SPM based on the General Linear Modeling (GLM) approach at both single subject

and group level. The GLM model is expressed as Y = Aβ +E, where Y is the observed data

i.e., the functional images from the scanner, β is the predicted data, E is the error, and A

is the GLM design matrix where A models the experimental conditions responsible for the

observed data Y and convolves it with the hemodynamic response function (HRF).

For each subject, a first level model was created and estimated using Restricted Maximum

Likelihood approach. A contrast of Age-Separated Face Pairs vs Baseline was estimated for

each subject. Patterns of significant activation associated with this contrast were identified by

appropriately weighting the estimated model using simple t-contrasts and statistical paramet-

ric maps (t-maps). Group level analysis was performed to allow inference at the population
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Table 2.5: Regional brain activity for age-separated stimuli face pairs. Coordinates are listed

according to MNI space. Activations are reported at voxel-level threshold of p < 0.001 and

a cluster-level threshold of p < 0.05 (FDR corrected).

Peak MNI

Coordinate

(x,y,z)

Brain Regions Peak Intensity
Num of

Voxels (k)

-48, -36, 48 Parietal_Inf_L, Postcentral_L 5.68 23

-46, -56, 38 Parietal_Inf_L 4.72 18

-60, -30, 32 Inf_Parietal_L, Supramarginal_L 4.48 13

-40, -24, -6 Temporal_Sup_L 4.21 8

-46, -56, -6 Temporal_Mid_L, Temporal_Inf_L 4.70 6

-52, -56, 14 Temporal_Mid_L 4.14 6

-42, -62, 30 Angular_L 4.67 5

-40, 6, 52 Frontal_Mid_L, Precentral_L 3.87 5

-2, -58, 56 Precuneus_L 3.98 5

level by computing one-sample second level t-statistic (GLM random effects analysis) using

the contrast images from the individual subject analysis. A statistical parametric map of the

effect of verifying two face images was generated, thresholded at p < 0.001. The coordinates

of the statistically significant neural activations are expressed in MNI152 space.

2.2.3 Results

The natural age separated faces represent gradual temporal variations while intentionally

disguised faces represent abrupt temporal changes. We analyzed the neuroimaging results

for the following contrasts to investigate the neural correlates of face verification of age-

separated, i.e. Age-Separated Face Pairs vs Baseline. The contrast Age-Separated Face

Pairs > Baseline was conducted with voxel-level threshold of p < 0.001 and a cluster-level

threshold of p < 0.05 (False Discovery Rate [FDR] corrected). The results are shown in

Table 2.5 and Figure 2.5.

Several key findings were observed. We observed that left middle temporal lobe, left

inferior temporal lobe, left superior temporal lobe, left IPL, left supramarginal, left angular

gyrus, left postcentral, left precentral, left middle frontal gyrus, and left precuneus were

significantly active while verifying age-separated face pairs.
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Figure 2.5: Brain areas showing significant areas of activations in the group analysis for

Age-Separated Face Pairs vs Baseline condition. Activations are reported at voxel-level

threshold of p < 0.001 and a cluster-level threshold of p < 0.05 (FDR corrected).

It was seen that while performing age-separated face verification task, there were sig-

nificant activations in the left hemisphere dominant regions including middle, inferior, and

superior temporal lobe, IPL, postcentral lobe, angular gyrus, and precuneus. we observed

that left inferior parietal lobe (IPL) played a crucial role in processing age-separated face

stimuli. In the literature, the role of IPL has been linked with processing facial stimuli

[76] and differentiating self-face from other faces [125]. Singh-Curry and Husain [117]

performed a meta-analysis to ascertain the role of IPL in audio and visual vigilance tasks

which required detecting small variations which occur at random time instances. As humans

are naturally trained by social experiences in detecting and processing variations in facial

features due to age progression, significant activation difference in IPL might be linked to

visual vigilance task for verifying age-separated stimuli face pairs with temporal variations.

Apart from IPL, activations in left angular gyrus may be linked with spatiovisual attention and

memory retrieval [150] which may indicate a greater requirement of attention for processing

age-separated face pairs. Brain areas such as postcentral gyrus and precentral gyrus may

have been activated due to the pressing of the controller button to provide the response. The

activations in precuneus may be attributed to its contribution to face perception [58, 97].
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2.3 Summary

Faces undergo significant variations during the lifetime on an individual. This research

attempts to analyze how humans perceive facial age and their ability to estimate age. The

results indicate that age estimation for newborns and toddlers is easiest. The research presents

the effect of facial regions such as binocular region, T-region, and mouth on the age prediction

accuracy. As a global feature, full face achieves good performance in age-separated face

recognition.

We presented the first fMRI study to examine and analyze the neural correlates of

processing age-separated face pairs. The findings of this study suggest that verifying the

identity of such face pairs may produce cognitive load in the brain. The inferior parietal

lobe is found to play a key role in verifying age-separated stimuli faces. It is observed that

humans are able to process and verify age-separated faces with high accuracy. The reason

for this result may be attributed to social settings where humans gain experience and skill to

match age-separated faces. The amalgamation of these findings suggests that regular faces

are processed differently from age-separated faces by humans, highlighting the need for

building specialized face recognition algorithms for processing such faces.
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Chapter 3

Verifying Age-Separated Faces using Age Gap

Reducer GAN

The research in face recognition has witnessed a significant increase in the performance due

to the development of different deep learning models. While building these algorithms, the

emphasis is on developing an algorithm which is robust to variations such as pose, illumi-

nation, expression, and makeup. Another critical challenge of face recognition is matching

face images with temporal variations, specifically age gaps. Building age-invariant face

recognition algorithms can prove to be beneficial in many applications such as locating miss-

ing persons, homeland security, and passport services. In fact, for large-scale applications,

adding invariance to aging is a very important requirement for face recognition algorithms.

There are two aspects of building an age-invariant face recognition system: (i) facial

age estimation and (ii) age-separated face recognition. Kwon and Lobo [60] are among

the first ones to formulate an age estimation approach based on the facial image. They

used anthropometry of the face and facial wrinkle density to classify the input image into

three broad categories: infants, young adults, and senior adults. Ramanathan and Chellappa

[103] proposed an algorithm to estimate the age gap between a given pair of images. Fu

and Huang [34] proposed the use of manifold learning to estimate the age. They applied

various manifold learning techniques such as Locality Preserving Projections and Orthogonal

Locality Preserving Projections to construct a low-dimensional manifold. Recently, several
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deep learning based approaches have also been proposed for automatic facial age estimation.

For instance, Hu et al. [48] utilized weakly labeled data along with convolutional neural

networks to learn the age difference function. Similarly, Liu et al. [73] presented a label-

sensitive deep metric learning technique for facial age estimation. Liu et al. [72] used facial

features learned from a deep convolutional neural network to perform age estimation.

The other aspect of facial aging is face recognition across aging. Lanitis et al. [62, 63]

proposed utilizing the training images for finding the relationship between the coded face

representation and the facial age of the subject. This relationship is then utilized for estimating

the age of a facial image and simulating the facial appearance at any given age. Park et al. [94]

developed a 3D facial aging model to address the problem of age-invariant face recognition.

Their approach is based on the fact that exact craniofacial aging can be developed only in

3D domain Li et al. [68] proposed a discriminative model for age-invariant recognition.

They developed an approach involving the use of scale invariant feature transform (SIFT),

multi-scale local binary pattern as local descriptors, and multi-feature discriminant analysis.

Recently, generative adversarial networks (GANs) [38] are being utilized to generate

synthetic images using convolutional neural networks. Due to their popularity, different GAN

based approaches have been proposed for facial age simulation. For instance, Wang et al.

[126] generated faces across different ages by learning the intermediate transition states using

a recurrent neural network. However, a major limitation of this approach is that it requires

multiple face images at various ages per subject. Duong et al. [29] developed different

approaches for the short-term age progression and long-term age progression. However, it

did not consider any personality/identity information which resulted in varying identity in the

generated faces. Yang et al. [140] proposed a GAN based approach to progress face images

with < 30 age to older age groups. A major drawback of these GAN based approaches is

that none of them demonstrate their efficacy in matching age-progressed probe and gallery

face images which should be the main objective of such algorithms.

In this research, we propose a unified solution which incorporates facial age estimation

and age-separated face verification using GANs. We propose Age Gap Reducer-Generative
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(a) Face Verification of Age-Separated Genuine Faces

(b) Face Verification by Reducing Age Gap using AGR-GAN

FaceNet

Distance 

Score = 

0.44

FaceNet

Distance 

Score = 

0.31

FaceNet

Distance 

Score = 

0.66

FaceNet

Distance 

Score = 

0.55

Age Regression Age Progression 

Figure 3.1: Illustrating the problem of age-separated face recognition and the solution

proposed in this research using Age Gap Reducer (AGR)-GAN.

Adversarial Network (AGR-GAN) for this task. In the proposed AGR-GAN, the emphasis

is on reducing the age gap between face images by using automatic age estimation and

incorporating it into the overall loss function. The input image is conditioned on the individ-

ual’s gender as well as the target age group to which the input face needs to be progressed.

Additionally, the training critic simultaneously learns the age group of an input image while

estimating how realistic the face appears. An additional constraint is placed on the loss

function of AGR-GAN to account for keeping consistent identity across age progression by

embedding the generated face closer towards the input image in a lower dimensional face

subspace. The key advantage of this approach is that the age progression is bi-directional and

given an input image, it can be regressed to an earlier age group or progressed to an older

age group (as demonstrated in Figure 3.1).

The contributions of this research are as follows:

• A novel approach for matching age-separated face images is proposed. To accomplish

this, a novel GAN architecture, AGR-GAN, is proposed which uses a multi-task

discriminator that is able to progress/regress age of an input face to a target age group.

Apart from the traditional GAN loss, the proposed AGR-GAN incorporates identity
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preserving feature which ensures that the generated (regressed/progressed) face image

has the same identity representation as the input face image.

• In the proposed AGR-GAN, joint learning of age group estimator module with the

image generation is performed. This novel architecture eliminates the need of age-

labeled data in the training phase.

• The efficacy of the proposed AGR-GAN is demonstrated on three different face aging

databases for the problem of age-separated face recognition.

3.1 Proposed AGR-GAN

Generative Adversarial Network consists of a generator network (G) and a discriminator

network (D) which competes in a two-player minimax game [38]. The aim of D is to

distinguish real images from fake images generated by G and the aim of G is to synthesize

real-looking images to fool D. Specifically, D and G play the minimax game with a value

function V such that:

min
G

max
D

V =Ex∼Pd(x) [logD(x)]

+Ez∼Pz(z) [log(1−D(G(z)))]

(3.1)

where z is a noise sample from a prior probability distribution Pz and input face x follows

a specific data distribution Pdata. Upon convergence of the network, the distribution of

generated faces Pg should become equivalent to Pdata. Traditionally, G and D networks

are trained alternatively. In the proposed AGR-GAN, the input and output face images are

128× 128 RGB images. The input face image is encoded through a representor network

to form a low dimension representation enc which learns the higher level features of the

input face image. Using the learned enc and conditional information of gender (g) as well as

target age group (a), the generator network generates the output face image (x′). Similar to

[147], we apply an adversarial loss on enc (Denc) to ensure it is uniformly distributed, thus,
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leading to smooth age transformations. Additionally, an adversarial loss, D f ace, is utilized to

ensure that the generated images are realistic looking. Using the target age group a and the

estimated age group of the generated face image, the age gap reduction loss is computed to

minimize the age gap. Lastly, the feature representations of the generated face and input face

image are computed using φ face feature mapping to encode identity representations and

preserve the identity information after age progression/regression. Next, we provide in-depth

details of the different components of the proposed AGR-GAN (as shown in Figure 3.2).

• Representor: An input face image is passed through the representor network R whose aim

is to learn its low-dimensional representation enc. The input RGB face image x of size

128×128 is sent to the representor network R consisting of five blocks of convolutional

layers with stride = 2 and 5×5 convolutional kernels followed by an exponential linear

unit layer [20] to learn the facial features which are invariant to age progression/regression.

Each convolutional layer is followed by spectral normalization which aids in stabilizing

the training phase [83]. After the convolutional layers, a fully connected layer is applied to

compute the low-dimensional encoding enc (R(x) = enc).

• Generator: The objective of generator network G is to utilize enc to synthesize a face

image x′ with the same gender g, and target age group a. enc is concatenated with the

gender label (g) and expected age group label (a). This feature vector is now processed

by the decoding part of the generator which consists of a fully connected layer followed

by six blocks of transposed convolutional layers with stride = 2 and padding = 2. Each

deconvolutional layer is followed by an Exponential Linear Unit (ELU) layer except the

last layer which is succeeded by a tanh layer. The output face from the generator is of size

128×128×3.

• Discriminator D f ace: Similar to traditional GANs, the objective of discriminator D f ace

is to distinguish synthetically generated images by G from real images. It consists of six

blocks of convolutional layers with kernel size = 5, stride = 2, and padding = 2. Each

convolutional layer is followed by ELU layer. Each convolutional layer is also followed by
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Figure 3.2: Proposed Age-Gap Reducer Generative Adversarial Network (AGR-GAN)

architecture.
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spectral normalization which aids in stabilizing the training phase [83]. Lastly, a sigmoid

layer is utilized to classify the image as real/fake.

• Discriminator Denc: The discriminator on enc (Denc) ensures that the distribution of

the encoded feature vector enc approaches the prior distribution. The goal of Denc is to

distinguish enc generated by R as compared to the prior distribution. On the other hand,

R is forced to generate enc such that it can fool Denc. This ensures that enc smoothly

populates the low-dimensional latent space to remove unrealistic faces [147].

• Age Group Estimator: To reduce the age gap between input face (x) and the generated

face image (x′), an age group estimator module is used in the proposed formulation. In

this, given an input image, the age group estimator utilizes ResNet-18 model [46] as its

backbone to predict the age group of the input image. For this purpose, a pre-trained

ResNet-18 model is fine-tuned to predict the correct age group. An adaptive average

(spatial) pooling layer is utilized for removing the limitation of the fixed size of the input

image and a fully connected layer with output size 10 is employed to predict the final age

group. The loss function utilized to train this network is the sum of cross-entropy loss

between the correct and predicted age group and mean average group error.

3.1.1 Objective Function

Given an input face image x, the representor network R maps it to a latent space to learn

the encoding enc. Given this learned enc, age group a, and gender g, the generator network

G synthesizes a face image x′. To ensure that the identity of the generated face image (x′)

is same as the input face image, we compute the identity-specific feature mapping using

function φ and minimize the cosine distance CosDist between these two mappings. In this

formulation, Light-CNN [134] is used as the identity-specific feature mapping (φ ). Thus, the
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identity loss for this component is:

min
G,R

CosDist(φ(x′),φ(x))

= min
G,R

CosDist(φ(G(R(x),a,g)),φ(x))
(3.2)

Simultaneously, the age group estimator in G is trained by comparing its output with the

ground truth age group label using L1 loss (age gap loss).

min L1(a,a
′) (3.3)

With respect to the face image based discriminator D f ace which is conditioned on the age

group a and gender label g, it is trained by the following loss function:

min
G

max
D f ace

Ex,a,g∼ptrain(x,a,g) [logD f ace(x,a,g)]+

Ex,a,g∼ptrain(x,a,g) [log(1−D f ace(G(R(x),a,g)))]

(3.4)

Likewise, the discriminator on the encoded feature representation (enc) from the Repre-

sentator network R is trained to ensure that enc follows the prior distribution using min-max

objective function:

min
R

max
Denc

Ex∼ptrain(x) [log(1−Denc(R(x))]+

Eenc∗∼p(enc) [logDenc(enc∗)]

(3.5)

To minimize perceptual loss and remove any ghosting artifacts, total variation loss in also

computed as follows:

min
G,R

TV (G(R(x),a,g)) (3.6)

By combining these different loss functions, the overall objective function becomes:
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min
G,R

max
Denc,D f ace

CosDist(φ(G(R(x),a,g)),φ(x))

+L1(a,a
′)+TV (G(R(x),a,g))

+Ex,a,g∼ptrain(x,a,g) [log(1−D f ace(G(R(x),a,g)))]

+Ex,a,g∼ptrain(x,a,g) [logD f ace(x,a,g)]

+Ex∼ptrain(x) [log(1−Denc(R(x)))]

+Eenc∗∼p(enc) [logDenc(enc∗)]

(3.7)

3.1.2 Implementation Details

Before providing the images as input to the network, the following preprocessing steps are

performed. Face detection and alignment are performed using pre-trained MTCNN model

[144] which produces an output face image of size 128× 128× 3. Next, age labels are

arranged in bins to create age groups. During the initial years, significant variations are

observed in the facial appearance; hence the bins are of size 5. Starting from the age of

20 years, bins (20-30 years, 30-40 years, . . . , >=60 years) are created of size 10. Next,

the age group labels and the gender labels are transformed into one-hot encoding. Image

normalization is performed to scale the intensity values to the range of [-1, 1]. Batch size of

128 is utilized. Adam optimizer with a learning rate = 0.0002 and momentum = 0.5 is used.

3.2 Experimental Evaluation

To demonstrate the efficacy of the proposed AGR-GAN, five experiments are conducted (i)

visual fidelity, (ii) aging model evaluation, (iii) identity preservation across generated faces,

(iv) ablation study, and (v) age-separated face recognition.
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3.2.1 Databases

For evaluation, we utilized MORPH [108], CALFW [148], UTKFace [147], and CACD-VS

[17] datasets. MORPH database comprises more than 55,000 age-separated face images of

13,000 subjects. The age range of face images in this database is 16-70 years with the average

age = 33 years. Similar to the protocol described in [17], the training set contains face images

from 10,000 subjects. The test set is formed using probe and gallery sets from the remaining

3000 subjects and each subject has two images with the largest age gap. CALFW database

[148] is built on the concept of the popular LFW face database but with age gaps to add aging

as another factor contributing to intra-class variance. It includes 3000 positive face pairs

with the age gap and an equal number of negative pairs with 10-fold cross-validation sets.

UTKFace dataset [147] is a large-scale database with more than 25,000 images with a long

age span of 0 to 116 years. It does not contain labeled identity information and therefore, is

utilized for training purposes only. The CACD database released by Chen et al. [17] consists

of 160,000 images of 2000 celebrities. Even though the database is very challenging due to

wild variations including age, it contains noisy labels. To counteract this, Chen et al. [17]

released CACD-VS subset which contains 2000 positive pairs and 2000 negative pairs which

are manually checked. For evaluation, CACD-VS database is split into 10 cross-validation

folds with 200 positive pairs and 200 negative pairs in the testing.

For training the proposed AGR-GAN, the training folds of MORPH, CACD-VS, and

CALFW are combined and the complete UTKFace database is also added to the training set

as it does not contain multiple images of subjects. Testing is performed on the test sets of

MORPH, CACD-VS, and CALFW databases.

3.2.2 Experimental Analysis

In this section, we describe the different experimental settings and quantitative analysis for

evaluating the face images generated by the proposed AGR-GAN architecture.
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Figure 3.3: Sample generated outputs by the proposed Age Gap Reducer-GAN across differ-

ent age groups. Each row contains outputs for different subjects from different databases.

Visual Fidelity of Aging Simulation

To evaluate the efficacy of AGR-GAN in synthesizing images across the different age groups,

the testing sets of the databases are utilized. Figure 3.3 demonstrates the synthesis output of
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Table 3.1: Age estimation (years) of faces generated by the proposed AGR-GAN on (a)

MORPH, (b) CACD-VS, and (c) CALFW databases.

Age Group (Age

Range)
MORPH CACD-VS CALFW

1 (0-5) 5.26 8.45 6.79

2 (6-10) 12.18 11.32 12.38

3 (11-15) 14.32 15.09 14.23

4 (15-20) 17.65 18.94 19.36

5 (21-30) 29.22 27.13 22.71

6 (31-40) 33.51 39.10 35.13

7 (41-50) 47.20 42.59 41.36

8 (51-60) 54.19 53.72 58.75

9 (61-70) 63.69 68.24 63.84

10 (>70) 69.85 74.32 78.38

multiple subjects from different databases across the 10 age groups. It is observed that the

proposed GAN architecture is able to learn the aging patterns across different age groups

as well as maintain the identity information across different synthesis outputs of the same

subject. It is able to model the aging patterns even with varying facial hair, gender, and

ethnicity. This illustrates that the proposed AGR-GAN is able to generate photorealistic face

images across different age groups.

Aging Model Evaluation

Apart from analyzing the visual fidelity of the generated faces, it is critical to evaluate the

ability of the proposed model to produce face images with the targeted age group. For this,

we utilize Dex [109], an off-the-shelf age estimation algorithm and predict the age of every

synthetically generated face image. The performance is evaluated by analyzing the mean

estimated age for each age group and the results are shown in Table 3.1. Ideally, the mean

age values for the 10 age group should be in the age range 0-5, 6-10, 11-15, 16-20, 21-30,

31-40, 41-50, 51-60, 61-70, and > 70.

For the MORPH database, face images from 3000 subjects are used for testing. The mean

values of generated images for the 10 age groups are 5.26, 12.18, 14.32, 17.65, 29.22, 33.51,
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Table 3.2: Equal error rate (%) for face verification performance of input test faces and faces

from the 10 target age groups generated by the proposed AGR-GAN on (a) MORPH, (b)

CACD-VS, and (c) CALFW databases.

Age Group (Age

Range)
MORPH CACD-VS CALFW

1 (0-5) 12.97 8.23 4.72

2 (5-10) 9.82 8.94 3.37

3 (11-15) 8.65 5.25 3.18

4 (16-20) 6.94 1.27 2.94

5 (21-30) 1.63 0.23 1.83

6 (31-40) 0.48 0.12 1.36

7 (41-50) 1.04 0.03 0.34

8 (51-60) 1.07 0.41 0.81

9 (61-70) 2.38 0.83 0.74

10 (>70) 9.55 1.24 2.72

47.20, 54.19, 63.69, and 69.85 years respectively. Apart from age group 1 (age range 0-5

years), age group 2 (age range 6-10 years), and age group 10 (age range > 70 years), the

mean age of GAN generated faces in all the other age groups follows the expected trend.

The divergence in the values of age groups 1, 2 and 10 may be attributed to less number of

training face images in the training set. Similar trends are also observed for CACD-VS and

CALFW databases. These results demonstrate the efficacy of the proposed AGR-GAN in

generating face images of the targeted age groups.

Identity Preservation across Generated Faces

Another key aspect of the proposed AGR-GAN is to ensure that the identity/personality

information of the subject is preserved across the generated face images. To evaluate this,

FaceNet [112], a popular convolutional neural network based face recognition framework

is utilized. For each database, the input test image is matched with the corresponding

generated image across the 10 age groups and the face verification score is computed. The

face verification performance is showcased by calculating the equal error rate (EER) and the

results are summarized in Table 3.2.
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For all the three databases, the face verification performance of input images with the

generated faces is high, as indicated by the low equal error rates in Table 3.2. This result

substantiates that the proposed AGR-GAN is able to preserve the identity information in the

generated face images and can be used for face matching purposes.

For MORPH database, the best face verification performance is observed when the input

face image is matched with the face image generated for the age group 6 (31-40 years) with

the equal error rate of 0.48%. This indicates that the proposed AGR-GAN model is able

to accurately learn the facial age characteristics of this specific age group. On the other

hand, the highest EER of 12.97% is observed for the age group 1 (0-5 years) which indicates

the difficulty in matching very young faces. Similar results for this identity preservation

experiment are also obtained on CACD-VS and CALFW databases.

Ablation Study

To understand the contribution of different components of the proposed AGR-GAN, an

ablation study is performed. For this experiment, MORPH database is utilized and following

three cases are constructed: (a) AGR-GAN without age gap loss, (b) AGR-GAN without

identity loss, and (c) AGR-GAN without Denc loss. The performance of the proposed GAN

architecture is examined using the previously described aging model evaluation and identity

preservation evaluation. The results for this experiment are shown in Figure 3.4 and Tables

3.3 and 3.4.

The objective of introducing the age gap loss is to force the model to generate face

images with age group as close to the target age group as possible. Therefore, when this

loss term is removed from the objective function, the proposed GAN may not produce faces

with the target age group. This is evident in Table 3.3. Likewise, when the identity loss is

removed from the proposed formulation, the identity preservation property of the network

is removed. This may lead to lower face verification scores between the input face and

generated faces. The result is shown in Table 3.4. The Denc loss is a uniform prior on the

latent space that ensures variations are occurring across the age groups. As is evident from
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(a) Proposed AGR-GAN with All Losses Included

(b) Proposed AGR-GAN without Denc Loss

(c) Proposed AGR-GAN without ID Loss

(d) Proposed AGR-GAN without Age Gap Loss

Age Group 

1

Age Group 

2

Age Group 

6

Age Group 

9

Input

Figure 3.4: Illustrating the findings of ablation study to analyze the effect of removing the

three loss functions in AGR-GAN. The age range of the input face image is 21-30 years) .

Figure 3.4, removing this loss leads to images having fewer variations across the different

age groups.
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Table 3.3: Ablation study using aging model evaluation experiment to analyze the contribution

of the age gap loss in the proposed AGR-GAN. Mean estimated age (years) of generated

faces is reported.

Age Group (Age

Range)

Without Age

Gap Loss

With Age Gap

Loss

1 (0-5) 39.70 5.26

2 (5-10) 39.57 12.18

3 (11-15) 38.80 14.32

4 (16-20) 35.42 17.65

5 (21-30) 35.68 29.22

6 (31-40) 37.18 33.51

7 (41-50) 38.39 47.20

8 (51-60) 39.92 54.19

9 (61-70) 39.60 63.69

10 (>70) 39.18 69.85

Table 3.4: Ablation study using identity preservation evaluation experiment to evaluate the

contribution of the identity loss in the proposed AGR-GAN. Equal error rate (%) of face

verification performance is reported.

Age Group (Age

Range)

Without

Identity Loss

With Identity

Loss

1 (0-5) 29.30 12.97

2 (5-10) 31.21 9.82

3 (11-15) 22.19 8.65

4 (16-20) 18.42 6.94

5 (21-30) 19.49 1.63

6 (31-40) 24.23 0.48

7 (41-50) 21.63 1.04

8 (51-60) 20.92 1.07

9 (61-70) 26.73 2.38

10 (>70) 23.03 9.55

Age-Separated Face Recognition Accuracy

The main objective of developing the age gap reducer GAN is to increase the performance of

matching age-separated faces. To validate this, face recognition experiment is performed on

the three databases. It is to be noted that such an experiment has not been performed in other

GAN based age simulation papers.
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Table 3.5: Illustrating the increase in face recognition performance of FaceNet by using faces

generated from the proposed AGR-GAN on: (a) MORPH, (b) CACD-VS, and (c) CALFW

databases.

Database Metric Only FaceNet
FaceNet with

AGR-GAN

MORPH Rank-1 94.03 94.15

CACD-VS
Accuracy @

FPR=0.1%
97.50 98.39

CALFW
Accuracy @

FPR=0.1%
57.50 87.15

To demonstrate the efficacy of the proposed AGR-GAN in matching age-separated

faces, we utilize FaceNet [112] as the baseline face recognition algorithm. For the MORPH

database, the test set containing the youngest image as the gallery and oldest image as the

probe is used for performing the face identification experiment. For CACD-VS and CALFW

databases, positive and negative face pairs are selected from each fold of cross-validation to

perform the face verification experiment. Using the testing sets, we evaluate the performance

of the FaceNet algorithm and the results are reported in Only FaceNet column of Table 3.5.

Next, AGR-GAN is applied to the input face pair and the query image is projected to the

age group of the gallery face image. Using the age gap reduced face pair output from AGR-

GAN, FaceNet face recognition algorithm is re-evaluated. Table 3.5 summarizes the result

of this experiment. For all three databases, it is observed that utilizing AGR-GAN outputs

with FaceNet increases the age-separated face matching performance. The highest increase

is noticed for CALFW database (also shown in Figure 3.5) which contains real-world wild

variations in the images apart from the age gap. The increase in face verification performance

is pronounced at the false positive rate (FPR) = 0.1% where the accuracy increases by 29.65%

as compared to using only FaceNet. This may be attributed to a significant age gap between

the image pairs which is successfully mitigated by the proposed AGR-GAN. As mentioned in

[148], VGG-face [95] yields 86.50% verification performance and Noisy Softmax [16] yields

82.52% verification performance at equal error rate on this database. On the other hand,

using the outputs produced by the proposed AGR-GAN with FaceNet yields 92.62% face
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Figure 3.5: Receiver Operating Characteristic (ROC) curves demonstrating the increase in

the performance of FaceNet by using AGR-GAN outputs on CALFW database.

verification accuracy at an equal error rate. These results highlight the challenging nature of

the database as well as the increase in the performance of FaceNet after using AGR-GAN

outputs.

A similar performance increase is also observed on the other databases. On CACD-VS

database, the face verification performance at FPR = 0.1% increases by 0.89% after using

the outputs from the proposed AGR-GAN. The face identification on the MORPH database

shows that the proposed AGR-GAN is able to enhance the rank-1 identification accuracy

by 0.12%. This improvement in the face recognition scores illustrates the efficacy of the

proposed AGR-GAN in matching faces with age gaps.
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3.3 Summary

In this research, we propose a novel solution for matching face images with age gap varia-

tion. The proposed architecture utilizes GAN based formulation which involves learning a

low-dimensional representation of the face and using this representation conditioned with the

target age and gender labels to generate a face image. Apart from the traditional GAN adver-

sarial loss, the training critic also involves age gap loss and identity loss between the input and

the generated face images. This novel critic ensures that apart from generating photo-realistic

faces, the proposed GAN reduces the age gap and preserves the identity/personality informa-

tion between the input and the generated face images. Extensive experimental evaluation is

performed to validate the effectiveness of the proposed AGR-GAN in matching age-separated

face images using different face aging databases.
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Chapter 4

Recognizing Faces Altered by Plastic Surgery

using Multiple Projective Dictionary

The previous chapter highlights the challenge of identifying individuals with temporal

variations induced by facial aging. In this chapter, we focus on another source of temporal

variations in faces, i.e. plastic surgery. The transformation of features in a face after plastic

surgery can be considered as a covariate that decreases the ability of algorithms to accurately

recognize or verify the identity of a person. Recently, the matching of an individual’s

current face with the photograph in their passport is becoming increasingly challenging,

raising questions about the person’s true identity, especially at the airports. Most of these

incidents are associated with individuals having undergone some plastic surgery procedure

[10]. The doctors have started issuing certificates to their patients as proof that they can

present to immigration officials when any ambiguity regarding their identity arises. The

increasing number of such incidents affirms an urgent need to develop a reliable automatic

face verification system which can be seamlessly integrated with any existing face verification

system to confront the growing problem of plastic surgery procedures.

In this research, a two-stage plastic surgery detection and face verification framework

using Multiple Projective Dictionary Learning (MPDL) is proposed. The idea is to have

a separate plastic surgery detection module that tests if a pair of images is regular face or
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plastic surgery face followed by a region of interest (ROI) based face verification scheme.

Specifically,

• A plastic surgery detection scheme is proposed such that it can be integrated with

any face verification system. The requirements for such a scheme is that it should be

memory efficient and less time-consuming. Both of these goals are obtained through

(a) learning binary representations of the face and (b) learning overcomplete projective

dictionaries that do not utilize the l0 and l1 norm. Due to the increasing number of

people opting for plastic surgeries worldwide, current face recognition across plastic

surgery algorithms may not handle such massive amount of gallery-probe comparisons.

This plastic surgery detection stage will reliably separate possible pair of images as

candidates of plastic surgery and perform subsequent operations on this smaller subset.

• A region of interest (ROI) based approach for face verification is presented. The

aim of this stage is to identify if the pairs of images which have undergone plastic

surgery belong to the same person or not. The facial regions that are likely to be

modified due to specific plastic surgery are considered and are compared with the

corresponding regions in the reference image. The assumption is that only specific

facial features are altered in plastic surgery while the remaining face still contains

sufficient discriminatory information to perform verification. This is the first study to

mitigate the effect of plastic surgery in the face verification task.

• A key benefit of the proposed MPDL framework is that it can be used in conjunction

with any existing face verification system and also improves the performance of

verifying individuals who have undergone plastic surgery. The efficacy is demonstrated

using two Commercial-Off-The-Shelf (COTS) system by studying the performance

of COTS in regular face matching, face matching in a combined database of plastic

surgery and regular faces, and seamlessly integrating the results of MPDL in COTS.
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4.1 Multiple Projective Dictionary Learning Framework

for Face Verification

The MPDL framework is shown in Figure 4.1 and consists of the steps below:

1. Preprocess the images so that they are geometrically aligned and normalized.

2. Detect if the face image pair has undergone plastic surgery.

3. Use the output from the previous stage to verify the identity of the individual.

Each step is described in detail in the subsequent sub-sections:

4.1.1 Preprocessing of Face Images

All the face images are converted to grayscale and landmark detection is performed using

the two-stage cascaded deformable shape fitting method introduced by Yu et al. [143]. The

algorithm uses procustes analysis by introducing 3D face shape leading to pose-free landmark

identification. The automatically provided landmarks are used for preprocessing using the

CSU Face Identification Evaluation System [13] to generate normalized images. The system

performs geometric normalization followed by masking so that only the face region is visible.

It performs histogram equalization followed by pixel normalization such that the mean pixel

value is zero and the standard deviation is one.

4.1.2 Proposed Dictionary based Detection of Plastic Surgery

Stage-1 in the proposed MPDL framework detects if plastic surgery has been performed

between the given pair of images. The motivation of this stage is to reliably separate pairs of

face images where no variation due to plastic surgery is detected. For such pairs, commercial

face verification algorithm can be directly employed for identity verification.

In image processing and pattern recognition, dictionary learning has gained popularity

in recent years. Dictionary learning based techniques have been shown to achieve superior
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Figure 4.1: Proposed two-stage Multiple Projective Dictionary Learning (MPDL) framework

to detect plastic surgery for face verification.
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performance in areas such as pattern classification [41], image classification [142], and

several covariates of face recognition [91, 146]. There are different approaches to dictionary

learning such as sparsely represented dictionaries [6], sparse representation based synthesis

dictionary that uses lp norm with p≤ 1 [133], supervised dictionary learning methods that

utilize the class labels [52, 79], and structured dictionaries that lead to discrimination between

classes [129, 141]. However, most of these approaches utilize the l0 or l1 norm which is

computationally intensive.

Gu et al. [41] proposed a projective dictionary pair learning (DPL) framework, where

they propose joint learning of analysis and synthesis dictionaries to learn representations

through linear projection without using the non-linear sparse encodings. The model can be

described as:

{A∗,S∗}= arg min
A,S

K

∑
k=1

|| Xk−SkAkXk ||
2
F

+β || AkX̄k ||
2
F , s.t || di ||

2
2≤ 1 (4.1)

where S represents the synthesis dictionary used to reconstruct X ; A represents the

analysis dictionary used to code X ; Ak and Sk represent the sub-dictionary pair corresponding

to class k; X̄k represents the complementary data matrix of Xk in the training set; β>0 is a

scalar constant that denotes the regularization parameter to control the discriminative property

of A, and di denotes the ith item of synthesis dictionary S. The role of the analysis dictionary

A is to help in discrimination, where the sub-dictionary Ak can project the samples from class

i, i ̸= k to a null space. The role of the synthesis dictionary S is to minimize the reconstruction

error.

The advantage of the above framework is in its computation time since the framework

does not contain any l0 or l1 norm. Utilizing the DPL model in Stage-1 is ideal because the

first stage should be considered as a preprocessing step which should be able to efficiently

and quickly determine if plastic surgery has been performed or not.
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As mentioned previously, plastic surgeries can be of two types: local and global. The

effect of local plastic surgery is concentrated on a localized facial region, while the effect of

global plastic surgery is more holistic in nature. We propose to learn two separate dictionaries

DL and DG for local and global plastic surgeries since the effect of these surgeries is different

from each other. Therefore, DL = {AL,SL} simultaneously learns the changes between local

plastic surgeries and regular faces; and DG = {AG,SG} simultaneously learns the changes

between the global plastic surgeries and regular faces. The proposed structure of the MPDL

is equivalent to an overcomplete dictionary model since regular faces in training both the

dictionaries DL and DG are the same. These non-disjoint shared training images make the

proposed MPDL model more robust and discriminatory in nature.

In the literature, there has been great interest to learn binary representations of the face

because they are efficient and computationally less intensive. In this research, Compact

Binary Face Descriptor (CBFD) introduced by Lu et al. [75] is utilized. The advantage

of using these features is that they are learned directly from the raw pixels, where all the

redundant information is removed leaving a compact binary descriptor. In the case of plastic

surgery, the textural changes occurring in a local facial patch due to a surgical process would

be encoded into a binary vector, which should be distinct as compared to an unaltered patch.

The algorithm first calculates the pixel difference vectors (PDVs) in local patches by

computing the differences in intensities between each pixel and its neighboring pixels. Then

a feature mapping is learned to project these vectors into low dimensional binary vectors

such that its variance is maximized, quantization loss between the encoded vectors and the

original feature vector is minimized, and the feature bins are evenly distributed.

Let X = [x1,x2, . . . ,xN ] represent the N PDV samples of the training set calculated across

all the training images and let xi represent the ith PDV where 1 ≤ i ≤ N. Then the goal

of the algorithm is to learn K hash functions and convert each xi into a binary vector

bi = [bi1, . . . ,biK] ∈ {0,1}
1×K . The kth binary code bik of xi can be computed as:

bik =
1

2
× (sgn(wT

k xi)+1) (4.2)
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where sgn(v) equals to 1 if v≥ 0 and -1 otherwise; and wk ∈ Rd is the projection vector

for kth hash function.

To learn the feature matrix W = [w1,w2, . . . ,wK], the following objective function is used:

min
wk

J(wk) =−
N

∑
i=1

|| bik−µk ||
2

+λ1

N=1

∑
i=1

|| (bik−
1

2
)−wT

k xi ||
2

+λ2 ||
N=1

∑
i=1

(bik−
1

2
) ||2 (4.3)

where N is the number of PDVs extracted, µk is the mean of the kth binary code, λ1 is

the parameter to balance the effect of quantization loss between the bins and the original

samples, and λ2 is the weight assigned for even distribution of the bins.

After learning the feature matrix W , the PDVs are projected into the low dimension space

and are quantized using k-means. The codebook learned from the training data, is then used

for projecting the testing vectors to the new space. Given a face image Xi, non-overlapping

patches are extracted from it and a histogram representation is learned for each patch. The

final vector is a concatenation of all CBFD feature vectors calculated across local patches.

Let bB
i represent the compact binary face descriptor of a pre-surgery (before) face and bA

i

represent the compact binary face descriptor of post-surgery (after) face. In the experiments,

the pre-surgery and post-surgery binary feature representation F = [bB
i bA

i ] are concatenated

to learn the proposed dictionaries. Both of these dictionaries, DL and DG, can be learned

using Equation 5.2 where the training data is provided for local plastic surgeries, global

plastic surgeries, and regular faces where no surgery has been performed.

Let Fy = [bB
y bA

y ] represent the concatenated representation of a testing face identity where

the bB
y is the binary vector representation of the template and bA

y represents the binary vector

representation of the test face claiming to be identity y. Then the two learned dictionaries will

evaluate whether local plastic surgery and global plastic surgery is performed or not using
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Equations 4.4 and 4.5 where i represents the class specific information within the learned

dictionaries.

YLocal = argmini || Fy−SL
iA

L
iFy ||2 (4.4)

YGlobal = argmini || Fy−SG
iA

G
iFy ||2 (4.5)

The final decision of whether a plastic surgery has been performed (YPS) is denoted by

an either-or operation on the values represented as YPS = YLocal ∨YGlobal

4.1.3 Face Verification after Plastic Surgery Detection

After Stage-1 has identified that plastic surgery has been performed between the pairs, the

next stage of the MPDL framework distinguishes between genuine and impostor pairs. Some

previous studies [5, 24, 53] based on localized approaches for face recognition across plastic

surgery have used specific face areas such as ocular regions, nose, mouth, and forehead.

However, no study has focused on including all the facial regions affected by all the surgeries

included in the database by Singh et al. [115].

In Stage-2 of the proposed MPDL, the specific regions of interest that will change due to

a particular type of plastic surgery are targeted. The assumption is that specific facial features

are modified in plastic surgery while the remaining face features still contain discriminatory

information to perform verification. Based on related literature on various plastic surgeries,

11 ROIs are used that are likely to be modified because of a specific plastic surgery as

described in Table 4.1 and shown in Figure 4.2.

For a given pair of face images, 11 facial ROIs are extracted and CBFD features for

each ROI are obtained. The cosine distance between the corresponding pre-surgery and post-

surgery regions of interest is computed to obtain the distance among the 11 corresponding

regions across the testing pair. The second set of features based on feature similarity
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Table 4.1: Regions of interest (ROIs) affected by different plastic surgeries.

Targeted Facial Region of

Interest (ROI)
Related Plastic Surgery

Nose Rhinoplasty

Left Eye Blepharoplasty

Right Eye Blepharoplasty

Left Cheek Cheek Surgery, Rhytidectomy

Right Cheek Cheek Surgery, Rhytidectomy

Chin Chin Surgery

Lips Lip Augmentation

Left Eyebrow Eyebrow lift

Right Eyebrow Eyebrow lift

Forehead Local Surgeries such as Botox

Full Face Global Face Surgery

(FSIM) [145] descriptor is extracted across the same 11 ROIs to encode for structural and

informational changes.

The feature similarity metric [145] (FSIM) is based on the fact that the human visual

system focuses on low-level features. It utilizes the phase congruency (PC) and image

gradient magnitude (G) for computing the final quality score. It is based on the assumption

that the regions where the Fourier waves extracted at different frequencies have congruent

phases are the most feature-oriented regions in an image. The FSIM between two images I1

and I2 can be written as:

FSIM(I1, I2) =
∑x∈Ω SL(x).PCm(x)

∑x∈Ω PCm(x)
(4.6)

where x refers to a location in the image, PCm represents the weighing parameter of the

similarities across locations, SL(x) represents the product of the similarity between the phase

congruency of the two images (SPC(x)) and similarity between the gradient magnitude of

the two images (SG(x)), and Ω represents the image domain. Mathematically the terms are

defined as,

PCm = max(PC1(x),PC2(x))
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Figure 4.2: Facial regions extracted from pre-surgery and post-surgery images to perform

face verification. The regions are (1) forehead, (2) right brow, (3) left brow, (4) left eye, (5)

right eye, (6) left cheek, (7) right cheek, (8) nose, (9) lips, (10) chin, and (11) full face.

SL(x) = SPC(x).SG(x)

where

SPC(x) =
2PC1(x).PC2(x)+T1

PC2
1(x)+PC2

2(x)+T1

and

SG(x) =
2G1(x).G2(x)+T2

G2
1(x)+G2

2(x)+T2

where G1(x) and G2(x) are the computed gradient maps for images I1 and I2, PC1(x) and

PC2(x) are the phase congruency maps of the images I1 and I2, and T1 and T2 are positive

constants.

The ROI-based CBFD cosine distance scores and FSIM scores are concatenated to form a

feature vector and are used for training a Support Vector Machine (SVM) to obtain probability

estimates for genuine and impostor classes.
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4.2 Experimental Protocol

Datasets Used

To evaluate the performance of the MPDL framework, two types of face datasets are used:

plastic surgery face database [116] and regular face database. Singh et al. [116] released

the dataset containing pre-surgery images and post-surgery images of 900 individuals. In

the database, there is one pre-surgery image and one post-surgery image for each individual.

Images belonging to 19 subjects are discarded because of the presence of the same persons

with different IDs in different categories of plastic surgery. The number of plastic surgery

faces that belong to each of the 10 plastic surgery categories is summarized in Table 4.2.

To simulate real-world conditions and perform a comparative analysis, an equal number

of regular face images are added. The combined database, containing plastic surgery and

regular faces, is created by merging several publicly available and widely used face datasets.

Neutral expressions, frontal pose, and properly illuminated images are selected from visible

spectrum images of CASIA NIR-VIS 2.0 [64] and Multi-PIE [39] face databases. For each

subject, two images are selected for verification purposes to keep it consistent with the one

before and one after plastic surgery face images.

Table 4.2: Number of image pairs used for different surgeries from plastic surgery face

database [116].

Plastic Surgery Number of Image Pairs

Rhinoplasty 174

Eyebrow Lift 56

Otoplasty 72

Blepharoplasty 105

Cheek Surgery 19

Rhytidectomy 305

Chin Surgery 6

Lip Augmentation 7

Local Surgeries such as Botox 78

Global Surgeries 59
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Experiments Performed

Using images from plastic surgery and regular face databases, an equal number of genuine

and impostor pairs are created. The impostor pairs are randomly created using the post-

surgery images. For the experiments, unseen training and testing is performed with five

times random cross-validation. In each run, 50% of the image pairs are used for training and

the remaining 50% are used for testing. Also, the pairs belonging to different surgeries are

equally divided among the training and testing pairs. The experiments are run on a desktop

PC with 3.4 GHz Intel CPU and 16 GB memory.

• Stage-1 Plastic Surgery Detection: After performing preprocessing on training im-

ages from the combined database of plastic surgery and regular face images, CBFDs

are extracted for both pre-surgery and post-surgery face images of each pair. The

CBFDs of each pair are concatenated to form one feature vector. The overcomplete

dictionaries DL and DG are learned and are used to predict whether the images have

undergone plastic surgery or not.

• Stage-2 Face Verification on Plastic Surgery Detected Pairs: After a pair of ref-

erence and query images is detected as plastic surgery in Stage-1 of plastic surgery

detection, the next task is to verify the identity of the individual in question. For this, a

model is trained using genuine and impostor pairs from plastic surgery training image

pairs. The 11 ROIs are extracted, as described in Table 4.1 and shown in Figure 4.2,

from both the pre-surgery as well as post-surgery face images. For each ROI, CBFD

feature is calculated. The cosine distance between the two vectors is computed. Along

with this, the feature similarity score between the same ROIs is calculated using FSIM

[145]. Using the calculated measures as features, a SVM is trained with genuine and

impostor class labels.
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4.3 Results and Analysis

4.3.1 Parameter Setting

The parameters are tuned empirically for computing CBFD and learning the projective

dictionary.

• For CBFD, a dictionary of size 1000 atoms with 10× 10 non-overlapping patches

is used to obtain the highest plastic surgery detection accuracy. It is observed that

the accuracy increases as the number of patches for the images are increased. The

size (K) of the binary vector bi = [bi1, . . . ,biK] is adjusted as well and the best perfor-

mance is observed for K = 25. While computing CBFD, whitened PCA is used for

dimensionality reduction. By experimental analysis, top 600 coefficients are chosen.

• For projective dictionary learning, a dictionary of size 600 atoms is found to give the

highest plastic surgery detection performance. The parameter β given in Equation

1 is a regularization parameter to control the discriminative property of the analysis

dictionary A. By parameter testing, this value is set to 1× 10−4 to obtain the best

results for plastic surgery detection.

4.3.2 Plastic Surgery Detection

Average classification accuracy of detecting if a face image has undergone plastic surgery or

not is reported in Table 4.3. Also, a comparison of currently used techniques such as Local

Binary Patterns (LBP) [86], Histogram of Oriented Gradients (HOG) [22], and Uniform

Circular Local Binary Patterns (UCLBP) [87] with the Stage-1 of the proposed MPDL is

shown.

From Table 4.3, it is observed that the Stage-1 of MPDL yields classification accuracy of

97.96%. It outperforms existing approaches shown in Table 4.3 where conventional feature

descriptors are used for the same task. When UCLBP [87] is used as a feature descriptor with
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Table 4.3: Accuracy (%) for plastic surgery detection using different classification algorithms.

Classification Algorithm Accuracy (%)

UCLBP [87] + SVM 82.15

LBP [86] + SVM 84.65

HOG [22] + SVM 86.32

TPLBP [131] + SVM 87.12

Label Consistent K-SVD [52] 92.25

Proposed MPDL Plastic Surgery Detection (Stage-1) 97.96

SVM as the classifier, an accuracy of 82.15% is observed. Similarly, LBP [86], HOG [22],

and TPLBP [131] give classification accuracy of 84.65%, 86.32%, and 87.12% respectively.

To compare the performance of Stage-1 of MPDL with other dictionary learning tech-

niques, label consistent K-SVD [52] is also implemented. Plastic surgery detection accuracy

of 92.25% is observed. The time taken by this technique to learn the dictionary is 1249.50

seconds as compared to 20.92 seconds for the proposed multiple projective dictionary learn-

ing.

Upon analysis of the output of Stage-1 of the MPDL framework, it is observed that the

proposed plastic surgery detection algorithm correctly detected 97.50% of plastic surgery

pairs (true positive rate). On the other hand, 98.41% of regular face pairs are also correctly

identified as ‘no plastic surgery’ (true negative rate) by the algorithm.

When further analysis of these classifications is done based on the type of plastic surgery

that is performed on the testing pair, we observe the results shown in Table 4.4. 100% of

testing image pairs belonging to cheek surgery and chin surgery are classified correctly by the

proposed plastic surgery detection algorithm. It is to be noted that the plastic surgery database

contains a comparatively fewer number of images from cheek and chin surgeries, as shown in

Table 4.2. Face pairs from Rhytidectomy are detected with 99.67% accuracy and eyebrow lift

surgery are detected correctly with 97.14% accuracy. The lip augmentation surgery has the

lowest detection accuracy of 80.00%. A possible explanation of lip augmentation showing

the lowest performance could be high variability in the shape of lips due to smiling and

other expressions during image capture. Also, in the local surgeries category, there is a wide

variety of procedures such as Botox, Dermabrasion and scar removal which are included.
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Table 4.4: Plastic surgery detection accuracy based on different plastic surgeries using Stage-1

of the proposed MPDL framework.

Types of Plastic Surgery Accuracy (%)

Cheek Surgery 100.00

Chin Surgery 100.00

Rhytidectomy 99.67

Rhinoplasty 97.93

Global Face Surgery 97.62

Eyebrow lift 97.14

Blepharoplasty 96.57

Local Surgeries such as Botox 89.74

Lip Augmentation 80.00

Due to large variations in the targeted area and their effect, we observe that it is difficult to

model all these variations leading to a lower accuracy of 89.74% for these local surgeries.

4.3.3 Face Verification Performance on Plastic Surgery Pairs

To evaluate the effect of Stage-2 of the proposed MPDL framework, face verification accuracy

is computed only on plastic surgery images. Figure 4.3 shows the effect of Stage-2 of the

algorithm computed independently from Stage-1 of MPDL. For this evaluation, it is assumed

that the input pairs are correctly detected as plastic surgery pairs. We compare the Stage-2 of

the proposed MPDL with other face descriptors and algorithms. The corresponding ROC is

shown in Figure 4.3. The lowest Equal Error Rate (EER) of 6.74% is achieved by Stage-2

of the proposed MPDL while TPLBP [131], HOG [22], LBP [86], and UCLBP [87] yield

EERs of 17.75%, 20.45%, 22.25%, and 28.31% respectively. For comparison, recent face

recognition across plastic surgery algorithms proposed by De Marsico et al. [25] and Sun et

al. [119] are implemented in verification mode to verify plastic surgery faces only. EERs of

19.55% and 37.30 % are observed using approaches by De Marsico et al. [25] and Sun et al.

[119] respectively. These results demonstrate the superior ability of Stage-2 of the proposed

MPDL framework to verify the identity when considering only plastic surgery query pairs.
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Figure 4.3: ROC for face verification on plastic surgery images only using HOG, UCLBP,

LBP, and TPLBP face descriptors, De Marsico et al. [25] and Sun et al. [119], and Stage-2

of the proposed MPDL framework.

4.3.4 Performance of integrating the Proposed MPDL Framework with

COTS

The performance of the proposed MPDL framework is further studied in the context of two

commercial face recognition systems: FaceVacs [21] referred to as COTS-1 and FaceSDK

[77] referred to as COTS-2. Three scenarios are considered:

• Scenario-1: Performance of regular faces without any plastic surgery face images using

COTS-1 and COTS-2 (Stage-2)

• Scenario-2: Performance of regular faces and plastic surgery faces using COTS-1 and

COTS-2

• Scenario-3: Performance of regular faces and plastic surgery faces when the proposed

MPDL framework is integrated with COTS-1 and COTS-2 systems.
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Table 4.5 shows that commercial systems COTS-1 and COTS-2 for regular faces (Scenario-

1) have an EER of 3.85% and 0.72% respectively. When the database includes plastic surgery

faces along with regular faces (Scenario-2), current COTS systems are not able to efficiently

verify plastic surgery faces. The verification performance of the combined database de-

creases and this is reflected in the increased EER values of 9.65% for COTS-1 and 5.26% for

COTS-2.

The major contribution of proposed MPDL is the ability to detect any plastic surgery face

from the combined database of plastic surgery and regular face images in Stage-1 and form

two separate groups containing plastic surgery faces and regular faces. Contextual switching

(Scenario-3) is performed where images that are detected as regular faces are verified using

COTS-1 and COTS-2 (or any other face verification algorithm); while the images which

are detected as having undergone plastic surgery are verified using Stage-2 of the proposed

MPDL framework. These two scores are combined to improve the verification performance

by decreasing the EER value to 6.24% (Stage-2 of MPDL and COTS-1) and an EER value of

3.63% (Stage-2 of MPDL and COTS-2).

In comparison, the approach by De Marsico et al. [25] applied on the combined database

of plastic surgery and regular face images implemented in verification mode gives an EER

of 15.37% and SSIM index-based approach by Sun et al. [119] gives an EER of 29.72%,

highlighting the superior performance of the proposed MPDL framework for face verification.

Table 4.5: Performance of COTS-1 and COTS-2 with regular faces, combined database of

plastic surgery and regular face images, and the proposed MPDL framework integrated with

commercial systems.

Experimental Scenarios COTS-1 EER % COTS-2 EER %

Regular Faces

(Scenario-1)
3.85 0.72

Regular Faces & Plastic Surgery

(Scenario-2)
9.63 5.26

Proposed MPDL framework

integrated with COTS systems

(Scenario-3)

6.24 3.63
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4.4 Summary

We propose a novel multiple projective dictionary learning framework to detect plastic

surgery for face verification. We train one dictionary to learn features of local plastic surgery

face and regular face images simultaneously; while a second dictionary is trained to learn

features of global plastic surgery face with the same set of regular face images for improved

discrimination and detection of plastic surgery faces.

Traditional dictionary learning systems learn a sparse representation using l0 and l1 norms

which is computationally intensive. We propose using projective dictionary learning since

it does not involve the time-consuming computation of l0 and l1 norms. We further learn

the face representation of plastic surgery images using a compact binary face descriptor.

Experimental results using the plastic surgery database show the efficacy of our proposed

MPDL framework. Detection accuracy of 97.96% is observed for plastic surgery faces as

compared to commonly used features and classification algorithms.

After a pair of reference and query images is detected as plastic surgery, the Stage-2

of the proposed MPDL framework verifies the identity of the individual. For this task, the

CBFDs of 11 ROIs are computed from a pair of plastic surgery face images. The cosine

distance scores between the two plastic surgery faces are used as the feature. Along with this,

feature similarity scores between the same ROIs are calculated. These calculated measures

are combined into a single feature vector to train a SVM model to verify if the plastic surgery

faces belong to the same person.

The proposed MPDL framework for face verification is seamlessly integrated with two

commercial systems. When a combined database of plastic surgery and regular face images

is used, we observe an improvement in verification performance by a decrease in the equal

error rate in the two COTS systems of 3.41% and 1.63%.
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Chapter 5

Introducing the Effect of Illicit Drug Abuse based

Temporal Variations on Face Recognition

Illicit drug abuse has become one of the primary health and social concerns in today’s world.

According to the World Drug Report [4], an estimated 183,000 drug-related deaths were

reported in 2013. It is estimated that a total of 246 million people aged 15-64 have used illicit

drugs, mainly substance belonging to cannabis, cocaine or amphetamine-type stimulants.

There has been a lot of research in understanding the deteriorating effect of drugs on physical

and mental health [121]. Certain drugs, when taken continuously in large quantities, can

cause temporal and physiological changes in the skin. For instance, the long-term effects

of methamphetamine (meth) and heroin can cause severe weight loss and skin sores. Reece

[106] noted the evidence of accelerated aging due to the addiction to opiates.

While illicit drug abuse and its detection have applications in health and medical areas

where several research directions are being explored [7], the effect of illicit drug abuse based

temporal variations on automated face recognition systems has not been explored. There are

several large-scale national ID projects and biometric systems that utilize face as a modality.

In these applications, such temporal facial variations caused due to illicit drug abuse are

not considered. Therefore, these systems may not be able to match before-and-after images

affected due to illicit drug abuse.
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Figure 5.1: Sample images that demonstrate the significant effect of illicit drug abuse on

faces. Noticeable variations can be seen in the facial features of the after images of these

subjects.

To the best of our knowledge, there is a lack of experimental evaluation or formal study

to understand and analytically demonstrate the effect of illicit drug abuse based temporal

variations on the current face recognition algorithms. This research attempts to bridge this

gap and showcases the impact of temporal facial variations caused due to illicit drug abuse.

We also present a dictionary learning approach to classify faces into categories: drug abuse

faces and regular faces. The contributions of this research are summarized below:

1. Creating the first Illicit Drug Abuse Face (IDAF) dataset containing before and after

images of 105 subjects, collected from the internet.

2. Demonstrating the impact of facial temporal variations caused due to illicit drug abuse

on face recognition. The low performance of two commercial face recognition systems

and two face descriptors on faces that have considerably changed due to consistent use

of drugs.
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3. Proposing a non-invasive classification algorithm using dictionary learning to detect

face images affected due to illicit drug abuse such that it can be used in conjunction

with current face recognition systems. The aim of such a framework is to reliably

separate possible drug abuse face images where current systems may not identify the

person correctly.

5.1 Effect of Illicit Drug Abuse on Face Recognition Algo-

rithms

Due to the novelty of the research problem, there is no publicly available database. Therefore,

we first collected a database from online resources. As part of the research efforts, we will

release the database to the research community. To understand the performance of face

recognition algorithms on the database, a set of state-of-the-art face recognition algorithms

including two commercial systems are used.

5.1.1 Creation of Illicit Drug Abuse Face (IDAF) Database

Due to the sensitive nature of the process and privacy issues, it is extremely difficult to find

images where people admit prolonged illicit drug abuse. In 2004, a deputy at Multnomah

County Sheriff’s Office put together mug shots of persons booked into the detention center

of Multnomah County [1]. The face images were released as “Faces of Meth” in order to

make people realize the detrimental effect of substance abuse. Later, some faces belonging

to heroin, crack and cocaine were added to the collection. A sample of such images are

shown in Figure 5.1 where the accelerated aging and formations of scars are very evident.

Using these images and other images collected from the internet [2], Illicit Drug Abuse Face

(IDAF) dataset1 is created. This dataset contains two frontal face images: first when the

subject was not taking any kind of drug (before image) and second when there has been a

1The database can be accessed at http://iab-rubric.org/resources.html#face.
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substantial amount of illicit drug abuse (after image). The database contains 210 images

pertaining to 105 subjects. The database comprises of face images of methamphetamine,

cocaine, heroin, and crack addicts.

5.1.2 Face Recognition Algorithms for Evaluation

Two Commercial-Off-The-Shelf (COTS) systems, FaceVACS [21] and Luxand [77] are

utilized to study the effect of illicit drug abuse on face recognition algorithms. Local Binary

Patterns (LBP) [86] and Histogram of Oriented Gradients (HOG) [22] along with chi−square

distance measure are also used to study the effect of their performance on these images.

These algorithms take into account the texture and the oriented gradients and are popular for

the task of face recognition.

5.1.3 Experimental Scenarios

To evaluate the effect of illicit drug abuse on face recognition, three different experimental

scenarios are constructed.

Scenario 1: The first experiment (called Drug Faces) is conducted using the Illicit Drug

Abuse Face (IDAF) dataset that contains before and after face images of 105 subjects

who are drug users.

Scenario 2: The second experiment (called Regular Faces) is used to obtain the baseline

performance of the face recognition systems. For this purpose, two frontal images

of 300 subjects from CMU-MultiPIE dataset [39] and 700 subjects from the visible

spectrum of CASIA-VIS-NIR dataset [64] are chosen to form a database of regular

faces.

Scenario 3: The third experiment (called Combined Faces) uses two frontal images of

268 random subjects from the 300 subjects of CMU-MultiPIE used for the previous

experiment, and similarly 627 subjects from 700 subjects of CASIA-VIS-NIR used

75



in the previous experiment. In addition, 105 subjects are added from the Illicit Drug

Abuse Face (IDAF) dataset to make it a complete set of 1000 subjects.

To evaluate the performance of the commercial systems and existing descriptor-based

face recognition algorithms, the before image in all the three scenarios are used as a gallery

while the after image is used as a probe.

5.1.4 Experimental Results

Figures 5.2, 5.3 and 5.4 show the Cumulative Matching Characteristic (CMC) plots pertaining

to the above experiments. The key findings are reported below:

The CMCs in Figure 5.2, 5.3 and 5.4 show Rank-1 accuracy for Regular Faces, Combined

Faces and Drug Faces scenarios. Both the commercial systems perform very well on the

images from the Regular Faces database and the results are used as baseline for comparison

purposes. However, there is a noticeable drop in performance for both the systems, when

images of Illicit Drug Abuse Face (IDAF) dataset are introduced in the Combined Faces

scenario. As can be seen, the Rank-1 accuracy is 99.4% and 99% respectively for FaceVACS

and Luxand for the Regular Faces scenario. In the Combined Faces scenario, this drops

down to 96.6% and 94.9%.

A similar decrease in performance is observed for both LBP and HOG descriptors as

shown in Figures 5.3 and 5.4. The decrease in performance can be attributed to the images

from the Illicit Drug Abuse Face (IDAF) dataset. This can be seen from the Drug Faces

scenario where both the commercial systems and facial descriptors perform badly in the

recognition task. Figure 5.4 shows the performance of the commercial systems is 0.07%

and 0.05% for FaceVACS and Luxand in the Drug Faces Scenario respectively. HOG

performs the best with an identification accuracy of 37% Rank-1 while LBP gives 28%

Rank-1 accuracy.

These experimental results clearly highlight the challenges of illicit drug abuse face

images using current face recognition algorithms. With the widespread use of drugs globally
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and their effect on the skin texture and alteration of facial features, there is a major need for

face recognition algorithms to address this challenge.
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Figure 5.2: CMC curves for Regular Faces and Combined Faces Scenario when COTS

systems FaceVACS [21] and Luxand [77] are used. It is seen that introduction of illicit drug

abuse images lowers the performance of COTS.
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Figure 5.5: Proposed Dictionary learning based illicit Drug Abuse face Classification (DDAC)

framework to classify faces affected by drug abuse.
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5.2 Proposed Dictionary Learning based Illicit Drug Abuse

Face Classification Framework

The previous section demonstrates the effect of facial feature variations caused due to illicit

drug abuse on current facial recognition systems. In this section, we propose a Dictionary

learning based illicit Drug Abuse face Classification (DDAC) framework where the goal is

to separate the face images into two categories, namely drug-abuse and regular. This can

be considered as a filtering process where these images can be matched differently using

individually tailored adaptive algorithms for improved face recognition performance. The

DDAC framework, shown in Figure 5.5, comprises of the following steps:

Step 1: Face pre-processing by performing alignment and normalization.

Step 2: Facial regions of interest (ROIs) extraction.

Step 3: ROI based multi-scale Binarized Statistical Image Features (BSIF ) [55] and GIST

[88] feature computation.

Step 4: Learning multi-scale Binarized Statistical Image Features (BSIF) and GIST specific

paired dictionaries to detect possible instances of illicit drug abuse faces from a

combined face database.

Step 5: Combining decisions from the learned paired dictionaries.

5.2.1 Pre-processing and Extraction of Facial Regions of Interest

Faces are pre-processed by converting them to grayscale. All the faces are geometrically

aligned by performing landmark detection [143]. This is followed by normalization and

background masking using CSU Face Identification Evaluation System [13].

Prolonged illicit drug abuse may lead to significant temporal changes in facial features

such as pronounced wrinkles, blisters, and scarring. The facial regions that are more likely to

be altered due to illicit drug abuse are chosen as regions of interest (ROIs). The five selected
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ROIs showing most prominent variations are the full face (R1), binocular region (R2), right

cheek (R3), left cheek (R4), and forehead (R5). For each face image, these five local and

global ROIs are extracted for feature computations and classification.

5.2.2 Computation of Multiple Discriminatory Features

In the proposed approach, two features are extracted and used for classification: Binarized

Statistical Image Features (BSIF) [55] and GIST descriptor [88]. The effect of extensive

abuse of drugs may cause accelerated aging, open sores, blisters, blemishes, and scarring on

the faces. To model the textural changes and deformations occurring due to these variations,

multi-scale BSIF and GIST are computed on the five local and global ROIs.

Binarized Statistical Image Features (BSIF) [55] are gaining popularity as an efficient

texture feature in the field of computer vision. In this approach, each element of the binary

code is calculated by binarizing the output of a linear filter with thresholding. Each bit of

the code denotes a different filter by projecting the image patches to a subspace. Statistical

properties of natural images decide the binary code because the set of filters are learned

from natural images by maximizing the statistical independence of the responses. Due to

this property, statistically meaningful texture information can be learned from the data. The

number of filters is an important parameter in BSIF. Using a single filter in BSIF may not

encode sufficient discriminatory textural information. Hence, BSIF can be computed at

multiple scales (multi-scale BSIF) to enhance the representation of the textural model.

On the other hand, the idea behind GIST descriptor [88] is to learn a low dimensional

representation of an image. It also encodes the shape and structure of the image. The

descriptor combines statistical information of the responses of filters. It is used to obtain a

coarse vector encoding of distributions of different filter orientations and scales in the scene.

A filtering scheme described below is first applied to remove illumination variations.

I′(x,y) =
I(x,y)× f (x,y)

ε +
√
[I(x,y)× f (x,y)]2×g(x,y)

(5.1)
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where, I(x,y) is the input image, g(x,y) is a low pass Gaussian filter, and f (x,y) = 1−g(x,y)

is the corresponding high pass filter. The image is divided into 16 blocks. A set of 32 Gabor

filters with 4 different scales and 8 different orientations are used to convolve with each of

the 16 blocks and the mean moment is concatenated to form the resultant feature vector.

5.2.3 Feature Specific Paired Dictionary Learning

The proposed DDAC framework performs a filtering step to classify faces in a large dataset

under two categories, namely drug-abuse faces and regular faces. This important step needs

to be reliable and fast in terms of computation.

Two separate paired dictionaries DB and DG are learned using multi-scale BSIF and

GIST features, respectively. These dictionaries are then utilized for classification and their

individual decisions are combined using decision level fusion. For training the paired

dictionaries, joint learning of analysis and synthesis dictionaries is performed to learn

representations through linear projection without using the non-linear sparse encodings [41].

The model can be described as:

{A∗,S∗}= arg min
A,S

K

∑
k=1

|| Xk−SkAkXk ||
2
F

+β || AkX̄k ||
2
F , s.t || di ||

2
2≤ 1 (5.2)

where, S represents the synthesis dictionary used to reconstruct X ; A represents the analysis

dictionary used to code X ; Ak and Sk represent the sub-dictionary pair corresponding to class

k; X̄k represents the complementary data matrix of Xk in the training set; β>0 is a scalar

constant that denotes the regularization parameter to control the discriminative property of A,

and di denotes the ith item of synthesis dictionary S.
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Figure 5.6: Sample images from classes drug-abuse faces and regular faces which are

correctly and incorrectly classified by the proposed DDAC framework.

5.2.4 Illicit Drug Abuse Face Classification and Decision-Level Fusion

Reliable illicit drug abuse face classification is performed using dictionaries DB and DG

separately. Let y be the testing image. The detection of illicit drug abuse faces can be

calculated using the two individual dictionaries as defined below:

YBSIF = argmin || y−SBABy ||2 (5.3)

YGIST = argmin || y−SGAGy ||2 (5.4)

While there can be multiple ways of combining the output of dictionaries, here, we

combine them using decision-level fusion [51]. Logical OR is applied on the two decisions to

obtain a final decision of whether the given face image belongs to drug-abuse face category

or not

YDRUG = YGIST ∨YBSIF
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5.3 Experimental Results

5.3.1 Experimental Setup

To evaluate the detection performance of the proposed Dictionary Learning based Illicit Drug

Abuse Face Classification (DDAC) framework and simulate the real world scenario, two

types of face images are used: IDAF database and regular face database. One before and

one after images of 105 subjects from the IDAF database and the first 105 subjects from

CMU Multi-PIE [39] face database are utilized to form the combined face database. Two

images with a neutral expression, frontal pose, and proper illumination are selected from

CMU Multi-PIE [39] face database.

For the purpose of this experiment, unseen training and testing is performed with five-

fold cross-validation. Images from the combined database of illicit drug abuse faces and

regular faces are pre-processed. Five ROIs (full face, binocular region, right cheek, left

cheek, and forehead) are extracted from each face image. For each ROI, BSIF is computed

at multiple scales of 3, 5, 7, and 11 and the feature vectors are concatenated. Using the

concatenated feature vector, two separate dictionaries are learned where the after images

from the IDAF dataset are considered as one class (positive class) while the remaining data

points are combined to form the negative class. Also, GIST features for each ROIs are

calculated. Similarly, GIST based paired dictionary is learned to classify possible drug abuse

face images. The classification results from the two learned dictionaries are combined using

an OR operator to yield a final classification decision.

Results and Analysis

Average classification accuracy, across five folds, of whether a given face image is affected by

drug abuse or not is reported in Table 5.1. For comparison purposes, classification accuracy

obtained using commonly used texture and face descriptors such as multi-scale BSIF [55],

HOG [22], Self-Similarity [128], GIST [88], and LBP [86] are also shown. From Table 5.1,

it is observed that the proposed DDAC framework yields the highest accuracy of 88.81% and
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outperforms the commonly used image descriptors. Multi-scale BSIF [55] with SVM yields

an accuracy of 75.00%. Similarly, HOG [22], Self-Similarity [128], GIST [88], and LBP

[86] yield detection accuracy of 76.90%, 78.01%, 81.09%, and 81.41% respectively.

The proposed DDAC framework is also compared with the performance of paired dictio-

nary learned on multi-scale BSIF, GIST, Self-Similarity, HOG, and LBP separately. Classifi-

cation accuracy of 86.38% is observed with the learned paired dictionary with multi-scale

BSIF and 85.12% is observed with the learned paired dictionary with GIST.

Further analysis is performed on the output of the proposed framework. The proposed

DDAC framework correctly classified 80.95% of illicit drug abuse face images (true positive

rate) whereas, 92.06% of regular faces are correctly detected as the negative class (true

negative rate). Figure 5.6 shows sample images from classes drug-abuse faces and regular

faces which are correctly and incorrectly classified.

The proposed illicit drug abuse face classification DDAC framework uses decision-level

fusion to combine the outputs from the multi-scale BSIF learned dictionary and GIST learned

dictionary. For comparison purposes, sum rule fusion is also applied to the two classification

outputs. From Table 5.1, it is observed that the accuracy using sum rule fusion is 85.84%.

Computationally, the proposed algorithm requires 0.59 seconds for classifying one image

on a desktop PC with 3.4 GHz Intel CPU and 16 GB memory. This includes extraction of

multi-scale BSIF and GIST features for the five local and global ROIs.

5.4 Summary

In this chapter, we introduce the Illicit Drug Abuse Face (IDAF) dataset and present the effect

of illicit drug abuse based temporal variations as another challenge of face recognition. In the

current scenario, illicit drug abuse has become one of the major health and social concerns

in the world. As seen in the before and after face images, abuse of drugs drastically alters

the temporal facial features and hence, it is a challenging research issue. Experiments have

been performed to show the deterioration in the performance of commercial face recognition
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Table 5.1: Average detection accuracy (%) for illicit drug abuse face classification using

different classification algorithms.

Classification Algorithm Classification Accuracy (%)

Multi-scale BSIF [55] + SVM 75.00

HOG [22] + SVM 76.90

Self-Similarity [128] + SVM 78.01

GIST [88] + SVM 81.09

LBP [86] + SVM 81.41

Dictionary Learning using LBP 80.48

Dictionary Learning using HOG 83.32

Dictionary Learning using Self-Similarity 84.18

Dictionary Learning using GIST 85.12

Dictionary Learning using Multi-Scale BSIF 86.38

Sum Rule Fusion of Multi-Scale BSIF and GIST Dic-

tionaries

85.84

Proposed DDAC Framework 88.81

algorithms as well as commonly used face descriptors when illicit drug abuse face images

are added to the database of regular faces. The results clearly demonstrate the need to further

study and mitigate the effect of illicit drug abuse on face recognition algorithms. We also

propose a detection framework to seamlessly classify in real-time using multiple dictionaries

if a given face image is a regular face or a drug-abuse face and improve the face recognition

performance. This framework can act as a crucial pre-processing step in mitigating the effect

of such images. The proposed DDAC framework gives a classification accuracy of 88.81%

when applied on a combined database of illicit drug abuse faces as well as regular faces.
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Chapter 6

Detecting Plastic Surgery and Illicit Drug Abuse

Faces using Adaptive Deep Multi-One Shot

Similarity based Multiple Instance Learning

In the previous chapters, dictionary learning based approaches are proposed to detect faces

impacted by temporal variations. In this chapter, we describe a novel single-face image-based

algorithm to detect plastic surgery and illicit drug abuse.

As observed in Figure 6.1, plastic surgical procedures drastically alter the facial features

and increase the intra-class distance between the before and after face images of the subjects

which contribute to a decrease in the face matching performance. Similar to plastic surgery,

illicit drug abuse also impacts facial features. Prolonged intake of a certain drug may cause

drug dependency, which may, in turn, lead to health concerns such as weight loss, accelerated

aging, sores, blisters, and skin irritation [31, 74] as shown in Figure 6.2. Similar to facial

plastic surgery, these temporal variations increase the intra-class distance between different

subjects, hence, declining the recognition accuracy of such faces.

The contributions of this research are summarized as follows:

1. We propose a novel Deep Multi-One Shot Similarity-based Multiple Instance Learning

(DMOSMIL) algorithm for face image classification where a given object is considered

as an image bag with a known label comprising of its constituent unlabeled instances.
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Before After Before After

Figure 6.1: Illustrating the variations in facial features due to facial plastic surgery.

Before After Before After

Figure 6.2: Illustrating the variations in facial features due to prolonged illicit drug abuse.

DenseNet feature based representative instances of the positive bags are selected and a

multi-one shot similarity score is applied with these representatives to learn the diverse

representation of the class.

2. A variant of DMOSMIL algorithm termed as Adaptive DMOSMIL (or ADMOSMIL)

is also proposed where the best DenseNet based feature descriptor is adaptively selected

for a given local instance. The two proposed algorithms are able to precisely represent

complex real-world objects and encode inter and intra-class variations.
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3. Quantitative evaluations on two case studies: facial plastic surgery detection and illicit

drug abuse classification using face images; demonstrate that the superior performance

of the proposed algorithms.

4. We incorporate the face classification score by the proposed ADMOSMIL algorithm

as a soft biometric trait in an existing face recognition algorithm. This proposed

formulation leads to a boost in the face identification accuracy on three different

databases.

6.1 Proposed Algorithms

As described earlier, detecting faces affected by facial plastic surgery and illicit drug abuse is

crucial to mitigate their impact on face recognition accuracy. These variations may affect

different facial regions differently. For instance, sores may appear in the forehead region

and wrinkles may be more prominent in the chin area. Likewise, various plastic surgeries

target different local regions to enhance their appearance. Therefore, it is imperative to

examine the contribution of different local regions for detecting these face images. In this

research, we present two novel algorithms: Deep Multi-One Shot similarity based Multiple

Instance Learning (DMOSMIL) and Adaptive DMOSMIL (ADMOSMIL) for detecting such

faces. The proposed algorithms incorporate deep features using DenseNet in a multi-instance

learning framework to capture the variations across different local facial regions. To encode

the diversity in these faces, we incorporate Laplacian Score to determine k representatives

from these faces and multi-one shot similarity metric learning approach is employed to

determine the similarity of an input face with the k representatives, which increases the

discriminability power of the classifier. Figure 6.3 provides an overview of the proposed

DMOSMIL algorithm.

Next, we will describe the ingredients of the proposed algorithms in the Preliminaries

followed by the in-depth description of the proposed algorithms.
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Figure 6.3: Proposed Deep Multi-One Shot Similarity-based Multiple Instance Learning

(DMOSMIL) algorithm for atypical face image classification.
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6.2 Preliminaries

6.2.1 One-Shot Similarity

One-shot similarity (OSS) measure [131, 132] compares two vectors by utilizing a set of

negative examples to encode which representations should be considered different. Given

two vectors vi and v j and a set S of negative samples, the OSS score is calculated by training

one model for each vector, distinguishing it from the negative set. Then, these two learned

models are used to determine if a vector has the same label as the other or if it belongs to the

set of negative examples. To expand the model (Modeli) with respect to vector vi is computed

as: Modeli = TrainClassi f ier(S,vi)

Similarly, Model j is trained by considering the negative set S and the positive instance,

v j. Next, testing is performed and the similarity score of v j as compared to negative set S

and vi is computed by: Score j = TestClassi f ier(Modeli,v j)

Likewise, Scorei is computed which measures the similarity of vi to the negative set as

well as the other vector, v j. The resultant OSS scores between the two vectors vi and v j is:

FinalScore =
Scorei +Score j

2
(6.1)

One-sided OSS score is computed by training the classifier for only one of the vectors

and testing on the other. Wolf et al. [132] demonstrated the advantages of using OSS with

LDA as the classifier as it is a conditionally positive definite kernel. Therefore, OSS between

when two vectors vi and v j using LDA as the base classifier is:

(vi−µS)
T M+

W (v j−
vi−µS

2 )

||M+
W (vi−µS) ||

+
(v j−µS)

T M+
W (vi−

v j−µS

2 )

||M+
W (v j−µS) ||

(6.2)

where µS is the average of the negative set S and MW is the sum of the covariance matrix

of both the classes.

As OSS metric does not incorporate the class label information, its foundations were

utilized to propose multi-one shot similarity (M-OSS) by [122]. They hypothesized that
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computing multiple OSS scores with different negative sets or different single positive

instances can lead to improved performance of the vector pair-matching classifier. These

multiple OSS scores can accurately encode the variations in the same class set, thus, showing

improved performance as compared to OSS metric.

6.2.2 Multi-instance Learning

Multi-instance learning (MIL) [27] gained attraction due to its unique capability to represent

real-world objects in a more natural manner as compared to traditional supervised learning

genre. In MIL, every object is considered a bag which contains instances. Given a labeled

bag data set {(X1,Y1), . . . ,(XN ,YN)} where Xi = {xi,1, . . . ,xi,n} is composed of n number of

instances, Yi = {−1,+1} is the label of the bag, N is the number of training bags, and the

task is to classify unseen bags or instances. The traditional assumption of MIL states that

if there is at least one value of b ∈ {1,2, . . . ,n} where instance xi,b is a positive instance,

then the label (Yi) of the bag Xi = +1. Otherwise, Yi is assigned the label −1. Different

modifications have been proposed to this traditional assumption of multi-instance learning

based on the inherent structure of the problem.

6.2.3 Laplacian Score

Laplacian score feature selection [47] involves identifying the features that have higher

locality preservation characteristics. While computing the Laplacian score, the features that

respect the overall graph structure are given a higher score where the graph structure is

determined through the nearest neighbors.

Let the training data representation be X, where X = [x1,x2, . . . ,xN ] and each sample has

K dimensions i.e xi = [xi1,xi2, . . . ,xiK]. The objective is to select the best t features where

1≤ t ≤ K that are which preserve the locality structure. The Laplacian score for each feature

is computed as follows:
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Figure 6.4: Architecture of DenseNet based convolutional neural network.

• Create a graph G of N nodes where two nodes a and b have an edge between them, if

xa is among the p nearest neighbors of xb or vice versa.

• Let S = weight matrix of the graph G. If nodes a and b are connected Sab = e−
∥xa−xb∥

2

m ;

where m is a constant, else Sab = 0.

• Let fr = [ fr1, fr2, . . . , frN ]
T be defined for rth feature, D = diag(S1), 1 = [1, . . . ,1]T

and L = D−S.

• Let f̃r = fr−
fT
r D1

1T D1
1.

• Laplacian score of rth feature is calculated as:

Lr =
f̃r

T
Lf̃r

f̃rDf̃r

(6.3)

Laplacian scores L1, . . . ,LK are sorted in descending order to get the higher ranked

important features.

6.2.4 DenseNet Architecture

DenseNet based convolutional neural network architectures have recently shown remarkable

performance in several image classification tasks [49]. As shown in Figure 6.4, in DenseNet,
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each layer is connected to every other layer in a feed-forward fashion as compared to

traditional convolutional networks where there is a single connection between each layer and

its subsequent layers. For an input image x, the ith layer obtains the concatenation of the

feature representations from all the previous layer as input. Thus, the output xi from layer i is

computed as:

xi = Li([x0,x1, . . . ,xi−1]) (6.4)

where Li refers to the non-linear transformations such as batch normalization and pooling.

The unique architecture of the DenseNet network strengthens feature propagation, encourages

feature reuse, and substantially reduces the number of parameters in the trained model.

In this architecture, every dense block is followed by a transition block that consists of

a convolution layer and pooling layer to reduce the size of the output. As seen in Figure

6.4, each dense block in consists of six convolution blocks where every convolution block

is densely connected. A convolution block itself consists of a convolution layer, batch

normalization layer, convolution layer, and a dropout layer. The output feature vector from

dense block number db is denoted as Fdb where db = 1,2,3,4. Thus, the features extracted

from each dense block can be utilized to accurately encode the representation of an input

image.

6.3 Proposed DMOSMIL Algorithm for Face Image Clas-

sification

As described earlier, each local region in a given face image may contain information repre-

senting different classes. Hence, to evaluate the influence of the deep feature representation

of each local region individually, the input images are treated as a bag comprising non-

overlapping local regions or instances. Thus, the objective of the task is to classify an image

bag as positive or negative based on the properties of its constituent instances.
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Figure 6.3 provides an overview of the proposed DMOSMIL algorithm. In the first

step of the proposed Deep Multi-One Shot Similarity-based Multiple Instance Learning

(DMOSMIL) algorithm, given a pre-processed image (bag) X , it is split into Z×Z non-

overlapping local patches (constituent instances). Each instance Pj in bag X is provided as an

input to a DenseNet model. In this research, the DenseNet model has been trained for the task

of face recognition to learn relevant information to encode the facial features. Next, deeply

learned feature descriptor Fdb is computed using the trained DenseNet model to encode its

underlying information. After computation of Fdb for every instance in the negative training

bags, instance-specific negative sets (S j) are created.

S j = {Fdb(P1, j), . . . ,Fdb(Pi, j), . . . ,Fdb(PN, j)}

∀ j = {1, . . . ,n} where Yi =−1

(6.5)

Additionally, using positive training bags, jth instances from each bag are grouped

together to form instance-specific positive sets, Tj as follows:

Tj = {Fdb(P1, j), . . . ,Fdb(Pi, j), . . . ,Fdb(PN, j)}

∀ j = {1, . . . ,n} where Yi =+1

(6.6)

The next step involves selecting the best k representatives from the instance-specific

positive sets Tj to encode the variations in the positive bags. For this purpose, Laplacian

score [47] of each instance is computed. The Laplacian score indicates the locality preserving

power and seeks representatives which best indicate the underlying manifold of each local

patch. The computed Laplacian scores are sorted in descending order and k instances with

the highest Laplacian score (termed as Rep) are chosen to represent the positive bags.

After this, for each instance in a bag, there exists an instance-specific negative set (S) and

k representatives of the positive bags in Rep. Using this, k one-sided multi-class one-shot

similarity scores are calculated for every training instance as described in Algorithm 1.
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Algorithm 1: Multi-Class One-Shot Similarity Measure

1 function trainMOSS inst,S j,Rep j

Input : ith Training Instance inst, Negative Set: S j, and k Positive Representatives

Set:Rep j

Output :k M-OSS Scores

2 for a← 1 to k do

3 Modela = TrainClassifier(S j, Rep j[a])
4 Scorea = TestClassifier(Modela, inst)

5 end

The positive representative set Rep contains the most diverse instance variations from

the positive bags. These OSS scores signify the probability of a given instance is closer to

the negative set or the k representatives of the positive bags. Thus, the multiple OSS scores

measure the likelihood of the given instance belonging to a specific representative of the

positive or negative class.

The score vector obtained by concatenating the k multiple OSS scores is used as an input

to a Support Vector Machine (SVM) along with the label of the input bag. The predicted

probability values of different instances of a bag are combined using sum-rule fusion to

compute the final label of the bag. The proposed DMOSMIL is summarized in Algorithm 2.

6.4 Proposed Adaptive DMOSMIL Algorithm for Face Im-

age Classification

It is to be noted that the proposed DMOSMIL requires selecting a feature descriptor Fdb from

a specific dense block number db to encode each instance in the bag. This feature descriptor

may encode the textural or structural variations in the given instance. However, different

local regions in an image may not be effectively encoded by a single feature descriptor due

to varying information content. Thus, DMOSMIL is extended by adaptively selecting feature

descriptors learned from different dense blocks for different instances of the bag.
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Algorithm 2: Proposed Deep Multi-One Shot Similarity based Multiple Instance

Learning (DMOSMIL) Algorithm

1 function trainDMOSMIL TrSet

Input :TrSet = (Xi, Yi), i = 1 . . .N where X denotes the set of training bags

(images). Yi ∈ {−1,+1} is the class label. n is the number of instances in

each bag.

Output :Trained Model ModelSV M

2 for bag ∈ X do

3 Compute deep feature descriptor Fdb for the bag

4 Divide bag into Z×Z non-overlapping instances I

5 for j← 1 to n do

6 inst = jth instance I

7 if Y(bag) = -1 then

8 add inst to Negative Set S j

9 else

10 add inst to Positive Set Tj

11 end

12 end

13 end

14 Compute Laplacian scores of Tj

15 Select inst with top-k Laplacian scores to form representative set Rep

16 Scores = trainMOSS(inst,S j,Tj)

17 ModelSV M = trainSVM(Scores, Y )
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The proposed DMOSMIL algorithm is applied with deep features extracted from different

dense blocks and based on the validation set, the k M-OSS scores from the best performing

feature for a particular instance are combined to train the SVM classifier. Similar to the

proposed DMOSMIL algorithm, sum rule fusion is applied to the instance-specific distance

scores obtained from the SVM classifier to obtain the final bag classification. Therefore, in

the proposed ADMOSMIL algorithm, different feature descriptors F1 . . .F4 may be utilized

to effectively encode the bags.

6.5 Experiments

6.5.1 Implementation Details

Every image is pre-processed by performing face detection and alignment to obtain an

image of the size of 224× 224. For training the DenseNet architecture for the task of

face recognition, Multi-PIE face database [39] is used which consists of face images from

337 subjects. In this implementation, DenseNet-121 architecture is utilized with Stochastic

Gradient Descent optimization algorithm, a momentum of 0.9, and the negative log-likelihood

loss criterion.

Next, the input image is split into Z × Z non-overlapping patches. For each patch,

DenseNet based features are extracted from the four dense blocks where db = 1, db = 2,

db = 3, and db = 4 yield feature vectors of size 3136, 784, 196, and 49 respectively. These

feature vectors are then used for multi-OSS score computation where Linear Discriminant

Analysis (LDA) is utilized as the base classifier. The k multi-OSS scores are then provided

to radial basis function-kernel based SVM for classification purposes. After obtaining each

instance label, the final bag label is computed.
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6.5.2 Databases and Experimental Protocol

The performance of the proposed DMOSMIL and ADMOSMIL algorithms in detecting

faces which have undergone plastic surgery using a single image is demonstrated. To the

best of our knowledge, this is the first research on a single image based facial plastic surgery

detection. For experimental evaluation, the plastic surgery (PS) database by Singh et al. [115]

is utilized which contains before and after plastic surgery face images of 900 individuals.

Similar to the problem of illicit drug abuse detection, before and after face images of regular

900 individuals are added to the PS database to simulate the real-world scenario. The average

plastic surgery detection accuracy across five cross-validation folds is computed.

In this research, IDAF database is extended with before and after face images of an

additional 65 subjects. The images have been collected from Faces of Meth initiative by

the Multnomah Sheriff county1 as well as the Internet. The extended database, termed as

Extended-Illicit Drug Abuse Face (E-IDAF) database contains 340 face images belonging

to 170 subjects with variations such as methamphetamine, cocaine, and heroin abuse. The

database contains two frontal face images of each subject: the before image is acquired when

is subject is not consuming any kind of drug and after image is captured when the subject

has undergone significant illicit drug abuse (after image). For evaluating the performance

of the proposed algorithm in real-world scenarios, regular (without illicit drug abuse) face

images are also utilized. For this, an equal number of before and after frontal face images

of 170 subjects are selected from publicly available face databases. The regular faces and

E-IDAF database are combined together to form the combined database. The average illicit

drug abuse classification accuracy across the five cross-validation folds is reported.

6.5.3 Feature Extractors for Comparative Analysis

Comparative analysis of the proposed DMOSMIL and ADMOSMIL algorithms is performed

with the following existing feature descriptors:

1http://www.mcso.us/facesofmeth/

100

http://www.mcso.us/facesofmeth/


1. Local Binary Pattern (LBP) [87]: We consider 3×3 neighborhood with respect to the

center pixel while computing the LBP descriptor. This texture descriptor assigns a

value to each pixel by thresholding and concatenating the results to form a decimal

number.

2. Multiscale-Binarized Statistical Image Features (M-BSIF) [55]: BSIF is computed

by learning a subspace from an independent component analysis of natural images

in a patch-wise fashion. This is followed by binarization of the coordinates on this

new basis by thresholding to obtain the final binary codes for each pixel. In this

implementation, BSIF computed with scale = 5, 7, and 11 are combined together to

form M-BSIF.

3. Histogram of Oriented Gradients (HOG) [22]: This feature descriptor encodes the

input by counting the occurrences of gradient orientations in various localized portions.

4. Three Patch Local Binary Patterns (TPLBP) [131]: In TPLBP, for each pixel of the

input, patches of size w×w are selected for comparison. Two such patches at α

distance from the center pixel are compared to compute the bit value for the pixel.

5. VGG features [114]: VGG-16 convolutional net trained on ImageNet Large Scale

Visual Recognition Competition dataset is utilized to encode deeply learned features

of the images.

6.5.4 Existing Metric Learning Algorithms for Comparative Analysis

The experimental evaluation is also performed with the following existing metric learning

approaches:

1. Sparse Determinant Metric Learning (SDML) [102]: It exploits sparsity nature in high

dimensional space and is specifically designed for smaller sample size problems.

2. Least Squares Metric Learning (LSML) [71]: It utilizes relative comparisons between

data samples to learn a Mahalanobis distance metric.
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3. Multiple-Instance Learning via Embedded instance (MILES) [18]: It involves mapping

of each input bag into a feature space defined by the instances using an instance

similarity measure.

4. Multiple-Instance Learning via Disambiguation (MILD) [65]: In this paper, the authors

proposed a disambiguation method to identify true positive instances in the training

positive bags.

5. Multiple Clustered Instance Learning (MCIL)-Boost [136]: In this approach, image-

level classification, pixel-level segmentation, and patch-level clustering are performed.

6. DRS [19]: It is based on a classifier which is inspired by a random subspace ensemble

and assumes subspaces of the dissimilarity space, defined by subsets of instances, as

the prototypes.

6.5.5 Results

The average classification accuracy across the five cross-validation folds for detecting faces

affected by illicit drug abuse and plastic surgery is reported in Tables 6.1, 6.2, 6.3, and 6.4.

Receiver Operating Characteristic (ROC) curves depicting the performance of the proposed

algorithms curves are shown in Figure 6.5 and 6.7.

The results showcase the superior performance of the proposed DMOSMIL algorithms

across the two case studies. It is observed that for every feature descriptor (DenseNet based

as well as existing features), it outperforms its constituent algorithms: LDA, M-OSS, and

MIL.

It is also observed that the proposed DMOSMIL algorithm with DenseNet based features

(Fdb) consistently demonstrates better face classification accuracy as compared to existing

features (both handcrafted and deep learning based). This highlights the efficacy of densely

trained CNN architecture in encoding these variations. A similar trend is observed for

the proposed ADMOSMIL algorithm where different feature representations are adaptively

selected for different facial regions. The performance of the proposed ADMOSMIL algorithm
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using DenseNet features is higher than the proposed ADMOSMIL algorithm with existing

features by 1.47% and 6.11% for detecting faces affected by illicit drug abuse and plastic

surgery respectively.
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Table 6.1: Classification accuracy of the proposed DMOSMIL, proposed ADMOSMIL, LDA,

M-OSS, and MIL for plastic surgery detection.

Feature Algorithm Accuracy (%)

DenseNet based Features

Fdb=1

LDA 54.17

M-OSS 59.44

MIL 67.92

Proposed DMOSMIL 72.92

Fdb=2

LDA 64.44

M-OSS 61.53

MIL 68.19

Proposed DMOSMIL 72.50

Fdb=3

LDA 53.61

M-OSS 52.92

MIL 53.33

Proposed DMOSMIL 67.08

Fdb=4

LDA 48.19

M-OSS 62.64

MIL 64.44

Proposed DMOSMIL 72.92

Existing Features

LBP

LDA 52.78

M-OSS 58.06

MIL 66.53

Proposed DMOSMIL 71.53

M-BSIF

LDA 61.67

M-OSS 58.75

MIL 65.42

Proposed DMOSMIL 69.72

HOG

LDA 50.28

M-OSS 49.58

MIL 50.00

Proposed DMOSMIL 63.75

TPLBP

LDA 44.03

M-OSS 58.47

MIL 60.28

Proposed DMOSMIL 68.75

VGG

LDA 65.42

M-OSS 68.06

MIL 69.58

Proposed DMOSMIL 71.94

Proposed ADMOSMIL (Existing Features) 72.50

Proposed ADMOSMIL (DenseNet Features) 78.61
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Table 6.2: Classification accuracy of the proposed ADMOSMIL and comparative algorithms

for plastic surgery detection.

Algorithm Accuracy (%)

SDML [102] 51.81

LSML [71] 60.97

MILES [18] 61.94

MILD [65] 62.92

MCILBoost [136] 60.69

DRS [19] 64.58

Yadav et al. [137] 60.14

Proposed ADMOSMIL (DenseNet Features) 78.61
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Figure 6.5: ROC curves of the proposed DMOSMIL and ADMOSMIL algorithms on the

plastic surgery face database.

Negative Positive Negative Positive

Negative Negative Positive Positive

Positive Negative Positive Positive

DMOSMIL

ADMOSMIL

True Label

Figure 6.6: Sample classification outputs by DenseNet feature Fdb=2 based DMOSMIL and

ADMOSMIL algorithms on the plastic surgery face database. The label Positive is plastic

surgery face and Negative is regular face.
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Table 6.3: Classification accuracy of the proposed DMOSMIL, proposed ADMOSMIL, LDA,

M-OSS, and MIL on the E-IDAF database for illicit drug abuse detection.

Feature Algorithm Accuracy (%)

DenseNet based Features

Fdb=1

LDA 71.32

M-OSS 72.06

MIL 70.59

Proposed DMOSMIL 86.03

Fdb=2

LDA 69.12

M-OSS 70.59

MIL 71.32

Proposed DMOSMIL 90.44

Fdb=3

LDA 67.65

M-OSS 71.32

MIL 72.06

Proposed DMOSMIL 87.50

Fdb=4

LDA 70.59

M-OSS 72.06

MIL 72.79

Proposed DMOSMIL 86.03

Existing Features

LBP

LDA 69.85

M-OSS 70.59

MIL 69.12

Proposed DMOSMIL 84.56

M-BSIF

LDA 66.91

M-OSS 69.12

MIL 69.85

Proposed DMOSMIL 88.97

HOG

LDA 66.18

M-OSS 67.65

MIL 69.85

Proposed DMOSMIL 86.03

TPLBP

LDA 69.12

M-OSS 70.59

MIL 71.32

Proposed DMOSMIL 84.56

VGG

LDA 88.24

M-OSS 87.50

MIL 88.97

Proposed DMOSMIL 91.91

Proposed ADMOSMIL (Existing Features) 93.38

Proposed ADMOSMIL (DenseNet Features) 94.85
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Table 6.4: Classification accuracy of the proposed ADMOSMIL and comparative algorithms

for illicit drug abuse detection.

Algorithm Accuracy (%)

SDML [102] 84.56

LSML [71] 82.35

MILES [18] 85.29

MILD [65] 81.62

MCILBoost [136] 83.09

DRS [19] 86.03

Yadav et al. [137] 84.41

Proposed ADMOSMIL (DenseNet Features) 94.85
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Figure 6.7: ROC curves of the proposed DMOSMIL and ADMOSMIL algorithms on the

proposed E-IDAF database.
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Figure 6.8: Sample classification outputs by the DenseNet feature Fdb=2 based DMOSMIL

and ADMOSMIL algorithms on the proposed E-IDAF database. The label Positive is illicit

drug abuse and Negative is regular face.
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The comparison of the proposed adaptive DMOSMIL (ADMOSMIL) algorithm using

DenseNet features with different variants of the DMOSMIL algorithm illustrates the signif-

icance of the adaptive nature of the proposed ADMOSMIL algorithm where it adaptively

selects feature descriptors learned from different dense blocks for different instances of the

bag. Across the two case studies, it is seen that the ADMOSMIL algorithm achieves the

highest face image classification accuracy as compared to the proposed DMOSMIL and

various comparative algorithms.

For faces altered by plastic surgeries, Table 6.1 shows that DMOSMIL algorithm with

features from different dense block yields classification accuracy ranging from 67.08% to

72.92% with Fdb=1 and Fdb=4 based DMOSMIL achieving the best performance. Figure

6.6 illustrates some sample classification outputs. Among the various handcrafted feature

based versions of DMOSMIL, LBP based MOSMIL demonstrates the highest accuracy. This

highlights that the LBP feature is able to encode subtle textural and structural variations

associated with plastic surgery procedures. The proposed MOSMIL algorithms outperform

its constituent algorithms with the different feature descriptors. Likewise, DenseNet based

ADMOSMIL which is based on a mixture of different dense feature vectors achieves the

highest plastic surgery detection accuracy of 78.61%. Comparative analysis is also performed

with [137] to detect plastic surgery faces which demonstrate 18.47% lower accuracy as com-

pared to the proposed ADMOSMIL. These results illustrate that the proposed ADMOSMIL

algorithm produces a state-of-the-art performance on single face image based plastic surgery

detection.

It is observed that using DenseNet features from different dense blocks with the proposed

DMOSMIL algorithm, highest illicit drug abuse face classification accuracy of 90.44% is

obtained. This highest accuracy is obtained using features from the second dense block

(Fdb=2) which is 4.41% higher than Fdb=1, 2.94% higher than Fdb=3, and 4.41% higher than

Fdb=4. The proposed DMOSMIL algorithm demonstrates superior performance as compared

to traditional LDA, M-OSS, and MIL algorithms for features from all the four dense blocks.
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Sample classification outputs by the best performing DenseNet feature based DMOSMIL

(Fdb=2) and ADMOSMIL algorithms are shown in Figure 6.8.

For comparative analysis, the proposed DMOSMIL algorithm is evaluated using different

handcrafted features. It outperforms other approaches by at least 13.97% for LBP, 19.12%

for M-BSIF, 16.18% for HOG, 13.24% for TPLBP, and 2.94% for VGG. It is also seen that

the proposed DMOSMIL algorithm with M-BSIF as F yields the best classification accuracy

as compared to other handcrafted feature descriptors. The justification for this superior

performance can be attributed to the ability of M-BSIF to effectively encode discriminatory

textural differences across varying scales between regular faces and illicit drug abuse faces.

6.6 Utilizing Face Classification as Soft Biometric for Boost-

ing Face Recognition

Traditionally, soft biometric traits in a face such as the presence of facial hair and freckles

provide ancillary information [93, 37]. These traits may not be fully distinctive or unique by

themselves in face recognition (FR). Such soft biometrics traits are utilized to enhance the

identification accuracy and provide additional information about the similarity/dissimilarity

between two given face images [23].

In this research, we propose to utilize the face classification score as a soft biometric trait

to improve the performance of face identification systems. The threshold decision value of

face recognition should be determined by whether the subject has undergone plastic surgery.

To account for this scenario, the decision boundary of the face recognition classifier should

be modified accordingly based on whether the probe face image is a regular face or not. Thus,

we propose a formulation which incorporates the face classification score by the proposed

ADMOSMIL algorithm to boost the performance of existing face identification algorithm.

In the experimental evaluation, we utilize the popular pre-trained VGG-face [114] feature

based face matching for the identification task which has demonstrated remarkable face

recognition performance in various scenarios. For a given probe image, face identification
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score, as well as face classification score, are computed with respect to the gallery face

images which are used as input in the proposed formulation. Product of likelihood ratio

(PLR) based approach [28] is employed to boost the performance in the following manner:

Let s be the face recognition (FR) score computed by matching a probe image with a

gallery image. c represent the face classification score computed from the probe and gallery

face images indicating if the face pair is altered due to plastic surgery or illicit drug abuse.

Using these values, the product of the likelihood ratio score is calculated as:

PLRscore =
P(s|gen)

P(s|imp)
×

P(c|pos)

P(c|neg)
(6.7)

where pos is the positive face class, neg represents the negative/regular face class, gen is

the genuine identification scores class, and imp is the imposter identification scores class.

The probability terms P(s|gen) and P(s|imp) refer to the class conditional probability values.

The four random variables are modeled as Gaussian mixture models.

6.6.1 Experimental Protocol and Results

In the experimental evaluation, for a given probe image, VGG face identification score,

as well as ADMOSMIL classification score, are computed with respect to the gallery face

images which are used as input in the proposed formulation. Product of likelihood ratio

(PLR) based approach is employed to boost the performance as per Eq 6.7.

As per the experimental protocol, PS face and E-IDAF databases are processed separately.

Across five cross-validation folds, using the E-IDAF database, VGG-face features of the

before and after illicit drug abuse face images of the testing, set are computed. This is

followed by computing the face matching score s using the cosine distance between the two

feature vectors. Next, the ADMOSMIL algorithm is employed to compute face classification

score c indicating if the gallery-probe face pair has been altered due to illicit drug abuse.

Likewise, plastic surgery face pairs from the PS face database are processed.
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Figure 6.9 showcases the Cumulative Match Characteristic (CMC) curves of the proposed

formulation for boosting the face identification using the ADMOSMIL algorithm. For the

E-IDAF database for illicit drug abuse, VGG-based face recognition algorithm yields 67.65%

rank-1 face identification accuracy. However, by utilizing the proposed formulation, the

rank-1 accuracy increases by 5%. Similarly, for matching face images altered by plastic

surgery, the rank-1 FR performance of VGG-face algorithm is increased by 1.2% using the

proposed boosting formulation.

It should be noted that such an experiment can be conducted by using any existing face

identification algorithm and the experimental evaluation reveals that by employing the face

classification as illicit drug or regular face/plastic surgery or regular face as a soft biometric

trait leads to improvement in the face identification performance.

6.7 Summary

This chapter presents DMOSMIL and ADMOSMIL algorithms for face affected by temporal

variation. The proposed algorithms are based on a novel formulation to take advantage of both

the multi-one shot similarity and multi-instance learning techniques. They can be utilized in

the scenarios where the training data may be limited or where the objects are complex to be

modeled using a single label. The experimental results on different real-world face covariate

databases demonstrate that ADMOSMIL achieves superior face classification performance

as compared to its constituents and existing metric learning approaches. Additionally, using

the face classification scores from the proposed ADMOSIL algorithm as a soft biometric

trait, we demonstrate a boost in the performance of existing face recognition algorithm.
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Figure 6.9: CMC curves demonstrating the increase in face recognition performance by

utilizing ADMOSMIL scores as soft biometric.
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Chapter 7

Conclusions and Future Work

Covariates 

of Face 

Recognition

Illicit Drug Abuse

Age Progression

Plastic Surgery

(a) Variations due to Time

Cross Spectrum Cross Resolution

Sketch to Digital

(b) Variations due to Heterogeneity of Domains

PoseIllumination

Expression

(c) Variations due to Camera-User Interactions

Figure 7.1: Types of covariates of face recognition: (a) covariates which impact the facial

features due to temporal variations, (b) covariates due to heterogeneity of the face image

domains, and (c) variations arising due to the interaction of the user with the image acquisition

sensor.

Over recent years, many automatic algorithms have been developed which mitigate the

effect of different covariates of face recognition. In our opinion, the covariates of face

recognition can be classified into 3 categories:
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• Covariates which impact the facial features due to temporal variations such as age

progression, plastic surgery, and illicit drug abuse,

• Covariates which arise due to the heterogeneity of the face image domains such as

cross spectral, cross resolution, and sketch-digital face matching, and

• Covariates which occur due to variability in user’s interaction with the camera such as

the change in pose, illumination, and expressions.

In this dissertation, we present a novel view of face recognition by considering faces

affected by age progression, plastic surgery, and illicit drug abuse as covariates due to

temporal variations. This research focuses on mitigating the influence of variations in facial

features occurring over time due to facial aging, facial plastic surgeries, and prolonged illicit

drug abuse. Developing temporal variation-invariant face recognition algorithms can prove

to be highly beneficial in various applications such as locating missing people, homeland

security, and passport services.

First, we designed two human studies to understand the human perception of facial aging.

In the first study, behavioral analysis of more than 400 subjects is performed to examine the

human ability of facial age estimation and age-separated face matching. Moreover, we also

conducted the first study to utilize fMRI for analyzing the neural correlates of age-separated

face verification task by humans. When controlled for task difficulty, the findings of this

research revealed that the inferior parietal lobe was significantly active for age-separated

stimuli face pairs. These findings suggested that separate cognitive units of the brain are

associated with processing gradual temporal variations in age-separated face pairs, illustrating

the need for building dedicated face recognition algorithms for processing such faces.

Inspired by the above findings, we proposed a novel deep learning based algorithm for

matching faces with temporal variations caused by age progression. In the proposed algo-

rithm, a unified approach combining facial age estimation and age-separated face verification

with generative adversarial networks is utilized. The proposed GAN architecture learns the

age variations across time by conditioning the input image on the subject’s gender and the
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target age group to which the input face needs to be progressed. To showcase the performance

of the proposed algorithm, age-separated face recognition experiments were conducted on

different face aging databases.

Next, we described plastic surgery as another component of temporal variations in face

images. For handling such faces, we proposed a novel multiple projective dictionary learning

(MPDL) framework to detect plastic surgery for face verification. Experimental results

using the plastic surgery database showed the efficacy of our proposed MPDL framework.

Detection accuracy of 97.96% is observed for plastic surgery faces as compared to commonly

used features and classification algorithms. After a pair of reference and query images was

detected as plastic surgery, the Stage-2 of the proposed MPDL framework verifies the identity

of the individual. The proposed MPDL framework for face verification was seamlessly

integrated with two commercial systems.

As part of this dissertation, we also introduced illicit drug abuse as a temporal variation

based face recognition covariate and we presented the Illicit Drug Abuse Face (IDAF)

dataset. Experimental evaluated revealed the decline in the performance of commercial face

recognition algorithms as well as commonly used face descriptors when illicit drug abuse

face images were to the database of regular faces. To detect such faces, we also proposed a

detection framework to seamlessly classify in real-time using multiple dictionaries if a given

face image is a regular face or a drug-abuse face. The proposed detection framework yields a

classification accuracy of 88.81% when applied on a combined database of illicit drug abuse

faces as well as regular faces.

Finally, we presented novel single-image based face classification algorithms for detect-

ing faces with temporal variations, specifically, plastic surgery and illicit drug abuse. We

presented DMOSMIL and ADMOSMIL algorithms for face classification which are based on

DenseNet based multi-instance learning and multi-one shot similarity score. The experimen-

tal results demonstrated that ADMOSMIL achieves superior face classification performance

as compared to its constituents and existing metric learning approaches. Additionally, using
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the face classification scores from the proposed ADMOSIL algorithm as a soft biometric

trait, we demonstrated an increase in the performance of existing face recognition algorithm.

We conclude this dissertation with future research directions which can be explored for

enhancing face recognition performance under temporal variations.

• As described in the text, every individual has a personalized aging function which

makes synthesizing realistic images, very challenging. Factors such as current age,

gender, and genetics play a crucial in the facial age progression. The current architec-

ture of age-gap reducer GAN can be enhanced by including other critical demographic

information about the subjects, enabling the model to generate more personalized

images.

• The problem of face recognition under plastic surgery and illicit drug abuse is impeded

by the lack of any large-scale database which can be utilized for training a deep learning

based model. To mitigate this, transfer learning or domain adaptation approaches can

be employed to build an accurate face recognition model which is able to handle such

variations.

• Developing video-based face recognition algorithms is another challenging research

problem. The algorithms proposed in this dissertation for handling temporal variations

in face images can be extended to the video domain. Such a temporal variations-

invariant video face recognition system can be highly beneficial in surveillance based

settings.

• Facial disguise can also be considered as a covariate with temporal variations which

was not included in this thesis. Therefore, this research can be extended by augmenting

the current experimental protocol to include these types of faces.
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