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1 Introduction and summary

The aim of this paper is to discuss a class of three-dimensional N = 4 supersymmetric
theories which have rarely been studied in the literature. There are two complementary
motivations leading to the same class of theories, as we will see below.

Our first motivation is in the context of highly-supersymmetric Chern-Simons-matter
theories. As is well-known, the highest supersymmetry one can achieve in generic Chern-
Simons-matter systems is N = 3 [37, 55]. It is also known that, when the matter content and
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the gauge group are carefully chosen, the supersymmetry can show further enhancements
to N = 4 [35, 42], N = 5 [43], N = 6 [1, 2], and N = 8 [6, 34]. Almost all of these
theories use only bifundamental matter fields, except a single case mentioned implicitly
in [35], which is an SU(2)3 Chern-Simons (CS) theory coupled to a half-hypermultiplet in
the trifundamental representation.1

This theory is generically N = 3 supersymmetric, but shows N = 4 enhancement if
and only if the three levels k1,2,3 satisfy the relation 1/k1 + 1/k2 + 1/k3 = 0. What we do
here is to generalize this example using another idea already mentioned in [35], of using
strongly-coupled N = 4 systems with curved Higgs branches as the matter content. For
example, we will show that the theory composed of SU(N)3 Chern-Simons vector multiplets
coupled to the 3d TN theory enjoys N = 4 enhancement in the same manner, if and only if
1/k1 + 1/k2 + 1/k3 = 0. We will further generalize it to a class-S-like construction.2

Our second motivation is in the study of supersymmetric compactifications of M5-branes
on 3-manifolds. Their general study was initiated in [61] for mapping tori and [21] for
triangulated manifolds. In these cases, the 3-manifolds are hyperbolic, and the resulting
theories generically have N = 2 supersymmetry. A far simpler class of theories was
studied slightly before them in [14], where the compactifications on S1 times surfaces were
considered. They can be studied as the S1 compactification of 4d class S theories, and have
N = 4 supersymmetry.

In the general classification of 3-manifolds conjectured by Thurston and proved recently,
there are manifolds which lie between these two extremes, known as Seifert manifolds
and graph manifolds. Such compactifications have not been studied as thoroughly as the
hyperbolic ones, but the 3d theories which result from them have already been worked
out in e.g. [19, 24, 27, 32, 33, 54], although determining them was usually not the main
objective of these papers. Generically they have N = 2 supersymmetry. In this paper,
we find several spaces which lead to N = 4 supersymmetry. A simple subclass consists of
Seifert fibrations over a sphere with three singular fibers, whose Seifert parameters qi/pi for
i = 1, 2, 3 sum to zero, ∑i qi/pi = 0. When q1,2,3 = 1, the resulting 3d theories turn out to
be equivalent to the theories we mentioned above, coming from our first motivation.

In this particular subclass, the supersymmetry enhancement we observe is the same
both in the field theoretical analysis and in the analysis using the geometry of 3-manifolds.
This, however, is not always the case, and there are a large number of examples where
the supersymmetry seen field theoretically is higher than what can be gleaned from the
geometry, as we will describe in more detail in the rest of the paper. The authors would
hope to come back to this issue in the future.

The rest of the paper is organized as follows. In section 2, we start by recalling the
supersymmetry enhancement mechanism in 3d Chern-Simons-matter systems. We then

1In 3d supersymmetric Chern-Simons theories, there is a different mechanism of supersymmetry en-
hancement, via the emergence of additional supersymmetry generators in the monopole sector, for example
the ABJM theory at level 1 or 2 [5]. In our case, the supersymmetry enhancement happens in the
non-monopole sector.

2Generalization to the TG theory gauged by G3 for simply-laced G is immediate, although we only discuss
the case of G = SU(N) in the main text for brevity.
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discuss the enhancement of the supersymmetry from N = 3 to N = 4 of SU(2)3 Chern-
Simons theory coupled to a half-hypermultiplet in the trifundamental representation, and
study how it can be generalized to the case of SU(N)3 Chern-Simons theory coupled to the
TN theory.

After making some further generalization, we move on to section 3, where we consider
M5-branes compactified on 3-manifolds. After very briefly reviewing the classification of
3-manifolds, we study M5-branes on Seifert manifolds and on graph manifolds. We will see
that the resulting 3d theories realize the 3d Chern-Simons-matter systems we discuss in
section 2. We will also see that the reduction of the holonomy of 3-manifolds used in the
construction does explain the N = 4 enhancement in some cases, but not all.

In appendix A and in appendix B, we study the homology groups and the possible
supergravity backgrounds on the 3-manifolds used in section 3, in order to find any
indication of supersymmetry enhancement when the holonomy reduction does not happen.
Unfortunately, we do not find any definitive results, although we do find some hints.

In the final appendix C, we make some further comments on the property of the 3d
SL(2,Z) duality wall theory, and of the theory obtained by diagonally gauging its SU(N)
flavor symmetry. This is done using the results obtained in the course of section 3 and the
computation of the contact terms using localization, following [15, 16].

Before proceeding, we pause here to mention that we will be cavalier about the choice
of the global structure of the gauge group and also about the possible presence of almost
decoupled topological sectors. In particular, we will stick to the careless habit of not distin-
guishing Lie algebras and Lie groups in the notations, which was prevalent in our community
until several years ago. It would surely be interesting to study these issues carefully, which
was in fact one of the main motivations in the previous study [24] on 3d theories coming
from Seifert manifolds, although not in the context of supersymmetry enhancements.

We also note that there recently appeared a paper [20] where, among others, N = 4
enhancements of 6d N = (2, 0) theories on non-hyperbolic 3-manifolds M were discussed.
The results here and there cannot be readily compared, because their derivation is rather
different, and also because they considered 3d theories Tirred[M ] associated to irreducible
SL(2) connections on M , while we consider Tfull[M ] which is the ordinary compactification
on M ; see [18, 38] for the difference. That said, it would be interesting to study the
interconnection between the two approaches, as the 3-manifolds discussed in the two papers
do overlap.

2 Highly-supersymmetric Chern-Simons-matter theories

In this section, we introduce the readers to our first class of 3d Chern-Simons-matter
theories which show enhancements to N = 4 supersymmetry. This is done from the study
of highly-supersymmetric Chern-Simons-matter theories.

When the matter content is generic, supersymmetric Chern-Simons-matter theories
are only possible up to N = 3 supersymmetry. Theories with higher supersymmetry were
first constructed in [6, 34] in the N = 8 cases using 3-algebras. The construction was
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motivated by the then-popular beliefs that something other than ordinary Lie algebras
would be necessary.

It was soon realized, however, that they can be written in terms of ordinary Lie
algebras [7], and generalizations to N = 4 theories were performed using the 3d N = 1
superfield formalism in [35, 42]. Slightly later, the famous N = 6 theory of Aharony,
Bergman, Jafferis and Maldacena was found in [2] using the 3d N = 2 superfield formalism.
In fact, all the supersymmetry enhancements listed here can be understood by adapting this
3d N = 2 superfield method [58]. Here we provide a quick review of the mechanism of the
enhancement, and then introduce our first class of theories showing N = 4 enhancements
which were not studied previously.

2.1 Mechanism of the enhancement

Enhancement from N = 2 to N = 4 in 4d. Let us start by recalling a method to
understand the structure of 4d N = 4 super Yang-Mills theories. It is well-known that we
can write down a 4d N = 2 gauge theory for any gauge group and hypermultiplets. Let us
pick a gauge group G and let the hypermultiplet be in its adjoint representation. In the
N = 1 language, the superpotential has the form

W ∝ tr Φ[A,B] (2.1)

where Φ is the scalar in the vector multiplet and (A,B) form the hypermultiplet. In
the N = 1 perspective, it is clear that the theory is symmetric under the SU(3)F flavor
symmetry acting on three adjoint scalars Φ, A andB, from the structure of the superpotential.
Meanwhile, in the N = 2 perspective, the SU(2)R symmetry acts on (A,B†). Therefore,
SU(2)R and SU(3)F do not commute, and necessarily combine to a larger R-symmetry,
signaling the enhancement of the supersymmetry to N = 4.

Enhancement from N = 3 to N = N in 3d. In three dimensions, we can similarly
achieve N = 3 supersymmetry with general gauge group G = ∏

iGi with non-zero Chern-
Simons terms, and an arbitrary representation R for the hypermultiplets. The superpotential
in N = 2 language is

W ∝
∑
i

(
tr Φiµi −

ki
2 tr Φ2

i

)
, (2.2)

where Φi is the adjoint scalar in the i-th Chern-Simons supermultiplet of level ki and µi is
the moment map operator constructed from the hypermultiplets.

We note that this system preserves N = 4 supersymmetry when ki = 0. In this case,
the superpotential possesses a manifest U(1) symmetry assigning charge +2 and −2 to µi
and Φi. This is in fact a part of SO(4)R symmetry of the N = 4 supersymmetry algebra,
and is broken by the term proportional to ki in (2.2) when it is nonzero.

For the moment, let us assume ki 6= 0. As the adjoint scalars Φi have no kinetic term,
they can be integrated out, giving

W ∝
∑
i

1
ki

trµ2
i . (2.3)
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When the matter representations and the levels are chosen carefully, this W can have a
flavor symmetry not commuting with the N = 3 R-symmetry, signaling the enhancement
to supersymmetry higher than N = 3.

In three dimensions, an N = N superconformal theory has SO(N)R flavor symmetry.
The N = 2 formalism makes only SO(2)R symmetry manifest, and therefore we should
see an additional SO(N − 2) flavor symmetry in the N = 2 superpotential (2.3) to have
the enhancement.

N = 6 theories of ABJ(M). As an example, consider the N = 3 U(N)k × U(N ′)−k′
Chern-Simons theory with two bifundamentals Ai, Bi where i = 1, 2. The superpoten-
tial (2.3)

W ∝ 1
k

tr(AiBi)2 − 1
k′

tr(BiAi)2 (2.4)

simplifies, if k = k′, to
∝ 1
k

trAiBaAjB
bεijεab (2.5)

showing the flavor symmetry SU(2)× SU(2) = SO(6− 2). This flavor symmetry does not
commute with SO(3)R, under which Ai forms a doublet with (Bi)†. This means that the
theory enhances to N = 6 when k = k′; this is the famous theory of Aharony-Maldacena-
Bergman-Jafferis or Aharony-Bergman-Jafferis, depending on N = N ′ or N 6= N ′ [1, 2].

N = 4 theories of Gaiotto-Witten. As another class of examples, consider the N = 3
theory with a general gauge group G = ∏

iGi and (half-)hypermultiplets in a general
representation R. Let us suppose that the superpotential (2.3) simply vanishes,

W ∝
∑
i

1
ki

trµ2
i = 0, (2.6)

thanks to a careful choice of G and R.
Let us see that this means that the theory enhances to N = 4 supersymmetry. Before

coupling to N = 3 Chern-Simons multiplets, the theory of free (half-)hypermultiplets has
N = 4 supersymmetry, with four supercharges Q1,2,3,4, with R-symmetries Jij mapping Qi
to Qj .

Let us say that we are using an N = 2 subalgebra including Q1,2 and J12 for our N = 2
description. When the superpotential vanishes as in (2.6), we have a U(1) = SO(4−2) flavor
symmetry, assigning the charge +1 for all N = 2 chiral multiplets. This U(1) symmetry is
J34 of the original theory of hypermultiplets.

Now, the N = 3 Chern-Simons multiplets are known to preserve Q1,2,3. We now found
that J34 is preserved. Therefore, Q4 is also preserved, meaning that the gauged theory
has N = 4 supersymmetry. The condition was originally obtained by Gaiotto and Witten
in [35], using the N = 1 superfield formalism.

The construction can be generalized by replacing (half-)hypermultiplets by a more
general strongly-coupled 3d N = 4 theory T with G symmetry with SO(4)R symmetry. We
note that such a theory T , regarded as an N = 2 theory, has a U(1) flavor symmetry J34
assigning charge +2 to the moment map operators µ. When we gauge the G symmetry

– 5 –



J
H
E
P
0
3
(
2
0
2
3
)
1
7
0

with N = 3 Chern-Simons couplings, the N = 2 superpotential (2.3) breaks this U(1)
flavor symmetry for generic levels. However, when the relation (2.6) is satisfied, this
U(1) = SO(4− 2) flavor symmetry is restored,3 and the gauged theory enhances to N = 4.
This strongly-coupled generalization was already mentioned in [35], although in the N = 1
superfield language.

It was also found in the original article [35] that the condition (2.6) when the matter
content is given by (half-)hypermultiplets is equivalent to the statement that g⊕R forms
a super Lie algebra with an invariant non-degenerate trace. In more detail, 1) g and
R are the bosonic and the fermionic part of the super Lie algebra, respectively, 2) the
vanishing (2.6) is equivalent to the fermion-fermion-fermion part of the super Jacobi identity,
and 3) the ratio of the levels {ki} is a part of the structure constants.4 As the classification
of super Lie algebras with invariant traces is long known [46], this gives us all theories where
Chern-Simons gauge fields couple to (half-)hypermultiplets such that the supersymmetry
enhances to N = 4 from the condition (2.6).

An example of this type of theories is to take the super Lie algebra to be OSp(2m|2n),
which corresponds to the gauge theory O(2m)2k ×USp(2n)−k with a half-hypermultiplet in
the bifundamental representation. This turns out to be the starting point of our generaliza-
tion.

2.2 New N = 4 theories

2.2.1 Gauged TN theory

Let us now consider the special case of OSp(4|2). The corresponding gauge theory has the
gauge group SO(4)× USp(2) ' SU(2)1 × SU(2)2 × SU(2)3, with a half-hypermultiplet in
4⊗2 ' 21⊗22⊗23, which we denote by Qaiu. The condition for theN = 4 enhancement (2.6)
is

W ∝ 1
k1

tr(µ1)2 + 1
k2

tr(µ2)2 + 1
k3

tr(µ3)2 = 0 (2.7)

where k1,2,3 and µ1,2,3 are the levels and the moment map operators for SU(2)1,2,3. More
explicitly, µ1,2,3 are given by

µ1
c
b = εcaµ1,ab, µ2

k
j = εkiµ2,ij , µ3

w
v = εwuµ3,uv (2.8)

where

µ1,ab = εijεuvQaiuQbjv, µ2,ij = εabεuvQaiuQbjv, µ3,uv = εabεijQaiuQbjv (2.9)

3Note that this symmetry is not restored if the relation (2.6) holds only as a chiral ring relation but not as
an actual operator equation, since in that case the integral

∫
d2θW can still be nonzero and violate the U(1)

symmetry J34. Luckily for us, when T is superconformal, the relation (2.6) in the chiral ring automatically
implies the validity at the level of operators, since the moment map operators µi are chiral primaries, and
therefore

∑
tr(µi)2/ki is also a chiral primary. See also the discussions around the end of [35, section 3.2.2].

4This somewhat unexpected appearance of a super Lie algebra can be made less mysterious by noting
that the Rozansky-Witten topological twist of the resulting N = 4 theory is the Chern-Simons theory based
on the super Lie algebra g⊕R, as was found in [48].
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TN

k1

k2

k3

Figure 1. TN theory gauged with SU(N)k1 × SU(N)k2 × SU(N)k3 . The supersymmetry enhances
to N = 4 when 1/k1 + 1/k2 + 1/k3 = 0.

which satisfy the crucial relation5

tr(µ1)2 = tr(µ2)2 = tr(µ3)2. (2.10)

Therefore, the enhancement condition (2.7) is satisfied if and only if we have
1
k1

+ 1
k2

+ 1
k3

= 0. (2.11)

Physically, we need to require that the levels are integers.6 Luckily for us, the relation (2.11)
has many integer solutions, e.g. (k1, k2, k3) = (pq, qr, rp) with p+q+r = 0 and p, q, r ∈ Z 6=0.7

As mentioned above, the ratio of the levels solving (2.7) translates to the structure
constants of the super Lie algebra. The relation (2.11) means that OSp(4|2) has a one-
parameter family of structure constants. In fact, among the classification in [46] of super
Lie algebras, D(2, 1) = OSp(4|2) is the only case where the structure constants come in a
family, and is often denoted as D(2, 1;α) to make this fact explicit.

Let us now generalize this example, by replacing SU(2)3 and Qaiu by SU(N)3 and
the 3d TN theory. Here the 3d TN theory is a strongly-coupled 3d N = 4 SCFT having
SU(N)3 symmetry, obtained by compactifying the 4d TN theory on S1. Equivalently, it is
given by wrapping N M5-branes on S1 times a sphere with three full punctures. Its chiral
ring is summarized e.g. in [59]. Crucially, the three SU(N) moment map operators µ1,2,3
satisfy the relations (2.10), as we will see in section 3.2.3; therefore the combined system
has enhanced N = 4 supersymmetry if the relation (2.11) is satisfied. The structure of the
theory can be depicted as in figure 1.

There is an easy generalization of this construction if one knows the basics of 3d class
S theories, first studied in [14]. Let us take two copies of the 3d TN theory, and gauge

5This quantity is known as Cayley’s hyperdeterminant of Qaiu.
6This is when the global structure of the gauge group is SU(2)3. The structure of Qaiu allows one to take

the gauge group to be SU(2)3/C where C ' (Z2)2 ⊂ {±1}3 ⊂ SU(2)3 is the subgroup of the center trivially
acting on Qaiu. Then the Chern-Simons levels will be slightly more constrained. We will not discuss similar
complications coming from the global structure of the gauge group any further in this paper.

7These in fact exhaust all solutions up to rescalings. To see this, write (k1, k2, k3) = k(a, b, c) with
gcd(a, b, c) = 1. By changing the sign of k, we can set a + c ≤ 0 without loss of generality. The
requirement (2.11) can now be rewritten as (a+ c)(b+ c) = c2. Now, a+ c and b+ c are coprime, since if
not, let a prime l divides both x := a+ c and y := b+ c. Then l also divides c, contradicting gcd(a, b, c) = 1.
Now, the product of two coprime integers xy being a square c2 means that x, y are themselves squares times
±1. As we assumed x ≤ 0, we see that there are two coprime integers p and r such that x = −p2, y = −r2

and c = rp, and therefore (a, b, c) = (pq, qr, rp) where q = −p− r.
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TN TN

k1

k2

k3

Figure 2. Two TN theories gauged with SU(N)k1 × SU(N)k2 × SU(N)k3 .

a diagonal subgroup of two SU(N) flavor symmetries, each belonging to a separate TN
theory, by an N = 4 SU(N) vector multiplet. This is the compactification of 6d N = (2, 0)
theory on S1 times a sphere with four punctures. The resulting theory has SU(N)4 flavor
symmetry, whose moment map fields satisfy

tr(µ1)2 = tr(µ2)2 = tr(µ3)2 = tr(µ4)2. (2.12)

More generally, we can take n− 1 copies of the TN theory and couple N = 4 SU(N) vector
multiplets appropriately, and realize the compactification of 6d N = (2, 0) theory on S1

times a sphere with n punctures. Let us denote the resulting theory by TN,n. It has SU(N)n
symmetry, whose moment map fields satisfy the basic relation that

tr(µi)2 is independent of i = 1, 2, . . . , n. (2.13)

The derivation of this important relation is reviewed in section 3.2.3.
We can then couple the SU(N)n flavor symmetry to N = 3 SU(N) Chern-Simons gauge

fields with levels ki for i = 1, . . . , n. Exactly as before, we find that the superpotential after
the elimination of adjoint scalars vanishes when∑

i

1
ki

= 0, (2.14)

leading to N = 4 enhancements.
So far these theories might look like a mere curiosity. In the next section we are going

to find a geometric interpretation for this enhancement. Before getting there, let us consider
a generalization of this construction.

2.2.2 Further generalizations

Let us now consider the theory depicted in figure 2. Namely, we take two copies of 3d
TN theory. For each SU(N) symmetry of one TN theory, we pick an SU(N) symmetry
from the other TN theory, and couple their diagonal combination to an N = 3 SU(N)
Chern-Simons multiplet. Denoting the levels by k1,2,3, we see that the superpotential in the
N = 2 description is

W =− k1
2 tr(Φ1)2 + tr Φ1(µ(1)

1 + µ
(2)
1 )

− k2
2 tr(Φ2)2 + tr Φ2(µ(1)

2 + µ
(2)
2 )

− k3
2 tr(Φ3)2 + tr Φ3(µ(1)

3 + µ
(2)
3 )

(2.15)
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where Φi is the adjoint scalar in the i-th N = 3 Chern-Simons multiplet and µ(a)
1,2,3 is the

moment map field of SU(N)3 of the a-th TN theory.
Eliminating Φ1,2,3, we find that the superpotential becomes

W = 1
2

( 1
k1

+ 1
k2

+ 1
k3

)
(tr(µ(1))2 + tr(µ(2))2)

+ 1
k1

trµ(1)
1 µ

(2)
1 + 1

k2
trµ(1)

2 µ
(2)
2 + 1

k3
trµ(1)

3 µ
(2)
3

(2.16)

where we used the chiral ring relation tr(µ(1)
1 )2 = tr(µ(1)

2 )2 = tr(µ(1)
3 )2 =: tr(µ(1))2 for the

first TN theory, and similarly for the second copy. The superpotential simplifies when

1
k1

+ 1
k2

+ 1
k3

= 0 (2.17)

to
W = 1

k1
trµ(1)

1 µ
(2)
1 + 1

k2
trµ(1)

2 µ
(2)
2 + 1

k3
trµ(1)

3 µ
(2)
3 , (2.18)

which has a U(1) = SO(4− 2) flavor symmetry assigning charge +2 to the moment map
fields of the first TN theory and charge −2 to those of the second TN theory. This signifies
that the theory enhances to N = 4.

To give some more detail, let Q(a)
1,2,3,4 be four supercharges of the a-th TN theory, and

J
(a)
ij be the R-symmetry of the a-th theory sending Q

(a)
i to Q

(a)
j . The N = 3 Chern-

Simons couplings preserve Qi := Q
(1)
i + Q

(2)
i for i = 1, 2, 3, and our N = 2 formalism

makes Q1, Q2 and J12 := J
(1)
12 + J

(2)
12 manifest. The U(1) symmetry preserved by the

simplified superpotential (2.18) is J ′34 := J
(1)
34 −J

(2)
34 . Note the relative minus sign, assigning

opposite U(1) charges to µ
(1)
i and µ

(2)
i . This U(1) symmetry sends Q3 = Q

(1)
3 + Q

(2)
3

to Q′4 := Q
(1)
4 − Q(2)

4 . This type of N = 4 enhancements was first found in [42] in the
Lagrangian case.

Note that the operation (Q1, Q2, Q3, Q4) 7→ (Q1, Q2, Q3,−Q4) in an N = 4 theory is
the 3d mirror symmetry which exchanges the Higgs branch and the Coulomb branch and
sends hypermultiplets to twisted hypermultiplets. Therefore, when the supersymmetry
enhances to N = 4 in this theory, the assignment of N = 4 supercharges is different between
the first copy and the second copy of the TN theory. The SU(2) R-symmetry acting on
the Coulomb branch of one TN theory is mapped to the SU(2) R-symmetry acting on the
Higgs branch of the other TN theory. In other words, there is no standard assignment of
the Coulomb branch and the Higgs branch to the final N = 4 theory.

Let us conclude this section by making a further generalization. We take a bipartite
graph, an example of which is shown in figure 3. There, each n-valent node is a copy of the
TN,n theory, obtained by compactifying 6d N = (2, 0) theory on S1 times S2 with n full
punctures. Recall that it has SU(N)n symmetry whose moment map fields satisfy (2.13).

Next, each edge e connecting two nodes is an N = 3 SU(N) Chern-Simons multiplet
coupling to the diagonal subgroup of two SU(N) symmetries, one from the TN,n theory on
a black node, and another from the TN,n theory on a white node, assigned with a non-zero
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Figure 3. A graph encoding the coupling of TN,n theories and N = 3 Chern-Simons multiplets.
Every link e represents a coupling to a CS level ke as in (2.19).

Chern-Simons level ke.8 The superpotential is given by

W =
∑
e:edge

[
−ke2 tr(Φe)2 + tr Φe(µblack

e + µwhite
e )

]
. (2.19)

Integrating out the N = 2 adjoint scalars, we get

W =
∑
e:edge

[ 1
2ke

(
tr(µblack

e )2 + tr(µwhite
e )2)) + 1

ke
trµblack

e µwhite
e

]
(2.20)

=
∑
e:edge

1
ke

trµblack
e µwhite

e +
∑
v:node

∑
e:edge

connecting to v

1
2ke

tr(µv,e)2 (2.21)

where µv,e is the moment map of the SU(N) flavor symmetry of the TN,n theory at the
node v coupled to the Chern-Simons gauge multiplet for the edge e. Thanks to the chiral
ring relation (2.13), tr(µv,e)2 is independent of e. Therefore, when the sum of the inverse of
the three Chern-Simons levels at each node vanishes, i.e. when∑

e:edge
connecting to v

1
ke

= 0 for each node v, (2.22)

the superpotential becomes

W =
∑
e:edge

1
ke

trµblack
e µwhite

e (2.23)

where µblack,white
e is the SU(N) moment map fields of the two TN,n theories on the black

node and the white node connected by the edge e. This preserves the U(1) symmetry

J34 :=
∑

b:black nodes
J

(b)
34 −

∑
w:white nodes

J
(w)
34 (2.24)

and therefore the theory has the fourth supercharge

Q4 :=
∑

b:black nodes
Q

(b)
4 −

∑
w:white nodes

Q
(w)
4 . (2.25)

To summarize, an N = 3 theory described by a bipartite graph has its supersymmetry
enhanced to N = 4 when (2.22) is satisfied.

8We assume ke 6= 0 without loss of generality, as connecting a TN,n1 and a TN,n2 theory with an edge
with zero CS level is simply constructing the TN,n1+n2 theory, so this would be represented by a single
vertex and no edge in the graph.
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S2

S2 ⇢ B3 B3 � S2

M

M1 M2

Figure 4. Cutting 3-manifolds along S2.

3 M5-branes on 3-manifolds

In this section, we consider M5-branes9 on a class of 3-manifolds and will be led to the same
class of 3d theories showing N = 4 enhancements which we saw in the previous section.
Our study in this section will also show us how to generalize these examples further.

It is well-known that studies of M5-branes on 3-manifolds, started in [21, 61], have un-
covered various interesting properties in hyperbolic geometry, knot theory, and 3-dimensional
supersymmetric theories. To approach this vast area of research systematically, we find it
useful to recall the classification of 3-manifolds.

3.1 Classification of 3-manifolds

It is well known that surfaces are topologically classified by their genera, and any surface can
be decomposed into a number of three-punctured spheres by cutting along non-intersecting
non-contractible circles. An analogous classification of 3-manifolds has been obtained by a
combined efforts of many mathematicians. Our aim in this section is to give an extremely
brief overview of this important result; for more details, see e.g. [41, 56].

Prime decomposition. Given two closed 3-manifoldsM1 andM2, we can choose a 3-ball
B3 ⊂ M1 bounded by an S2, and similarly another 3-ball B3 ⊂ M2 bounded by an S2.
We can then paste M1 and M2 along the common S2 to obtain another closed 3-manifold
M , which is denoted by M1#M2 and is known as the connected sum of M1 and M2. See
figure 4. Clearly, S3 is the identity under this operation.

A 3-manifold which cannot be written as a connected sum (except with S3) is known
as a prime manifold. Any 3-manifold M is then known to be given uniquely by a connected
sum of prime 3-manifolds,

M = M1#M2# · · ·#Mk. (3.1)

This is known as the prime decomposition of M .
9Below, we neglect the contribution from the center-of-mass modes of the M5-branes, which only give rise

to almost decoupled free fields and/or topological degrees of freedom. Our analysis can also be generalized
to 6d N = (2, 0) theory of arbitrary type G = AN−1, DN , E6,7,8 without any change. For brevity, we use a
somewhat imprecise language and collectively call them ‘M5-branes on 3-manifolds’.
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Figure 5. Cutting 3-manifolds along T 2.

Torus decomposition. We are now going to cut a prime manifold along embedded T 2’s,
see figure 5. In this case, we keep each piece to have torus boundaries, since there are
multiple distinct ways to fill in a torus boundary by a solid torus.

One can always cut a manifold M along an embedded torus T 2 by considering an
embedded loop S1 ⊂M and taking its tubular neighborhood. If M has a torus boundary,
we can also cut it along a T 2 slightly inside the boundary. A manifold M for which the
only ways to cut along T 2 are either of these two trivial methods is called atoroidal.

It is known that we can cut a prime manifold M along copies of T 2 so that the resulting
pieces are all atoroidal. This is the torus decomposition of M . In contrast to the prime
decomposition, the torus decomposition is known not to be unique, but the non-uniqueness
comes only from well-understood examples. These results on prime and torus decompositions
were established by [44, 45].

Atoroidal manifolds. The next task for us is to understand atoroidal manifolds. Their
description follows from the geometrization conjecture of Thurston [60], which states that
any 3-manifolds can be cut along S2 and T 2 into pieces which have one of eight possible
geometries. In the proof, the Ricci flow of the metric on a given 3-manifold is considered;
physically, we consider the RG flow of the sigma model whose target space is the 3-manifold
in question. Then, the parts with positive curvature shrink, the parts with negative curvature
expand. Shrinking of the positive curvature parts performs the prime decomposition, and
then the expansion of the negative curvature parts extracts the hyperbolic manifolds. The
remaining connecting parts are shown to be generically either a T 2 fibration or an S1

fibration, all of which are known to have one of the eight geometries, thus proving the
conjecture, whose proof had a long and winding history. The overall idea of the proof was
first indicated in a series of works by Hamilton e.g. [40], and was later implemented in a
series of papers by Perelman starting in [53] and completed by subsequent works.

In the context of the torus decomposition, this means that atoroidal manifolds are
either i) Seifert manifolds or ii) hyperbolic manifolds. Here, Seifert manifolds are a certain
generalization of circle bundles allowing degenerate fibers which we detail below, and
hyperbolic manifolds are manifolds of the form H3/Γ, where H3 is the three-dimensional
hyperbolic space and Γ is a discrete subgroup of its isometry group. We note that all
hyperbolic manifolds are atoroidal, while not all Seifert manifolds are atoroidal.
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• B

F

qF + pB

Figure 6. Description of a singular fiber of a Seifert fibration. Instead of filling in B, one fills
in qF + pB.

Seifert manifolds. In this paper we only consider a subclass of Seifert manifolds. A
3-manifold M in this subclass has a circle action such that its orbits form a two-dimensional
surface Σ. The circle action makes M into a circle bundle on generic points of Σ, but
singular fibers of the following form are allowed.

Namely, starting from an ordinary point in the base Σ, we consider a neighborhood
D2. On the solid torus D2 × S1, we denote ∂D2 by B and the fiber cycle by F . Here the
cycle B can be shrunk in the geometry. We can instead fill in the torus boundary by a solid
torus such that the 1-cycle pB + qF can be shrunk, where p and q are coprime, see figure 6.
This operation is known as a Dehn filling. As part of the definition, we demand that p
is nonzero. This is to guarantee that the circle action is free. An alternative description
consists in gluing back the solid torus D2 × S1 by identifying the torus boundaries after
performing an SL(2,Z) action, whose explicit form will be given in (3.12).

We note that these operations with p = 1 do not create a singular fiber. It instead
shifts the first Chern class of the circle bundle. Therefore, a Seifert manifold of our interest
can be constructed by starting from a trivial S1 bundle over a base surface of genus g,
choosing k points on the base, and performing the Dehn filling operation above the i-th
point on the base with the parameters qi/pi, producing the i-th degenerate fiber. We will
denote this Seifert manifold by the symbol (g; q1/p1, . . . , qk/pk); this is not the standard
notation in mathematics literature, but suffices for our purposes. We also note that it is
sometimes assumed that 0 ≤ qi < pi to normalize the Seifert parameters. In this paper we
do not assume that, and allow arbitrary pairs (pi, qi) as long as gcd(pi, qi) = 1.

3.2 Associated 3d theories

From the geometric summary above, it is clear that we need to understand the following
steps in order to determine the 3d theories obtained by putting N M5-branes on 3-manifolds.
Namely, i) we need to understand M5-branes on atoroidal manifolds, And then, ii) we need
to understand what happens when we glue two manifolds along T 2 or S2.

Let us discuss the question ii) first. It should be possible to analyze the gluing along S2,
using the known results concerning the S2 reduction of the 6d N = (2, 0) theory studied
e.g. in [3]. As this is not the main focus of this paper, we will move on to the gluing along
T 2. Let us review how it goes.
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3.2.1 Theories on 3-manifolds with torus boundaries

We need to start by clarifying what is meant by ‘the 6d N = (2, 0) theory on 3-manifolds with
torus boundaries’, a phrase often used in the context of the 3d/3d correspondence. Close to
a T 2 boundary, the manifold can be approximated as R>0 × T 2. Compactifying on T 2 first,
we have 4d N = 4 SU(N) super Yang-Mills on R>0, where the SL(2,Z) transformation
acting on T 2 is now regarded as the S-duality group action of the N = 4 super Yang-Mills.

We can give a boundary condition at the boundary of R>0 by choosing a duality frame
for the N = 4 super Yang-Mills, and taking the Dirichlet condition in the chosen frame.
This gives rise to an SU(N) flavor symmetry. To choose a duality frame, we need to specify
an electric 1-cycle E and a magnetic 1-cycle M on T 2, forming a basis of H1(T 2,Z), such
that self-dual strings wrapped around E correspond to the W-bosons for the SU(N) flavor
symmetry at the boundary. Summarizing, to associate a 3d theory to a 3-manifold with
torus boundaries, we need to fix a basis of H1(T 2,Z) at each boundary.

The necessity of this additional data at the boundary can be understood also as follows.
The 6d N = (2, 0) theory is a chiral theory and cannot be placed on a space with boundary.
To make a closed manifold, we can paste to a torus boundary the product manifold

S1 × (D2 with a full puncture at the origin). (3.2)

Then S1 is the magnetic 1-cycle M and ∂D2 is the electric 1-cycle E in the description
above.

We still find it convenient to assign a 3d theory to 3-manifolds with torus boundaries,
since such open manifolds commonly appear in the description of classification of 3-manifolds.
When we refer to such a 3d theory, we always make a choice of the magnetic 1-cycle M and
the electric 1-cycle E at the torus boundary, and implicitly insert the full puncture along
the magnetic 1-cycle M , shrinking the electric 1-cycle E in the process.

3.2.2 Gluing along T 2

Given two T 2 boundaries with the same choice of 1-cycles E and M , we can simply glue
them by gauging the diagonal combination of two SU(N) symmetries associated to the two
T 2 boundaries by 3d N = 4 SU(N) vector multiplet. In order to glue two T 2 boundaries
with two different choices of pairs of 1-cycles E and M , we need to perform the SL(2,Z)
transformation first. Any SL(2,Z) transformation can be done by a sequence of S and T
transformations given by

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
, (3.3)

whose manifestation as operations on 3d supersymmetric theories was determined in [35, 36].
Namely, the S transformation is realized by coupling to the duality wall theory T (SU(N)),
and the T transformation is realized by shifting the Chern-Simons level of the SU(N) flavor
background by one.

The S transformation preserves 3d N = 4 supersymmetry, while the T transformation
preserves only 3d N = 3 supersymmetry, since it involves the supersymmetric Chern-Simons
coupling. Therefore, gluing with an arbitrary SL(2,Z) transformation always preserves at
least 3d N = 3 supersymmetry.
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3.2.3 Ingredients

Now that we have some understanding of the gluing operations, we need to understand
the ingredients we glue, i.e. theories associated to atoroidal manifolds. As reviewed above,
atoroidal manifolds are either hyperbolic manifolds or Seifert manifolds, which we discuss
in turn.

Theories on hyperbolic manifolds. The 3d theories obtained by putting two M5-
branes on hyperbolic manifolds were the focus of the epoch-making paper [21, 22]. The
theories constructed in these original papers, however, associates a U(1) flavor symmetry
for each T 2 boundary, rather than an SU(2) flavor symmetry, which we expect on general
grounds. Such theories with an SU(2) flavor symmetry per T 2 boundary were later studied
in [18, 38]. The generalization to more than two M5-branes has also been studied, starting
in [23].

Theories on Seifert manifolds. The 3d theories obtained by putting N M5-branes on
Seifert manifolds have also been determined previously, see e.g. [18, 19, 24, 27, 32, 33, 54],
although the determination was usually a byproduct rather than the main topic of these
papers. Here we give a brief summary of the construction.

As recalled above, Seifert manifolds of our interest are obtained by starting from a
direct product of S1 and a surface Σ with boundaries, and performing a Dehn filling for
each of its boundaries. A Dehn filling is done by gluing an S1 ×D2 after an appropriate
SL(2,Z) transformation. As D2 is also a special case of a surface with boundaries, all that
is left is to understand the 3d theory obtained by putting N M5-branes on a product S1×Σ,
with Σ a surface with m boundaries ∂Σ = C1 ∪ · · · ∪ Cm.

Theories on S1 × Σ. Let us first pick Ci to be the electric cycle and the S1 fiber to
be the magnetic cycle. Equivalently, let us fill in Ci by a disk D2

i with a full puncture at
the origin. We then have N M5-branes on a product S1 times a sphere S2 with m full
punctures. This then gives the TN,m theory we already used in section 2.2.1.

Secondly, we can choose Ci to be the magnetic cycle and the S1 fiber to be the electric
cycle. Equivalently, let us fill in S1 of each boundary S1 × Ci by a D2, again with a full
puncture at the origin. The two ways of filling are related by the S-transformation at each
boundary, and it is known that the second method leads to the 3d ‘theory’ which is simply
the diagonal Dirichlet boundary condition setting all SU(N) flavor symmetries associated
to m boundaries the same [14, section 5.2].10 These two descriptions are related by the 3d
mirror symmetry. Summarizing, the TN,m theory is given by taking m copies of T (SU(N))
theories with SU(N)(i)

H × SU(N)(i)
C flavor symmetry, for i = 1, . . . ,m, and gauging the

diagonal subgroup SU(N)C of SU(N)(1,...,m)
C . We illustrate the case of TN = TN,3 in figure 7.

10This is analogous to the situation that happens when the two T (SU(N)) theories are coupled via a
diagonal gauging. The resulting 3d ‘theory’ formally has two SU(N) symmetries, but in fact acts as a ‘delta
function’ forcing the two sets of background fields coupled to two SU(N) symmetries to be the same, i.e. it
is the diagonal Dirichlet boundary condition. In fact this is exactly the case m = 2 in the discussion in the
main text.
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TN = 0

S

S

S

Figure 7. The 3d mirror of the TN theory is obtained by taking three copies of T (SU(N)) theory
and gauge its diagonal SU(N) symmetry. The circle with zero in it symbolizes the gauging with
zero Chern-Simons level, i.e. the N = 4 gauging.

The genus-g version is known to be obtained simply by adding g adjoint hypermultiplets
when we gauge SU(N)C . We denote the resulting theory by TN,m,g.

We can use this description of the TN,m,g theory to derive our crucial chiral ring
relation (2.13), using some basic properties of the T (SU(N)) theory. Denote the moment
map fields of its SU(N)H and SU(N)C flavor symmetries by µH and µC respectively. Let
us couple T (SU(N)) with adjoint scalar fields ΦC , ΦH via

W = tr ΦHµC + tr ΦCµH . (3.4)

Then the following crucial chiral ring relations:

tr(ΦH)n = tr(µH)n, tr(ΦC)n = tr(µC)n (3.5)

are satisfied for arbitrary n.
One way to derive these relations is to realize the T (SU(N)) theory as 4d N = 4 super-

Yang-Mills on a segment with suitable boundary conditions, as in [36]. The undeformed
T (SU(N)) theory is known to be the S-dual of the Nahm pole boundary condition

φ(x) ∼ ν

x
(3.6)

where x is the distance to the boundary, ν is the principal nilpotent element in su(N), and
∼ denotes that the two are conjugate. As φ(x) at the other boundary x = x0 is identified
with µH , we see that tr(µH)n = 0 for all n.

A nonzero diagonalizable ΦH is known to deform this Nahm pole boundary condition
to the form

φ(x) ∼ ΦH + ν ′

x
, (3.7)

where ν ′ is now the principal nilpotent element in the commutant of ΦH in su(N). From
this we see tr(ΦH)n = tr(µH)n for all n. The equation tr(ΦC)n = tr(µC)n follows per-
fectly analogously.

With this property of the T (SU(N)) theory in hand, it is a simple matter to derive the
chiral ring relation (2.13). The TN,m theory is given by taking m copies of the T (SU(N))
theory and coupling them to a single N = 4 SU(N) vector multiplet, with the superpotential

W =
∑
i

tr Φµ(i)
C , (3.8)
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where Φ is now dynamical. This immediately implies

tr(µ(i)
H )k = tr Φk, (3.9)

independent of i for all k. As µ(i)
H are identified as the moment map field µi of the i-th

SU(N) of the TN,m theory, we derived (2.13), that is,

tr(µi)2 is independent of i. (3.10)

Dehn fillings. To complete our description of the basic operations, let us briefly discuss
how to perform the Dehn fillings of a torus boundary. Geometrically, it is done by pasting
S1×D2 along the torus boundary. We can associate multiple 3d theories to S1×D2 related
by SL(2,Z) operations depending on the choice of a basis of H1(T 2,Z) at its boundary.
Equivalently, these are obtained by pasting S1 × D2 and S1 × (D2 with a full puncture)
with SL(2,Z) operations along their torus boundaries.

These are the special m = 1 case of what we just discussed above. In particular, when
the SL(2,Z) operation is trivial, the 3d manifold is S1 × S2 with a full puncture wrapping
S1, and the associated theory is T (SU(N)) with one of its SU(N) symmetry gauged. This
is the TN,1 theory. In contrast, when we use the S operation, the 3d manifold is S3, with a
full puncture wrapping a circle fiber of its Hopf fibration. This is a rather degenerate setup,
and simply gives a free boundary condition to the background fields of the SU(N) flavor
symmetry supported on the puncture.

In the language of the electric/magnetic 1-cycle chosen at the torus boundary, this means
that filling in the magnetic cycle is simply done by gauging the SU(N) flavor symmetry
with an N = 4 vector multiplet, and that filling in the electric cycle is done by coupling it
to the TN,1 theory, again via an N = 4 SU(N) vector multiplet.

3.3 Main examples from geometry

As an example, let us consider the 3d theory associated to a Seifert bundle over S2 with
three singular fibers, with Seifert parameters 1/k1,2,3, respectively. This manifold is obtained
by first considering S1 times S2 with three holes whose boundaries we denote by C1,2,3, and
Dehn-filling three torus boundaries by filling the direction F + kiCi where F is the fiber
S1 direction.

As discussed, the 3d TN theory corresponds to the choice of F as the magnetic 1-cycle
and Ci as the electric 1-cycle. For the solid torus S1 ×D2, we define (perhaps surprisingly)
C ′ = S1 and F ′ = ∂D2. We then specify the gluing in terms of the SL(2,Z) matrix g

appearing in the relation
(C,F )g = (C ′, F ′). (3.11)

This somewhat peculiar convention of ours is designed so that the Dehn filling with the
identity element 1 ∈ SL(2,Z) is done by a simple gauging of the SU(N) flavor symmetry.11

11Note that in 4d N = 2 class S constructions, a simple gauging of the SU(N) flavor symmetry associated
to a full puncture without coupling to another sector corresponds to converting the full puncture to an
irregular puncture of an appropriate type. Its S1 compactification does not directly equal the Dehn filling
with g = 1 discussed here.
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Figure 8. The 3d theory associated to the Seifert bundle over S2 with three singular fibers. For
the notation, see the main text.

In our case we have g = T ki , which simply adds the level ki Chern-Simons coupling. This
means that the resulting 3d theory is the TN theory whose three SU(N) flavor symmetries
are gauged with 3d N = 3 Chern-Simons coupling ki.

Another description is as follows. We need to perform Dehn fillings at the three torus
boundaries. Our choice of the Seifert parameters means that at the i-th boundary, we
perform the SL(2,Z) operation T kiS, before gluing in the TN,1 theory. As the TN,1 theory
is itself the T (SU(N)) theory with SU(N)C gauged, two S operations cancel, and we end
up simply gauging the i-th SU(N) flavor symmetry of the TN theory with the N = 3
Chern-Simons term with the level ki.

More generally, when the Seifert parameters are qi/pi, one needs to perform an appro-
priate SL(2,Z) transformation to bring the cycle qiF + piCi to be shrunk into the magnetic
1-cycle. This can be done by the transformation

g = T k
(1)
ST k

(2)
S · · ·ST k(a−1)

ST k
(a) (3.12)

where the Chern-Simons levels k(t) for t = 1, 2, . . . , a is given by a continued fraction
expansion of the Seifert parameters, i.e. by

q

p
= 1

k(1) − 1

k(2) − 1
k(3) − · · ·

. (3.13)

Note that we dropped the subscript i to specify the singular fiber considered, to lighten the
notation somewhat.

Summarizing, we see that the 3d theory obtained from the Seifert bundle over S2

with three punctures with parameters qi/pi has the form given in figure 8. There, a circle
enclosing k denotes an N = 3 Chern-Simons vector multiplet with level k, a hexagon is the
3d TN theory, and a box with an S denotes the 3d T (SU(N)) theory. This is a well-known
result [19, 24, 27, 32, 33, 54], although the generic presence of N = 3 supersymmetry was
not explicitly remarked in those papers.

In the simplest case when qi/pi = 1/ki, these are exactly the theories considered in
section 2.2.1, where we saw that the supersymmetry enhances to N = 4 when 1/k1 + 1/k2 +
1/k3 = 0. Our question now is whether we can understand this enhancement geometrically.

– 18 –



J
H
E
P
0
3
(
2
0
2
3
)
1
7
0

To study this question, we need to come back to a general question on how the geometry
determines the amount of supersymmetries preserved.

3.4 Number of supersymmetries from the geometry

The 6d theory on M5-branes has the R-symmetry Sp(2)R ' SO(5)R. A generic 3-manifold
M has holonomies in SO(3). We can turn the R-symmetry background on M , by embedding
the SO(3) spin connection into the R-symmetry by

SO(3) ⊂ SO(3)× SO(2) ⊂ SO(5)R. (3.14)

A short computation reveals that two supercharges remain, realizing 3d N = 2 supersym-
metry.12

As another example, let us suppose the 3-manifold M is a product S1 × Σ. As is
well-known, M5-branes on Σ give a 4d N = 2 theory, and a further compactification on S1

gives a 3d N = 4 theory. More generally, any 3-manifold M whose holonomies are in SO(2)
gives rise to a 3d N = 4 theory. Indeed, we can turn the R-symmetry background on M by
embedding the SO(2) spin connection to the R-symmetry by

SO(2) ⊂ SO(5)R. (3.15)

Again a short computation reveals that four supercharges remain, realizing 3d N = 4
supersymmetry.

Therefore, a way to look for the cause of the N = 4 enhancements is to study when a
3-manifold has a reduced holonomy in SO(2). A simple result which is crucial to us is the
following statement:

Theorem. A Seifert manifold of type (g; q1/p1, . . . , qm/pm) in our notation is, unless
g = 0 and m < 3, an order-n quotient of an S1 fibration over a Riemann surface Σ,
where n = lcm {pi} and the first Chern class of the S1 fibration is n

∑
qi/pi. The

quotient is given by an order-n isometry of Σ combined with a 1/n rotation of the fiber.

This theorem follows from e.g. Lemma 3.7 of [56], where the same statement is proved
except that the quotient can be taken to be an isometry. That the quotient can be taken to
be an isometry follows by first considering an arbitrary metric and then averaging it over
the quotient group.

Now, this theorem in particular implies that a Seifert manifold of type
(g; q1/p1, . . . , qk/pk) is an order-n quotient of a trivial product Σ× S1 when ∑i qi/pi = 0.
As the quotient process in this case does not affect the holonomy group SO(2), we see that
the 3d theories associated to this class of Seifert manifolds should have an enhanced N = 4
supersymmetry when ∑i qi/pi = 0.

This gives a geometric explanation of the N = 4 supersymmetry of the theories we
introduced in section 2.2.1, namely the TN theory gauged with SU(N)3 with levels k1,2,3

12There is another way to embed SO(3) into SO(5), namely SO(3) ⊂ SO(3)× SO(3) ⊂ SO(4) ⊂ SO(5) (at
the level of the Lie algebra). This alternative twist preserves only 3d N = 1 supersymmetry.
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µ k(1) S k(2) S S k(a) µ′

Figure 9. A single chain of T (SU(N)) theories coupled by N = 3 Chern-Simons multiplets.

when 1/k1 + 1/k2 + 1/k3 = 0. This is because, as we saw in the subsection above, they come
from Seifert manifolds of type (0; 1/k1, 1/k2, 1/k3). This analysis can be easily generalized
to the TN,m,g theory whose SU(N)m symmetry is gauged with Chern-Simons levels ki. It
enhances to N = 4 when ∑ 1/ki = 0. This agrees with the geometric theorem quoted above,
since the corresponding Seifert manifold is of type (g; 1/ki).

Our geometric analysis also predicts that the 3d theories given in section 3.3 should
have an enhanced N = 4 supersymmetry when ∑ qi/pi = 0. This is the task we would like
to investigate next. Before that, we need to establish a field-theoretical result first.

3.5 A field-theoretical interlude

3.5.1 The statement to be established

To analyze the theory depicted in figure 8, the part essential to us is the chain structure
shown in figure 9 implementing an SL(2,Z) transformation g. There, the lines connecting to
µ and µ′ on the extreme left and right signify that the first and the last N = 3 Chern-Simons
multiplets also couple to these complex adjoint scalar fields, and the Chern-Simons levels
k(i) are determined in terms of the continued fraction expansion

q

p
= 1

k(1) − 1

k(2) − 1
k(3) − · · ·

(3.16)

as before. We note that g has the form

g = T k
(1)
ST k

(2)
S · · ·ST k(a) =

(
q′ p

r q

)
(3.17)

where
q′

p
= 1

k(a) − 1

k(a−1) − 1
k(a−2) − · · ·

. (3.18)

Let us denote by µ(i)
C,H the Coulomb-branch and Higgs-branch moment map fields of

the i-th T (SU(N)) theory, and by Φ(i) the adjoint scalar of the i-th Chern-Simons multiplet.
The superpotential is then given by

W =
a∑
i=1

(
trµ(i−1)

H Φ(i) − k(i)

2 tr(Φ(i))2 + tr Φ(i)µ
(i)
C

)
(3.19)

where µ(0)
H := µ and µ(a)

C := µ′.
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We now show the following statement inductively in terms of the length a of the
chain:

Statement. The effective superpotential is equivalent to

W = 1
2
q

p
trµ2 +

a∑
i=1

c(i) trµ(i−1)
H µ

(i)
C + 1

2
q′

p
tr(µ′)2, (3.20)

after eliminating Φ(j). Here, c(i) are certain constants satisfying∏
c(i) = 1/p. (3.21)

Those readers who are not interested in the (rather technical) derivation can skip to the
beginning of the next section 3.6.

3.5.2 A lemma and a corollary

Before we start the derivation of the statement above, we need the following lemma:

Lemma. For a single T (SU(N)) theory, the deformation

W = tr ΦµC + trµHΦ′ + a

2 tr(µH)2, (3.22)

and the deformation
W = a

2 tr Φ2 + tr ΦµC + trµHΦ′ (3.23)

are equivalent at finite nonzero a, where Φ and Φ′ are background superfields.

To show this, we consider how the chiral ring relation at a = 0,

tr Φ2 = tr(µH)2 (3.24)

which we already recalled at (3.5), would be deformed under the first deformation (3.22) at
nonzero a. We assign N = 2 R-charge +1 to Φ, Φ′, µC,H ; we also assign the J34 charge
+1 to Φ, µH and −1 to Φ′, µC . Then a has the R-charge 0 and the J34-charge −2. As the
equation has the R-charge 2 and the J34-charge 2, the only term one can write is a−2 times a
quadratic combination of Φ′ and µC . This is forbidden, since the chiral ring relation should
be continuous at a = 0. This establishes that the relation (3.24) holds unchanged under
the deformation (3.22) at finite a. This means that the deformation (3.22) is equivalent to

W = ε

2 tr Φ2 + tr ΦµC + trµHΦ′ + 1
2(a− ε) tr(µH)2 (3.25)

for an infinitesimal ε. This implies that it is further equivalent to (3.23) and concludes the
derivation of the lemma.

Let us now add a term tr Φ̃Φ− k
2 tr Φ2 to both (3.22) and (3.23), integrate out Φ, and

replace the resulting Φ̃ by Φ since the original Φ no longer appears. We immediately obtain
the following corollary:
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Corollary. For a single T (SU(N)) theory, the deformation

W ′ = 1
2k tr(Φ + µC)2 + a

2 tr(µH)2 + trµHΦ′ (3.26)

and
W ′ = 1

2(k − a) tr(Φ + µC)2 + trµHΦ′ (3.27)

are equivalent at finite nonzero a and k, where Φ and Φ′ are background superfields.

We note that the lemma and the corollary only guarantee that the two deformations
are equivalent up to D̄α̇-exact terms. In the case we encounter below, Φ and Φ′ are either
chiral primaries from SCFTs other than the T (SU(N)) theory in question. Therefore, the
D̄α̇-exact terms are actually absent. The same can also be said when we actually use the
corollary.

3.5.3 Derivation

Let us begin the derivation of the statement itself. The case when the length is 1 is
immediate. Let us then assume that this statement has been shown up to the length a− 1.
We see that the superpotential is equivalent to

W = 1
2k(1) tr(µ+ µ

(1)
C )2 + 1

2
q̃

p̃
tr(µ(1)

H )2 +
a∑
i=2

c(i) trµ(i−1)
H µ

(i)
C + 1

2
q̃′

p̃
tr(µ′)2 (3.28)

where
g̃ = T k

(2)
S · · ·ST k(a) =

(
q̃′ p̃

r̃ q̃

)
. (3.29)

Applying the corollary above, we can rewrite W as

W = 1
2
q

p
tr(µ+ µ

(1)
C )2 +

a∑
i=2

c(i) trµ(i−1)
H µ

(i)
C + 1

2
q̃′

p̃
tr(µ′)2 (3.30)

where we used p/q = k(1) − q̃/p̃. We now repeatedly use the lemma applied to the i-th
T (SU(N)) theory, and perform the following replacement of the superpotential deformations:

tr(µ(i)
C )2 ↔ (c(i+1))2 tr(µ(i+1)

C )2. (3.31)

More explicitly, we do the exchanges

1
2
q

p
tr(µ(1)

C )2 ↔ 1
2
q

p
(c(2))2 tr(µ(2)

C )2 ↔ 1
2
q

p
(c(2)c(3))2 tr(µ(3)

C )2

↔ · · · ↔ 1
2
q

p

(
a∏
i=2

c(a)
)2

tr(µ′)2 = 1
2
q

p

1
p̃2 tr(µ′)2 (3.32)

where we used the inductive assumption in the last equality. This allows us to rewrite (3.30)
further to

W = 1
2
q

p
trµ2 + q

p
trµµ(1)

C +
a∑
i=2

c(i) trµ(i−1)
H µ

(i)
C + 1

2

(
q

p

1
p̃2 + q̃′

p̃

)
tr(µ′)2. (3.33)
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As (
q′ p

r q

)
= T k

(1)
S

(
q̃′ p̃

r̃ q̃

)
, (3.34)

we have
q = p̃, r = q̃′. (3.35)

Using these relations, we finally find that

W = 1
2
q

p
trµ2 +

a∑
i=1

c(i) trµ(i−1)
H µ

(i)
C + 1

2
q′

p
tr(µ′)2, (3.36)

with
a∏
i=1

c(i) = 1/p, (3.37)

which is exactly the property we wanted to demonstrate for the length a chain.13 We make
a further remark on the SL(2,Z) duality wall theory in appendix C, using the Statement
established above.

3.6 Supersymmetry enhancements accounted for by holonomy

We now analyze the structure of the theory shown in figure 8. Namely, we take three tails of
the form discussed in (3.20), and couple them to a TN theory. After eliminating the adjoint
scalars in the N = 3 Chern-Simons multiplets, we have the superpotential of the form

W = 1
2
q1
p1

tr(µ1)2 + q1
p1

trµ1µ
(1)
1,C +

a1−1∑
i=2

c
(i)
1 trµ(i−1)

1,H µ
(i)
1,C

+ 1
2
q2
p2

tr(µ2)2 + q2
p2

trµ2µ
(1)
2,C +

a2−1∑
i=2

c
(i)
2 trµ(i−1)

2,H µ
(i)
2,C

+ 1
2
q3
p3

tr(µ3)2 + q3
p3

trµ3µ
(1)
2,C +

a3−1∑
i=2

c
(i)
3 trµ(i−1)

3,H µ
(i)
3,C .

(3.38)

Using tr(µ1)2 = tr(µ2)2 = tr(µ3)2, we find that the superpotential simplifies further when

q1
p1

+ q2
p2

+ q3
p3

= 0 (3.39)

13Note that the constants c(i) apparently depends on the order of the integrating-out of Φ(i). For
example, when we integrate out Φ(a) first and Φ(1) last, c(i) = 1/(k(i) − 1/(k(i+1) − · · · )), whereas when
we integrate out Φ(1) first and Φ(a) last, we obtain c̃(i) = 1/(k(i) − 1/(k(i−1) − · · · )) instead. We still have∏
c(i) =

∏
c̃(i) = 1/p, and indeed that is the only invariant information in the effective superpotential

W . This is because the i-th T (SU(N)) theory has the symmetry J
(i)
34 , under which µ

(i)
C has charge

−2 and µ
(i)
H has charge +2. This allows us to rescale (c(i), c(i+1)) 7→ (c(i)/s(i), s(i)c(i+1)) for each i,

under which the only invariant combination is
∏
c(i). YT thanks discussions over Twitter on this point,

notably https://twitter.com/Coo_Butsukou/status/1549638950897483776, https://twitter.com/END_OF_
PAIOTU/status/1549655415860101125, https://twitter.com/mathraphsody/status/1549655393735176194.
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to

W = q1
p1

trµ1µ
(1)
1,C +

a1−1∑
i=2

c
(i)
1 trµ(i−1)

1,H µ
(i)
1,C

+ q2
p2

trµ2µ
(1)
2,C +

a2−1∑
i=2

c
(i)
2 trµ(i−1)

2,H µ
(i)
2,C

+ q3
p3

trµ3µ
(1)
2,C +

a3−1∑
i=2

c
(i)
3 trµ(i−1)

3,H µ
(i)
3,C .

(3.40)

We now consider the R-charge J34 of the N = 4 system of one TN theory and many
copies of T (SU(N)) theory before the coupling to N = 3 Chern-Simons multiplets. This
assigns charge +2 to the moment map fields on the Higgs branch side, and to −2 to those
on the Coulomb branch side. Our final superpotential (3.40) when the condition (3.39) is
satisfied preserves J34, and therefore the supersymmetry of the gauged theory enhances to
N = 4 when the condition (3.39) is satisfied.

It is clear that this analysis can be extended to the 3d theories associated to Seifert
manifolds of type (g; qi/pi). All what is needed is to replace the TN theory with the TN,m,g
theory, which has moment map fields µi for i = 1, . . . ,m such that tr(µi)2 is independent
of i. Then, the effective superpotential after eliminating adjoint chiral superfields preserves
J34 if and only if ∑ qi/pi = 0, showing N = 4 enhancements. This is in accord with the
geometric criterion we quoted in section 3.4.

3.7 Supersymmetry enhancements unaccounted for by holonomy

Let now briefly come back to the theories we discussed in section 2.2.2, shown in figure 2
and in figure 3. These theories are obtained by taking copies of 3d TN theories and coupling
them via N = 3 Chern-Simons multiplets.

According to our discussion in section 3.2, such theories come from the compactification
of N M5-branes on a 3-manifold, since the TN theory comes from N M5-branes on S1 times
a sphere with three holes, and coupling them via N = 3 Chern-Simons multiplets can be
realized by gluing them via appropriate T transformations. For example, the theory shown
in figure 2 comes from the geometry shown in figure 10. Here it would be useful to recall
our convention for the SL(2,Z) transformation. On the i-th boundary, we call F the S1

fiber and C the boundary on the base surface. Let (C,F ) be these 1-cycles on the left hand
side and (C ′, F ′) be defined analogously on the right hand side. Then we have

(C,F )g = (C ′, F ′). (3.41)

We saw in section 2.2.2 that these theories have an enhanced N = 4 supersymmetry
when 1

k1
+ 1
k2

+ 1
k3

= 0 (3.42)

The holonomy of the manifold stays the generic SO(3) even when the condition (3.42) is
satisfied. An argument for this is as follows.14 First of all we recall that SO(2) holonomy is

14The authors are grateful to Bruno Martelli for providing to us the arguments in this paragraph and
the next.
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T k1

T k2

T k3

Figure 10. A geometry generating the theory given in figure 2.

equivalent to the existence of a covariantly constant vector field; by [63, Th. 3], a compact
manifold with such a vector is covered by S1 ×Σ. But now we argue that a graph manifold
which is not Seifert cannot be covered by a Seifert (such as S1 × Σ). Given a covering
M̃ → M , if M̃ is modelled on one of the eight Thurston geometries (mentioned at the
beginning of this section), then M is also modelled on the same geometry [50, Cor. 12.9.5].
In particular, if M̃ = S1×Σ covers a manifold M , then M has the same geometry of S1×Σ,
and so in particular it is Seifert.

What is left to be shown is that our graph manifold, shown in figure 10, is not a Seifert
manifold in disguise. For Seifert manifolds, every essential surface is either horizontal or
vertical with respect to the fibration [50, Proposition 10.4.9]. Now, each of the three T 2

where we glue two parts is an essential torus. If the whole manifold were a Seifert, each
of these tori would be either horizontal or vertical with respect to the fibration. If it is
vertical, then the two fibrations on the two pieces glue well along these T 2, which is true
only when k1 = k2 = k3 = 0. If it is horizontal, the fibers need to lie in intervals in the two
pieces. But this is impossible, because if it is horizontal then its complement is a simple
R-bundle, which is not the case.

As a consequence, our graph manifold has SO(3) holonomy; geometrically we would
then only expect N = 2 supersymmetry, leaving the supersymmetry enhancement unac-
counted for.

We can make a further generalization by using a general SL(2,Z) element gi instead
of T ki in figure 10, as shown in figure 11, whose field-theoretical realization is given in
figure 12. There, we used the two versions, one using two copies of the TN theory and
another using their 3d mirror descriptions, as discussed in section 3.2.3 and in figure 7.

To analyze the enhancement of supersymmetry, we can use the N = 2 superpoten-
tial (3.20) of the duality wall theory realizing an arbitrary g ∈ SL(2,Z). Writing

gi =
(
q′i pi
ri qi

)
, (3.43)

and using our convention (3.41), we see that the boundary 1-cycles are pasted such that
F ′ = piC + qiF and F = −piC ′ + q′iF

′. It should be by now easy for the reader to see that
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Figure 11. A further generalization of figure 10.
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Figure 12. The 3d theory associated to the 3-manifold given in figure 11. The second one is
obtained by applying the 3d mirror symmetries to the two TN theories involved.

the supersymmetry enhances when both the following relations

q1
p1

+ q2
p2

+ q3
p3

= 0, q′1
p1

+ q′2
p2

+ q′3
p3

= 0 (3.44)

are satisfied. For example, in the second description in figure 12, we use the fact that the
duality wall theory implementing ĝi = ST k

(1)
i S · · ·ST k

(ai)
i S has an induced background

Chern-Simons terms with the coupling

1
2
q

p
tr Φ2 (3.45)

for the first SU(N) symmetry. This follows easily from our analysis in section 3.5 and
the Statement there; we also have a few more comments on it in appendix C. Therefore,
the SU(N) gauging on the far left in the second description in figure 12 has an induced
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Figure 13. A further generalization of figure 11. Every link e represents a coupling of two TN

theories by a superpotential of the form (3.20), corresponding to a g ∈ SL(2,Z) as in (3.17).

N = 3 Chern-Simons coupling whose coefficient is q1/p1 + q2/p2 + q3/p3, and allows N = 4
enhancement if this combination vanishes.

Our final generalization is to use a general bipartite graph whose edge is labeled by
SL(2,Z) elements, as shown in figure 13. This class of 3-manifolds (without the bipartite
assumption) is known as graph manifolds. As a 3d theory, it generalizes the theories we
discussed figure 3 in section 2.2.2. For each edge e, define pe, qe, q′e analogously using the
associated SL(2,Z) transformation ge. Then, the supersymmetry enhances if at each black
node v, the sum of qe/pe of edges e connecting to v vanishes, and at each white node v, the
sum of q′e/pe of edges e connecting to v vanishes.

In appendix A, we study the homology groups of these manifolds, where we find some
hints that something is going on when the conditions (3.42) or (3.44) are met. In appendix B,
we study a more general supergravity backgrounds on these manifolds, and again we find
some hints that something is going on on this class of manifolds. But in neither appendices
we could find definitive evidence from geometry that the supersymmetry would enhance.

There are other cases of field-theoretical N = 4 enhancements which are unaccounted
for from geometry. As in section 2.2.1, consider the TN,n theory whose i-th SU(N) flavor
symmetry is gauged with the Chern-Simons level ki. We now allow some of ki to be zero.
The field theoretical analysis can be repeated, and we find that the supersymmetry enhances
to N = 4 if ∑

ki 6=0

1
ki

= 0. (3.46)

The corresponding 3d manifolds can still be obtained by Dehn fillings, but are not Seifert
manifolds, which do not allow ki = 0. The mathematical theorem quoted in section 3.4
does not apply, and therefore the N = 4 enhancments are unaccounted for geometrically.

Finally, we should mention that there is a bigger problem behind these N = 4 enhance-
ments, in a certain sense. From the construction explained in section 3.2, it is clear that all
theories obtained from gluing Seifert manifolds along T 2 boundaries have N = 3 supersym-
metry, since they are obtained by combining copies of N = 4 TN theories, and performing
SL(2,Z) transformations, which uses only copies of N = 4 T (SU(N)) theories and N = 3
Chern-Simons multiplets. That said, such geometries would have SO(3) holonomy, and we
only expect N = 2 supersymmetry in these cases. Therefore, this generic enhancement to
N = 3 is similarly unaccounted for by holonomy.
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A Homology

Here we will compute the dimension of the homology of the spaces we consider in the main
text, showing that it displays jumping phenomena similar to the ones we found from a
physics point of view. While we are not aware of a direct connection between the two, we
think this parallel behavior is rather suggestive and might have a deeper significance.

In general, if we write our space M as a union of two X1 and X2, the homology groups
are related by the Mayer-Vietoris exact sequence

. . .→ Hk+1(M)→ Hk(X1 ∩X2)→ Hk(X1)⊕Hk(X2)→ Hk(M)→ . . . . (A.1)

As usual, this means that the image of each map is equal to the kernel of the one that
follows. The first map in this sequence is a restriction, the others are natural inclusions. As
we will see in the examples, the intuitive understanding is that every cycle in Hk(M) is
either realized by gluing two cycles in X1 and X2, or comes from one on X1 ∩X2.

Seifert manifolds. Our first application is to Seifert manifolds. Here we actually know
already from section 3.4 that the topology changes in correspondence to the enhancement
predicted by field theory; we include this discussion as a warm-up. For simplicity we
consider the manifold corresponding to the theory in figure 1. Following our description
in section 3.3, this is obtained from S1 × S2 by cutting three S1 ×D2

i and gluing them to
S1 × (D2)′i after a T ki ∈ SL(2,Z) transformation. In the convention of (3.11),

Ci = C ′i , Fi = F ′i − kiC ′i (A.2)

(with no sum over i). Now take X1 = S1 × (S2 − ∪iD2
i ), and X2 = S1 × ∪i(D2)′i. We can

compute some of the homology groups in (A.1) right away:

• The homology groups of X1 are: H0 = Z; H1 = Z3 (with generators C1, C2, F );
H2(X1) = Z2 (with generators C1×F , C2×F ). Notice that the boundary C3 = ∂D2

3
of the third disk is homologous to −C1 − C2 on X1, and that the Fi are all in the
same homology class, which we simply call F .

• Each S1 × (D2)′i has H0 = Z, H1 = Z (generated by the fiber C ′i), and H2 = 0.
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• Finally, X1 ∩X2 consists of three copies of T 2, each of which has H0 = Z, H1 = Z2

(whose generators we call bi, fi), H2 = Z (generated by fi × bi, no sum).

The sequence (A.1) now reads

0→ H3(M)→ Z3 → Z2 → H2(M)→ Z6 φ→ Z6 → H1(M)→ Z3 → Z4 → H0(M)→ 0 .
(A.3)

Using exactness of the sequence at every step and knowing H0(M) = H3(M) = Z, we find

h1(M) = h2(M) = dim(kerφ) , (A.4)

where hk = dim(Hk). (As we said at the beginning, we focus on the dimension over Z,
ignoring possible “torsion” terms, summands of the type Zm.)

The map f : H1(X1 ∩ X2) → H1(X1) ⊕ H1(X2) can be found as follows. We take
H1(X1 ∩X2)→ H1(X1) to be induced by the natural inclusion X1 ∩X2 ⊂ X1: so the fi
are all mapped on X1 to the Fi ∼ F , and the bi are mapped to ∂D2

1 = C1, ∂D2
2 = C2,

∂D2
3 = −C1 − C2. We now recall (A.2); since the disk boundaries F ′i are in fact trivial in

X2, we have fi = kiC
′
i, bi = −C ′i. All in all this gives the matrix

φ =



1 0 1 0 1 0
0 1 0 0 0 −1
0 0 0 1 0 −1
k1 −1 0 0 0 0
0 0 k2 −1 0 0
0 0 0 0 k3 −1


. (A.5)

• For generic ki, φ is non-degenerate, so (A.4) gives h1(M) = h2(M) = 0.

• When the condition ∑i 1/ki = 0 is satisfied, the vector (−1/k1, 1,−1/k2, 1,−1/k3, 1)
is in the kernel and φ has rank 5. So h1(M) = h2(M) = 1.

As expected, the homology dimensions jump when (2.11) is satisfied.
We can generalize this example replacing T ki by arbitrary elements gi; in the convention

of (3.17), the (ki,−1) in the lower half of (A.5) are replaced by (pi,−qi). Again φ is
generically non-degenerate, but has rank 5 when ∑i qi/pi = 0, with a kernel spanned by(

q1
p1
, 1, q2

p2
, 1, q3

p3
, 1
)

; (A.6)

in the latter case h1(M) = h2(M) = 1.
The further generalization to a larger number K of singular fibers is straightforward;

while the determinant becomes harder to compute, the generalization (q1/p1, 1, . . . , qK/pK , 1)
of (A.6) is still correct.

Two-node graph manifold. We now consider the case of graph manifolds. This is more
interesting, in the sense that here we have not yet identified a geometrical counterpart of
enhancement.
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We again begin with an example: the case in figure 10. Again X1 = S1 × (S2 − ∪iD2
i ),

but now we glue it to a second copy X2 = S1 × (S2 − ∪i(D2)′i). On each tube, the
identification is given by (3.41) with gi = T ki :

F ′i = Fi + kiCi , C ′i = Ci . (A.7)

The homology groups of X1 and X2 are the same as that of X1 in the previous Seifert
example. Also X1 ∩X2 is the same as in the previous example. (A.1) now reads

0→ H3(M)→ Z3 → Z4 → H2(M)→ Z6 φ→ Z6 → H1(M)→ Z3 → Z2 → H0(M)→ 0 .
(A.8)

Exactness of the sequence now implies

h1(M) = h2(M) = 2 + dim(kerφ) . (A.9)

Intuitively, the 2 one-cycles in h1 correspond to the image of the map H1(M)→ H0(X1 ∩
X2) = Z3: in other words, these cycles intersect X1 ∩X2. When ki = 0 and X = S1×Σg=2,
these are the A-cycles of the genus-2 Riemann surface Σg=2. The additional dim(kerφ)
one-cycles correspond to the image of the map H1(X1) ⊕H1(X2) = Z6 → H1(M): they
come from one-cycles of the two halves. When ki = 0, these are the B-cycles of Σg=2, plus
the S1 fiber.

To find φ, we can embed the generators of H1(X1∩X2) into those of H1(M) in the same
way as in the previous Seifert case; so the upper half of the matrix should be identical to
those of (A.5). But the way we embed them in H2(M) is now dictated by (A.7), leading to

φ =



1 0 1 0 1 0
0 1 0 0 0 −1
0 0 0 1 0 −1
1 0 1 0 1 0
k1 1 0 0 −k3 −1
0 0 k2 1 −k3 −1


. (A.10)

• If the ki are generic, dim(kerφ) = 1 (generated by (0, 1, 0, 1, 0, 1)), and h1 = h2 = 3.

• If ∑i 1/ki = 0, dim(kerφ) = 2 (with additional generator (1/k1, 0, 1/k2, 0, 1/k3, 0)),
and h1 = h2 = 4.

• If ki = 0, dim(kerφ) = 3, and h1 = h2 = 5; this is the S1 × Σg=2 case we mentioned
earlier.

Thus we see an enhancement of homology when (3.42) is satisfied.
If we generalize the T ki on each node to general gi ∈ SL(2,Z), we obtain the manifold

in figure 11. The relevant matrix is

φ =



1 0 1 0 1 0
0 1 0 0 0 −1
0 0 0 1 0 −1
q′1 −r1 q′2 −r2 q

′
3 −r3

−p1 q1 0 0 p3 −q3
0 0 −p2 q2 p3 −q3


. (A.11)
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Define now the vectors

v1 ≡
( 1
p1
, 0, 1

p2
, 0, 1

p3
, 0
)
, v2 ≡

(
q1
p1
, 1, q2

p2
, 1, q3

p3
, 1
)
. (A.12)

It is easy to see that φv1 = (∑i 1/pi,0,0,
∑
i q
′
i/pi,0,0), and φv2 = (∑i qi/pi,0,0,

∑
i 1/pi,0,0).

• When the gi are totally generic, φ is non-degenerate: h1 = h2 = 2.

• When (∑i
qi
pi

)(∑i
q′i
pi

) = (∑i
1
pi

)2, the vector (∑i qi/pi)v1− (∑i 1/pi)v2 is in the kernel,
so h1 = h2 = 3.

• When ∑i 1/pi = ∑
i qi/pi = ∑

i q
′
i/pi = 0, both v1 and v2 are in the kernel; so

h1 = h2 = 4.

So in this case the correspondence with the field theory analysis isn’t quite as precise, but
the condition (3.44) does appear.

Torus bundles. As a cross-check, we can consider a graph with two nodes and two links
rather than three. We obtain a torus bundle over S1. If we view it as (T 2 × [0, 1])/ ∼ with
an identification (t, 0) ∼ (g.t, 1), t ∈ T 2, then g ∈ SL(2,Z) is related to the g1 and g2 on
the two tubes by g = g1g

−1
2 . We will also consider these spaces in section C.2 and at the

end of section C.3.
The computation in this case is almost identical as in the previous one. We find

h1(M) = h2(M) = 1 + dim(kerφ); we find it easier to use a slightly different convention for
the Ci, such that φ =

( 12 12
g−1

1 g−1
2

)
. Now detφ = 2− Tr(g1g

−1
2 ).

• If Tr(g) > 2, detφ 6= 0, and h1 = 1. Indeed this space is known as Sol: it is a discrete
quotient of a solvable group, whose Lie algebra can be summarized by the Maurer-
Cartan relations de1 = −e1 ∧ e3, de2 = e2 ∧ e3, de3 = 0. Among these left-invariant
one-forms, only e3 is in cohomology. By [9, Thm. 3.11b], the cohomology computed
on left-invariant forms is the same as the de Rham cohomology, so our computation
is correct.

• If Tr(g) = 2, dim(kerφ) = 1, and h1 = 2. Indeed this is an S1-bundle over T 2, so the
two one-forms of the base are in cohomology, that of the fiber is not.

• If Tr(g) < 2, detφ 6= 0, and h1 = 1. This is a quotient of the solvable group with
de1 = e2 ∧ e3, de2 = −e1 ∧ e3, de3 = 0; again only e3 is in cohomology.

General graph manifolds. Consider now a graph manifold based on a general bipartite
graph, as in figure 3 and 13. Here we can take X1 to be the union of the multi-punctured
spheres corresponding to all black nodes, and X2 of the spheres corresponding to white
nodes; let v be the total number of nodes. X1 ∩X2 will be a union of e = #(edges) copies
of S1 × T 2. (A.1) is now

0→H3(M)→Ze→Z2e−v→H2(M)→Z2e φ→Z2e→H1(M)→Ze→Zv→H0(M)→ 0 .
(A.13)
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We obtain h1(M) = h2(M) = e−v+1+dim(kerφ). The properties of φ are similar to those
of (A.10), (A.11) for the two-node graph. For example, when we have T ki transformations
on the links as in figure 3:

• For generic ki, dim(kerφ) = 1, with a single generator (0, 1, . . . , 0, 1).

• When the condition ∑i 1/ki = 0 is satisfied at every node, dim(kerφ) = 2, with an
additional generator (1/k1, 0, . . . , 1/ke, 0).

Some connections to topological properties of graph manifolds. The above results
show that the homology groups are enlarged when certain conditions are met, such as∑
i 1/ki = 0. The conditions found do not match in all cases the ones found for N = 4

enhancement of the associated field theory, however they seem related to some theorems
in [12, 51], which study topologies of graph manifolds (in particular Theorem 4.1 in [51]
and Theorem 4.7 in [12]).

In those works, one constructs an n × n matrix S associated to a graph manifold,
where n is the number of nodes in the graph. In a nutshell, the diagonal elements of S
are (minus) the effective Chern-Simons levels at each node −kv = −∑e:meeting at v

qe

pe
, after

removing the complex chirals Φi as in the main text, and the off-diagonal elements are∑
e:connecting (v1, v2)

1
pe
.

One theorem says that the manifold admits a horizontal surface (i.e. an embedded
surface transverse to a Seifert fiber on a Seifert component of the manifold) if and only if
det(S) = 0. This matches some conditions found above for homology group enlargements,
e.g. the condition (∑i

qi
pi

)(∑i
q′i
pi

) = (∑i
1
pi

)2 in the 2-node case. Another theorem says that
the manifold is a surface bundle over an S1 circle if and only if ker(S) contains a vector
with all elements non-zero. We have not been able to relate this condition to a property of
the gauge theory. It would be desirable to study the connection between these geometric
properties and gauge theory properties further.

B Background supergravity

Since we have no evidence of special holonomy on these spaces, it would be interesting to find
if there is any other geometrical mechanism for the enhancement we see field-theoretically.

Conformal N = (2, 0) supergravity. To see what other geometric structure might be
at play, consider the 6d N = (2, 0) theory on the space Mink3×M . A standard approach [25]
is to couple the theory to background conformal N = (2, 0) supergravity [13].15 To see
how much supersymmetry is preserved, we then have to solve the transformations of the
fermionic fields. For the gravitino:

δψiµ = Dµεi −
1
4T

i
jγµε

j + γµε̃
i . (B.1)

Here Dµ is the derivative covariant with respect to both the spin connection and the
USp(4)R gauge field V i

jµ, i = 1, . . . , 4; T ij = 1
6T

ij
µνργ

µνρ, with T ijµνρ self-dual; εi, ε̃i are the
15See [57] for an analysis of this approach in six dimensions.
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parameters for the Q and S transformations respectively, are chiral and satisfy a symplectic
Majorana condition, (εi)c = εjΩji, with Ω = i12 ⊗ σ2.

SO(2) holonomy. In the case with SO(2) holonomy, we can take the gauge field to
be along an so(2) subalgebra, and εi an eigenvalue of its action: for example V i

jµ =
Aµ(−iσ2 ⊗ 12)ij , and εi = (ζ1, ζ2, iζ1, iζ2)i, so that (Vµε)i = iAµεi. Moreover we take V
to be along M . Now we further decompose along the three external and three internal
directions: γα = γ

(3)
α ⊗ 1⊗ σ1, γm = 1⊗ σm ⊗ σ2. For each 6d spinor we take the Ansatz

ζ = ξ ⊗ η ⊗
(1

0
)

+ c.c., with the last factor taking care of chirality. With all this, one can
check that (B.1) reduces to

DA
mη = 0 , DA

m ≡ Dm − iAm (B.2)

on M . The transformations for the other fermionic field, δχijk , are automatically zero.
A covariantly constant spinor, Dmη = 0, would reduce holonomy to the stabilizer of η,
which is just the identity. But the presence of the so(2) connection means that a spinor
obeying (B.2) reduces holonomy to so(2); this is usually called a twist.

So our Ansatz solves the supersymmetry equations on any M of reduced holonomy.
Moreover, given that ξ can be any Dirac spinor on Mink3 and that we had two possible ζ,
we are preserving a total of eight supercharges, or N = 4, as expected.

As a simple example, consider the T 2-bundles, which we also discuss in C.3. They are
all obtained as (T 2 ×R)/ ∼, with the relation (t, z) ∼ (g.t, z + 1). When g is elliptic, it is a
rotation by an angle α. A chiral spinor η0 on T 2 can be promoted to a spinor on T 2 × R
as usual by viewing the chiral γ = −iγ12 as γz. But the rotation means that the frame
before and after one turn in the z direction do not coincide; correspondingly, the spinor
transforms by η0 → eαγ12/2η0 = eiα/2η0. But the spinor η = e−iαz/2η0 is then well-defined,
and satisfies (B.2) with A = −α/2dz.

Looking for general solutions. A more general analysis is more daunting, but we note
here an interesting feature. Take a warped product ds2

6 = e2Wds2
Mink3

+ ds2
M ; Minkowski

symmetry dictates to again take Dµη and Vµ only along M , and T ij = tij(volMink3 − volM )
in form notation. (B.1) now implies

(T †)ijεj +
(
DV + 3

2∂W
)
ε = 0 , (B.3a)(

DV
m −

1
3γmD

V
)
ε = 0 . (B.3b)

where DV = γmDV
m, ∂W = γm∂mW .

If we now again factorize ζ = ξ⊗η⊗
(1

0
)
+c.c., take V abelian and (Vµε)i = iAµεi, (B.3b)

becomes the (charged) conformal Killing spinor (CKS) equation (DA
m − 1/3γmDA)η = 0 on

M . This was shown in turn [49] to be equivalent to the existence of a so-called transversely
holomorphic foliation (THF): a complex one-form o that is non-degenerate (o ∧ ō 6= 0
everywhere) and such that

do = w ∧ o (B.4)
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S k(1) S k(2) S S k(a) S

Figure 14. An SL(2,Z) wall theory implementing g′ = ST k(1)
S · · ·ST k(a)

S.

for some w. This condition is formally identical to a possible definition of a complex
structure in even dimensions. Indeed there is also an alternative description of a THF in
terms of a (1, 1)-tensor Imn. This structure appears in the study of d = 3 N = 2 theories
on curved spaces [17, 49], and so in a sense it is quite natural to see it appear as well for
compactifications on a three-manifold.

However, the existence of a THF is not enough to guarantee supersymmetry within
this approach: both (B.3) and the remaining supersymmetry transformations δχijk give
further constraints. Moreover, while Seifert manifolds and torus bundles with hyperbolic
g ∈ SL(2,Z) admit a THF, the rest of the spaces we considered in this paper do not. (THFs
are classified in [11, 28].) So it is likely that we need to go back to (B.3b), which more
generally looks like a non-Abelian generalization of the charged CKS equation. We hope to
return to this in the future.

C More on the SL(2,Z) duality wall theory

In this appendix, we make a further remark on the SL(2,Z) duality wall theory, using the
analysis of the superpotential performed in section 3.5.

C.1 Effective superpotential and the induced Chern-Simons couplings

In section 3.5, we analyzed a theory associated to figure 9. Here we are more interested in
the duality wall theory itself, shown in figure 14, obtained by further coupling the T (SU(N))
theory on both ends, implementing the transformation

ĝ = ST k
(1)
S · · ·ST k(a)

S. (C.1)

It is easy to derive the effective superpotential of this theory from the Statement and
the Lemma established in section 3.5; we have

W = 1
2
q

p
tr Φ2 + tr Φµ(0)

C +
a∑
i=1

c(i) trµ(i−1)
H µ

(i)
C + trµ(a)

H Φ′ + 1
2
q′

p
tr(Φ′)2, (C.2)

where Φ and Φ′ are the adjoint chiral superfields in the background vector multiplets coupled
to the two SU(N) flavor symmetries. We can also establish the chiral ring relations

tr(µ(0)
C )2 = 1

p2 tr(Φ′)2, tr(µ(a)
H )2 = 1

p2 tr(Φ)2. (C.3)

This superpotential preserves the symmetry J34, except for the purely background
terms proportional to tr Φ2 and tr(Φ′)2. Therefore, these SL(2,Z) wall theories are N = 4
supersymmetric if we do not couple them to SU(N) background fields.
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The coefficients of tr Φ2 and tr(Φ′)2 are related by N = 3 supersymmetry to the contact
terms of the current-current two-point functions, or equivalently the coefficients of the
background Chern-Simons terms, which can be computed by localization on S3 [15, 16].
Let us perform this computation, which gives a nice consistency check of our superpotential
manipulation in section 3.5.

We base our computation on the S3 partition function of the T (SU(N)) theory, which
has the form [10, 52]

ZT (SU(N))(s, s′) =
∑
w∈W

(−1)we2πisw(s′)

∆(s)∆(s′) (C.4)

where s, s′ ∈ RN−1 are the real scalar fields in the background N = 2 vector multiplet of
two SU(N) flavor symmetries, W = SN is the Weyl group, and ∆(s) is the measure factor
appearing in the contribution of the vector multiplet, which is

1
N !∆(s)2dN−1s. (C.5)

The Chern-Simons contribution of level k is in turn given by

eπis2
. (C.6)

Then the partition function of the duality wall theory implementing ĝ given in (C.1) is
easily seen to be

Zĝ(s, s′) =
∑
w∈W

(−1)w
∆(s)∆(s′)

∫ a∏
i=1

dN−1s(i) (C.7)

× exp(2πiss(1) + πik(1)(s(1))2 + 2πis(1)s(2) + · · ·+ πik(a)(s(a))2 + 2πis(a)w(s′))

which is
=
∑
w∈W

(−1)w
∆(s)∆(s′) exp

(
q

p
πis2 + 1

p
2πisw(s′) + q′

p
πi(s′)2

)
. (C.8)

This is consistent with (C.2).
In a crude sense, our result means that the SL(2,Z) transformation ĝ (C.1) given by

the continued fraction (3.16) behaves as a Chern-Simons coupling at a fractional level
q/p. This phenomenon has been noticed many times in the past. For example, in the
case of the SL(2,Z) operation acting on 3d theories with U(1) symmetries, the theory
corresponding to g ∈ SL(2,Z) is an Abelian Chern-Simons theory [62], and this fractional
effective Chern-Simons coupling explains why this Abelian Chern-Simons theory can be
used as a low-energy description of the fractional quantum Hall effect.

The same theory also appears in the description of D3-branes suspended between an
NS 5-brane and a (p, q) 5-brane, whose study has a long history. The case of a D3-brane
goes back at least to [47], see section 3.2 and 3.3 there. The full understanding of the
multiple D3-brane case had to wait the seminal [36], see section 8.2 and 8.3 there, where
the issue of the fractional Chern-Simons levels was also mentioned in the Abelian case. The
same issue was also mentioned e.g. in [27, section 2.2] and [18, section 5.1.3]. Our analysis
here can be thought of as giving a concrete meaning to the fractional Chern-Simons levels
in the non-Abelian case.
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C.2 Torus bundles

We can also consider the case of a circular quiver, obtained by adding a node with Chern-
Simons level k0 and closing the quiver chain of figure 14. The corresponding geometry is a
torus bundle over S1, where the torus is mapped back to itself with the SL(2,Z) action

h = T k
(0)
ST k

(1)
S · · ·T k(a)

S = T k
(0)
ĝ = T k

(0)
SgS. (C.9)

We expect the low energy 3d theory to only depend on conjugacy classes of h.
The superpotential is simply obtained by setting Φ = Φ′ and adding −k0

2 tr Φ2 to (C.2),
which is

Wh = −1
2

(
k(0) − q

p
− q′

p

)
tr Φ2 + trµ(a)

H Φ + trµ(0)
C Φ +

a∑
i=1

c(i) trµ(i−1)
H µ

(i)
C . (C.10)

Integrating out Φ leads to

Wh = 1
2

p

k(0)p− q − q′
tr(µ(a)

H + µ
(0)
C )2 +

a∑
i=1

c(i) trµ(i−1)
H µ

(i)
C . (C.11)

Now, we notice that k(0)p− q − q′ = trh. Rescaling the moment maps as

µ
(i)
H 7→

( i∏
j=0

c(i)
)
µ̃

(i)
H , µ

(i)
C 7→

( i∏
j=0

c(i)
)−1

µ̃
(i)
C , (C.12)

with c(0) := p
1
2 using the individual J34 symmetry of the i-th copy of T (SU(N)) theory,

we get

Wh = 1
2 trh tr(µ(a)

H + µ
(0)
C )2 +

a∑
i=1

trµ(i−1)
H µ

(i)
C . (C.13)

This final form clearly depends only on the conjugacy class of h, which was what we wanted
to demonstrate.

We note here that we do not immediately see supersymmetry enhancement to N = 4
from this effective superpotential, although the enhancement to N = 4 was found in the
holographic dual in [4] when | trh| > 2. Let us now show field theoretically that it indeed
has N = 4 supersymmetry, at least when k(0) is sufficiently large. This is a refined version
of an argument given in [8, 31, 39].16

We start from the N = 4 duality wall theory for h ∈ SL(2,Z), and gauge the diagonal
SU(N) symmetry using N = 2 Chern-Simons multiplet at the level k(0), without Φ and
without any superpotential deformation. When k(0) is large enough, this theory is an N = 2
SCFT, preserving J34. Let us call this theory T0. The chiral ring relations

tr(µ(0)
C )2 = tr(µ(a)

H )2 = 0, (C.14)
16The argument in those reference went as follows. Before introducing Φ and gauging the last SU(N), the

duality wall theory has the chiral ring relation (C.3), which becomes tr(µ(0)
C )2 = tr(µ(a)

H )2 = 0. Therefore,
the superpotential Wh above is equivalent to W ′h = 1

tr h
trµ(a)

H µ
(0)
C +

∑a

i=1 trµ(i−1)
H µ

(i)
C , which preserves the

J34 symmetry. As we knew that this theory already has N = 3, this implies that it in fact has N = 4. This
argument is not very satisfactory, however. This is because the chiral ring relations tr(µ(0)

C )2 = tr(µ(a)
H )2 = 0

will get deformed under the superpotential Wh (C.13).
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hold in this theory. This means that these operators are absent. The operator trµ(a)
H µ

(0)
C

remains as a marginal chiral primary.
We now analyze the conformal manifold of this N = 2 theory T0, applying the logic

of [30]. The possible marginal deformation is W = c trµ(a)
H µ

(0)
C , which is uncharged under

the flavor symmetry J34. Therefore, this deformation is exactly marginal, and the conformal
manifoldM close to T0 is complex one dimensional and parametrized by c. Furthermore,
the U(1) symmetry J34 is preserved everywhere on M. It is not clear how far in c this
conformal manifoldM extends, however. At least, when k(0) is sufficiently large, the N = 3
theory with the superpotential Wh (C.13) is indeed close to the theory T0. As the N = 3
theory is believed to be superconformal as is, it should be actually on M at some value of
c, and therefore the J34 symmetry is unbroken there. This implies that the supersymmetry
enhances to N = 4.

C.3 Some special cases

In this final subsection, we would like to mention some dualities, based on the fact that
some Seifert spaces can also be written as torus bundles; see [41, section 2.2]. These can
be viewed as (T 2 × [0, 1])/ ∼, with an identification (t, 0) ∼ (g.t, 1), where t ∈ T 2 and
h ∈ SL(2,Z). We just discussed its field theory realization in section C.2.

The resulting theory only depends on the conjugacy class of h. Recall that an element
is called hyperbolic, parabolic or elliptic depending on whether |Tr(h)| is > 2, = 2 or
< 2. A torus bundle can be Seifert only if h is parabolic or elliptic.17 The parabolic
case is well-known: when h = T k, the space can also be written as an S1-bundle over T 2

with c1 = k.
The elliptic case is perhaps more interesting. There are a few cases:

• The Seifert (0; 1/2, 1/2,−1/2,−1/2) is the T 2-bundle with h = −12.

• The Seifert (0; 1/2,−1/4,−1/4) is the T 2-bundle with h = S; this acts as a π/2
rotation on the torus with τ = i.

• (0; 1/2,−1/3,−1/6) corresponds to the T 2-bundle with h = ST , acting as a π/6
rotation on the torus with τ = eπi/3.

• (0; 2/3,−1/3,−1/3) corresponds to the T 2-bundle with h = T−1S = (ST )2, acting as
a π/3 rotation on the torus with τ = eπi/3.

(Notice that S, ST , (ST )2 and their inverses represent all the elliptic conjugacy classes.)
These identifications suggest dualities between the general Seifert theory of figure 8 and the
torus bundle theory discussed in section C.2. For example, the last identification in the list
above suggests the duality in figure 15. It would be interesting to check these dualities by
computing protected quantities on both sides.18 We note that ∑ 1/ki = 0 for all the Seifert

17Theories where h is hyperbolic have appeared in [4, 29]. The latter context provided a holographic dual,
which confirmed N = 4 supersymmetry.

18The S3 partition function appears to be ill-defined; on the torus bundle side, this can be checked by
applying the formulas in [4, appendix C]. The superconformal index appears to be more promising; see [8, 31]
for this computation in similar theories.
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Figure 15. A duality suggested by two equivalent descriptions of a space as a Seifert manifold or
as a torus bundle. Recall that in our notation the numbers in the nodes are the CS levels.

spaces listed above. This means that they are all N = 4, agreeing with the fact that the
supposedly dual T 2-bundle theories are also N = 4, as we just saw in section C.2.

Finally, notice a certain similarity to the way N = 3 theories were defined in four
dimensions [26]: there, a quotient was taken of N = 4 super-Yang-Mills by the elements in
the above list, with τ fixed to the corresponding values. In general, the torus bundle theories
can also be thought of as N = 4, d = 4 super-Yang-Mills on a circle with a g ∈ SL(2,Z)
monodromy acting on τ . This seems to suggest a compactification relation between the two
sets of theories.
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