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Abstract. A characterization of ideal secret sharing schemes with an arbitrary number
of keys is derived in terms of balanced maximum-order correlation immune functions.

In particular, it is proved that a matroid is an associated matroid for a binary ideal secret
sharing scheme if and only if it is representable over the binary field. Access structure
characterization of connected binary ideal schemes is established and a general method
for their construction is pointed out.
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1. Introduction

A secret sharing scheris a procedure of sharing a secret kejrom a finite setC
among a finite seP of participants in a random way such that certain specified subsets
of participants, from the so-calleatcess structur&, can compute the key by pooling
their shares picked from a finite s€tand given to participants by a dealer D ¢ P.

A natural requirement is that be monotonethat is, if A € ' and A € B C P, then

B € I'. Letthe set of minimal elements bibe called theninimal access structusnd be
denoted aF',. A secret sharing scheme is said tabanectedf every participanp € P

is contained in some subsetlip,. A secret sharing scheme is calleetfectif any subset

of participantsP ¢ " cannot gain any information about the key. Thsrmation rate

for a secret sharing scheme can be defined g$kgdgog,|S|. A perfect secret sharing
scheme is said to hidealif it has maximum information rate 1. Note that the first secret
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sharing schemes introduced by Blakley [3] and Shamir [13] were the so-called threshold
schemes, wherEp, consists of all the subsets Bfof a specified cardinality.

A comprehensive survey of secret sharing schemes and the corresponding literature
can be found in [16], [4], and [15]. Ideal secret sharing schemes were first defined by
Brickell [5]. In [10] and [2] it is shown how to realize perfect secret sharing schemes
for arbitrary monotone access structures. In [2] it is also proved that a certain access
structure cannot be realized by ideal secret schemes, and the corresponding upper bound
on the information rate was then improved in [7] and later in [8], where the tight bound
was found. Brickell and Davenport [6] established a connection between ideal secret
sharing schemes and matroids and Martin [11] showed how to specify the associated
matroid in terms of the access structure only. An interesting result was obtained by
Seymour [12] who discovered a matroid (Vamos) that cannot be associated with any
ideal secret sharing scheme. However, the characterization of the associated matroids
and the achievable access structures as well as a general method for the construction of
ideal secret sharing schemes are still open problems.

In this paper we first obtain a characterization of ideal secret sharing schemes for an
arbitrary key size in terms of balanced maximum-order correlation immune functions
[14]. For the binary key, we show that the associated matroids are binary and then
characterize the achievable access structures and give a general construction method as
well. Preliminaries are given in Section 2, the general case is studied in Section 3, and
the binary one is analyzed in Section 4. Conclusions and open problems are given in
Section 5.

2. Preliminaries

In this section we first review the basic definitions regarding perfect and ideal secret
sharing schemes and then present and briefly discuss the main results from [6]. Let
a finite set of secret keys be denotedkisa finite set of shares a$, a finite set of
participants a®, a dealer a®, D ¢ P, the extended set of participantss= P U D
where for simplicity{D} = D, and a finite randomizing set &. The total number of
participantgP*| is denoted a®N. Further, for any functioF: R x P* - K U S and
arbitrary subset® € R andP C P*, let, for anyr € R, F(r, P) denote the ordered
set{F(r, p)}pep and letF (R, P) = {F(r, P) : r € R}. Then a secret sharing scheme
is defined in terms of a functioR such thatF (R, D) = K andF (R, P) < S'P!. For
anyr € R, the functionF (r, p), p € P*, is usually called [16] a distribution rule. The
distribution functionF can be depicted as a matrix whose rows are indexed byR
and columns by € P*, see [6].

Let Rk ={r : r € R, F(r, D) = k}, for anyk € K. When the dealeb wants to
distribute shares corresponding to a secret Refyrst picks a keyk at random according
to anarbitrary prior probability distribution on’C, randomly chooses a valuesuch
that F(r, D) = k according to ayivenconditional probability distributionr, on Ry,
and then distributes the shaFgr, p) to a participantp, for everyp € P. A secret
sharing scheme is then generally defined as an orderefl set(F, {nx}kex) Which
besides the distribution matrix also contains the conditional probability distributions as
well. Without loss of generality, we assume that the conditional probability distributions
are all strictly positive. EquivalentlyF can be regarded as an ordered set of discrete
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random variables corresponding to individual participants including the dealer where the
probability distribution associated with the dealer may be arbitrary. In a special case, if
one assumes that the conditional probability distributions are all uniform, then a secret
sharing schemg& can be expressed solely in terms of a distribution mdrisee [6],
[7], and [16]. For simplicity, such schemes are here denoteH lnystead ofF. If, in
addition, no two rows of are identical, then a scheme is caltsthonic

A secret sharing schenig is calledperfectwith a monotone access structuref
for every prior probability distribution of secret keys: (1) for any qualified subset of
participantsP € I', H(D|P) = 0 and (2) for any unqualified subset of participaRtg
I,P <P, H(D|P) = H(D), whereH is the entropy operator, see [8]. Equivalently,
F(r, D)isafunction ofF (r, P) for a qualifiedP and is (probabilistically) independent of
F(r, P) foran unqualified®. Clearly,F is perfectif itis perfect for any particular strictly
positive prior probability distribution of secret keys. For secret sharing schemes with
uniform conditional probability distributions, some combinatorial sufficient conditions
for a scheme to be perfect in terms of the distribution mdronly are given in [7] and
[6]. We note that these conditions are easily generalized into the follomgcgssary
and sufficientonditions:

1) fPel, thenFr,P)=F(’,P)= F(,D)=F(’, D).
(2) If P ¢ T, P C P, then for any secret kdyand any achievable vector valuef
F(r, P), |{r :r € Ry, F(r, P) = v}|/|R«| is independent df.

Conditions (1) and (2) characterize functional dependence and probabilistic indepen-
dence ofF (r, D) andF (r, P), respectively. As was suggested in [6] and [7], condition

(2) can be replaced by a weaker one which describes what can be called possibilistic
independence:

(2) If P ¢T,P cC P, then, for any secret keyand any achievable vector value
of F(r, P), |{r :1r € Ry, F(r, P) = v}| > 0.

Any secret sharing schenfg, with not necessarily uniform conditional probability
distributions, can then be callegeakly perfectvith a monotone access structutdf its
distribution matrixF satisfies conditions (1) and’§2This notion was introduced in [6]
and [7], but only for secret sharing schemes with uniform conditional probability dis-
tributions. To summarize, a secret sharing scheme with uniform conditional probability
distributions is perfect if and only if its distribution matrix satisfies (1) and (2), and any
secret sharing scheme is weakly perfect if and only if its distribution matrix satisfies
(1) and (2). Since the conditional probability distributions are generally assumed to be
strictly positive, it follows that a perfect secret sharing scheme must also be weakly
perfect with the same access structure. While the converse is clearly not true in general,
it may be true that every weakly perfect secret sharing scheme can be transformed into
a perfect one with the same access structure.

Perfect and weakly perfect secret sharing schemes sudisthat| | are calleddeal
andweakly idealrespectively. Without loss of generality, one can assumesthatiC, so
thatF: R x P* — K. Let|K| = g. Anideal or weakly ideal (secret sharing) scheme is
calledconnectedf every participantp € P is contained in some subset from its minimal
access structurgn,. Brickell and Davenport [6] have studied canonic ideal and weakly
ideal schemes, in which the conditional probability distributions are uniform and the
distribution matrix has no repeated rows.
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In order to outline the main results from [6], we need some basic notions from ma-
troid theory, see [17]. A matroidl = (E, &) is a finite setE and a collectiort of
subsets of, calledindependensets, such that (1) every subset of an independent set is
independent and (2) for every C E, every maximal independent subsetohas the
same cardinality, called thrank of X (an empty sef is considered independent and has
rank zero). Adependenset of M is a subset oE that is not independent. A minimal
dependent set is calleccacuit, whereas a maximal independent set is calledse A
matroid is said to beonnectedf, for any two elements oE, there is a circuit containing
both of them. Aloop s a single element circuit.

The main effort of Brickell and Davenport was to prove [6, Proposition 1] that in any
canonic connected weakly ideal scheme wgtkeys andN > 2 participants, for every
P C P* #P defined agF (R, P)| is a positive integer power @f. As a consequence,
they have then obtained two interesting properties: first [6, Theorem 3], that in such
schemes every participant can be taken as a dealer and, second [6, Theorem 1], that
p(P) = Iogq#P, P C P*, together withp (¥) = 0 defines arank function of a connected
matroid, which is called thassociated matroifil6] and denoted b (F) (for canonic
schemes,F reduces toF). The first property means that any subset of participants
P C P*is either independent or dependent where in independent subsets the participant
shares are possibilistically independent according to conditigng@d in dependent
subsets the share of each participant is a function of the shares of the others according to
condition (1). It then also follows [6, Theorem 1] that the indepentideiendent sets
of the associated matroibll (F) coincide with the independefidependent subsets of
participants. Note that Proposition 1 of [6] easily follows if one initially assumes that a
scheme, not necessarily connected, is weakly ideal with respect to each participant as a
dealer, see [12]. So, the main result of [6] is in fact to prove that other connected weakly
ideal schemes do not exist.

Another interesting result of Brickell and Davenport, again obtained as a consequence
of Proposition 1 of [6], is Theorem 9 of [6] which shows that every canonic connected
weakly ideal scheme is necessarily ideal with the same access structure, with respect
to any participant as a dealer. This means that in independent subsets of participants
the shares are not only possibilistically, but also probabilistically independent accord-
ing to condition (2). Conditions (2) and’§are thus mutually equivalent for connected
secret sharing schemes with information rate 1, with uniform conditional probability
distributions, and with distinct rows of the distribution matrix. Lle{ D) denote the
entropy of the dealer depending on the prior probability distribution of the keys, and
let H(P) denote the joint entropy of a subset of participalats P*. Then in canonic
connected ideal schemel(P)/H (D) = log, #P is the rank function of the associated
matroid, which is connected. It is interesting to note that this result also follows from
polymatroidal properties of the entropy function corresponding to an ordered set of dis-
crete random variables [9], under the assumption that a canonic scheme, not necessarily
connected, is ideal with respect to each participant as a dealer.

Finally, for an arbitrary connected matroM representable over a field withele-
ments,g being a prime power, Brickell and Davenport gave a construction of a canonic
connected ideal scheme withkeys and the associated matrditi see Theorem 2 of
[6]. Martin [11] later showed how to construct the set of circuits of the associated ma-
troid based on the access structure only, see also Lehman'’s result [17, Theorem 5.4.1],
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which means that the associated matroid does not depend on the particular ideal scheme
realizing the access structure as long as the scheme is connected. If the collection of sub-
sets of participants obtained by the construction [11] does not satisfy the circuit axioms
[17], then (but not only then) the given access structure cannot be realized by any ideal
scheme. By using graph-theoretic arguments, Seymour [12] proved that the well-known
Vamos matroid on a set of eight elements cannot be associated with any ideal scheme.

3. General Ideal Schemes

The main results from [6] regarding the characterization of ideal secret sharing schemes
can be interpreted by the following theorems. The theorems as such are actually not
given in an explicit form in [6], but are easily derived in light of the discussion from the
previous section. As we have already pointed out, the result contained in the following
Theorem 1 [6] is actually the most difficult one to prove. Note that as far as weakly
ideal schemes are concerned, the canonic property is in fact not necessary. Also, instead
of connected weakly ideal schemes only, we more generally deal with schemes weakly
ideal with respect to every participant as a dealer. Such schemes are composed of a
number of distinct connected components. If a connected component consists of a single
participant only, then such a participant is caltkgjenerate

Theorem 1[6]. A connected secret sharing scheme is weakly ideal with respect to any
particular participant as a dealer if and only if it is weakly ideal with respect to every
participant as a dealer

Theorem 2[6]. A secret sharing scheme with q keys is weakly ideal with respect to
every participant as a dealer if and onlyibr every PC P*, |F (R, P)| = q*® where

p is a nonnegative integer functioh then follows thatp extended by (¥) = O is the

rank function of a matroid ofP*. (For a degenerate participant,p(p) = 0 and hence

p is a loop)

Theorem 3[6]. A canonic secret sharing scheme F is ideal with respect to any par-
ticular participant as a dealer if and only if it is weakly ideal with respect to the same
participant as a dealeiThe corresponding access structures are the séheeeovera
canonic secret sharing scheme with q keys is ideal with respect to every participant as a
dealer if and only iffor every PC P* and each achievable vector valuef F(r, P),

l{r :t € R, F(r, P) = v}| = q*® wherep’ is a nonnegative integer function

Theorem 4[6], [11]. Given a weakly ideal secret sharing scheme with a participant
po as a dealerthe set of circuits of the associated matroid containingipequal to
{poU P : P € '} wherel', is the the corresponding minimal access structure with
respect to p. If the scheme is in addition connectdbtlen the associated matroid is
uniquely determined bl,.

Note that Theorems 1 [6], 2 [6], and 3 [6] directly imply that canonic ideal threshold
schemes are equivalent to orthogonal arrays of index one. Our objective in this section
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is to obtain a more specific characteriziation of ideal secret sharing schemes with an
arbitrary numben of keys. We first point out that every ideal, not necessarily canonic,
scheme can be reduced to a canonic form.

Theorem 5. Every ideal secret sharing scheme with any particular participant as a
dealer can be transformed into a canonic ideal secret sharing scheme with the same
participant as a dealer and with the same access strucfitre transformation consists

in reducing the repeated rows in the distribution matrix to the single ones and in assuming
the uniform conditional probability distributions of the rows

Proof. Consider an arbitrary ideal secret sharing schg&me (F, {my}kex) Where the
distribution matrixF may have repeated rows and the conditional probability distribu-
tions {n }kexc @re positive. From conditions (1), (2), and)( then follows thatF is

weakly ideal too, with the same participant as a dealer and with the same access structure.
The same holds for the transformed scheme as well. Since the transformed scheme is
canonic, it is also ideal by Theorem 3 [6]. O

Theorem 5 means that canonic ideal schemes as introduced by Brickell and Davenport
in [6] are essentially the most general ones as far as the access structure is concerned.
Their distribution matrixF is characterized by Theorem 2 [6] or, more precisely, by
Theorem 3 [6]. We now prove that one can be even more specific about the distribution
matrix of such schemes using the notiotvafanced maximum-order correlationimmune
functions [14]. A surjective functiorf: A — B, where A and B are finite sets, is
called balanced if every value froffi is assumed an equal number of times fayA
balanced functionf: K™ — K is called maximum-order correlation immune if it is
balanced for each fixed value of every proper subset afitsput variables (it suffices
to consider proper subsets of maximum cardinality only). Since the columns of the
distribution matrix corresponding to degenerate participants in ideal schemes are single-
valued, see Theorem 2 [6], without loss of generality we assume that the participants are
all nondegenerate.

Theorem 6. A canonic secret sharing scheme F with a/Seif g keys and a sé2* of
N > 2 nondegenerate participants is ideal with respect to every participant as a dealer
if and only if for every PC P* either the values of &, P), r € R, are uniformly
distributed overC'P! or there exist a nonempty proper subsétd® P and a participant
p € P\P’ such that KRR, P’') = K!P and that Rr, p) = f(F(r, P")),r € R, where
f is a balanced maximum-order correlation immune function gv&r!.

The total number of rows in F is then a positive integer power ,ofvhereas the
subsets P such that(F, P) is uniformly distributed coincide with the independent sets
of the associated matroid MF).

Proof. We first prove the necessity. From Theorem 2 [6] it follows tRafR, P)| = g
wheret is the cardinality of maximal independent subsetsPofP < P*, and, in
particular, |F(R, P*)| = " wheren is the rank of the associated matrdidi(F).
Moreover, from Theorem 3 [6] it follows thafr : r € R, F(r, P) = v}| = q"* for
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each achievable vector valuef F(r, P). So, if P is an independent set M (F), then
t = |P| andF(r, P) is uniformly distributed oveiC!P!.

On the other hand, iP is a dependent set iM(F), then it contains a (minimal
dependent set) circul of M (F) as a subset, whef€| > 2 holds necessarily, because
there are no degenerate participants. It then follows|théR, C)| = q™ wherem =
|C| — 1. For an arbitrary participarnt in C, both p andC\ p are independent, so that
[F(R,C\p)| =gM™and|F(R, p)| = g. Also, each value oF (r, C\ p) and each value
of F(r, p) appear exactlg" ™ andg"~* times in the functiong (r, C\ p) andF(r, p),

r € R, respectively. Since the shaFgr, p) is a functionf of the shared=(r, C\ p),
r € R, for each valué of F(r, p) there must be exactly™* values ofF (r, C\ p) such
that f (F(r, C\ p)) = k. Hencef is a balanced functioR™ — K.

If m = 1, then, trivially, f is maximum-order correlation immune toonhf> 2, then
let p’ be an arbitrary participant i@\ p. Sincep andp’ are arbitrary distinct participants
in C, they can change places, and the above argument then shows that thie@shpate
is also a function of the shards(r, C\p’), r € R. Therefore, for any fixed value of
F(r, C\p\p), the value ofF(r, p’) uniquely determines the value Bf(r, p) and vice
versa. Asp’ is arbitrary, it follows thatf achieves alf values for each fixed subset of
m — 1 out ofm input variables. Hencé is maximum-order correlation immune.

Assume now that the distribution matrix of a canonic secret sharing scheme satis-
fies the required conditions. First note that the condition for a dependent set is clearly
equivalent to a stronger one that there exists a suBset P, |P’| > 2, such that,
for eachp € P/, F(R, P’'\p) = K'FI=t and thatF(r, p) = f(F(, P'\p)),r € R,
where f is a balanced maximum-order correlation immune function ¢¥&r—1. In
fact, this is why balanced maximum-order correlation immunity is required. If the val-
ues of F(r, P) are uniformly distributed, then call a subgetc P* independent, and
if not, then call it dependent. It follows that every subset of an independent set is inde-
pendent. Accordingly, iP is independent, thefF (R, P)| = g/Pl. We now show that,
for any dependenP, |F (R, P)| is also a positive integer power gf Namely, if P is
dependent, then consider any maximal independent sbeétP and any participant
pe P\ P. By the assumed maximality ¥, the setP U p must be dependent. Since
P itself is independent, it follows that there exists a suliset P such that~(r, p) is
a function of F(r, P’), r € R. HenceF(r, p) is a function ofF(r, P) too. Therefore,
IF(R, P U p)| = q'PI. Furthermore, since is an arbitrary participant fro®\ P, we
also have thatF (R, P)| = g'Pl. Theorem 2 [6] then implies that the secret sharing
scheme is weakly ideal. Since the scheme is canonic, Theorem 3 [6] yields that it is ideal
too.

The last part of the theorem follows trivially. O

Let Mg N denote the class of matroids associated with ideal secret sharing schemes
with g keys andN participants including the dealer. If a scheme is connected, then the
associated matroid is connected too. If a scheme does not have degenerate participants,
then the associated matroid has no loops. Theorem 6 shows that for any pagtjtéar
structure ofMq n is determined by-ary balanced maximum-order correlationimmune
functions. According to the construction from [6] it follows that, fipa prime power,

Mg~ contains all the matroids representable over a field (nearfield)opitlements.
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In the next section we prove that in the binary cage; 2, M5 y is exactly the class of
matroids representable over the binary field.

4. Binary ldeal Schemes

In this section we consider ideal secret sharing schemesquith || = |S] = 2

keys, which we call binary ideal schemes. Recall [17] that a matvbioh E is called
representable over a fiel if there exists a rank-preserving function (not necessarily
an injection)p: E — V whereV is a vector space ovdt. In particular, a matroid

is binary if it is representable over the binary field GF(2). There are many equivalent
characterizations of binary matroids, see [17]. For example, we use the following circuit
characterization: a collectiahof nonempty subsets of a finite $efis the set of circuits

of a binary matroid ork if and only if for every two distinct members 6f C; andC,,

it is true thatC; £ C, and that the symmetric differen€® AC, contains a member

C of C. Equivalently, a collectioif of nonempty subsets @& is the set of circuits of

a binary matroid ork if and only if the members of are minimal and the symmetric
difference of any collection of distinct members®fs the union of disjoint members

of C, see [17]. Combining this characterization with the fact proved in [14] that the only
maximum-order correlation immune and balanced boolean functions are nonconstant
affine functions, and also using the construction [6] of canonic ideal schemes whose
associated matroids are representable over a field, we now provetthatis the class

of binary matroids.

Theorem 7. A matroid is the associated matroid for a binary ideal secret sharing
scheme if and only if it is representable over the binary field

Proof. If a matroidM is binary, then the construction from the proof of Theorem 2 of
[6] described at the end of this section gives a canonic ideal scheme whose associated
matroid isM. Conversely, lef- be the distribution matrix of a canonic ideal scheme
and letM(F) be the associated matroid. By Theorem 6, for any cir€uinf M (F)

such that|C| = m > 2 there exists a balanced maximum-order correlation immune
boolean functionf: {0, 1} — {0, 1} such thatf (F(r,C)) = O for everyr € R.
Siegenthaler [14] has proved that the only balanced maximum-order correlation immune
boolean functions are nonconstant affine functions in GF(2), that is, every such function
f: {0, 1}™ — {0, 1} has the algebraic normal forfi(xy, ..., Xm) = ¢+ >\, Xi, where

the addition is modulo 2 andis a binary constant. ConsequentlyCif andC, are any

two distinct circuits ofM (F) whose cardinalities are both greater than 1, then there exist
binary constants; andc; such that

c1+ZF(r, p)=C2+ZF(r, p)=0, reRr. D

peCy peCs

Since the common variables in (1) cancel out, we have

citct+ ) Fr.p=0 reR. 2
peCi1AC;
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By Theorem 6 we then get th&y AC; is a dependent set dfl (F) and hence must
contain a circuit oM (F) as a subset. On the other hand, if at least one of the cilCulits
andC; is a loop (of cardinality 1), then their symmetric difference clearly contains this
loop as a subset. The circuit characterization of binary matroids then yieldsttat

is binary. O

Our next objective is to characterize the access structures achievable by connected
binary ideal schemes. A direct consequence of Theorems 4 [6], [11] and 7 is the following
implicit characterization of the achievable minimal access structures.

Lemmal. LetP* = P U pg be a set of participants wheregpZ P. A minimal
collectionl', of subsets dP is the minimal access structure of a connected binary ideal
secret sharing scheme withy ps a dealer if and only if a connected binary matroid on
P* exists whose set of circuits containingip given agpo U A: A € I'y}.

In order to derive an explicit characterization of the achievable minimal access struc-
tures, we need an additional lemma about the binary matroids.

Lemma?2. Let M be a connected binary matroid on a finite set E and let x be an
arbitrary element of ELetC denote the set of circuits of M and 16t denote the set of
circuits of M containing x ThenC\Cy is equal to the sei\ (Cx) of minimal elements of
the collection{C;AC; : C1, C, € Cx, C1 # C3}.

Proof. Since no element oA (Cy) containsx and, due to the circuit characterization
of binary matroids, every element 8f(Cy) contains a circuit oM, it follows that every
element ofA (Cx) belongs taC\Cx.

On the other hand, suppose ti@ais any circuit fromC\Cx. SinceM is connected,
there exists a circuit oM containing bothx and any element o€, that is, a circuit
C; from Cy that has a nonempty intersection with Choose any; so thatC U C; is
minimal over all suctC;. According to the circuit characterization of binary matroids,
the symmetric difference of any set of distinct circuits is the union of disjoint circuits.
As bothC andC; are circuits, their symmetric differen€AC; then contains a circuit
C, fromCy. SinceC, Z Cq, it follows thatC, N C £ @. Now, suppose th&i, is a proper
subset ofCAC;. ThenC; is also a proper subset € U C; and henceC U C; is not
minimal. Thus,C, must be equal t&€ AC;. This means thaf = C;AC,, where both
C; andC; belong taCy. Equivalently, every circuit frond\Cy is an element oA (Cx). O

The desired explicit characterization of the minimal access structures achievable by
connected binary ideal schemes is then given by the following theorem.

Theorem 8. LetP* = P U pg be a set of participants where; g P and letl'y, be
a minimal collection of subsets &f whose union is equal t&. Let A(I',) denote the
set of minimal elements of the collectipf, AA; : Ay, Ao € T, A1 # Ay}, Further,
let I';, and 'y, denote the sets of minimal elements of the collectigng\ A, : A; €
A(Tm), Az € T, Ar # Az} and{A1AA; : Ay, As € A(Th), Ar # Az}, respectively
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ThenI'y, is the minimal access structure of a connected binary ideal secret sharing
scheme with gpas a dealer if and only if a connected binary matroid@hexists whose

set of circuits is given a8(I'm) = A(T'm) U {poU A: A € I',}. Such a matroid exists

if and only if

(2°) no element of\ (') is contained in any element bf,,

(2°) for every element df;, there exists an element Bf, or A(I'y,) contained in if
and

(3°) for every element df;, there exists an element af(I'y,) contained in it

Proof. The first part of the theorem is a direct consequence of Lemmas 1 and 2 com-
bined. As for the second part, the required matroid exists if and only if the collection
C(I'm) is minimal and the symmetric difference of every two distinct elemenfg6f,)
contains an element @f(I'y,). Since no element ofpp U A ;. A € I'y} is contained

in any element oA (I'y,), the collectionC (I'y,) is minimal if and only if condition (1)

is satisfied. Now, by the definition ok (I"y,), the symmetric difference of every two
distinct elements ofpoU A : A € I',} contains an element @f(I',). It then remains to
check the mutual symmetric differences of elementa @f,,) and{po U A: A € '},
respectively, and the symmetric differences of distinct elements(bf,). Clearly, the
symmetric difference of any elementfgip U A : A € I',} and any element oA (I'y,)
contains an element @f(I'y,) if and only if condition (2) is true. Similarly, the sym-
metric difference of any two distinct elementssl'y,) contains an element of(I'y,)

if and only if condition (3) is satisfied. O

The achievability conditions from Theorem 8 can be checked in computational time
quadratic in the cardinality df,,. Moreover, any minimal collectiofi,, can in principle
be iteratively modified by removing or adding certain elements so that conditiofs (1
(2°), and (3) be gradually met. If';, is achievable, then it suffices to check the symmetric
differences of no more than four distinct element§gf If I', has to be modified, then
higher order symmetric differences have to be tested as well. For an achié&ygble
Theorem 8 specifies a way of determining the set of circuits of the connected binary
matroid associated with a binary ideal scheme that can rdaliz&éhe scheme itself can
then be constructed by first deriving a standard representation of the associated binary
matroid from the set of its circuits and then by using the construction from [6]. More
precisely, a standard representation of the binary malbah P* with C(I"y,) as the set
of its circuits is obtained by the technique described in [17]. Starting ffofy,) first
find abaseB = {by, ..., by} of M such thab; = pg, wheren is the rank ofM, which is
easy. LetP*\B = {ey, ..., &n}, n+m = |P| + 1, and letC; be the fundamental circuit
of g inthe baseB, that is, the unique circuit such thgte C; C BU g, see [17]. Then
a standard representationf over GF(2) is given by the columns of the binary matrix

bi---bn er---em

A/:[ |n A ]v (3)

wherel, is the identity matrix of dimensionsx n andA = [Ajj]nm With Ajj = 1if by
belongs taC;j and A;; = 0 otherwise.
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So, the columns o' define an ordered set of binary vectors of dimensid@ (p) } pep- -
According to [6], the corresponding canonic binary ideal scheme is then defined by
Fr,p) =71 -9(p), p € P*r € GF(2)', where “” denotes the dot product. Let
r =(ry,...,r), wherer; = Kk is the secret bit to be shared. When the deplet b;
wants to distribute shares corresponding to a secr&t b first picky,; = k at random
according to a prior probability distribution, chooses uniformly at random the binary
vector(ro, ..., rp), and then distributes the share¢(p) to a participantp, for every
peP.

5. Conclusion

In this paper we continue the study of Brickell and Davenport [6] and Martin [11]
regarding the matroid characterization of connected ideal secret sharing schemes. We first
provide some additional insightinto the results from [6] and then obtain a characterization
ofideal schemes with an arbitrary numigesf keys in terms ofj-ary balanced maximum-

order correlation immune functions. Fgpr= 2, we prove that a necessary and sufficient
condition for a matroid to be associated with such a scheme is that it is representable over
the binary field. We also derive a characterization of the access structures achievable by
connected binary ideal schemes and describe an efficient method for their construction.
Clearly, the same access structures are also achievable by connected ideal schemes with
g = 2" keys.

An interesting open problem is to extend our results regarding the matroid and access
structure characterizations as well as the construction of binary ideal schemes to ideal
schemes with an arbitrary numlzgeof keys. A possible way of approaching this problem
is by studying the properties of balanced maximum-order correlation immune functions
over arbitrary finite sets. The structure of the associated matroids is expected to be
constrained by such properties, which is in accordance with the intriguing Seymour’s
result [12] that there exists a matroid (Vamos) that cannot be associated with any ideal
scheme. We believe that the reason for this is in the strict definitions of the information
rate and the entropy structure of ideal schemes. So, we make the following:

Conjecture. Letp be the rank function of an arbitrary matroid on a set of participants
P* such thato(p) = 1, p € P* (nondegenerate participantsThen for everye > 0,
there exists a canonic secret sharing scheme FPérsuch that for any participant

p e P* |H(P)/H(p)—p(P)| < ¢ forevery PC P* where H is the entropy operator
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