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ON B-CONVERGENCE SPACES

KAREL WICHTERLE, Praha
(Received December 20, 1966)

In the present paper closure spaces determined by B-convergence structures are
studied; i.e. we deal with spaces in which the closure is determined by means of
a convergence of nets, the domain of which belongs to a previously given class B
of directed sets. Further, B-regular spaces and their B-envelopes are defined and
studied.

If B is the class of all directed sets, we get the Moore-Smith’s convergence ([6],
where other references are given, or [3], 35.A.). If B contains sets order-isomorphic
with w, only, we get the sequential convergence (Frechet’s #-spaces, [8], [9], [7],
also [3], 35B.).

In Section 1 the B-convergence classes and determining B-convergence relations are
defined and characterised, the B-spaces are defined, the property “to be a B-space”
is studied and some examples of non B-spaces are given for certain classes B; for
example the product of two B-spaces need not be a B-space. Finally, a sufficient and
necessary condition for a B-convergence relation to determine a topological space is
given.

In Section 2 we deal with some characterisations of the compactness of closure
~ spaces and the continuity of mappings.

In Section 3'the B-regular spaces are defined (by means of continuous functions)
and studied. If B contains countable sets only, the B-regularity coincides with the
sequential regularity [8], [9]; if B is the class of all directed sets, a space is B-regular
if and only if it is uniformizable (= completely regular). Further we study relations
between the B-modifications and the uniformizable modification and some properties
of the class 2(B) of the uniformizable modifications of B-spaces.

In the last section the B-completness and the B-envelope of a B-regular B-space
are defined and some properties of them are studied. The B-envelope is constructed
by means of remarkable B-nets or by means of the Cech-Stone compactification.

The existence of a B-envelope and its uniqueness (up to a homeomorphism
identical over the primary space) are proved.
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If B contains sets order-isomorphic with w, (or countable sets) only, then the
B-envelope coincides with the sequential envelope (a,(2)) ([8], [9], [7]). If B is the
class of all directed sets (or if B is sufficiently large — see 4.17), then the B-envelope
coincides with the Cech-Stone compactification (82).

The paper is written in such a way, that familiarity with the referred papers is
not necessary for its understanding although it might be helpful (especially with [8]

or [9]).
0

Some notations. The notation introduced in [3] is used in this paper.

0.1. Ordinal numbers are understood as comprisable ordinals in [6], p. 267, i.e.
any ordinal number « is the set of all ordinals less than o. The class of all ordinal
numbers will be denoted by Ord and the relation € on Ord will be denoted by <.

The ordinal number « is called a cardinal number iff it is equipollent with none of
its elements (i.e. with no ordinal { less than ).

0.2. Let # = (P, u) be a closure space. Than we shall denote by yx the local
character of # at x, by y*@ the local character of 2 (both [3], 15.B.8.), by dZ2 the
density character of 2 ([3], 22A1.), by yx the pseudocharacter at x, i.e. the least
power of a collection & of neighborhoods of x in £ such that o/ = (x), by wx the
interior character at x, i.e. the least power of a collection &7 of neighborhoods of x
in 2 such that ./ = (x) or N7 is not a neighborhood of x [4].

The subspace of <P, u) whose underlying set is @ will be denoted by (@, u ] Q>.

0.3. Let o be a relation. Then the domain-restriction of ¢ to 4 will be denoted
o | A and the range of ¢ [ 4 will be denoted by ¢[A]. Let A& = (N, g) be a net.
Then 4" | A will denote the pair (N } 4,0 n 4 x A.

In this paper the concept of a directed set has the same meaning as the concept of
a directed ordered set in [3], i.e. as a directed set in [6] such that mon & nem implies
m = n.

0.4. The class of all directed sets which contain no largest element will be denoted
by 9 . 9t will denote the class of all monotone ordered sets belonging to IN.

Let o be an infinite set (an infinite ordinal number). The set of all elements (D, g}
of M such that D < o will be denoted by IM,; further N, = M, N N.

If o is a infinite regular cardinal number (i.e. every cofinal subset of « is order-
isomorphic with o [4]), then 9} will denote the set of all <-cofinal subsets of o (which
are ordered by <); further @ = 9, and N" = Y{N; | « is an infinite regular cardinal
number}.
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0.5. Definition. A class B will be called cofinal-closed iff B is non-empty subclass
of M and if any g-cofinal subset (E, 9 n E x E) of each element {D, ¢ of B is an
element of B.

In the sequel, all classes denoted by B are assumed to be cofinal-closed.

0.6. A directed net (N, ¢)> (often denoted only by N) will be called B-net iff its
domain (DN, ¢) (often denoted only by DN) belongs to B. We will say that N is
a B-subnet of M iff N is a B-net and DN is a cofinal subset of DM and N = M | DN.
We will say that N is generalized B-subnet of M iff N is a B-net and N is a generalized
subnet of M.

0.7. Remark. If M is a B-net, the condition “N is a B-net” in the definition of
B-subnet is satisfied automatically. In general, a subnet of a B-net need not be
a B-net; if N is a generalized subnet of a B-net, nor the net N - h need not be a B-net
for any bijective mapping i onto DN.

1.1. Proposition. The classes M, R, M, N,, N., are cofinal-closed.

Each element of M (resp. of M) whose cardinallity is less or equal to the cardinal
number « is order-isomorphic with an element of 9, (resp. of ¢,).

The easy proof is omitted.

1.2. Lemma. If a net N converges to a point x in a closure space 2, and its domain,
and some element {E, ¢y of B are order-isomorphic, then there exists a B-net M
ranging in EN which converges to x in 2. (M = N o h, where h is an order-iso-
morphism of <E, o) onto DN.)

1.3. Lemma. Let be o = x" P|. Then the point x is an accumulation point of the
M -net N in P if and only if a generalized IM,-subnet M of N converges to x in 2.

The proof is analogous to the proof in [3], 15B.22., % can be chosen such that
card % < a, therefore card DM < card % . card DN £ «; further see 1.2..

1.4. Definition. A relation € ranging in a set such that D% is a class of B-nets, will
be called the B-convergznce relation.

The B-convergzance class of a closure space & (denoted also by B-Lim 2) is
the B- convergznce relation consisting of all pairs (N,x) such that N converges to
a point x in 2.

A B-convergznce class is a B-convergence class of scme closure space.

Remarks. The B-convergence class of a space P is a set if and only if B is
a set. If B is a set, then card € = card B . card |#|.
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The same is satisfied for each B-convergence structure (see 1.12.) such that
E¥ = |2

1.5. Definition. A determining B-convergence relation for a closure space (P, u)
is a subclass € of B-Lim (P, u) such that for every subset 4 of P a point x belongs
to uA only if there exists a B-net N ranging in 4 with (N, x> € ¥; we will say also that
the space (P, u) is determined by %.

A determining B-convergence relation is a determining B-convergence relation for
some closure space.

A closure space (P, u) will be called B-space and a closure u will be called B-
closure, iff (P, u} is determined by a determining B-convergence relation.

1.6. Remarks. (a) Let B be a gfven class. Then the class of all B-spaces is
hereditary and closed under sums.

(b) If B’ <= B and P is a B'-space, then P is a B-space.

Proofs are easy and are omitted.

(c) The “@-space” is the same as the “S-space” in [3] (because a @-net is the
same as a sequence). ‘

If B contains only countable sets only, then & is a B-space if and only if £ is

a S-space. The proof is based on the following proposition: Every countable directed
set has a cofinal subsequence.

1.7. Lemma. Let 2 be a closure space. If for each point x of P there exists some
local base at x directed by > and an element of B which are order-isomorphic,
then & is a B-space.

If a is a cardinal number such that o = y%2, then 2 is an M -space.

Proof. The first proposition is a corollary of 1.2 (analogously as in [3], the proof
of 15 B.4. or in [6], p. 66), the second one is a corollary of the first.

Proposition. Let yx = wx =< a for each point x of a space 2. Then for each point x
of P there exists a monotone local base at x and 2 is a N -space.

Proof. Since wx is a regular cardinal, the local base at x of cardinallity yx can be
regularly ordered.

1.8. Proposition. Let {(P,u) be a T, — B-space, let each element (D, 9) of B
contains a g-cofinal subset whose power is less than a. Then wx < o for each point x
of 2.

Proof. If x is isolated, then wx = 1 < a. In the other case x belongs to u4 — A4
for' some subset A of 2 and there exists a B-net N ranging in A which converges to x
in {P, u). Let us denote % the family {U, = P — (Nn) | n € E}, where E is a cofinal
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subset of DN with card E < a. Then card % < aand\# = P — N[E]is not a neigh-
borhood of x in (P, u).

Corollaries. If 2 is a T, — M,-space, then wx < « holds for each point x of P.

If there exists a cardinal number o such that card D < o for each element {D, @)
of B (in particular, if B is a set), then there exists a normal topological space
which is not a B-space.

The examples 1.9 a, b show also, that this condition is not necessary.

1.9. Examples. Let « > § be infinite regular cardinal numbers. Let B consist of
directed sets cardinality of which is less than o and of all monotone ordered sets
(or, let B satisfy R, U Ny = B < R U EM, |y < a}).

(a) The product 2 of two (even normal and compact) B-spaces, T, and Ty (see [3],
29 B. 7) is not a B-space.

(b) Let |2| =« x BuU (o, B), « x B is relatively discrete in 2 and local base at
(oc, B) in 2 is the relativization of the one in . Then 2 is a hereditarily normal, non
B-space. Further, y*? = 2 = o and yx < B for each x & |#]; hence the term
“character” cannot be replaced by the term “pseudocharacter”in Lemma 1.7.

(c) The following example shows that the term “interior character” cannot be
replaced by the term “pseudocharacter” in 1.8. Let R be a set of power «, x an element
of R, let B < o be infinite cardinal numbers; let a subset 4 of R be closed iff x
belongs to A or card A < B. Then R with this topology is an M-space and Y(x) =
=a>f.

1.10. Definition. The coarsest B-closure finer than a closure u is called the 8-
modification of u.

1.11. Theorem. Let € be the B-convergence class of (P, u)y. Then % is a determining
B-convergence relation for (P, v) if and only if v is the B-modification of u.

The proofis an application of definitions 1.5 and 1.10.

Corollary. Let B be a given class. Then there exists the bijective correspondence
between B-covergence classes and B-spaces such that each B-space is determined by
the corresponding B-convergence class.

Let €, be the B-convergence class of a space {Py, u,», let €, be a determining
B-convergence relation for a space {P,, u,». Then €, < €, if and only if u, is finer
than the relativization of u, to P,.

1.12. Definition. The B-convergence structure is a B-convergence relation such
that the following conditions are satisfied:
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(1) EN < E% for each net N € D%.

1s a constant B-net ranging 1n (x), then ,X)ED.
2)IfN i B ing i h N.
(3) If (N, x) e ¢ and M is a B-subnet of N, then (M, x) € .

1.13. Theorem. The conditions (1), (2') and (3') are sufficient and necessary for
a B-convergence relation € to be determining:

(2') If we E%, then {N, x) € % for some constant B-net ranging in (x).

(3) If <M, x> €% and C, U C, = EM, then (N, x) € € for some ie(1,2) and
for some B-net N ranging in C,.
_ The condition (3) in 1.12 is sufficient for (3'), but it is not necessary in 1.13.

Proof. Necessity of (1) and (2') is obvious. If <N, x> e % and EN = 4, U 4,,

then x belongs to uEN = ud; U ud, and (M, x> € % for some i and some net M
ranging in A. :
- Let the conditions be satisfied. Let us define an operation u as in [6]: if 4 < P,
then x eud if (N, x> € € for some net N ranging in 4. Obviously, u® = @ and
A < Bimplies u4 < uB; A < ud isimplied by (2'). If x € u(A4, U 4,), then (N, x) €
€ % for some net N ranging in 4, U 4,, hence <M, x) € ¥ for some i e (1, 2) and
some net M ranging in A; 0 EN < A4, by (3"), therefore x € u4; for this i.

(3) =(3): If <N,x)e% and EN = 4, U A4,, then D, = N™'[4,] is cofinal
in DN for some i; for this i, N; = N | D, is a B-subnet of N and (N, x) € € by (3).

1.14. Corollary. Every B-convergence structure is a determining B-convergence
relation.

1.15. Theorem. The following conditions are sufficient and necessary for € to be
a B-convergence class:

(0) € is a B-convergence structure. )

(4) If N is a B-net ranging in E€ and x € E¥, and every B-subnet M of N has
a generalized B-subnet S with (S, x> € €, then {N, x> € ¥.

(5) If x € E% and N is a B-net ranging in E¥ such that for every cofinal subset D
of DN there exists a net Np, ranging in N[ D] with {Np, x> € %, then there exists
a generalised subnet M of N with {M, x> e 4.

Theorem 1.15 remains true, if we omit the word “generalized” in both conditions

(4) and (5).

Proof. Let % be the B-convergence class of a closure space 2 = (P, u). It can be
easily proved that 4 is a B-convergence structure. Let x € E¥ and N be a B-net
ranging in E% such that {N, x> does not belong to 4. Then there exists a u-neighbor-
hood U of x and a cofinal subset D of DN such that N[D] = P — U; hence no
generalized subnet of the B-net N [ D converges to x in the space # and (4) is proved.
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Furthermore, no net M ranging in N[ D] = P — U converges to x in &; thereby, the
necessity of the condition (5') stronger than (5) is proved.

(5') If the assumptions of (5) are satisfied, then <N, x) € %.

Let € be a convergence structure satisfying the conditions (4) and (5). Let 2 =
= (P, u) be the closure space determined by ¥ (1.14). Let S be a B-net converging
to point x in P such that ¢S, x> ¢ €. Then by condition (4) there exists a B-subnet N
of S such that {M, x) € % for no (generalized) B-subnet M of N. Because N converges
to x in 2, x e u N[ D] and there exists a B-net N, ranging in N[ D] with (N, x) € €
for every cofinal subset D of DN; but this is a contradiction with the condition (5)

1.16. Remarks. The condition (4) corresponds to the condition (c) in [3], 35 A.16.
and to the Urysohn’s axiom 4 for sequential classes (see [2] or [8]).

The condition of diagonalization ([3], 35 A.14.) need not be necessary for % be the
B-convergence class, because the net M from this condition need not be B-net (and
one need not have any generalized ﬂ)-subnet).

Convergence of the nets M” to x need not be trivial, for example if B = 9N or
B = UY{Ry, | newy}or B=U{My, | n€w,} and if P is the disjoint sum of ordered
topological spaces Ty over w, with further point x whose local base consists of
all sets residual in every ¥, and containing x.

If B = O, the conditions (0), (4) — i.e. the axioms %&,, %, and #; — are sufficient
in 1.15 ([2]). If B consists of countable elements only, sufficiency of (0), (4) can be
easily proved.

1.17. Theorem. A closure space determined by the B-convergence relation € is
topological if and only if the following condition is satisfied.

(6) If S, xy €% and {S,,, Sm) € € for each m € DS, then (R, x) € € for some
B-net R ranging in U{ES,,, ] me DS}.

Proof. Let condition (6) be satisfied and let x € uud. Then <N, x) € ¥ for some
B-net N ranging in uA4 and there exists a B-net N, ranging in A with {N,,, Nm)>e ¥
for each m € DN; hence (M, x» € % for some net M ranging in Y{EN,, | m € DN} <
= A by (6) and x € uA.

Let (P, u> be topological, ¢S, x> € ¥ and {S,,, Sm) € € for each m € DS. Let us
denote B = Y{ES,, | m € DS}. Then x e uES = uuB = uB and hence (M, x> ¥
for some net M ranging in B.

1.18. Theorem. The following conditions are sufficient and necessary for a class €
to be the B-convergence class of a topological B-space: € is a B-convergence struc-
ture,

% satisfies conditions (4), (5), (6) from 1.15 and 1.17.

Proof. The necessity is a corollary of 1.15, 1.14 and 1.17. Sufficiency: € is a B-con-
vergence class by 1.15 and a determining B-convergence relation for a topological
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space by 1.14 and 1.17, therefore ¢ is the B-convergence class of this topological
B-space by 1.11.

1.19. Lemma. Let {P, u) be a B-space. If a cardinal number « satisfies either o
is regular and {D, 9> € B implies card D < o or o« > card P, then the closure u*
is the topological modification of u.

Proof. In the case a« > card P the lemma is well-known. In the other case let be
x € u*"1B. Then some B-net N ranging in u*B converges to x in (P, u)>; card EN <
< card DN < o and thus there exists an ordinal number { < o such that EN < u°B.
Then x e u***B < u*B.

2

2.1. Theorem. Let 2 be either a topological space and « = y'P or let P = (P, u)
be a closure space and o = exp card P. Let B o 9R,. Then

(1) P is compact if and only if every B-net ranging in ]g’l has an accumulation
point in Z.

(2) 2 is compact if and only if every M,-net ranging in |P| has a convergent
in P generalized M -subnet.

Proof. First we shall prove the sufficiency of (1). Let o be a centered collection
of subsets of 2. If 2 is topological and 4 is a closed base satisfying card Z = ¥'2,
and sets G, « # are chosen so that ¢, = ua for each a € &, then let us denote
% = U{%,| ae s} (hence € = #). In the other case (x = exp card P)let us denote
% = /. In both cases ¥ is centered and card ¥ £ a.

Denote 2 the collection of all finite intersections of sets belonging to €. Then 2 is
centered and directed by the inclusion > and card 2 < a. Let f be an order-iso-
morphism of (E, ¢) € M, onto (&, = and let N assign to each d € Z an element Nd
of d. Then (N of, o) is a M net ranging in P and therefore, (N - f, 6> has an
accumulation point x in 2. .

Furthermore, for each set ¢ € ¥ the net N o f is eventually in ¢, hence x belongs
~ to uc for each ¢ e €; the compactness of & is thus proved (if £ is topological, then
uc = c and x e N < %, = ua for each a € o). The second implication in (1) is
a corollary of 41 A.18. in [3], the proposition (2) is a corollary of (1) and 1.3.

2.2. Notation and definition. Let # < exp P and N be a net ranging in P. Then N
will be called the #-universal net, if for each set a belonging to 4, N is eventually
eitherin a orin P — a.

An exp P-universal net is called universal ([6], p. 81, in [3] such a net is called the
ultranet).
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~ Let 2 be a closure space. Then %, will denote an open base of 2 with power y' (2),
%, will denote the least subcollection of exp IJ’I containing %, as a subset which is
closed under finite intersections and differences.

Remark. 4, can be easily constructed by means of usual induction. If 2 is infinite,
then card &, = y(#).

2.3. Lemma. Let (P,u) be a topological space and let o = x'{P,ud. Then
every M,-net ranging in P has a #,-universal generalized M -subnet.

Proof. Let <N, <) be an M net ranging in P; let us denote ¥ the maximal
subcollection of 4, closed under finite intersections such that N is frequently in a for
each a € 9. (% exists by Zorn’s lemma.) By a contradiction one can prove that, for
eachae %, eitherae Y or P — ac %.

Let us denote f an order-isomorphism of <E, ¢) € M, onto the product of directed
sets (DN, <> x (%, o) and let S assign to each pair {p, a) e DN X % an element
S(p, a) € DN such that p < S{p,a) and N - S(p,a)ea. Then M = (N oS f, o)
is a generalized IM,-subnet of (N, <) and a #;-universal net, because M is eventually
in each element of 4.

2.4. Theorem. (a) Let o = exp card | 2| and B > M,. Then the closure space P
is compact if and only if every universal B-net is convergent in P.

(b) Let « 2 x'? and B > M,. Then the topological space is compact if and only
if every & -universal B-net is convergent in P.

Proof. An accumulation point of the %;-universal net is its limit point, because
B, > Bo. Let the space be not compact. By 2.1 there exists an 9,-net ranging in |2|
which has no in 2 convergent generalized 9M,-subnet; and there exists its generalized
M ~subnet which is %,-universal in the case (b) by 2.3 and universal in the case (a)
(by the proof of 2.3, where we replace %, by exp |2]).

2.5. Definition. Let o < f be cardinal numbers. Then a topological space £ is
called [, [-compact (resp. [o, —[-compact), if every subset E of & such that card E
is regular and o < card E < f (resp. « < card E), has a complete accumulation point.
(It is little more generally than in [1].) A net (N, < is called decreasing, if m < n
implies Nm > Nn.

2.6. Theorem. The following condition is sufficient and necessary for a topological
space P to be [«, B[-compact (resp. [a, —[-compact): Every W-net ranging in |2
such that y is a regular cardinal number and « <y < P (resp. « < y) has an accu-
mulation point in 2.

Corollary. A topological space P is compact if and only if every W-net ranging
in |2| has an accumulation point in 2.
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Proof of 2.6. <P, u) is [a, B[-compact if and only if every decreasing Nj-net
{U,|ne D} of closed non-empty subsets of P such that « £y < fand y is regular,
satisfies N{U, | n€ D} # O (see [1] p. 22).

Let y be a regular cardinal number such that « < y < . Let (N, <) be an Jt;-net
ranging in P; for each m e DN let us denote B,, = uE{Nn | n > m}. Then ({B, | me
e DN}, <) is a decreasing 9;-net of non-empty closed sets and hence there exists
a point belonging to N{B,, ] m e DN}; this point is obviously an accumulation point
of the net (N, <).

On the other hand, let U be a decreasing 9t}-net of closed non-empty sets. Let
DN = DU and let N assign to each n € DU a point Nn belonging to Un; then N is
an 9-net and thus N has an accumulation point x. Because N is eventually in every
Un, x belongs to uUn = Un for each n e DU. ‘

2.7. Lemma. The following condition is sufficient and necessary for a mapping f
on a B-space P into a closure space 2 to be continuous. For each point x of & and
for every B-net N converging to x in &P the net f o N converges to fx in 2.

Proof. Let this condition be satisfied, let 4 = P and x eud. Let Z = (P, u),
2 = {Q, v). Then a B-net N ranging in 4 converges to x in £, the net f - N converges
to fx in 2; therefore fx € vEf o N < v f[ A]. The second implication is well-known.

2.8. Remark. The assumption “Z2 is a B-space™ is essential; if & is a semiuni-
morfizable non B-space and 2 is a non-accrete space, then there exists a subspace %
of & such that the condition in 2.7 is not sufficient for the continuity of a mapping
on Z into 2.

Indeed, let us choose a set 4 and a point x € u4 so that no B-net ranging in 4
converges to x in 2. Let us denote |%| = A U (x) and choose a function f on ||
such that f[A] = y, fx = z for some points y, z of 2 satisfying z ¢ v(y).

3

3.1. Propositions. (a) Let € be the %-éonvergence class of a closure space P or
a determining B-convergence relation for 2. Then 2P is a T,-space if and only if €
is single-valued at every constant net (as 35 B.7. in [3]).

The B-convergence class of a separated space is single-valued [3].

(b) Let 2 be a closure space, B > M1y, let the B-convergence class of P is
single-valued. Then P is separated.

“B > M,.,” can be replaced by this weaker condition: for every pair {x, y) of
points of P the product of some local base at x and at y directed by > is order-
isomorphic with some element of B.

Proofs are easy and omitted.
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3.2. Example. Let o > 8 and B be the same as in 1.9a. Let 2 be the product of
spaces T,, Tj, let |2| = |2] U (x) U (»), let 2 be a subspace of 2, let U < |2 be a neigh-
borhood of x (resp. of y) iff the projection of ]9’| — U into « (resp. into ) is bounded
in a (resp. in §). Then 2 is not separated and its B-convergence class is single-valued.

3.3. Notation and definition. I will denote the closed unit interval [0, 1] with its
usual topology. #(2) will denote the collection of all continuous functions on the
closure space £ into 1.

A closure space 2 will be called B-regular, if for each point x of 2 and for every
B-net N ranging in [9[ which does not converge to x in & there exists a function
f € #(2) such that the net f o N does not converge to fx in I

A closure u (on an underlying set P) will be called B-regular iff <P, u) is B-regular.

3.4. In 3.4 we will study a dependence of the definition in 3.3 and the definition (r)
analogous to the definition of sequential regularity of convergence spaces in [8].

Definition (identical with the analogous definition in [8] for B = @). (P, %, u)
will be called the B-convergence space, if € is a determining B-convergence relation
for the closure space (P, u).

Definition (r). A B-convergence space {P, ¥, u> will be called B-regular, if for
each point x € P and for every B-net N ranging in P no subnet M of which satisfies
{M, x> €%, there exists a function fe FP, u) such that the net fo N does not
converge to fxin L

Proposition. 4 B-convergence space (P, €, u) is B-regular if and only if {P, u)
is B-regular and ¥ satisfies the condition (5) from 1.15 without the word “gener-
alized”.

Remark. If B contains countable sets only, then every determining B-convergence
relation satisfies the condition (5).

Proof of the proposition. Let (P, u) be a B-regular space and let ¥ satisfies (5).
Let N be a B-net ranging in P such that f « N converges to fx in | for each fe F (P, u).
Then N converges to x in <P, up, x € u N[ D] for every cofinal subset D of DN,
hence some subnet M of N satisfies (M, x> € € by (5).

Let (P, €, u) be a B-regular B-convergence space. Obviously, (P, u) is B-regular.
Let N be a B-net ranging in P such that for each cofinal subset D of DN there exists
a net N ranging in N[ D] with (N, x) € €. Then N converges to x in (P, u) by the
condition (5’) in 1.15, f o N converges to fx in I for each fe #(P, u), hence there
exists a subnet M of N such that (M, x> € % by (r).
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3.5. Propositions. (a) Let B be a given class. Then the class of all B-regular spaces
is hereditary and closed under sums and products.

(b) If W < B, then every B-regular space is a W-regular space.

(¢) If B contains countable sets only, then the space 2P is B-regular if and only
if it is ©-regular.

A proof of (c) is based on the same proposition as 1.6¢, a proof of B-regularity of
products is analogous to that in [9]; the other proofs are easy and are omitted.

3.6. Proposition. A B-regular Ty-space is functionally separated and hence
separated. (Obvious.)

More generally, if ? = {P,u) is a B-regular space, then fx % fy for some
fe F(P), whenever x € P — u(y); the relation o = {{x, y> | x eu(y)} is an equi-
valence and the quotient space P|c is a B-regular separated space. (Easy.)

3.7. Corollary. A B-regular compact space is uniformizable.

Proof. The quotient space 2/ is separated and evidently also compact, hence
uniformizable. Thus & is uniformizable by 28 A.9 in [3].

3.8. Lemma. A uniformizable space is B-regular for every class B.

Proof. If a B-net M does not converge to x in a uniformizable space £, there
exists a open neighborhood U and a B-subnet N of M ranging in P — Vand afunction
fe F(#)sothat fx = 1 and Ef o N < f[P — V] = (0).

Remark. In 4.16 we will prove that an 9 -regular space is uniformizable, if « >
= exp dZ.

3.9. Theorem. Let & be a B-regular space.

If there exists a local base at x in P, directed by the inclusion >, which is order-
isomorphic to some element of B, then x is an R-point, i.e. there exists a local base
at x consisting of closed sets ([4], 5.2).

If 8o M, _, then x is an R-point.

If B 5> M1y, then P is regular.

Proof. Let x be not an R-point in a space # = (P, u). Then there exists a u-neigh-
borhood U of x such that u¥V — U is non-empty for any u-neighborhood V of x.
Let DN be a local base at x considered in assumption and let NVe uV — U for each
Ve DN. Then N does not converge to x in £ and this is a contradiction with the
B-regularity of 2 and with the regularity of .

Other propositions are corollaries of the first one.
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3.10. Example. The regular space on which each continuous function is constant
[10] is not B-regular for any B.
©-modification of the product 2% is a @-regular non-regular closure space [8].

3.11. Proposition. (a) A closure u is B-regular if and only if its B-modification
is B-regular.

(b) If B W is not empty, then the B-modification of a W-regular closure is
B N W-regular.

(¢) The B-modification of a uniformizable closure is B-regular.

Proofs are easy and are omitted.

3.12. Lemma. Let (P, u) be a B-regular space. Then there exists the uniformiz-
able modification ii of u (i.e. the finest uniformizable closure coarser than u) and
the following conditions are satisfied.

(a) F(P,uy = FLP, iy,

" (b) x e T4 if and only if, for each f e F{P, u), f[A] = 0 implies fx = 0.

Proof. Lemma is a corollary of the analogous theorem in [7] and of 3.6 for
To-spaces, in the other case we apply in addition quotient spaces and 3.6.

3.13. Theorem. Let ii be the uniformizable modification of u, let v be the B-modi-
fication of u.

(a) If u is B-regular, then v is finer than u.

(b) If u is a B-closure, than v is coarser than u.

(¢) v =wuif and only if u is a B-regular B-closure.

Proof. (a) Let x € vA; then some B-net N ranging in 4 converges to x in (P, u),
for each fe F(P,u) = F{P, iy the net f o N converges to fx in l. Because u is
B-regular, N converges to x in (P, u); thus x € uAd.

(b) follows from definitions, (c) is a corollary of (a), (b), 3.11c.

3.14. Definition and proposition. Let B be a given class. Let us denote R(B) the
class of all B-regular B-spaces, and P(EB) the class of all uniformizable spaces whose
closures are uniformizable modifications of B-closures. Let us denote < a relation
such that D < = E < is the class of all closure spaces and (P, u) < {P,, u,) iff
P, = P, and u is finer than u,. Then P(B) and R(B) are (<, <)-isomorphic;
a mapping h which assigns the space {P, v) to each (P, u) e P(ﬁ?) so that v is the
B-modification of u, is (<, <)-isomorphism of P(B) onto R(B) and h~! assigns the
space {P, @iy to each {P, u) € R(B) (by 3.13c, 3.11c).

3.15. Theorem. The following condition is necessary and sufficient for P(%B)
to be the class of all uniformizable spaces: Each closure space is a B-space.
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Proof. Let (P, u) be not a B-space. Then for a subset 4 of P and a point x
belonging to uA no B-net ranging in A converges to x in {P, u). Let us denote B the
set A U (x) and v the closure on B so that A is the relatively discrete subspace of
{B, vy and the local base at x is the same in (B, v) as in (B, u ] B). Then (B, v) is
uniformizable non-B-space and the only B-closure finer than v is discrete, hence
{B, v) does not belong to P(B).

Corollary. P(9t U B) + P(9) for any set B.

Remark. The uniformizable space in the example 3 in [7] not belonging to P =
= P(@) = P(My,) does not belong nor to P(R); it belongs to the class P(M, )
(because it is an M, -space).

4

4.1. Definition. A net N will be called remarkable in a closure space Z iff the net
f o N is convergent in I for any bounded continuous function f on 2.
If a net M converges to k in the space I, then we shall write k = lim M.

Proposition. Any B-net remarkable in a B-regular space P is either convergent
in @ or totally divergent in P (i.e. none of its generalized subnets is convergent
in 9’).

The proof is analogous (and for B = © the same) to that in [7] and is easy.

4.2. Definition. A B-complete space is a B-regular B-space £ such that any in P
remarkable B-net is convergent in Z.

4.3. Definition. Let & = (P, u) and 2 = {Q, u) be B-regular B-spaces. We say
that 2 is a B-envelope of 2, iff the following conditions are satisfied (relative to 2
and 2).

(A0) 2 is a subspace of 2 and v(x) = (x) for each point x belonging to Q — P.

(41) v*P = Q for some ordinal number .

(42) Any bounded continuous function on 2 has a continuous domain-extension
to 2.

(43) If 2 is a subspace of a B-regular B-space # and the conditions (1), (1,) and
(o) are satisfied relative to 2 and &, then R = Q.

4.4. Lemma. Let 2 be a B-complete space and let the conditions (Ao), (4,), (1,)
are satisfied relative to ? and 2. Then 2 is a B-envelope of the space 2.

Proof. 2 is a B-regular B-space by (4,), 1.6a, 3.5a. Let 2 = {Q, v)> be a subspaée
of a B-regular B-space Z = (R, w) such that R o Q and (o), (A1), (42) are satisfied
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relative to 2 and #. Let us denote y, = min {{ € Ord | x e w*P} foreach xe R — Q
and y = min {y, [ x€R — Q}. y is obviously isolated. Let us choose xe R — Q
and a B-net N ranging in w?"!P < Q such that x e w’P and N converges to x in £.

For each fe %(2) a continuous extension f of the function f | P to & satisfies
f=7F10by (1) and the net fo N = fo N is convergent in I. Thus the B-net N is
remarkable in 2 and hence convergent in 2. If we denote its limit point in 2 by y, N
converges to y also in #, therefore y e w(x) = (x) by 3.6 and (4,), but this is a contra-
diction (xeR — Q, y e Q).

4.5. Lemma. Let # = (P, uy be a B-regular B-space. Then there exists a trans-
finite sequence of B-regular B-spaces {P; = (P, u;» | { € Ord} such that Py = P
and the following conditions are satisfied for any ordinal numbers (, n.

(@) If n £ ¢, then P, is a subspace of P, and ulx) = u,(x) for each point x
of Z,.

(b) utP = P,

(C) If n £ {, then every bounded continuous function on 2, has a (unique) con-
tinuous extension to &

(d) If n < {, then every B-net remarkable in &, is convergent in 2.

Proof. Let 2, be defined for each n < {. If { = x + 1, let us denote .#, the
maximal subset of the class of all totally divergent B-nets remarkable in 2, such
that lim f o« M = lim f o N for some f e #(2,) provided M and N are different ele-
ments of A 3 let #, = P, U M, let F, be the set of all extensions f of functions
fe F(2,) to #, such that /N = lim f o N for each N € .4,

If { is a limit ordinal number, let us put P, = U{P, | n € {}, let &, be the set of all
extensions f of functions f e #(2,) to &, such that, for each # < { and for each
x e P, fx = f,x, where f, is a extension of f to P, continuous in 2, (see 4.5¢ for
0=y <)

In both cases we can easily prove that the class €, consisting of all pairs (N, x)
such that N is a B-net ranging in P, and the net fo N converges to . in I for each
fes ¢» i the B-convergence class (by ].15) and the space (P, u,» determined by %,
is B-regular and satisfies all conditions in 4.5.

4.6. Theorem. A space 2 is a B-envelope of a B-regular B-space P if and only
if 2 is B-complete and the conditions (o), (4,), (1,) are satisfied relative to P
and 2.

Proof. Let 2 = {Q, v> be a B-envelope of a space # = (P, ud, let 2, = {Qy, v,>
be constructed from 2 in the same way as the space (P, 4> from £ in 4.5. Then
v*P = Q for some ordinal number a by (4;) and @, > tJ*'P 5 v,v*P = 0,0 = Q,
by (a), (b) in 4.5, hence (4,) is satisfied relative to 2 and 2;. The condition (1) (resp.
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(4,)) relative to 2 and 2, is implied by the same condition relative to £ and 2 and
by (a) (resp. by (c)) in 4.5; therefore Q; = Q and the space 2 is B-complete by 4.5d.

The other implication is 4.4.

4.7. Corollary. Let {#,|( e Ord be the transfinite sequence from 4.5. Then the
space P, is a B-envelope of P if and only if Py = P,

Remark. The existence of such ordinal number will be proved in 4.13. If Z,,; =
= P,and n > {, then #, = 2.

4.8. Lemma. Let the conditions (A), (A1), (4;) be satisfied relative to a space
P = {P,u) and a B-regular B-space 2 = {Q, v> (in particular, let 2 be a B-
envelope of P). Let i (resp. ) be the uniformizable modification of u (resp. of v).
Then a space & is the Cech-Stone compactification of the space {Q, ) if and only
if ]@l > Q and R is the Cech-Stone compactification of {P, @t).

Proof. Let # = (R, w) be the Cech-Stone compactification of {Q, §>. (P, i) is
a subspace of <Q, ) by (L), (4,) and 3.12, thus <P, @) is a subspace of #. Each
function belonging to F{P, ) = F(2) has a continuous extension to 2 (by (1,)),
hence to £. Because £ is topological, Q is dense in # and v*P = Q for some a € Ord,
wP = ww"P > wo*P = wQ = R is satisfied.

Let % be the Cech-Stone compactification of (P, #i> and R > Q. Then wQ > wP =
= R, hence Q is dense in Z. If f e #{Q, B> then f | Pe F(P, iy = F(#) and the
continuous extension g of the function f | P to £ satisfies f = g | Qe FQ, w | o>.
On the other hand, if f € #<Q, w | Q) then f | P is an element of (P, u) = F(2)
and has the continuous extension g to {Q, v), hence f = g is an element of F{Q, v) =
= F{Q, #). Therefore {Q, #) is a subspace of &, because £ and {Q, ) are uniform-
izable.

4.9. Lemma 4.8 can be generalized in this way:

We say that a closure § is the B-regular modification of a closure v, if 9 is the
finest B-regular coarser than v.

Proposition. If v is a W-closure and ¥ is the uniformizable modification of v,
then the MW-regular modification of v is the W-modification of ¥ (by 3.13; for
W = O itisin [7]).

If B < W then Lemma 4.8 remains true, if we replace uniformizable modifica-
tions by W-regular modifications and Cech-Stone compactifications by MW-envelopes.

Proof. Because w’Q = R for some ordinal number y and v*P = Q for some
ordinal number o, w***P o w*P = w’Q = R holds for these a, y. The other pairts
of the proof are the same as in 4.8; the identity of the collections of all bounded con-
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tinuous functions is sufficient for the identity of the corresponding 2W-regular
W-spaces (by 3.13).

4.10. Definition. The B-cube {C, v) of a closure space 2 is the B-modification
of the cube ¢(C, %) = 1@,

4.11. Lemma. A closure space 2 is a B-regular Ty — B-space if and only if P is
homeomorph to some subspace of a B-cube of 2.

Proof. “If” follows from 3.11c and 1.6; on the other hand the evaluation mapping
¢ = {{fx|fe F(P)} | x e |2|} is a homeomorphism of Z into <C, 5 by 3.6 and 2.7.

4.12. Lemma. Let # be a B-regular T, — B-space, let ¢, be an evaluation mapping
of P into the B-cube {C, )y of P, let {P, = (P, u;y|{cOrd} be the transfinite
sequence from 4.5. Then for each ordinal number { there exists a unique homeo-
morphism @, of P into {C, by such that following conditions are satisfied.

(i) ¢, = @, | P,, if ordinal numbers n, { satisfy n < (.

(ii) @ [P;] = v, @[ Po] for each ordinal number (.

Proof. For each { € Ord every function g eﬁ(@) has a unique extension h,g
belonging to #(%;) (by 4.5c). Because P, is a B-regular T, — B-space and the
mapping h, on F(2) is a bijective mapping onto F(#,), the mapping ¢, = {hyg |
| g € #(2)} is an evaluation mapping of 2, into {C, &), hence a homeomorphism
by 4.11.

Conditions (i) and (ii) can be easy proved by 4.5b, c.

Remark. 4.11 and 4.12 remain true, if the condition “2 is a Ty-space” is omitted
and the term “homeomorphism” is replaced by the term “quotient mapping under
o, where o, = {<(x, y> | x e ug(y) or x = ye P,.

Obvious (3.6).

4.13. Theorem. Let # be a B-regular B-space and let {#,| ¢ e Ord} be the
transfinite sequence from 4.5. Then 2, is the B-envelope of the space P for some
ordinal number 7y.

P, is a B-envelope of 2, if any of the following conditions for a is satisfied.

(a) card a > exp card F(2).

(b) card « > exp exp d2.

(c) o is a regular cardinal number and every directed set belonging to B contains
a cofinal subset whose cardinallity is less than a.

Proof. Let {C, v) be the B-cube of 2. The closure 7* is the topological modifica-
tion of & by 1.19 (in the case (a) card C = (exp X)) = exp card F(2) < o;
the condition (b) implies (a), because card F(2) < exp d(#)[5]). Hence the following
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is satisfied by 4.12 ¢, [ P.] = @.[Pe] = 7 ¢[P] = t** ¢[P] = @,41[P+1], hence
P,=P, ;. (If xe Py, — P, then @o41) = Qg4 X for some y e P,; but y e i(x) =
= (x) by 3.6 and that is a contradiction), therefore the space £, is the B-envelope
of # by 4.7.

4.14. Theorem. Let 2 = {Q,v) and # = (R, w) be B-envelopes of a space
P = (P, u). Then there exists a unique homeomorphism of 2 onto # identical on
the set P.

Proof. Let us denote i, &, W the uniformizable modifications of B-regular closures
u, v, w. Let B3 resp. fZ be the Cech-Stone compactifications of <Q, &) resp. (R, W).
Then 3 and % are Cech-Stone compactifications of the space (P, #> by 4.8 and
there exists a unique homeomorphism f of 82 onto 7 identical on P (by [3], 41D.)

First .we prove this lemma: f[t*P] = w*P holds for any ordinal number (.
Let this lemma be true for » € Ord and let x belong to v**'P — P. Then a B-net N
ranging in v*P converges to the point x in 2; this net N converges to x also in {Q, 7>
and in 89, hence the net f o N converges to fx in f% by 2.7.

Let g € #(#). Then g e F(R, ¥y by 3.12a, there exists its extension § to BR;
the net §ofoN = gofoN is convergent in I and Ef o N < f[v*P] = w*'P = R.
Thus the net f o N is remarkable in £ and hence convergent in & by 4.6 to some point
y € R. Then f o N converges to y also in (R, W) and in fZ.

Because the point fx does not belong to P, the set (fx) is closed in B and therefore
fx = y belongs to wEf o N < w**1P. Because f is a homeomorphism, the lemma is
thus proved for » + 1.

If ¢ is a non-isolated ordinal number and the lemma is true for all x < {, then
w'P = U{f[v"P]| » < {} = f[+*P]. This finishes the proof of the lemma.

By 4.13 there exists ordinal number 9, § so that v’P = Q and w’P = R. If a = y
and « 2 9, then f[Q] = f[v*P] = w[P] = R, thus f | Q is a homeomorphism of
Q, #) onto (R, ) and hence a homeomorphism of 2 onto # by 3.13 (the B-modifi-
cation is a topological property).

4.15. Theorem. Let # = (P,u) be a B-regular B-space, let §i be the unifor-
mizable modification of u, {Q, w) the Cech-Stone compactification of {P, iy, v the
B-modification of w. Let v**1P = v*P hold. Then the space {(1*P, v | v*P) is a B-
envelope of the space 2.

Remark. If a satisfies the condition (a) or (b) or (c} in 4.13, then the condition
v*T1P = v°P is satisfied.

Proof. Let 2 be a Ty-space. The evaluation mapping ¢ is a homeomorphism of Z
into the B-cube {C, ) of # by 4.11. Let us denote H = @[ P]. Then ¢ is a homeo-
morphism of (P, &) onto {(H, w| H) (# is the topology of the cube C). The space
(WH, w | wH) is the Cech-Stone compactification of (H, # | H), hence there exists
a homeomorphism f of {Q, w) onto {WH, % | WH) such that f | P = ¢.
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Let{ = aor { =a + 1. g, = f | v*P is a homeomorphism of (*P, v| o*P) onto
{#*H, o | *H), because the B-modification is a topological property. ¢ from 412 is
a homeomorphism of 2 onto {#*H, 7 | #°H). Hence the mapping h, = gg o @ 18
a homeomorphism of Z, onto {t*P, v ] P>,

Thus P,,, = P, is satisfied and 2, is a B-envelope of # by 4.7. Hence also
{v"P, v| v"P) is a B-envelope of 2, because the property “to be a B-envelope of”
is topological and the mapping k, [ P = ¢~ 1. ¢ is identical.

To prove 4.15 for non-T-space 2, we apply the preceding for the quotient spaces
under o (where Do is P or Q or v*P and {x, y) € ¢ iff x € u(y) or x = y € Do) generated
by the canonical mapping.

4.16. Theorem. Let Z be a B-regular space. Let us denote A, the collection of all
finite subsets of the set card F(2). Let a =-cofinal subcollection A of A, exist such
that the product of directed sets (A, =) x {wqy, £) and some element of B are
order-isomorphic. Then @ is a uniformizable B-space and the B-envelope of P
coincides with the Cech-Stone compactification of 2.

4.17. Corollary. Let 2 be a B-regular space and either a = exp d%? or o =
= card F(2P); let B > M,. Then P is a uniformizable B-space and the B-envelope
of P coincides with the Cech-Stone compactification of 2.

Proof of 4.16. Let # = (P, u), let us denote # the uniformizable modification "
of u and <Q, w> a Cech-Stone compactification of {P, ii. First we prove that the
cube (C, w) of & is a B-space. Let us denote F the collection of all finite subsets
of #(#). By the assumption there exists a <-cofinal subset F of F, such that the
product {F, => x {wy, <> and an element {E, o) of B are order-isomorphic
and 0 ¢ F. For each Ge F, n€w,, je[0,1] let us denote Uf,j = [0, 1] if fe
eF(P) — G, UL,j=]j— 1(n+2),j+1)(n+ 2)[N]0, 1] if f belongs to G.

Then the collection ¢ = {II{Uf .z, | fe F(#)} | Ge F, ne w,} is alocal base at
the pointz = {z; | f € #(#)} in the space (C, w). We can easily verify that the directed
sets {G, o) and <{F, =) x {wy, £) and hence {G, o) and <E, o) are order-
isomorphic, thus {C, w) is a B-space by 1.2.

Consequently, its subspace <{f[Q], W |f[Q]> (where f is the homeomorphism
from the proof of 4.15), the space {Q, w) homeomorph with {f[@], #w|f[Q] and
the subspace (P, i) of {Q, w) are B-spaces. Therefore # = u by 3.13a and 2 =

= (P, #) is a uniformizable B-space. Hence the space {Q, w> = (WP, w | wP) is
a B-envelope of # by 4.15.

By 4.14 any B-envelope of # is its Cech-Stone compactlﬁcanon

The corollary 4.17 follows from 4.16, because card (4 x w,) < card F(2). N, <
<o

The author wishes to acknowledge the valuable suggestion and comments given
by Mrs. doc. Dr. VERA TRNKOVA.

587



References

[1]1 P. Alexandroff et P. Urysohn: Memoire sur les espaces topologiques compactes. Verh. Akad.
"Wettensch. Amsterdam 74 (1929) 1—96.
[2] P. Alexandroff et P. Urysohn: Une condition nécessaire et suffisante pour qu’une classe (%)
soit une classe (2). C. R. Acad. Sci. Paris, 177, 1923, 1274—1277.
‘[3] E. Cech: Topological spaces. Praha 1965.
[4] E. Cech: Topologické prostory. Praha 1959.
[5]1 L. Gillman et M. Jerison: Rings of continuous functions. Van Nostrand. Princeton 1960.
[6] J. Kelley: General topology. Van Nostrand. New York 1955.
[71 V. Koutnik: On sequentially regular convergence spaces. Czech. Math. J., 17 (92) 1967, 1
232—247.
[8] J. Nowvdk: On the sequential envelope. General topology, Proc. of Symp. Prague 1961,
Praha 1962, 292—294,
[91 J. Novdk: On convergence spaces and their sequential envelopes. Czech. Math. J., 15 (90)
1965, 74— 100.
[10] J. Novdk: Reguldrni prostor, na némz je kazda sp()]lta funkce konstantni. Casopis pro
péstovani mat. fys. 73 (1948), 58— 68.

Author’s address: Praha 8 - Karlin, Sokolovska 83, CSSR (Matematicko-fyzikaln{ fakulta KU).

588



