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Abstract

The main goal of this article is to establish several new �-numerical radius equali-

ties for n × n circulant, skew circulant, imaginary circulant, imaginary skew circu-

lant, tridiagonal, and anti-tridiagonal operator matrices, where � is the n × n diago-

nal operator matrix whose diagonal entries are positive bounded operator A. Some 

special cases of our results lead to the results of earlier works in the literature, which 

shows that our results are more general. Further, some pinching type �-numerical 

radius inequalities for n × n block operator matrices are given. Some equality condi-

tions are also given. We also provide a concluding section, which may lead to sev-

eral new problems in this area.

Keywords �-numerical radius · Positive operator · Semi-inner product · Inequality · 

Circulant operator matrix · Tridiagonal operator matrix

1  Introduction and preliminaries

The operator matrices such as circulant, reverse circulant, symmetric circulant, k-cir-

culant, Toeplitz matrices etc. [13, 24] play a crucial role in pure as well as applied 

mathematical researches such as graph theory, image processing, block filtering 

design, signal processing, regular polygon solutions, encoding, control and system 

theory, network, etc. The norm estimation for the operator matrices [6, 27] is exten-

sively carried out in the past and it is widely used in operator theory, quantum infor-

mation theory, mathematical physics, numerical analysis, etc. The norms of some 
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circulant type matrices were determined by various mathematicians. For instance, Li 

et al. [28], gave four kinds of norms for circulant and left circulant matrices involv-

ing special numbers. Bose et al. [12], discussed the convergence in probability and 

the convergence in distribution of the spectral norms of scaled Toeplitz, circulant, 

reverse (left) circulant, symmetric circulant, and k-circulant matrices. Works on 

norm equalities and inequalities of special kind of operator matrices can be found in 

the literature [2, 7, 25, 26]. Jiang and Xu [23] explored special cases for norm equal-

ities and inequalities, such as usual operator norm and Schatten p-norms. Several 

norm equalities and inequalities for the circulant, skew circulant, and w-circulant 

operator matrices were studied [4, 23].

Let H be a complex Hilbert space with inner product ⟨⋅, ⋅⟩ and the correspond-

ing norm ‖ ⋅ ‖ . Let B(H) be the C∗-algebra of all bounded linear operators on H . Let 

ℍ =

⨁n

i=1
H be the direct sum of n copies of H . If Tij, 1 ≤ i, j ≤ n are operators in 

B(H) , then operator matrix � = [Ti,j] can be defined on ℍ by

for every vector x = [x1,… , x
n
]T ∈ ℍ . If S

i
∈ B(H), i = 1,… , n , then their direct 

sum, 
⨁n

i=1
S

i
 , (which is an n × n block diagonal operator matrix), is given by

If T
i
∈ B(H), i = 1,… , n , then the circulant operator matrix �circ = circ (T1,… , T

n
) 

is the n × n matrix whose first row has entries T1,… , T
n
 and the other rows are 

obtained by successive cyclic permutations of these entries, i.e., 

�
circ

=

⎡
⎢
⎢
⎢
⎢
⎣

T
1

T
2

T
3

⋯ T
n

T
n

T
1

T
2

⋯ T
n−1

T
n−1

T
n

T
1

⋱ T
n−2

⋮ ⋮ ⋱ ⋱ ⋮

T
2

T
3

⋯ T
n

T
1

⎤
⎥
⎥
⎥
⎥
⎦

 . The skew circulant operator matrix 

�scirc = scirc (T1,… , T
n
) is the n × n circulant matrix followed by a change in sign 

to all the elements below the main diagonal. Thus, 

�
scirc

=

⎡
⎢
⎢
⎢
⎢
⎣

T
1

T
2

T
3

⋯ T
n

−T
n

T
1

T
2

⋯ T
n−1

−T
n−1

− T
n

T
1

⋱ T
n−2

⋮ ⋮ ⋱ ⋱ ⋮

−T
2

− T
3

⋯ − T
n

T
1

⎤
⎥
⎥
⎥
⎥
⎦

 . It is well-known that every skew circulant 

operator matrix is unitarily equivalent to a circulant operator matrix. Details discus-

sion on circulant, skew-circulant and their properties are given in [13].

� x =

⎡
⎢⎢⎢⎢⎢⎢⎣

n�
j=1

T
1jxj

⋮
n�

j=1

Tnjxj

⎤⎥⎥⎥⎥⎥⎥⎦

n�
i=1

S
i
=

⎡
⎢⎢⎢⎣

S
1

S
2

⋱

S
n

⎤⎥⎥⎥⎦
.



On �-numerical radius... Page 3 of 23 52

If T
i
∈ B(H), i = 1,… , n , then the imaginary circulant operator matrix 

�circ
i

= circ
i
(T1,… , T

n
) is the n × n matrix whose first row has entries T1,… , T

n
 and 

the other rows are obtained by successive cyclic permutations of i-multiplies of 

these entries, i.e., �
circ

i

=

⎡
⎢
⎢
⎢
⎢
⎣

T
1

T
2

T
3

⋯ T
n

iT
n

T
1

T
2

⋯ T
n−1

iT
n−1

iT
n

T
1

⋱ T
n−2

⋮ ⋮ ⋱ ⋱ ⋮

iT
2

iT
3

⋯ iT
n

T
1

⎤
⎥
⎥
⎥
⎥
⎦

 . Every imaginary circulant oper-

ator matrix is unitarily equivalent to a circulant operator matrix. The imaginary 

skew circulant operator matrix �scirc
i

= scirc
i
(T1,… , T

n
) is the n × n imaginary cir-

culant followed by a change in sign to all the elements below the main diagonal. 

Thus, �
scirc

i

=

⎡
⎢
⎢
⎢
⎢
⎣

T
1

T
2

T
3

⋯ T
n

−iT
n

T
1

T
2

⋯ T
n−1

−iT
n−1

− iT
n

T
1

⋱ T
n−2

⋮ ⋮ ⋱ ⋱ ⋮

−iT
2

− iT
3

⋯ − iT
n

T
1

⎤
⎥
⎥
⎥
⎥
⎦

.

Here L is the norm closure of the linear subspace L in the norm topology of H , 

P
M

 is the orthogonal projection onto the closed linear subspace M of H , I is iden-

tity operator and O is the null operator on H , respectively. For any A ∈ B(H) , the 

range, null space and adjoint of A are denoted by R(A) , N(A) and A∗ , respectively. 

An operator A ∈ B(H) is called positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H , and is called 

strictly positive if ⟨Ax, x⟩ > 0 for all non-zero x ∈ H . We denote a positive (strictly 

positive) operator A by A ≥ O ( A > O ). Throughout this paper, we assume that 

A ∈ B(H) is a positive operator, and � ∈ B(
⨁n

i=1
H) is an n × n diagonal operator 

matrix whose diagonal entries are positive operator A. Then, any such A defines a 

positive semidefinite sesquilinear form:

Let ‖ ⋅ ‖
A
 denote the seminorm on H induced by ⟨⋅, ⋅⟩

A
, i.e. ‖x‖

A
=

√
⟨x, x⟩

A
 for all 

x ∈ H. Note that ‖x‖
A
= 0 if and only if x ∈ N(A) , and ‖x‖

A
 is a norm if and only 

if A is one-to-one (or A > O ). Also, (H, ‖ ⋅ ‖
A
) is complete if and only if R(A) is 

closed in H.

The A-operator seminorm of T ∈ B(H) , denoted by ‖T‖
A
 , is defined as follows:

An equivalent definition of ‖T‖
A
 , is given in [42]. The set of all bounded linear oper-

ators on H whose A-operator seminorm is finite is denoted by BA(H) . It is known 

that BA(H) is not a subalgebra of B(H) , and ‖T‖
A
= 0 if and only if T∗

AT = O. For 

T ∈ B
A(H), we have

The operator T is called A-positive if AT ≥ O . Note that if T is A-positive, then

⟨⋅, ⋅⟩A ∶ H × H → ℂ, ⟨x, y⟩A = ⟨Ax, y⟩, x, y ∈ H.

‖T‖
A
= sup

x∈R(A), x≠0

‖Tx‖
A

‖x‖
A

< ∞.

‖T‖A = sup

�
�⟨Tx, y⟩A� ∶ x, y ∈ R(A), ‖x‖A = ‖y‖A = 1

�
.
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An operator X ∈ B(H) is called an A-adjoint operator of T ∈ B(H) if 

⟨Tx, y⟩A = ⟨x, Xy⟩A for every x, y ∈ H, i.e., if AX = T
∗
A. By [14, 29], the existence 

of an A-adjoint operator is not guaranteed. An operator T ∈ B(H) can have none, 

one or many A-adjoints. An A-adjoint of an operator T ∈ B(H) exists if and only if 

R(T∗
A) ⊆ R(A) . B

A
(H) is the set of all operators which admit A-adjoints and B

A
(H) 

is a subalgebra of B(H) which is neither closed nor dense in B(H). Moreover, the 

following inclusions B
A
(H) ⊆ B

A(H) ⊆ B(H) hold with equality if A is injective and 

has a closed range.

If T ∈ B
A
(H), the reduced solution of the equation AX = T

∗
A is a distinguished 

A-adjoint operator of T,  which is denoted by T#
A ([1, 31]). Note that T#

A = A
†
T
∗
A , where 

A
† is the Moore-Penrose inverse [33] of A. Recall that A

† ∶ R(A)
⨁

R(A)⟂ ⟶ H 

is the unique operator satisfying AA
†
A = A,   A

†
AA

† = A
†,  A

†
A = PN(A)⟂,    

AA
† = P

R(A)
�
R(A)

⨁
R(A)⟂ . If T ∈ B

A
(H), then AT

#
A = T

∗
A , R(T#

A) ⊆ R(A) and 

N(T#
A) = N(T∗

A) ( [14]). An operator T ∈ B(H) is said to be A-selfadjoint if AT is self-

adjoint, i.e., if AT = T
∗
A. Observe that if T is A-selfadjoint, then T ∈ B

A
(H). In general 

T ≠ T
#

A . For T ∈ B
A
(H), T = T

#
A if and only if T is A-selfadjoint and R(T) ⊆ R(A). If 

T ∈ B
A
(H), then T#

A ∈ B
A
(H), (T#

A)#A = P
R(A)

TP
R(A)

, and 
(

(T#
A)#A

)#
A

= T
#

A . Also, 

T
#

A T and TT
#

A are A-positive operators, and

An operator U ∈ B
A
(H) is said to be A-unitary if ‖Ux‖

A
= ‖U

#
A x‖

A
= ‖x‖

A
 for 

all x ∈ H. For T , S ∈ B
A
(H), we have (TS)#A = S

#
A T

#
A , (T + S)#A = T

#
A + S

#
A , 

‖TS‖
A
≤ ‖T‖

A
‖S‖

A
 and ‖Tx‖

A
≤ ‖T‖

A
‖x‖

A
 for all x ∈ H. The real and imaginary 

parts of an operator T ∈ B
A
(H) are Re

A
(T) =

T+T
#A

2
 and Im

A
(T) =

T−T
#A

2i
.

w(T) is the numerical radius of T ∈ B(H) , which is defined as

It is well-known that w(⋅) defines a norm on B(H) , and is equivalent to the usual 

operator norm ‖T‖ = sup{‖Tx‖ ∶ x ∈ H, ‖x‖ = 1}. In fact, for every T ∈ B(H),

Extensive studies on different generalizations, refinements and applications of 

numerical radius inequalities have been conducted [3, 21, 22, 30, 38–40]. Saddi [36] 

introduced the A-numerical radius of T for T ∈ B(H) , which is denoted as w
A
(T) , 

and is defined as follows:

‖T‖
A
= sup

�
⟨Tx, x⟩

A
∶ x ∈ R(A), ‖x‖

A
= 1

�
.

(1)‖T
#

A T‖
A
= ‖TT

#
A‖

A
= ‖T‖2

A
= ‖T

#
A‖2

A
.

w(T) = sup

�
�⟨Tx, x⟩� ∶ x ∈ H, ‖x‖ = 1

�
.

(2)
1

2
‖T‖ ≤ w(T) ≤ ‖T‖.

w
A
(T) = sup

�
�⟨Tx, x⟩

A
� ∶ x ∈ H, ‖x‖

A
= 1

�
.
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It then follows that

If T ∈ B
A
(H) and U is A-unitary, then w

A
(U#

A TU) = w
A
(T) . Zamani [42] developed 

a new formula for computing the numerical radius of T ∈ B
A
(H):

The inequality (2) is also studied using A-numerical radius of T, and is given as

Furthermore, if T is A-selfadjoint, then w
A
(T) = ‖T‖

A
 . Moslehian et al. [32] pursued 

the study of A-numerical radius and established some A-numerical radius inequali-

ties. Bhunia et  al.  [11] obtained several �-numerical radius inequalities. Further 

generalizations and refinements of A-numerical radius inequalities are discussed in 

[8, 9, 15, 34]. Many studies on �-numerical radius inequalities are given in [15–20, 

35, 37, 41].

In this aspect, the rest of the paper is organized as follows. Inspired by the work 

of Bani-Domi and Kittaneh [4], we establish certain �-numerical radius equali-

ties for circulant, skew circulant, imaginary circulant, and imaginary skew circu-

lant operator matrices in Sect. 2. Some special cases of our result have been given 

in this section. In Sect. 3, we apply these �-numerical radius equalities to obtain 

pinching type �-numerical radius inequalities for n × n block operator matri-

ces. Some equality condition are also given. In Sect.  4, we extend some recent 

results of Bani-Domi et al. [5] to the semi-Hilbert space operators. In particular, 

we obtain certain �-numerical radius equalities and pinching type inequalities for 

n × n tridiagonal and anti-tridiagonal operator matrices. Finally, we end up with 

a conclusion section, which may spark new problems for future research interest.

We need the following lemmas to prove our results. The first lemma is already 

proved by Bhunia et al. [11] for the case strictly positive operator A. Very recently 

the same result proved by Rout et al. [35] by dropping the assumption A is strictly 

positive is stated next for our purpose. For usual numerical radius versions of 

Lemmas 1.1–1.3, one may consult [4, 21].

Lemma 1.1 [35, Lemma 2.4] Let T1, T2 ∈ B
A
(H). Then

 (i) w
�

([

T1 O

O T2

])

= max{w
A
(T1), w

A
(T2)}.

 (ii) w
�

([

O T
1

T
2

O

])

= w
�

([

O T
2

T
1

O

])

.

 (iii) w
�

([

O T
1

e
i�

T
2

O

])

= w
�

([

O T
1

T
2

O

])

  for any � ∈ ℝ.

(3)w
A
(T) = w

A
(T#

A) for any T ∈ B
A
(H).

w
A
(T) = sup

�∈ℝ

‖
‖
‖
‖
‖

e
i�

T + (ei�
T)#A

2

‖
‖
‖
‖
‖A

.

(4)
1

2
‖T‖

A
≤ w

A
(T) ≤ ‖T‖

A
.
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 (iv) w
�

([

T1 T2

T2 T1

])

= max{w
A
(T1 + T2), w

A
(T1 − T2)}.  I n  p a r t i c u l a r , 

w
�

([

O T
1

T
1

O

])

= w
A
(T

1
).

Lemma 1.2 [35, Lemma 2.9] Let T1, T2 ∈ B
A
(H). Then

The following lemma was proved by Rout et al. [35].

Lemma 1.3 [35, Lemma 2.2] Let T1, T2, T3, T4 ∈ B
A
(H). Then

 (i) w
�

([

T
1

O

O T
4

])

≤ w
�

([

T
1

T
2

T
3

T
4

])

.

 (ii) w
�

([

O T
2

T
3

O

])

≤ w
�

([

T
1

T
2

T
3

T
4

])

.

Lemma 1.4 [10, Lemma 3.1] Let Tij ∈ BA(H), 1 ≤ i, j ≤ n . Then

Part (i) of Lemma 1.1 can be generalized as follows.

Lemma 1.5 [34, Theorem 3.5] Let T
i
∈ B

A
(H), 1 ≤ i ≤ n . Then

2  �‑numerical radius equalities for circulant and skew circulant 
operator matrices

The aim of this section is to discuss certain �-numerical radius equalities for cir-

culant, skew circulant, imaginary circulant, and imaginary skew circulant operator 

matrices. The very first result is a formula for the �-numerical radius of a circulant 

operator matrix.

Theorem 2.1 Let T
i
∈ B

A
(H) for 1 ≤ i ≤ n . Then

w
�

([

T2 − T1

T1 T2

])

= max{w
A
(T1 + iT2), w

A
(T1 − iT2)}.

⎡
⎢
⎢
⎢
⎣

T
11

T
12

⋯ T
1n

T
21

T
22

⋯ T
2n

⋮ ⋮ ⋱ ⋮

T
n1

T
n2

⋯ T
nn

⎤
⎥
⎥
⎥
⎦

#
�

=

⎡
⎢
⎢
⎢
⎢
⎣

T
#

A

11
T

#
A

21
⋯ T

#
A

n1

T
#

A

12
T

#
A

22
⋯ T

#
A

n2

⋮ ⋮ ⋱ ⋮

T
#

A

1n
T

#
A

2n
⋯ T

#
A

nn

⎤
⎥
⎥
⎥
⎥
⎦

.

w
�

⎛
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎣

T1 ⋯ O

O T2 O

⋮ ⋱ ⋮

O ⋯ T
n

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

= max{w
A
(T1),… , w

A
(T

n
)}.



On �-numerical radius... Page 7 of 23 52

where � = e
2�i

n .

Proof Let �circ =

⎡
⎢
⎢
⎢
⎢
⎣

T1 T2 T3 ⋯ T
n

T
n

T1 T2 ⋯ T
n−1

T
n−1 T

n
T1 ⋱ T

n−2

⋮ ⋮ ⋱ ⋱ ⋮

T2 T3 ⋯ T
n

T1

⎤
⎥
⎥
⎥
⎥
⎦

, let 1,�,�2,… ,�n−1 be n roots of unity 

with � = e
2�i

n  and � =
1√
n

⎡
⎢⎢⎢⎢⎣

I I I ⋯ I

I �I �
2
I ⋯ �

n−1
I

I �
2
I �

4
I ⋯ �

n−2
I

⋮ ⋮ ⋮ ⋱ ⋮

I �
n−1

I �
n−2

I ⋯ �I

⎤
⎥⎥⎥⎥⎦

.

It can be observed that �̄ = �
n−1, �̄2

= �
n−2,⋯ , �̄k

= �
n−k , k = 0, 1,… , n − 1 , 

so �
#
� =

1√
n

⎡
⎢⎢⎢⎢⎢⎣

P
R(A)

P
R(A)

P
R(A)

⋯ P
R(A)

P
R(A)

�
n−1

P
R(A)

�
n−2

P
R(A)

⋯ �P
R(A)

P
R(A)

�
n−2

P
R(A)

�
n−4

P
R(A)

⋯ �
2
P

R(A)

⋮ ⋮ ⋮ ⋱ ⋮

P
R(A)

�P
R(A)

�
2
P

R(A)
⋯ �

n−1
P

R(A)

⎤⎥⎥⎥⎥⎥⎦

 and 

��
#
� =

⎡
⎢
⎢
⎢
⎢
⎣

P
R(A)

O ⋯ O

O P
R(A)

⋯ O

⋮ ⋮ ⋱ ⋮

O O ⋯ P
R(A)

⎤
⎥
⎥
⎥
⎥
⎦

= �
#
��. We set the direct sum 

⨁n

i=1
P

R(A)
 for 

n × n block diagonal operator matrix 

⎡
⎢
⎢
⎢
⎢
⎣

P
R(A)

O ⋯ O

O P
R(A)

⋯ O

⋮ ⋮ ⋮ ⋮

O O ⋯ P
R(A)

⎤
⎥
⎥
⎥
⎥
⎦

 . Now, for 

x = [x1, x2,… , x
n
]T ∈

⨁n

i=1
H , we have

w
�
(�circ) = max

{

w
A

(

n
∑

i=1

�
k(1−i)

T
i

)

∶ k = 0, 1,… , n − 1

}

,

‖�x‖2

�
= ⟨�x,�x⟩

�
= ⟨�#

��x, x⟩
�
=

�
n�

i=1

P
R(A)

x, x

�

�

=

�
n�

i=1

AP
R(A)

x, x

�

=

�
n�

i=1

AA
†
Ax, x

�

=

�
n�

i=1

Ax, x

�

= ‖x‖2

�
.



 F. Kittaneh and S. Sahoo52 Page 8 of 23

So, ‖�x‖
�
= ‖x‖

�
. Similarly, it can be proved that ‖�#

�x‖
�
= ‖x‖

�
. Thus, � is an �- 

unitary operator. Now, using Lemma 1.4 we have,

Using the fact that w
�
(� ) = w

�
(���#

�) for any � ∈ B
A
(H), we get

where the last equality follows from Lemma 1.5.   ◻

As a special case of Theorem 2.1, we have part (iv) of Lemma 1.1.

Our next result is an estimate for �-numerical radius of skew circulant opera-

tor matrices.

Theorem 2.2 Let T
i
∈ B

A
(H) for 1 ≤ i ≤ n . Then

where � = e
�i∕n and � = e

2�i∕n.

��
#
�

circ
�

#
� =

n−1
⨁

k=0

n
∑

i=1

P
R(A)

�
k(i−1)

T
#

A

i

=

n−1
⨁

k=0

n
∑

i=1

�
k(i−1)

T
#

A

i
as R(T

#
A

i
) ⊆ R(A)

=

(

n−1
⨁

k=0

n
∑

i=1

�̄
k(i−1)

T
i

)#
�

=

(

n−1
⨁

k=0

n
∑

i=1

�
k(1−i)

T
i

)#
�

.

w
�
(�circ) = w

�
(�

#
�

circ
) = w

�
(��

#
�

circ
�

#
�) = w

�

⎛
⎜⎜⎝

�
n−1�
k=0

n�
i=1

�
k(1−i)

T
i

�#
�⎞
⎟⎟⎠

= w
�

��
n−1�
k=0

n�
i=1

�
k(1−i)

T
i

��

= max

�
w

A

�
n�

i=1

T
i

�
, w

A

�
n�

i=1

�
(1−i)

T
i

�
,… , w

A

�
n�

i=1

�
(n−1)(1−i)

T
i

��

= max

�
w

A

�
n�

i=1

�
k(1−i)

T
i

�
∶ k = 0, 1,… , n − 1

�
,

w
�
(�scirc) = max

{

w
A

( n
∑

i=1

(��k)1−i
T

i

)

∶ k = 0, 1,… , n − 1

}

,
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Proof The n roots of the equation z
n
= −1 are �, ��, ��2,… , ��n−1 . Let 

�
scirc

=

⎡
⎢
⎢
⎢
⎢
⎣

T
1

T
2

T
3

⋯ T
n

−T
n

T
1

T
2

⋯ T
n−1

−T
n−1

− T
n

T
1

⋱ T
n−2

⋮ ⋮ ⋱ ⋱ ⋮

−T
2

− T
3

⋯ − T
n

T
1

⎤
⎥
⎥
⎥
⎥
⎦

 and

Using a similar argument as used in the Theorem  2.1, we can show that � is �

-unitary.

Now, using Lemma 1.4, we have

Using the property w
�
(� ) = w

�
(���#

�) for any � ∈ B
A
(H) , we get

where the last equality follows from Lemma 1.5.   ◻

As a special case of the above theorem we have the following corollary which 

is already proved in [35].

Corollary 2.3 Let T1, T2 ∈ B
A
(H) . Then

Theorem  2.4 provides �-numerical radius equalities for imaginary circulant 

operator matrices.

� =
1√
n

⎡
⎢⎢⎢⎢⎣

I �I �
2
I ⋯ �

n−1
I

(��)I (��)2I (��)3I ⋯ (��)nI

⋮ ⋮ ⋮ ⋮ ⋮

(��n−2)n−2
I (��n−2)n−1

I (��n−2)nI ⋯ (��n−2)2n−1
I

(��n−1)n−1
I (��n−1)nI (��n−1)n+1

I ⋯ (��n−1)2n−2
I

⎤
⎥⎥⎥⎥⎦

.

��
#
�

scirc
�

#
� =

(

n−1
⨁

k=0

n
∑

i=1

(��k)1−i
T

i

)#
�

.

w
�
(�scirc) = w

�
(�

#
�

scirc
) = w

�
(��

#
�

scirc
�

#
�) = w

�

⎛
⎜⎜⎝

�
n−1�
k=0

n�
i=1

(��k)1−i
T

i

�#
�⎞
⎟⎟⎠

= w
�

�
n−1�
k=0

n�
i=1

(��k)1−i
T

i

�

= max

�
w

A

� n�
i=1

(��k)1−i
T

i

�
∶ k = 0, 1,… , n − 1

�
,

w
�

([

T1 T2

−T2 T1

])

= max{w
A
(T1 + iT2), w

A
(T1 − iT2)}.
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Theorem 2.4 Let T
i
∈ B

A
(H) for 1 ≤ i ≤ n . Then

where � = e
�i∕2n and � = e

2�i∕n.

Proof The n roots of the equation zn
= i are �, ��, ��2,… , ��n−1 . Let 

�
circ

i

=

⎡
⎢
⎢
⎢
⎢
⎣

T
1

T
2

T
3

⋯ T
n

iT
n

T
1

T
2

⋯ T
n−1

iT
n−1

iT
n

T
1

⋱ T
n−2

⋮ ⋮ ⋱ ⋱ ⋮

iT
2

iT
3

⋯ iT
n

T
1

⎤
⎥
⎥
⎥
⎥
⎦

 and

Using a similar argument as used in the Theorem  2.1, we can show that � is �

-unitary.

Now, using Lemma 1.4, we have

Using the property w
�
(� ) = w

�
(�#

���) for any � ∈ B
A
(H) , we get

where the last equality follows from Lemma 1.5.   ◻

As a special case of the above theorem we have the following corollary.

Corollary 2.5 Let T1, T2 ∈ B
A
(H) . Then

w
�
(�circi

) = max

{

w
A

( n
∑

i=1

(��k)i−1
T

i

)

∶ k = 0, 1,… , n − 1

}

,

� =
1√
n

⎡
⎢⎢⎢⎢⎣

I I I ⋯ I

�I ��I ��
2
I ⋯ ��

n−1
I

�
2
I (��)2I (��2)2I ⋯ (��n−1)2I

⋮ ⋮ ⋮ ⋮ ⋮

�
n−1

I (��)n−1
I (��2)n−1

I ⋯ (��n−1)n−1
I

⎤
⎥⎥⎥⎥⎦

.

�
#
��

#
�

circ
i

� =

(

n−1
⨁

k=0

n
∑

i=1

(��k)i−1
T

i

)#
�

.

w
�
(�circ

i
) = w

�
(�

#
�

circi

) = w
�
(�#

��
#
�

circi

�) = w
�

(

n−1
⨁

k=0

n
∑

i=1

(��k)i−1
T

i

)#
�

= w
�

(

n−1
⨁

k=0

n
∑

i=1

(��k)i−1
T

i

)

= max

{

w
A

( n
∑

i=1

(��k)i−1
T

i

)

∶ k = 0, 1,… , n − 1

}

,

w
�

��

T1 T2

iT2 T1

��

= max

�

w
A

�

T1 +
1 + i
√

2

T2

�

, w
A

�

T1 −
1 + i
√

2

T2

�

�

.
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In Theorem  2.6, we give an estimate for imaginary skew circulant operator 

matrices.

Theorem 2.6 Let T
i
∈ B

A
(H) for 1 ≤ i ≤ n . Then

where � = e
−�i

2n  and � = e
2�i∕n.

Proof The n roots of the equation zn
= −i are �, ��, ��2,… , ��n−1.

Let

and

The rest of the proof follows using a similar method as used in Theorem 2.4.   ◻

As a special case of the above theorem, we have the following corollary.

Corollary 2.7 Let T1, T2 ∈ B
A
(H) . Then

3  Pinching type �‑numerical radius inequalities for operator 
matrices

The pinching type inequalities are among the most inequalities of operator matrices. 

Very recently, Rout et al. [35] established some pinching type �-numerical radius 

inequalities (see Lemma 1.3). For usual pinching type numerical radius inequalities, 

one may consult [21]. Our goal of this section is to establish certain pinching type �

-numerical radius inequalities for n × n block operator matrices.

w
�
(�scirci

) = max

{

w
A

( n
∑

i=1

(��k)1−i
T

i

)

∶ k = 0, 1,… , n − 1

}

,

�
scirc

i

=

⎡
⎢
⎢
⎢
⎢
⎣

T
1

T
2

T
3

⋯ T
n

−iT
n

T
1

T
2

⋯ T
n−1

−iT
n−1

− iT
n

T
1

⋱ T
n−2

⋮ ⋮ ⋱ ⋱ ⋮

−iT
2

− iT
3

⋯ − iT
n

T
1

⎤
⎥
⎥
⎥
⎥
⎦

� =
1√
n

⎡
⎢⎢⎢⎢⎣

I I I ⋯ I

�I ��I ��2
I ⋯ ��n−1

I

�2
I (��)2I (��2)2I ⋯ (��n−1)2I

⋮ ⋮ ⋮ ⋮ ⋮

�n−1
I (��)n−1

I (��2)n−1
I ⋯ (��n−1)n−1

I

⎤
⎥⎥⎥⎥⎦

.

w
�

��

T1 T2

−iT2 T1

��

= max

�

w
A

�

T1 +
1 − i
√

2

T2

�

, w
A

�

T1 −
1 − i
√

2

T2

�

�

.
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Theorem 3.1 Let � = [T
ik
] be an operator matrix where T

ik
∈ B

A
(H) . Then

where

Proof Let �
k+1,k+n+1 = [m

rs
] be the n × n operator matrix with

Then we need to prove that �
k+1,k+n+1 is an �-unitary operator for all k = 1, 2,… , n , 

i.e., 

  

 Now, �2,n+2�
#
�

2,n+2
=

⎡
⎢
⎢
⎢
⎢
⎣

P
R(A)

O ⋯ O

O P
R(A)

⋯ O

⋮ ⋮ ⋮ ⋮

O O ⋯ P
R(A)

⎤
⎥
⎥
⎥
⎥
⎦

= �
#
�

2,n+2
�2,n+2.

1

n
w
�

(

n−1
⨁

k=0

n
∑

i=1

�
k(i−1)

S
i

)

≤ w
�
(� ),

Si =

n
∑

j=1

T
#A

jj+i−1
, with Tn+i = Ti(we could say that the subscripts are modulo n),

i = 1, 2,… , n and � = e2�i∕n.

(5)m
rs
=

{

I; for r + s = k + 1 or r + s = k + n + 1,

O; otherwise.
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For x = [x1, x2,… , x
n
]T ∈

⨁n

i=1
H , we have

So, ‖�2,n+2x‖
�
= ‖x‖

�
. Similarly, it can be proved that ‖�

#
�

2,n+2
x‖

�
= ‖x‖

�
. Thus, 

�2,n+2 is an �-unitary operator. Similarly, it can be shown that other operator matri-

ces �
k+1,k+n+1 are �-unitary operators for all k = 1, 2,… , n.

Thus, using Lemma 1.4, we get 

�2,n+2�
#
��

#
�

2,n+2
=

⎡
⎢
⎢
⎢
⎢
⎣

T
#

A

11
P

R(A)
T

#
A

n1
P

R(A)
⋯ T

#
A

21
P

R(A)

T
#

A

1n
P

R(A)
T

#
A

nn P
R(A)

⋯ T
#

A

2n
P

R(A)

⋮ ⋮ ⋱ ⋮

T
#

A

12
P

R(A)
T

#
A

n2
P

R(A)
⋯ T

#
A

22
P

R(A)

⎤
⎥
⎥
⎥
⎥
⎦

.

Similarly, 

 

‖�2,n+2x‖2

�
= ⟨�2,n+2x,�2,n+2x⟩

�
= ⟨�#

�

2,n+2
�2,n+2x, x⟩

�

=

�
n�

i=1

P
R(A)

x, x

�

�

=

�
n�

i=1

AP
R(A)

x, x

�

=

�
n�

i=1

AA
†
Ax, x

�

=

�
n�

i=1

Ax, x

�

= ‖x‖2

�
.
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and �3,n+3�
#
��

#
�

3,n+3
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T
#

A

22
P

R(A)
T

#
A

12
P

R(A)
⋯ T

#
A

32
P

R(A)

T
#

A

21
P

R(A)
T

#
A

11
P

R(A)
⋯ T

#
A

31
P

R(A)

T
#

A

2n
P

R(A)
T

#
A

1n
P

R(A)
⋯ T

#
A

3n
P

R(A)

⋮ ⋮ ⋱ ⋮

T
#

A

23
P

R(A)
T

#
A

13
P

R(A)
⋯ T

#
A

33
P

R(A)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

 . Proceeding in this 

way, we have 

 

 

�
n,2n

�
#
��

#
�

n,2n
=

⎡
⎢
⎢
⎢
⎢
⎣

T
#

A

n−1n−1
P

R(A)
⋯ T

#
A

2n−1
P

R(A)
T

#
A

1n−1
P

R(A)
T

#
A

nn−1
P

R(A)

⋮ ⋮ ⋱ ⋮ ⋮

T
#

A

n−11
P

R(A)
⋯ T

#
A

21
P

R(A)
T

#
A

11
P

R(A)
T

#
A

n1
P

R(A)

T
#

A

n−1n
P

R(A)
⋯ T

#
A

2n
P

R(A)
T

#
A

1n
P

R(A)
T

#
A

nn P
R(A)

⎤
⎥
⎥
⎥
⎥
⎦

 , 
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and �
n+1,2n+1�

#
��

#
�

n+1,2n+1
=

⎡
⎢
⎢
⎢
⎢
⎣

T
#

A

nn P
R(A)

⋯ T
#

A

2n
P

R(A)
T

#
A

1n
P

R(A)

T
#

A

nn−1
P

R(A)
⋯ T

#
A

2n−1
P

R(A)
T

#
A

1n−1
P

R(A)

⋮ ⋮ ⋱ ⋮

T
#

A

n1
P

R(A)
⋯ T

#
A

21
P

R(A)
T

#
A

11
P

R(A)

⎤
⎥
⎥
⎥
⎥
⎦

 . So,

where

 Let � =
1√
n

⎡
⎢⎢⎢⎢⎣

I I I I ⋯ I

I �I �
2
I �

3
I ⋯ �

n−1
I

I �
2
I �

4
I �

6
I ⋯ �

n−2
I

⋮ ⋮ ⋮ ⋮ ⋮

I �
n−1

I �
n−2

I �
n−3

I ⋯ �I

⎤⎥⎥⎥⎥⎦
 . Then, using the proof of Theo-

rem 2.1, we get

n�
k=1

�
k+1,k+n+1�

#
��

#
�

k+1,k+n+1
=

⎡
⎢⎢⎢⎢⎣

S1 S2 ⋯ S
n−1 S

n

S
n

S1 ⋯ S
n−2 S

n−1

S
n−1 S

n
⋱ S

n−3 S
n−2

⋮ ⋮ ⋱ ⋱ ⋮

S2 S3 ⋯ S
n

S1

⎤
⎥⎥⎥⎥⎦
= �circ(S1,… , S

n
),

Si =

n
∑

j=1

T
#A

jj+i−1
, with Tn+i = Ti(we could say that the subscripts are modulo n),

i = 1, 2,… , n and � = e2�i∕n.

(6)��
#
�

circ
�

#
� =

(

n−1
⨁

k=0

n
∑

i=1

�
k(1−i)

S
i

)#
�

.
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Using the property w
�
(���#

�) = w
�
(� ) and triangle inequality, we get

Hence, 
1

n
w
�

(

n−1
⨁

k=0

n
∑

i=1

�
k(1−i)

S
i

)

≤ w
�
(� ).   ◻

Corollary 3.2 Let � = [T
ik
] be an operator matrix where T

ik
∈ B

A
(H) . Then

As a special case of the above corollary, we have

We remark here that the �-numerical radius inequality in Theorem 3.1 is sharp.

Remark 3.3 Let T
i
∈ B

A
(H) for 1 ≤ i ≤ n . If �  is a circulant operator matrix, then the 

inequality in Theorem 3.1 becomes equality. So, the �-numerical radius inequality 

in Theorem 3.1 is sharp.

Remark 3.4 Based on Theorem 2.2, one can employ a similar argument as used in 

Theorem 3.1 to obtain a pinching type inequality analogous to that in Theorem 3.1.

Theorem 3.5 Let � = [Tjk] be an operator matrix where Tjk ∈ BA(H) . Then

where

w
�

�
n−1�
k=0

n�
i=1

�
k(1−i)

S
i

�
= w

�

⎛
⎜⎜⎝

�
n−1�
k=0

n�
i=1

�
k(1−i)

S
i

�#
�⎞
⎟⎟⎠

= w
�

�
��

#
�

circ
�

#
�

�

= w
�
(�

#
�

circ
)

= w
�
(�circ)

= w
�

�
n�

k=1

�
k+1,k+n+1�

#
��

#
�

k+1,k+n+1

�

≤ nw
�
(� #

�)

= nw
�
(� ).

1

n
max

{

w
A

(

n
∑

i=1

�
k(1−i)

S
i

)

∶ k = 0, 1,… , n − 1

}

≤ w
�
(� ).

1

2
max{w

A
(T11 + T22 + T21 + T12), w

A
(T11 + T22 − T21 − T12)} ≤ w

�

([

T11 T12

T21 T22

])

.

1

n
w
�

(

n−1
⨁

k=0

n
∑

j=1

(��k)j−1Sj

)

≤ w
�
(� ),
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� = e
�i∕2n and � = e

2�i∕n.

Proof Let �
k,n−k

= [m
rs
] be the n × n operator matrix with

It is not difficult to show that �
k,n−k

 is an �-unitary operator for all k = 1, 2,… , n . 

Now,

where

 Let

Then, using the proof of Theorem 2.4, we get

Using the property w
�
(�#

���) = w
�
(� ) and triangle inequality, we get

Sj = e
−i�

2

j−1
∑

k=1

T
#A

kk+n−j+1
+

n
∑

k=j

T
#A

kk+n−j+1
, with

Tn+j = Tj(we could say that the subscripts are modulo n), j = 1,… , n,

(7)m
rs
=

⎧
⎪
⎨
⎪
⎩

I ; s − r = k,

e
i�

2 I; r − s = n − k,

O; otherwise.

n�
k=1

�
k,n−k

�
#
��

#
�

k,n−k
=

⎡
⎢⎢⎢⎢⎣

S1 S2 ⋯ S
n−1 S

n

iS
n

S1 ⋯ S
n−2 S

n−1

iS
n−1 iS

n
⋱ S

n−3 S
n−2

⋮ ⋮ ⋱ ⋱ ⋮

iS2 iS3 ⋯ iS
n

S1

⎤
⎥⎥⎥⎥⎦
= �circ

i
(S1, S2,… , S

n
),

Sj = e
−i�

2

j−1
∑

k=1

T
#A

kk+n−j+1
+

n
∑

k=j

T
#A

kk+n−j+1
, with

Tn+j = Tj(we could say that the subscripts are modulo n), j = 1,… , n.

� =
1√
n

⎡
⎢⎢⎢⎢⎣

I I I ⋯ I

�I ��I ��
2
I ⋯ ��

n−1
I

�
2
I (��)2I (��2)2I ⋯ (��n−1)2I

⋮ ⋮ ⋮ ⋮ ⋮

�
n−1

I (��)n−1
I (��2)n−1

I ⋯ (��n−1)n−1
I

⎤
⎥⎥⎥⎥⎦

.

(8)�
#
��

#
�

circi
� =

(

n−1
⨁

k=0

n
∑

j=1

(��k)j−1Sj

)#
�

.
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Hence, 
1

n
w
�

(

n−1
⨁

k=0

n
∑

j=1

(��k)j−1Sj

)

≤ w
�
(� ).   ◻

Corollary 3.6 Let � = [Tjk] be an operator matrix where Tjk ∈ BA(H) . Then

As a special case of the above corollary we have

We remark here that the �-numerical radius inequality in the Theorem  3.5 is 

sharp.

Remark 3.7 Let T
i
∈ B

A
(H) for 1 ≤ i ≤ n . If �  is an imaginary circulant operator 

matrix, then the inequality in Theorem 3.5 becomes equality. So, the �-numerical 

radius inequality in Theorem 3.5 is sharp.

Remark 3.8 Based on Theorem 2.6, one can employ a similar argument as used in 

Theorem 3.5 to obtain a pinching type inequality analogous to that in Theorem 3.5.

4  �‑numerical radius equalities for n × n tridiagonal 
and anti‑tridiagonal operator matrices

In this section, inspired by the work of Bani-Domi et al. [5], we extend some recent 

results of [5] to semi-Hilbert space. Using a similar analysis as used in the previous 

section, one can employ certain �-numerical radius equalities for n × n tridiagonal 

and anti-tridiagonal operator matrices. We present here the results without proofs.

w
�

⎛
⎜⎜⎝

�
n−1�
k=0

n�
j=1

(��k)j−1Sj

�#
�⎞
⎟⎟⎠
= w

�

�
n−1�
k=0

n�
j=1

(��k)j−1Sj

�

= w
�

�
�

#
��

#
�

circi
�

�

= w
�
(�

#
�

circi
)

= w
�
(�circi

)

= w
�

�
n�

k=1

�k,n−k�
#
��

#
�

k,n−k

�

≤ nw
�
(� #

�)

= nw
�
(� ).

1

n
max

{

w
�

(

n
∑

j=1

(��k)j−1Sj

)

∶ k = 0, 1,… , n − 1

}

≤ w
�
(� ).

1

2
max

{

wA

(

T11 + T22 + e
−i�

4 (T21 + iT12)

)

, wA

(

T11 + T22 − e
−i�

4 (T21 + iT12)

)}

≤ w
�

([

T11 T12

T21 T22

])

.
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Theorem 4.1 Let T1, T2 ∈ B
A
(H) and � =

⎡
⎢
⎢
⎢
⎢
⎣

T
1

T
2

O ⋯ 0

T
2

T
1

T
2

⋯ ⋮

O T
2

T
1

⋱ O

⋮ ⋮ ⋱ ⋱ T
2

O O ⋯ T
2

T
1

⎤
⎥
⎥
⎥
⎥
⎦

 be an n × n tridiago-

nal operator matrix. Then

Remark 4.2 By setting � = I in Theorem 4.1, we get a recent result proved by Bani-

Domi et al. [5].

Some special cases of Theorem 4.1 are described in the following table. 

Results on �-numerical radius Results on usual numerical radius

Letting n = 2 in Theorem 4.1, we have 

w
�

([

T1 T2

T2 T1

])

= max{w
A
(T1 + T2), w

A
(T1 − T2)}

 , 

see [Lemma 1.1].

w

([

T1 T2

T2 T1

])

= max{w(T1 + T2), w(T1 − T2)} , see 

[21, Lemma 2.1].

If T
1
= O in Theorem 4.1, we have 

w
�
(� ) = 2 max

{
|||
cos

k�

n+1

|||
w

A
(T2) ∶ k = 1,… , n

}
. 

In particular, w�

([

O T2

T2 O

])

= w
A
(T2), [see 

Lemma 1.1].

w(� ) = 2 max

{
|||
cos

k�

n+1

|||
w(T2) ∶ k = 1,… , n

}
 see  

[5]. In particular, w

([

O T2

T2 O

])

= w(T2), see [21, 

Lemma 2.1].

If T
2
= O in Theorem 4.1, we have 

w
�
(� ) = w

A
(T

1
) , see [Lemma 1.1].

w(� ) = w(T
1
) see [5].

If T
1
= T

2
 in Theorem 4.1, we have 

w
�
(� ) = max

{
|||
1 + 2 cos

k�

n+1

|||
w

A
(T

1
) ∶ 1 ≤ k ≤ n

}
.

w(� ) = max

{
|||
1 + 2 cos

k�

n+1

|||
w(T

1
) ∶ 1 ≤ k ≤ n

}
 , 

see  [5].

If T
2
= iT

1
 in Theorem 4.1, we have 

w�(� ) = max

{

wA

((

1 +

(

2 cos
k�

n+1

)

i

)

T1

)

∶ 1 ≤ k ≤ n

}

.

w(� ) = max

{

w

((

1 +

(

2 cos
k�

n+1

)

i

)

T
1

)

∶ 1 ≤ k ≤ n

}

 , 

see [5].

Theorem 4.3 Let T1, T2 ∈ B
A
(H) , � =

⎡
⎢
⎢
⎢
⎢
⎣

T
1
�

n−2
T

2
O ⋯ O

T
2

T
1

�
n−2

T
2

⋯ ⋮

O T
2

T
1

⋱ O

⋮ ⋮ ⋱ ⋱ �
n−2

T
2

O O ⋯ T
2

T
1

⎤
⎥
⎥
⎥
⎥
⎦

 be an n × n 

tridiagonal operator matrix, and let � = e
�i

2n . Then

w
�
(� ) = max

{

w
A

(

T1 +

(

2 cos
k�

n + 1

)

T2

)

∶ k = 1,… , n

}

.

w
�
(� ) = max

{

w
A

(

T1 +

(

2�
n−1

cos
k�

n + 1

)

T2

)

∶ k = 1,… , n

}

.
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Theorem  4.4 Let T1, T2 ∈ B
A
(H) , � =

⎡
⎢
⎢
⎢
⎢
⎣

T
1

�
n−1

T
2

O ⋯ O

�T
2

T
1

�
n−1

T
2

⋯ ⋮

O �T
2

T
1

⋱ O

⋮ ⋮ ⋱ ⋱ �
n−1

T
2

O O ⋯ �T
2

T
1

⎤
⎥
⎥
⎥
⎥
⎦

 be an 

n × n tridiagonal operator matrix, and let � = e
2�i

n  . Then

Theorem 4.5 Let T1, T2 ∈ B
A
(H) , and

 be an n × n anti-tridiagonal operator matrix. Then

Remark 4.6 By setting � = I in Theorem 4.3, 4.4, and 4.5, we get usual numerical 

radius equalities proved by Bani-Domi et al. [5] very recently.

Finally, at the end of this section, we establish certain pinching inequalities for 

n × n tridiagonal and anti-tridiagonal operator matrices.

Theorem 4.7 Let T1, T2, T3 ∈ B
A
(H) and � =

⎡
⎢
⎢
⎢
⎢
⎣

T
1

T
2

O ⋯ O

T
3

T
1

T
2

⋯ ⋮

O T
3

T
1

⋱ O

⋮ ⋮ ⋱ ⋱ T
2

O O ⋯ T
3

T
1

⎤
⎥
⎥
⎥
⎥
⎦

 be an n × n tridi-

agonal operator matrix. Then

w
�
(� ) = max

{

w
A

(

T1 +

(

2 cos
k�

n + 1

)

T2

)

∶ k = 1,… , n

}

.

w
�
(� ) = max

{

w
A

(

(−1)k+1

[

T1 +

(

2 cos
k�

n + 1

)

T2

])

∶ k = 1,… , n

}

.

max

{

w
A

(

T1 +

(

cos
k�

n + 1

)

(T2 + T3)

)

∶ k = 1,… , n

}

≤ w
�
(� ).
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Theorem 4.8 Let T1, T2, T3 ∈ B
A
(H) , and

 be an n × n anti-tridiagonal operator matrix. Then

Remark 4.9 The inequalities in Theorems 4.7 and 4.8 become equalities if T
2
= T

3
 . 

So, the �-numerical radius inequalities in Theorems 4.7 and 4.8 are sharp. For the 

usual numerical radius, the usual operator norm and the Schatten p-norms, one can 

visit [5].

5  Concluding remarks

In this paper, we have presented different �-numerical radius equalities and inequal-

ities, which depend on the nice structure of circulant, skew circulant, imaginary cir-

culant, imaginary skew circulant, tridiagonal, and anti-tridiagonal operator matrices. 

By employing similar analysis to different special operator matrices, it is possible to 

obtain further �-numerical radius equalities and inequalities. We now conclude the 

article by remarking that further study on this topic may develop an interesting area 

for future research.
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