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Abstract: Large-scale symmetric arrays such as uniform linear arrays (ULA) have been widely

used in wireless communications for improving spectrum efficiency and reliability. Channel state

information (CSI) is critical for optimizing massive multiple-input multiple-output(MIMO)-based

wireless communication systems. The acquisition of CSI for massive MIMO faces challenges such

as training shortage and high computational complexity. For millimeter wave MIMO systems,

the low-rankness of the channel can be utilized to address the challenge of training shortage. In this

paper, we compared several channel estimation schemes based on matrix completion (MC) for

symmetrical arrays. Performance and computational complexity are discussed and compared.

By comparing the performance in different scenarios, we concluded that the generalized conditional

gradient with alternating minimization (GCG-Alt) estimator provided a low-cost, robust solution,

while the alternating direction method of multipliers (ADMM)-based hybrid methods achieved the

best performance when the array response was perfectly known.

Keywords: low-rankness; massive MIMO; matrix completion; compressive sensing

1. Introduction

Millimeter-wave (mmWave) wireless communications have drawn great attention in the industry

and academia [1] thanks to the large bandwidth available in the 30–300 GHz band. To compensate for

the significant path loss in this band and also thanks to the short wavelength, massive MIMO have

been suggested for mmWave systems. In particular, large-scale symmetric antenna arrays, such as the

uniform linear arrays (ULAs) and uniform planer arrays (UPAs) have been extensively considered for

transmitters and receivers due to their neat structures and high gains for directional transmissions [2–4].

However, the coherence time in the millimeter-wave system is suggested to be short and as the number

of antennas increases, the complexity of channel estimation increases. Therefore, it is challenging to

acquire instantaneous channel state information (CSI) for a mmWave massive MIMO.

MmWave channels are often dominated by a small number of propagation paths, indicating that

the channel is sparse in the angular domain [5]. The channel matrix can be expressed in terms of

dictionary matrices, which are formed by the transmitting and receiving array response vectors, and

path gains. Compressive sensing (CS) [6] can then be applied to search for the dominant paths [7–13].

Different measurement matrices can be used by choosing the precoders and combiners, as well as

various recovery algorithms such as orthogonal matching pursuit (OMP) [7,14] and the adaptive

CS [8–10] can be applied. In general, the above mentioned CS schemes require knowledge of the

array response, which depends on the array geometry and calibration of the antenna arrays. Such
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knowledge can be inaccurate when there are unknown hardware impairments, e.g., due to phase and

gain errors, and imperfect calibration of the antenna arrays.

In the meantime, a small number of propagation paths also indicate that the channel is

low-rank [15] and can be depicted in low-dimensional subspace. Furthermore, such low-rankness is

independent of the array response and calibration errors. In [16,17], both the sparsity and low-rank

property of the mmWave channel are exploited to enhance CS-based channel estimators. In [16],

a two-stage estimator is proposed, where the low-rankness is exploited at the first stage while sparsity

in the angular domain is exploited at the second stage. In [17], the improved alternating direction

method of multipliers (ADMM) method [18] is applied to exploit the low-rankness and sparsity while

at the same time enhancing the performance. These estimators, however, still require knowledge of

the array response vectors. They can still suffer from performance loss when there are uncertainties in

the array response.

To achieve robust channel estimation, matrix completion (MC) methods exploiting only the

low-rank property of the mmWave channel have recently been proposed [19,20]. The analysis in [21]

shows that the rank of the channel matrix is generally very low, which is usually much smaller than

the antenna dimension. In [19], the singular value projection (SVP) algorithm [22] is adopted to

solve the mmWave channel estimation problem. Later, the GCG-Alt method is developed in [20] by

applying the generalized conditional gradient (GCG) framework [23] together with the alternating

minimum (AltMin) method [24]. There are also other widely-studied MC algorithms that can be used

for mmWave channel estimation, such as the singular value thresholding algorithm (SVT) [25] and

the fixed point continuation algorithm (FPC) [26]. In this paper, we discuss several mmWave channel

estimators based on MC, focusing on their performance and complexity comparisons with alternative

methods based on CS. We aim to examine the pros and cons for several MC estimators and the factors

that influence their performances.

The rest of this paper is organized as follows. Section 2 introduces the mmWave MIMO channel

model and formulates the channel estimation problem. Section 3 introduces channel estimators based

on MC, including their detailed implementation. Section 4 presents simulation results, in terms of the

mean squared error (MSE) and computational complexity. Section 5 concludes the paper.

Notation: AT, A∗, and AH denote transpose, conjugate, and conjugate transpose of matrix A,

respectively. ‖A‖1 denotes the l1 norm. I and 0 represent the identity matrix and zero matrix/vector,

respectively. A⊗ B and A⊙ B denote the Kronecker product and the Hadamard product, respectively.

tr{A} is the trace of A and 〈A, C〉 = tr
{

AHC
}

denotes the inner product of matrices A and C. E[·]
denotes the statistical expectation and abs(·) represents taking element-wise absolute value. ∇ denotes

the gradient of a function. For a matrix A ∈ CM×N , vec(A) ∈ CMN×1 denotes the vectorization of

A and vec−1(A) ∈ CM×N denotes the inverse of vectorization. R(·) and I(·) denote the real and

imaginary part of a number or vector, respectively. CN
(
a, b2

)
denotes complex Gaussian distribution

with mean a and variance b2.

2. System Model

Consider a point-to-point, switch-based mmWave hybrid MIMO system, with the receiver at the

mobile station (MS) shown in Figure 1.For simplicity and clarity, this paper assumes switch-based

mmWave systems to investigate MC-based channel estimators. MC-based estimators can also be

applied to phase shifter-based mmWave systems, when the hybrid precoders/combiners are properly

designed, as shown in [20]. Therefore, the discussion in this paper can be easily extended to phase

shifter-based mmWave systems. At the receiver, each of the NMS antennas is equipped with a switch

used to select one of the NRF RF chains. The base station (BS) has the same structure with NBS

antennas and NRF RF chains. Assume that Ns data streams are transmitted, with Ns ≤ NRF ≤
min(NBS, NMS) [14,27]. The switching operation can be represented as a precoder F, where the nonzero

entries indicate the entries of the channel matrix that are sampled. A symbol s ∈ CNs×1 with E[ssH] =
1

Ns
I is precoded, resulting in the transmitted signal x = Fs. We consider a narrow-band flat fading
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channel whose channel matrix H ∈ CNMS×NBS satisfies E
[
‖H‖2

F

]
= NMSNBS. The received signal is

expressed as:

r =
√

ρHFs + n̂, (1)

where ρ indicates the average received power and n̂ ∈ CNMS×1 is a noise vector with i.i.d. entries

distributed as CN (0, σ2
n). Applying a combiner W to the received signal at the MS, the processed

received signal is given by:

y =
√

ρWHHFs + WHn̂. (2)

In the switch-based system, the combiner W has a similar structure with the precoder F.

LNA RF ADC

ADCRFLNA

Baseband
Combiner

Ns𝑾𝑩𝑩 
𝑵𝑴𝑺 𝑵𝑹𝑭 

Figure 1. Switch-based mmWave (millimeter-wave) receiver.

Following [8], the ray-clustering model of H is given as:

H =
1√
R

C

∑
c=1

R

∑
r=1

gcraMS(φ
MS
cr )aH

BS(φ
BS
cr ), (3)

where C ∼ max{Poisson(λ), 1} is the number of clusters with λ as the mean of the Poisson distribution,

and R is the number of rays in each cluster. The complex small-scale fading gain on the r-th ray of

the c-th cluster is gcr with gcr ∼ CN (0, γc), where γc is the sub-power on the c-th cluster. In Equation

(3), aMS(φ
MS
cr ) and aBS(φ

BS
cr ) represent the array response vector for the receiver and transmitter,

respectively, where φMS
cr and φBS

cr represent the corresponding azimuth AoA and AoD, which follow

the Laplacian distribution [28].

Considering a uniform linear array (ULA) with distance between adjacent antennas being d,

the array response is given by:

aBS(φ
BS
cr ) =

1√
NBS

[
1, ej 2π

λc
d sin(φBS

cr ), · · · , ej(N−1) 2π
λc

d sin(φBS
cr )

]T
(4)

where λc is the wavelength of the carrier wave. The array response aMS(φ
MS
cr ) is constructed in the

same manner as aBS(φ
BS
cr ).

3. Compressive Sensing-Based Channel Estimation

It has been shown that, without considering quantization errors, the mmWave channel estimation

problem can be formulated as a sparse recovery problem by modeling the channel as [29–31]:

H = AMSHvAH
BS, (5)
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where AMS = [aMS(φ
MS
1 ), . . . , aMS(φ

MS
N1

)] is a unitary dictionary matrix when N1 = NMS and it is an

overcomplete dictionary matrix when N1 > NMS, and ABS = [aBS(φ
BS
1 ), . . . , aBS(φ

BS
N2
)] with N2 ≥ NBS.

Each column in ABS and AMS consists of a predefined array response vector. Hv ∈ CN1×N2 is a sparse

matrix with only L non-zero values, with each of its non-zero values corresponding to the complex

gain of a channel path. Vectorization of the channel matrix (5) produces:

vec(H) = (A∗BS ⊗AMS)x, (6)

where x = vec(Hv) is a N1N2 × 1 sparse vector with L non-zero values. We define Ψ = (A∗BS ⊗AMS)

as a NBSNMS × N1N2 dictionary matrix. Sparse recovery schemes can then be used to estimate the

channel, which transforms the task of estimating H to estimating the non-zero coefficients in x.

A widely used method to estimate x from the the received signal is orthogonal matching pursuit

(OMP) [7,14]. Using OMP, L path directions from the N1N2 candidates in the dictionary are determined.

The computational complexity of the OMP method is approximately O(NLN1N2), where N is the

length of the received signal. In general, a larger dictionary leads to better performance but also higher

computational complexity.

The above mentioned CS approach uses a discretized approximation of the channel. It may suffer

from the off-grid issue if the physical propagation paths are off the assumed grid of the angles. In this

case, the number of non-zero entries in the beamspace channel Hv may not be exactly equal to L,

leading to a power leakage. Another challenge is that the knowledge of the array response is required,

which may be imperfect in practice due to unknown hardware impairments and imperfect calibrations.

4. Matrix Completion-Based Channel Estimation

In this section, we introduce MC-based estimation methods for the mmWave channel by exploiting

the low-rankness of the channel matrix. By appropriately choosing the training scheme with proper

precoders and combiners, the received signal provides noisy observations of a subset of the entries

of H:

[Ỹ]i,j =





[H̃]i,j, (i, j) ∈ Ω

0, otherwise

(7)

where H̃ = H + N is the perturbed channel matrix, N is a noise matrix, Ω denotes a sample domain,

and [H̃]i,j is the (i, j)th entry of H̃. Define p = N/(NBSNMS) as the sampling density, where N is the

total number of samples observed.

It is discussed in [19] that when the mmWave channel matrix has strong non-coherent

characteristics, it can be recovered from a subset samples of the channel matrix. We can thus formulate

the channel estimation problem as a low-rank matrix completion problem as:

min
Ĥ

rank(Ĥ), s.t. ||PΩ(Ĥ)− PΩ(H̃)||2F ≤ δ2
n, (8)

where δ2
n is the error tolerance parameter and the sampling operator PΩ(·) is defined as:

[
PΩ(H̃)

]
i,j
=

{
[H̃]i,j (i, j) ∈ Ω

0, otherwise
(9)

where [H̃]i,j denotes the (i, j)-th entry of H̃. The sampling operator PΩ significantly influences the

performance of the algorithm [32]. Bernoulli and uniform sampling models are proposed in [32]

and a uniform spatial sampling model (USS), which improves the performance, is proposed in [33].

With USS, N/NBS samples are taken for each column of the target matrix.
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4.1. MC Estimators

In the following, we discuss several MC estimators that can be used to solve the problem in

Equation (8).

4.1.1. SVT Estimator

Before presenting the SVT algorithm, let us define the matrix shrinkage operator:

Sτ(X) = UXSτ(ΣX)V
H
X , (10)

where ΣX denotes the singular value matrix of X and Sτ(ΣX) is the element-wise shrinkage operator:

Sτ(x) =

{
0, x ≤ τ

x− τ, x > τ
(11)

where τ is the threshold.

The SVT algorithm [25] can be applied to provide a heuristic solution to Equation (8), which

consists of two major steps, 



Ĥk = Sτ

(
Xk−1

)

Xk = Xk−1 + δPΩ

(
H̃− Ĥk

) (12)

where τ > 0, δ is a step size, and k = 1, 2, . . .. The iteration is stopped when a stopping criterion is met

or a maximum number of iterations JSVT is reached. Singular value decomposition (SVD) is required

at each iteration. Some comments regarding the implementation of the SVT algorithm to the mmWave

channel estimation problem are as follows:

• The threshold is set as τ = 5
√

NMSNBS following [25];

• The stepsize is set as δ = 1.2/p;

• Assuming the initialization X0 = 0, Ĥk = 0 for a small k < k0. As such, Xk = kδPΩ(H̃), k =

1, . . . , k0. The algorithm can begin with computing Ĥk0 to save work. From [25], the integer k0 is

determined by
τ

δ
∥∥∥PΩ(H̃)

∥∥∥
2

∈ (k0 − 1,k0] .

SVT Estimator is shown in below Algorithm 1:

Algorithm 1 SVT Estimator

Require: PΩ(H̃), δ, ǫ, τ, JSVT, k0.
1: Set X0 = k0δPΩ(H̃);
2: for k = 1 to JSVT do
3: Set Ĥk = Sτ(Xk−1)

4: Set Xk = Xk−1 + δPΩ

(
H̃− Ĥk

)

5: if
‖PΩ(Ĥk−H̃)‖F

‖PΩ(H̃)‖F
≤ ǫ then break;

6: end if
7: end for
8: return Ĥ = Ĥk

From [25], SVT is effective for completing large matrices with low ranks. Its performance degrades

as the rank increases. The computational complexity of the SVT algorithm mainly arises from Step 3.
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4.1.2. FPC Estimator

The FPC algorithm [26] reformulates the MC problem using the nuclear norm, which is the

summation of the singular values,

min
Ĥ

µ
∥∥∥Ĥ

∥∥∥
∗
+

1

2
‖PΩ(H̃)− PΩ(Ĥ)‖2

F, (13)

where µ > 0 is the regularization parameter. The algorithm consists of two steps similar to SVT:

{
Yk = Ĥk − δ(PΩ(H̃)− PΩ(Ĥ))

Ĥk+1 = Sδµm

(
Yk

) (14)

where the threshold of the singular value thresholding operator is set as a variable δµm rather than a

fixed value as that in SVT. A continuous strategy [34] is used to accelerate the convergence by adapting

µm. The details are presented in Algorithm 2. Some comments are as below:

• We can set the step size δ ∈
(

0, 2/λmax

(
PΩ(H̃)HPΩ(H̃)

))
according to [26], where λmax is the

maximum eigenvalue;

• µm+1 decreases as

µm+1 = max
{

µmηµ, µfinal

}
, m = 1, 2, · · · , M,

where M, determined by (µfinal, ηµ), controls the step size and the estimation accuracy, µfinal

is small (e.g., µfinal = 0.01), and the parameter 0 < ηµ < 1 determines the decreasing rate for

consecutive µm.

Algorithm 2 FPC Estimator

Require: PΩ(H̃), ǫ, JFPC, δ, µfinal, and ηµ

1: Initialization: Ĥ0 = 0, m = 0, µm =
∥∥∥PΩ(H̃)

∥∥∥
2

2: while µm > µfinal do
3: µm = max(µmηµ, µfinal)
4: for k = 1 : JFPC do
5: Yk = Ĥk − δ(PΩ(H̃− Ĥk))
6: Ĥk = Sδµm

(Yk)

7: if
‖Ĥk+1−Ĥk‖F

‖Ĥk‖F

< ǫ then break;

8: end if
9: end for

10: end while
11: return Ĥ = Ĥk

The main computational cost of the FPC algorithm is in Step 6 of Algorithm 2 due to the

SVD. In addition, the FPC algorithm needs to choose the step size δ by calculating the maximum

eigenvalue of PΩ(H̃)HPΩ(H̃) and has a higher computational complexity per iteration than that of the

SVT algorithm.

4.1.3. SVP Estimator

The SVP algorithm [22] is based on the projected gradients and is detailed in Algorithm 3.

This algorithm requires that the rank L of the channel matrix to be known. The step size can be chosen

empirically as η = 1/(1 + δ0)p with 0 < δ0 < 1/3. The stopping criterion is based on the norm

of the difference in the sampled channel matrix, where the small threshold 0 < ǫ < 1/2 can be set

such as ǫ = 10−3. The SVP algorithm also needs to calculate the SVD in Step 4, which is the most

computationally expensive step of the algorithm.
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Algorithm 3 SVP Estimator

Require: PΩ(H̃), L, η, ǫ

1: Initialization: Ĥ0 = 0, t = 0
2: while ‖PΩ(Ĥt − H̃)‖F ≤ ǫ do
3: Xt+1 ← Ĥt − η(PΩ(Ĥt − H̃))
4: Compute the L principal singular vectors of Xt+1 : UL, ΣL, VL.

5: Ĥt+1 = ULΣLVH
L

6: t = t + 1;
7: end while
8: return Ĥ = Ĥk

4.1.4. GCG-Alt Estimator

In [20], a generalized conditional gradient framework with alternating minimization (GCG-Alt) is

developed for the MC problem. The nuclear norm is used to promote low-rankness as:

min
Ĥ

1

2
‖PΩ(Ĥ− H̃)‖2

F + µ‖Ĥ‖∗ (15)

where µ > 0 is a regularization factor. Let:

f (Ĥ) ,
1

2

∥∥∥PΩ(Ĥ)− PΩ(H̃)
∥∥∥

2

F
. (16)

The gradient direction of the kth iteration of f (Ĥ) [23]:

Xk = uk−1vH
k−1, (17)

where (uk−1, vk−1) is the top singular vector pair of∇ f
(

Ĥk−1

)
= PΩ

(
Ĥk−1 − H̃

)
which can be found

iteratively. The channel matrix is updated as:

Ĥk = (1− ηk)Ĥk + θkXk, (18)

where ηk ∈ [0, 1] is the step size and θk is adaptively chosen.

By using a property of nuclear norm [20], the optimization problem can be reformulated as:

φ̃(U, V) , f
(

UVH
)
+

1

2
µ
(
‖U‖2

F + ‖V‖2
F

)
, (19)

where U ∈ CNMS×r̂ and V ∈ CNBS×r̂ with r̂ being the rank of Ĥ. Alternating minimization can then

be used to optimize Equation (19). The details of solving the alternate minimization problem can be

found in [20]. The overall algorithm is summarized in Algorithm 4.
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Algorithm 4 GCG-Alt Estimator

Require: PΩ(H̃), µ, ǫ, ǫa

1: Initialization: U0 = ∅, V0 = ∅, k = 0, Ĥk = 0, ǫ0 = ∞, δ2
k =

∥∥∥PΩ(H̃)
∥∥∥

2

F

2: while δ2
k > (N +

√
8N)σ2 do

3: Compute the top singular vector pair (uk, vk) of PΩ

(
Ĥk − H̃

)

4: k = k + 1
5: ηk ← 2/(k + 1)
6: xkΩ = vec

(
PΩ

(
ukvH

k

))

7: h̃Ω = vec
(

PΩ(H̃)
)

8: ĥkΩ = vec
(

PΩ

(
Ĥk−1

))

9: θk =
2R(xH

kΩ
h̃Ω)−(1−ηk)x

H
kΩ

ĥkΩ−2µ

2xH
kΩ

xkΩ

10: Uk =
[√

1− ηkUk−1,
√

θkuk−1

]

11: Vk =
[√

1− ηkVk−1,
√

θkvk−1

]

12: Initialization: i = 0, ǫ0
k = ∞,

(
U0

k , V0
k

)
← (Uk, Vk).

13: while ǫi
k > ǫa do

14: i = i + 1
15: Find Vi

k that minimizes Equation (19) given U = Ui
k;

16: Find Ui
k that minimizes Equation (19) given V = Vi

k;
17: Calculate

ǫi
k =

φ̃
(

Ui−1
k , Vi−1

k

)
− φ̃

(
Ui

k, Vi
k

)

φ̃
(

Ui−1
k , Vi−1

k

)

18: end while
19: (Uk, Vk)← (Ui

k, Vi
k)

20: Calculate ǫk =
‖Ĥk‖2

F
−‖Ĥk−1‖2

F

‖Ĥk−1‖2

F

21: δ2
k =

∥∥∥PΩ(Ĥk − H̃)
∥∥∥

2

F
22: end while
23: return Ĥ = UkVH

k

The above MC methods have different computational complexities. SVT, SVP, and FPC all

need SVD, which can be implemented using the PROPACK [35] based on the iterative Lanczos

bidiagonalization algorithm with partial reorthogonalization. The FPC has a higher complexity as

SVD is repeated for different values of µm. The GCG-Alt has the least complexity as the full SVD is

not required. SVP is effective for large matrix completion problems with very low ranks, while the

FPC, SVT, and GCG-Alt estimators allow higher ranks. The SVP estimator requires rank knowledge,

while the FPC and GCG-Alt estimators implicitly determine the rank through choosing regularization

parameters or thresholds.

4.2. MC-Based Hybrid Estimators

Next we discuss two MC-based hybrid methods that jointly exploit the sparsity and low-rankness

of the channel.
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4.2.1. ADMM Estimator

In [17], the low-rankness of H̃ and the sparsity of the beamspace channel H̃v are jointly exploited

and an ADMM method is proposed. Leveraging the side information that H has a sparse virtual

representation given by Equation (5), the channel estimation problem is formulated following [36] as:

min
Ĥ,Ĥv

τL‖Ĥ‖∗ + τS‖Ĥv‖1

s.t. PΩ(Ĥ) = PΩ(H̃) and Ĥ = AMSĤvAH
BS (20)

where the nuclear norm and l1-norm together with the regularization parameters τL and τS are used

to promote low-rankness and sparsity, respectively. The above problem is then reformulated by

incorporating the constraints as penalty terms as:

min
Ĥ,E,Ĥv,C

τL‖Ĥ‖∗ + τS

∥∥∥Ĥv

∥∥∥
1
+

1

2
‖C‖2

F +
1

2

∥∥∥PΩ(E− Ĥ)
∥∥∥

2

F

s.t. Ĥ = E and C = E−AMSĤvAH
BS. (21)

where E ∈ CNMS×NBS and C are two auxiliary matrix variables. This problem is then solved by

using ADMM which involves the iterative updates of the variables and Lagrangian multipliers.

The augmented Lagrangian function of Equation (21) is given by:

L1

(
Ĥ, E, Ĥv, C, Z1, Z2

)
,τL‖Ĥ‖∗ + τS‖Ĥv‖1 +

1

2
‖C‖2

F

+
1

2

∥∥∥PΩ(E− Ĥ)
∥∥∥

2

F
+ tr

(
ZH

1 (Ĥ− E)
)
+

t

2
‖Ĥ− E‖2

F

+ tr
(

ZH
2

(
E−AMSĤvAH

BS −C
))

+
t

2

∥∥∥E−AMSĤvAH
BS −C

∥∥∥
2

F
, (22)

where Z1 and Z2 ∈ CNMS×NBS are dual variables (the Lagrange multipliers) and t > 0 is the step size.

The estimator is summarized in Algorithm 5, where:

• τ = ρ1

∥∥∥PΩ(H̃)
∥∥∥ with ρ1 = 3N

NBS NMS
in Step 3;

• zi denotes the vectorization of Zi, and similarly for other variables;

• A , ∑
NMS
i=1 diag ([Ω∗]i)

T ⊗ Iii where Ω∗ ∈ {0, 1}NMS×NBS is composed of N ones and NBSNMS−N

zeros, the value 1 indicates the position of a sample from the channel matrix, and [Ω∗]i denotes

the i-th row of Ω∗, and I is the NMS × NMS matrix that the value at its (i, i)-th position is 1 and

the remaining position is 0 [17];

• The parameters in Equation (20) are chosen empirically as τL = t
∥∥∥PΩ(H̃)

∥∥∥
2

and τS = 0.1
1−10 log(σ2

n)
,

where σ2
n is the noise power.

The computational cost of the ADMM algorithm is mainly due to the SVD in Step 3 and the matrix

operations in Steps 4, 5, 6, and 7.
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Algorithm 5 ADMM Estimator

Require: PΩ(H̃), t, τL, τS, JADMM, A, Ψ, τ.

1: Initialization: Ĥ0 = Ĥ0
v = C0 = E0 = Z0

2 = Z0
1 = 0; their vectorizations ĥ0 = ĥ0

v = c0 = e0 =

z0
2 = z0

1 = 0;
2: for ℓ = 0, 1, . . . , JADMM − 1 do
3: Update Ĥℓ+1 = UASτ (SA)VH

A ,where [UA, SA, VA] = Eℓ − 1
t Zℓ

1
4: Update

eℓ+1 =
(

AHA + 2tI
)−1 (

zℓ1 + tĥℓ+1 + AH vec(PΩ(H̃)) + zℓ2 + tcℓ + tΨĥℓ
v

)
.

5: Update

ĥℓ+1
v = sign

(
R

(
vℓ+1

))
◦max

(∣∣∣R
(

vℓ+1
)∣∣∣− τ′S, 0

)

+ sign
(
I
(

vℓ+1
))
◦max

(∣∣∣I
(

vℓ+1
)∣∣∣− τ′S, 0

)

with Vℓ+1 , AH
MS

(
1
t Zℓ

2 −Cℓ + Eℓ+1
)

ABS and τ′S , τS/t.

6: Update

Cℓ+1 =
t

t + 1

(
Eℓ+1 −AMSĤℓ+1

v AH
BS +

1

t
Zℓ

2

)

7: Update

Zℓ+1
1 = Zℓ

1 + t
(

PΩ(Eℓ+1 − H̃)
)

Zℓ+1
2 = Zℓ

2 + t
(

Eℓ+1 −AMSĤℓ+1
v AH

BS −Cℓ+1
)

8: end for;
9: return Ĥ = ĤJADMM−1

4.2.2. Two-Stage Estimator

The two-stage estimator [16] also exploits the sparsity and low-rankness of the channel matrix.

In the first stage, MC is applied to provide a denoised channel estimation based on the low rankness of

the channel matrix and then the second stage employs CS to refine the estimation based on the array

response and the virtual representation of the channel matrix.

The SVT algorithm [25] introduced above solves the low-rank matrix completion problem:

min
Ĥ

rank(Ĥ), s.t. ||PΩ(Ĥ)− PΩ(H̃)||2F ≤ δ2
n. (23)

The fast iterative shrinkage threshold algorithm (FISTA) proposed by [37] is used to solve the

sparse vector recovery problem:

min
vec(Ĥv)

‖Ψvec(Ĥv)− vec(Ĥ)‖2
F + λ‖vec(Ĥv)‖1. (24)

The estimator is summarized in Algorithm 6, where:

• The parameters of the first stage, SVT, is the same with Algorithm 1;

• Ψ = A∗BS ⊗AMS;

• λ is a constant stepsize, e.g., λ = 0.001;

• λmax is the top eigenvalue of Ψ
H

Ψ.

The complexity of SVT in the first stage has been anlyzed. The cost of the FISTA algorithm mainly

consists of applying the sensing matrix in Step 4, which has a complexity of O(N2
BSN2

MS).
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Algorithm 6 Two-Stage Estimator

Require: PΩ(H̃)
1: Use SVT to recover Ĥ as

min
Ĥ
‖Ĥ‖∗ s.t. ||PΩ(Ĥ)− PΩ(H̃)||2F ≤ δ2

n

Require: Ψ, vec(Ĥ), λ, JFISTA, the top eigenvalue λmax of Ψ
H

Ψ

2: Initialize y1 = x1 = 0, t1 = 1
3: for i = 1 : JFISTA do
4: ci = yi − (1/λmax)ΨH(Ψyi − vec(Ĥ))
5: xi+1 = (max(abs(ci)− 2λλmax, 0)) sign(ci)

6: ti+1 =
1+
√

1+4t2
i

2

7: yi+1 = xi+1 +
(

ti−1
ti+1

)
(xi+1 − xi)

8: xi ← xi+1

9: ǫi+1 = ‖Ψxi − vec(Ĥ)‖2

10: if abs(ǫi+1 − ǫi) ≤ 10−6 then
11: Break
12: end if
13: end for
14: return Ĥ = AMS vec−1(xi)A

H
BS

5. Numerical Results

Consider switch-based MIMO systems over a mmWave channel at 90 GHz. When not otherwise

specified, the number of clusters C ∼ max(Poisson(1.8), 1), and the number of rays R ∼ U [1, 20] (the

total number of paths is L = CR); the AoDs and AoAs follow Laplace distributions with a standard

deviation of 15◦ [38]; the sub-power of the clusters γc = 1; and the ULA at the MS and BS has NMS = 32

antennas and NBS = 128 antennas, respectively, and NRF = 4 RF chains. Here, the CS method based

on OMP is compared with MC-based estimators. The parameter settings are as follows:

• OMP: The unitary dictionary is set with N1 = NMS = 32 and N2 = NBS = 128.

The stopping threshold is set as ǫOMP = 0.025σ2, 0.05σ2, 0.075σ2, 0.1σ2, 0.125σ2, 0.15σ2 with

PNR = 0, 5, 10, 15, 20, 25 dB [20];

• SVT: δ = 3.2, ǫ = 10−4, τ = 5
√

NMSNBS, JSVT = 100, and k0 = 5;

• SVP: η = 0.5 and ǫ = 10−4;

• FPC: µfinal = 0.01, JFPC = 100, ǫ = 10−4, ηµ = 0.25, and δ = 1.99;

• GCG-Alt: µ = σ2
n, ǫ = 0.01, and ǫa = 0.1;

• ADMM: τL = t‖PΩ(H̃)‖2, t = 0.005, τS = 0.1
1−10 log(σ2

n)
, δ = 3.2;

• Two-Stage: JFISTA = 100, λ = 0.001.

The normalized MSE (NMSE) is defined as:

NMSE =
‖Ĥ−H‖2

F

‖H‖2
F

where Ĥ is an estimate of the channel matrix H.

5.1. Comparison of NMSE When There Are No Hardware Impairments

Figure 2 compares different estimators in terms of NMSE with different PNRs, which is defined

as PNR = 10 log 10( ρ

σ2
n
), when NMS = 32, NBS = 128, and NRF = 4. The SVP algorithm performed

worse than others. The ADMM algorithm performed the best, and the NMSE of the ADMM estimator

was at least 5 dB better than other estimators. The NMSE with NBS = 64, NMS = 64 and NRF = 8 is
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shown in Figure 3. From Figures 2 and 3, the relative performance of the different estimators is similar

with different numbers of antennas.

Figure 2. NMSE (normalized mean square error) of the channel estimation in the ULA (uniform linear

arrays) system with NBS = 128, NMS = 32, NRF = 4, the sampling ratio p = 0.375, different PNRs

(pilot-to-noise ratios), and without array impairments.

Figure 3. NMSE of the channel estimation in the ULA system with NBS = 64, NMS = 64 , NRF = 8,

p = 0.3281, different PNRs, and without array impairments.

We next show the performance with different number of channel paths. Here, we assume the

number of clusters C = 1, the numbers of rays R is changed from 1 to 22, and so the total number

of channel paths L = R. From Figure 4, as the numbers of paths L increases, the NMSE of different

algorithms degrades. The SVP algorithm is the most sensitive to the number of paths while the OMP

estimator is the most robust. The sampling ratio is also critical for performance. From Figure 5,

the NMSE improves substantially with increasing sampling ratio. It is noted that CS-based schemes

such as the OMP and the two-stage algorithms are more advantageous when the sampling ratio is low.
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Figure 4. NMSE of the channel estimation in the ULA system with NBS = 128, NMS = 32, NRF = 4,

p = 0.375, PNR = 20 dB, different number of paths, and without array impairments.

Figure 5. NMSE of the channel estimation in the ULA system with NBS = 128, NMS = 32, NRF = 4,

PNR = 20dB, different sample ratios, and without array impairments.

5.2. NMSE Comparison When There Are Hardware Impairments

In practice, it is inevitable to have impairments of the antenna elements, which are typically

time-varying, e.g., due to temperature changes or hardware aging [39]. Therefore, the array response

may be severely impacted. Due to mechanical reasons and uncertainty regarding the precise position

of the antenna phase center, the actual antenna position may deviate from the assumed ideal array

shape. Following [20], we define the gain and phase error vector at the BS as:

eBS =
[

β1ejω1 , β2ejω2 , · · · , βNBS
ejωNBS

]T
(25)

where ωi represents the phase errors and βi denotes the amplitude gain of each antenna element.

The gain and phase error vector eMS at the MS is similar to eBS. Considering such errors, the received

signal in Equation (2) can be expressed as:

ỹ = WHEMSHEH
BSFs + WHEMSn̂ (26)
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where EMS is a diagonal matrix with eMS as the diagonal elements, and EBS is defined similarly.

We carry out simulations to examine the robustness of the different approaches when there are

phase and gain errors in the array response. Those errors are assumed to be uniformly distributed

within certain range and characterized by the level of phase and gain errors, respectively, following [20].

It is found that MC estimators were not affected by the phase or gain errors since the estimators were

independent of the array response vectors. The sparsity-based methods use array response which

depends on the phase and gain information, and can result in poor channel estimation when unknown

gain and phase errors are present. These were validated by simulation experiments. From Figures 6

and 7 where NMSE achieved with different levels of phase and gain errors are compared, the MC

estimators based on SVP, FPC, GCG-Alt, and SVT, were insensitive to phase errors or gain errors.

The estimators exploiting CS, such as the one based on OMP and hybrid methods (the ADMM and

two-stage estimators), were more sensitive to phase errors or gain errors.

Figure 6. NMSE of the channel estimation in the ULA system with NBS = 128, NMS = 32, NRF = 4,

p = 0.375, PNR = 20 dB, and different levels of phase errors.

Figure 7. NMSE of the channel estimation in the ULA system with NBS = 128, NMS = 32, NRF = 4,

p = 0.375, PNR = 20 dB, and different levels of gain errors .
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5.3. Computational Complexity

Finally, we compare the computational complexity of different algorithms in Figures 8 and 9.

It can be seen that in general, the hybrid estimators (the ADMM and two-stage estimators) exhibited

higher complexity because they both involved SVD and the application of the sensing matrices were

of large sizes. In particular, the ADMM algorithm had the highest complexity. The MC estimators

had moderate complexity that did not vary significantly with the PNRs and the FPC exhibited higher

complexity than SVT and SVP as more SVD operations were required. The GCG-Alt algorithm

had the lowest complexity. This was because the GCG-Alt algorithm had a fast convergence rate

and also avoided the SVD operations used in the other MC algorithms such as SVP, SVT, and FPC.

The computational complexity of the OMP estimator increased with the PNR because the numbers of

paths recovered by the OMP increased as the PNR increased.

Figure 8. Complexity comparison for the ULA system with different PNRs NBS = 128, NMS = 32,

NRF = 4, and p = 0.375.

Figure 9. Zoomed-in section of Figure 8 with different PNRs NBS = 128, NMS = 32, NRF = 4, and

p = 0.375.
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5.4. Performance with Line of Sight (LoS) Propagation

In the above, we have focused on the comparison for the channels where the different paths had

the same average power. In practical applications, there may exist line of sight (LoS) propagation,

where a path contributes a significant portion of the power gain [40,41]. In this case, the channel model

can be modified from Equation (3) to:

H =
1√
R

C

∑
c=1

R

∑
r=1

gcraMS(φ
MS
cr )aH

BS(φ
BS
cr ) + βaMS(φ

MS
LoS)a

H
BS(φ

BS
LoS). (27)

In our simulations we set gcr ∼ CN (0, 0.5) and β =
√

C/2. The NMSE results are shown in

Figure 10. With a LoS path which dominates the power gain, the effective rank of the channel matrix

may be reduced. The various channel estimators considered are more effective in this case, leading to

lower NMSE as compared with the case where the LoS path is absent. The results also demonstrate the

effectiveness of the MC-based methods in realistic scenarios.

Figure 10. NMSE of the channel estimation in the ULA system with NBS = 128, NMS = 32, NRF = 4,

the sampling ratio p = 0.375, different PNRs, and without array impairments.

6. Conclusions

In this paper, we compared the performance of several MC-based channel estimators for mmWave

massive MIMO systems. It was observed that the hybrid ADMM algorithm exhibited the best

performance in general, which jointly exploited the low rank property of the channel matrix and

the sparsity in the angular domain. However, it also exhibited the highest complexity among the

estimators compared. The MC-based estimators (using GCG-Alt, SVT, SVP, or FPC) were robust

against array impairments as they did not rely on array response vectors. Among them the GCG-Alt

estimator exhibited the lowest complexity, better performance, and provided a competitive solution

when the arrays were not perfectly calibrated.

In this work, we considered a point-to-point mmWave system. The estimators could also be

applied to multiuser systems when orthogonal training schemes are deployed. The comparison of

these methods when nonorthogonal training is used would be an interesting study for future work.
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