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Abstract. A characterization of ideal secret sharing schemes with an arbitrary number
of keys is derived in terms of balanced maximum-order correlation immune functions.
In particular, it is proved that a matroid is an associated matroid for a binary ideal secret
sharing scheme if and only if it is representable over the binary field. Access structure
characterization of connected binary ideal schemes is established and a general method
for their construction is pointed out.
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1. Introduction

A secret sharing schemeis a procedure of sharing a secret keyk from a finite setK
among a finite setP of participants in a random way such that certain specified subsets
of participants, from the so-calledaccess structure0, can compute the key by pooling
their shares picked from a finite setS and given to participants by a dealerD, D 6∈ P.
A natural requirement is that0 bemonotone, that is, if A ∈ 0 and A ⊆ B ⊆ P, then
B ∈ 0. Let the set of minimal elements of0 be called theminimal access structureand be
denoted as0m. A secret sharing scheme is said to beconnectedif every participantp ∈ P
is contained in some subset in0m. A secret sharing scheme is calledperfectif any subset
of participantsP 6∈ 0 cannot gain any information about the key. Theinformation rate
for a secret sharing scheme can be defined as log2|K|/log2|S|. A perfect secret sharing
scheme is said to beideal if it has maximum information rate 1. Note that the first secret
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sharing schemes introduced by Blakley [3] and Shamir [13] were the so-called threshold
schemes, where0m consists of all the subsets ofP of a specified cardinality.

A comprehensive survey of secret sharing schemes and the corresponding literature
can be found in [16], [4], and [15]. Ideal secret sharing schemes were first defined by
Brickell [5]. In [10] and [2] it is shown how to realize perfect secret sharing schemes
for arbitrary monotone access structures. In [2] it is also proved that a certain access
structure cannot be realized by ideal secret schemes, and the corresponding upper bound
on the information rate was then improved in [7] and later in [8], where the tight bound
was found. Brickell and Davenport [6] established a connection between ideal secret
sharing schemes and matroids and Martin [11] showed how to specify the associated
matroid in terms of the access structure only. An interesting result was obtained by
Seymour [12] who discovered a matroid (Vamos) that cannot be associated with any
ideal secret sharing scheme. However, the characterization of the associated matroids
and the achievable access structures as well as a general method for the construction of
ideal secret sharing schemes are still open problems.

In this paper we first obtain a characterization of ideal secret sharing schemes for an
arbitrary key size in terms of balanced maximum-order correlation immune functions
[14]. For the binary key, we show that the associated matroids are binary and then
characterize the achievable access structures and give a general construction method as
well. Preliminaries are given in Section 2, the general case is studied in Section 3, and
the binary one is analyzed in Section 4. Conclusions and open problems are given in
Section 5.

2. Preliminaries

In this section we first review the basic definitions regarding perfect and ideal secret
sharing schemes and then present and briefly discuss the main results from [6]. Let
a finite set of secret keys be denoted asK, a finite set of shares asS, a finite set of
participants asP, a dealer asD, D 6∈ P, the extended set of participants asP∗ = P ∪ D
where for simplicity{D} = D, and a finite randomizing set asR. The total number of
participants|P∗| is denoted asN. Further, for any functionF : R × P∗ → K ∪ S and
arbitrary subsetsR ⊆ R and P ⊆ P∗, let, for anyr ∈ R, F(r, P) denote the ordered
set{F(r, p)}p∈P and letF(R, P) = {F(r, P) : r ∈ R}. Then a secret sharing scheme
is defined in terms of a functionF such thatF(R, D) = K andF(R,P) ⊆ S |P|. For
anyr ∈ R, the functionF(r, p), p ∈ P∗, is usually called [16] a distribution rule. The
distribution functionF can be depicted as a matrix whose rows are indexed byr ∈ R
and columns byp ∈ P∗, see [6].

Let Rk = {r : r ∈ R, F(r, D) = k}, for anyk ∈ K. When the dealerD wants to
distribute shares corresponding to a secret key,D first picks a keyk at random according
to anarbitrary prior probability distribution onK, randomly chooses a valuer such
that F(r, D) = k according to agivenconditional probability distributionπk onRk,
and then distributes the shareF(r, p) to a participantp, for every p ∈ P. A secret
sharing scheme is then generally defined as an ordered setF = (F, {πk}k∈K) which
besides the distribution matrixF also contains the conditional probability distributions as
well. Without loss of generality, we assume that the conditional probability distributions
are all strictly positive. Equivalently,F can be regarded as an ordered set of discrete
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random variables corresponding to individual participants including the dealer where the
probability distribution associated with the dealer may be arbitrary. In a special case, if
one assumes that the conditional probability distributions are all uniform, then a secret
sharing schemeF can be expressed solely in terms of a distribution matrixF , see [6],
[7], and [16]. For simplicity, such schemes are here denoted byF instead ofF . If, in
addition, no two rows ofF are identical, then a scheme is calledcanonic.

A secret sharing schemeF is calledperfectwith a monotone access structure0 if
for every prior probability distribution of secret keys: (1) for any qualified subset of
participantsP ∈ 0, H(D|P) = 0 and (2) for any unqualified subset of participantsP 6∈
0, P ⊆ P, H(D|P) = H(D), whereH is the entropy operator, see [8]. Equivalently,
F(r, D) is a function ofF(r, P) for a qualifiedP and is (probabilistically) independent of
F(r, P) for an unqualifiedP. Clearly,F is perfect if it is perfect for any particular strictly
positive prior probability distribution of secret keys. For secret sharing schemes with
uniform conditional probability distributions, some combinatorial sufficient conditions
for a scheme to be perfect in terms of the distribution matrixF only are given in [7] and
[6]. We note that these conditions are easily generalized into the followingnecessary
and sufficientconditions:

(1) If P ∈ 0, thenF(r, P) = F(r ′, P)⇒ F(r, D) = F(r ′, D).
(2) If P 6∈ 0, P ⊆ P, then for any secret keyk and any achievable vector valuev of

F(r, P), |{r : r ∈ Rk, F(r, P) = v}|/|Rk| is independent ofk.

Conditions (1) and (2) characterize functional dependence and probabilistic indepen-
dence ofF(r, D) andF(r, P), respectively. As was suggested in [6] and [7], condition
(2) can be replaced by a weaker one which describes what can be called possibilistic
independence:

(2′) If P 6∈ 0, P ⊆ P, then, for any secret keyk and any achievable vector valuev
of F(r, P), |{r : r ∈ Rk, F(r, P) = v}| > 0.

Any secret sharing schemeF , with not necessarily uniform conditional probability
distributions, can then be calledweakly perfectwith a monotone access structure0 if its
distribution matrixF satisfies conditions (1) and (2′). This notion was introduced in [6]
and [7], but only for secret sharing schemes with uniform conditional probability dis-
tributions. To summarize, a secret sharing scheme with uniform conditional probability
distributions is perfect if and only if its distribution matrix satisfies (1) and (2), and any
secret sharing scheme is weakly perfect if and only if its distribution matrix satisfies
(1) and (2′). Since the conditional probability distributions are generally assumed to be
strictly positive, it follows that a perfect secret sharing scheme must also be weakly
perfect with the same access structure. While the converse is clearly not true in general,
it may be true that every weakly perfect secret sharing scheme can be transformed into
a perfect one with the same access structure.

Perfect and weakly perfect secret sharing schemes such that|S| = |K| are calledideal
andweakly ideal, respectively. Without loss of generality, one can assume thatS = K, so
thatF : R×P∗ → K. Let |K| = q. An ideal or weakly ideal (secret sharing) scheme is
calledconnectedif every participantp ∈ P is contained in some subset from its minimal
access structure0m. Brickell and Davenport [6] have studied canonic ideal and weakly
ideal schemes, in which the conditional probability distributions are uniform and the
distribution matrix has no repeated rows.
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In order to outline the main results from [6], we need some basic notions from ma-
troid theory, see [17]. A matroidM = (E, E) is a finite setE and a collectionE of
subsets ofE, calledindependentsets, such that (1) every subset of an independent set is
independent and (2) for everyX ⊆ E, every maximal independent subset ofX has the
same cardinality, called therankof X (an empty set∅ is considered independent and has
rank zero). Adependentset of M is a subset ofE that is not independent. A minimal
dependent set is called acircuit, whereas a maximal independent set is called abase. A
matroid is said to beconnectedif, for any two elements ofE, there is a circuit containing
both of them. Aloop is a single element circuit.

The main effort of Brickell and Davenport was to prove [6, Proposition 1] that in any
canonic connected weakly ideal scheme withq keys andN ≥ 2 participants, for every
P ⊆ P∗, #P defined as|F(R, P)| is a positive integer power ofq. As a consequence,
they have then obtained two interesting properties: first [6, Theorem 3], that in such
schemes every participant can be taken as a dealer and, second [6, Theorem 1], that
ρ(P) = logq #P, P ⊆ P∗, together withρ(∅) = 0 defines a rank function of a connected
matroid, which is called theassociated matroid[16] and denoted byM(F) (for canonic
schemes,F reduces toF). The first property means that any subset of participants
P ⊆ P∗ is either independent or dependent where in independent subsets the participant
shares are possibilistically independent according to condition (2′), and in dependent
subsets the share of each participant is a function of the shares of the others according to
condition (1). It then also follows [6, Theorem 1] that the independent/dependent sets
of the associated matroidM(F) coincide with the independent/dependent subsets of
participants. Note that Proposition 1 of [6] easily follows if one initially assumes that a
scheme, not necessarily connected, is weakly ideal with respect to each participant as a
dealer, see [12]. So, the main result of [6] is in fact to prove that other connected weakly
ideal schemes do not exist.

Another interesting result of Brickell and Davenport, again obtained as a consequence
of Proposition 1 of [6], is Theorem 9 of [6] which shows that every canonic connected
weakly ideal scheme is necessarily ideal with the same access structure, with respect
to any participant as a dealer. This means that in independent subsets of participants
the shares are not only possibilistically, but also probabilistically independent accord-
ing to condition (2). Conditions (2) and (2′) are thus mutually equivalent for connected
secret sharing schemes with information rate 1, with uniform conditional probability
distributions, and with distinct rows of the distribution matrix. LetH(D) denote the
entropy of the dealer depending on the prior probability distribution of the keys, and
let H(P) denote the joint entropy of a subset of participantsP ⊆ P∗. Then in canonic
connected ideal schemesH(P)/H(D) = logq #P is the rank function of the associated
matroid, which is connected. It is interesting to note that this result also follows from
polymatroidal properties of the entropy function corresponding to an ordered set of dis-
crete random variables [9], under the assumption that a canonic scheme, not necessarily
connected, is ideal with respect to each participant as a dealer.

Finally, for an arbitrary connected matroidM representable over a field withq ele-
ments,q being a prime power, Brickell and Davenport gave a construction of a canonic
connected ideal scheme withq keys and the associated matroidM , see Theorem 2 of
[6]. Martin [11] later showed how to construct the set of circuits of the associated ma-
troid based on the access structure only, see also Lehman’s result [17, Theorem 5.4.1],
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which means that the associated matroid does not depend on the particular ideal scheme
realizing the access structure as long as the scheme is connected. If the collection of sub-
sets of participants obtained by the construction [11] does not satisfy the circuit axioms
[17], then (but not only then) the given access structure cannot be realized by any ideal
scheme. By using graph-theoretic arguments, Seymour [12] proved that the well-known
Vamos matroid on a set of eight elements cannot be associated with any ideal scheme.

3. General Ideal Schemes

The main results from [6] regarding the characterization of ideal secret sharing schemes
can be interpreted by the following theorems. The theorems as such are actually not
given in an explicit form in [6], but are easily derived in light of the discussion from the
previous section. As we have already pointed out, the result contained in the following
Theorem 1 [6] is actually the most difficult one to prove. Note that as far as weakly
ideal schemes are concerned, the canonic property is in fact not necessary. Also, instead
of connected weakly ideal schemes only, we more generally deal with schemes weakly
ideal with respect to every participant as a dealer. Such schemes are composed of a
number of distinct connected components. If a connected component consists of a single
participant only, then such a participant is calleddegenerate.

Theorem 1[6]. A connected secret sharing scheme is weakly ideal with respect to any
particular participant as a dealer if and only if it is weakly ideal with respect to every
participant as a dealer.

Theorem 2[6]. A secret sharing scheme with q keys is weakly ideal with respect to
every participant as a dealer if and only if, for every P⊆ P∗, |F(R, P)| = qρ(P) where
ρ is a nonnegative integer function. It then follows thatρ extended byρ(∅) = 0 is the
rank function of a matroid onP∗. (For a degenerate participant p, ρ(p) = 0 and hence
p is a loop.)

Theorem 3[6]. A canonic secret sharing scheme F is ideal with respect to any par-
ticular participant as a dealer if and only if it is weakly ideal with respect to the same
participant as a dealer. The corresponding access structures are the same. Moreover, a
canonic secret sharing scheme with q keys is ideal with respect to every participant as a
dealer if and only if, for every P⊆ P∗ and each achievable vector valuev of F(r, P),
|{r : r ∈ R, F(r, P) = v}| = qρ

′(P) whereρ ′ is a nonnegative integer function.

Theorem 4[6], [11]. Given a weakly ideal secret sharing scheme with a participant
p0 as a dealer, the set of circuits of the associated matroid containing p0 is equal to
{p0 ∪ P : P ∈ 0m} where0m is the the corresponding minimal access structure with
respect to p0. If the scheme is in addition connected, then the associated matroid is
uniquely determined by0m.

Note that Theorems 1 [6], 2 [6], and 3 [6] directly imply that canonic ideal threshold
schemes are equivalent to orthogonal arrays of index one. Our objective in this section
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is to obtain a more specific characteriziation of ideal secret sharing schemes with an
arbitrary numberq of keys. We first point out that every ideal, not necessarily canonic,
scheme can be reduced to a canonic form.

Theorem 5. Every ideal secret sharing scheme with any particular participant as a
dealer can be transformed into a canonic ideal secret sharing scheme with the same
participant as a dealer and with the same access structure. The transformation consists
in reducing the repeated rows in the distribution matrix to the single ones and in assuming
the uniform conditional probability distributions of the rows.

Proof. Consider an arbitrary ideal secret sharing schemeF = (F, {πk}k∈K) where the
distribution matrixF may have repeated rows and the conditional probability distribu-
tions {πk}k∈K are positive. From conditions (1), (2), and (2′) it then follows thatF is
weakly ideal too, with the same participant as a dealer and with the same access structure.
The same holds for the transformed scheme as well. Since the transformed scheme is
canonic, it is also ideal by Theorem 3 [6].

Theorem 5 means that canonic ideal schemes as introduced by Brickell and Davenport
in [6] are essentially the most general ones as far as the access structure is concerned.
Their distribution matrixF is characterized by Theorem 2 [6] or, more precisely, by
Theorem 3 [6]. We now prove that one can be even more specific about the distribution
matrix of such schemes using the notion ofbalanced maximum-order correlation immune
functions [14]. A surjective functionf : A → B, whereA andB are finite sets, is
called balanced if every value fromB is assumed an equal number of times byf . A
balanced functionf : Km → K is called maximum-order correlation immune if it is
balanced for each fixed value of every proper subset of itsm input variables (it suffices
to consider proper subsets of maximum cardinality only). Since the columns of the
distribution matrix corresponding to degenerate participants in ideal schemes are single-
valued, see Theorem 2 [6], without loss of generality we assume that the participants are
all nondegenerate.

Theorem 6. A canonic secret sharing scheme F with a setK of q keys and a setP∗ of
N ≥ 2 nondegenerate participants is ideal with respect to every participant as a dealer
if and only if for every P⊆ P∗ either the values of F(r, P), r ∈ R, are uniformly
distributed overK|P| or there exist a nonempty proper subset P′ ⊂ P and a participant
p ∈ P\P′ such that F(R, P′) = K|P′| and that F(r, p) = f (F(r, P′)), r ∈ R, where
f is a balanced maximum-order correlation immune function overK|P′|.

The total number of rows in F is then a positive integer power of q, whereas the
subsets P such that F(r, P) is uniformly distributed coincide with the independent sets
of the associated matroid M(F).

Proof. We first prove the necessity. From Theorem 2 [6] it follows that|F(R, P)| = qt

where t is the cardinality of maximal independent subsets ofP, P ⊆ P∗, and, in
particular, |F(R,P∗)| = qn wheren is the rank of the associated matroidM(F).
Moreover, from Theorem 3 [6] it follows that|{r : r ∈ R, F(r, P) = v}| = qn−t for
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each achievable vector valuev of F(r, P). So, if P is an independent set inM(F), then
t = |P| andF(r, P) is uniformly distributed overK|P|.

On the other hand, ifP is a dependent set inM(F), then it contains a (minimal
dependent set) circuitC of M(F) as a subset, where|C| ≥ 2 holds necessarily, because
there are no degenerate participants. It then follows that|F(R,C)| = qm wherem =
|C| − 1. For an arbitrary participantp in C, both p andC\p are independent, so that
|F(R,C\p)| = qm and|F(R, p)| = q. Also, each value ofF(r,C\p) and each value
of F(r, p) appear exactlyqn−m andqn−1 times in the functionsF(r,C\p) andF(r, p),
r ∈ R, respectively. Since the shareF(r, p) is a function f of the sharesF(r,C\p),
r ∈ R, for each valuek of F(r, p) there must be exactlyqm−1 values ofF(r,C\p) such
that f (F(r,C\p)) = k. Hence f is a balanced functionKm→ K.

If m= 1, then, trivially, f is maximum-order correlation immune too. Ifm≥ 2, then
let p′ be an arbitrary participant inC\p. Sincep andp′ are arbitrary distinct participants
in C, they can change places, and the above argument then shows that the shareF(r, p′)
is also a function of the sharesF(r,C\p′), r ∈ R. Therefore, for any fixed value of
F(r,C\p\p′), the value ofF(r, p′) uniquely determines the value ofF(r, p) and vice
versa. Asp′ is arbitrary, it follows thatf achieves allq values for each fixed subset of
m− 1 out ofm input variables. Hencef is maximum-order correlation immune.

Assume now that the distribution matrixF of a canonic secret sharing scheme satis-
fies the required conditions. First note that the condition for a dependent set is clearly
equivalent to a stronger one that there exists a subsetP′ ⊆ P, |P′| ≥ 2, such that,
for eachp ∈ P′, F(R, P′\p) = K|P′|−1 and thatF(r, p) = f (F(r, P′\p)), r ∈ R,
where f is a balanced maximum-order correlation immune function overK|P′|−1. In
fact, this is why balanced maximum-order correlation immunity is required. If the val-
ues ofF(r, P) are uniformly distributed, then call a subsetP ⊆ P∗ independent, and
if not, then call it dependent. It follows that every subset of an independent set is inde-
pendent. Accordingly, ifP is independent, then|F(R, P)| = q|P|. We now show that,
for any dependentP, |F(R, P)| is also a positive integer power ofq. Namely, if P is
dependent, then consider any maximal independent subsetP̂ of P and any participant
p ∈ P\P̂. By the assumed maximality of̂P, the setP̂ ∪ p must be dependent. Since
P̂ itself is independent, it follows that there exists a subsetP′ ⊆ P̂ such thatF(r, p) is
a function ofF(r, P′), r ∈ R. HenceF(r, p) is a function ofF(r, P̂) too. Therefore,
|F(R, P̂ ∪ p)| = q|P̂|. Furthermore, sincep is an arbitrary participant fromP\P̂, we
also have that|F(R, P)| = q|P̂|. Theorem 2 [6] then implies that the secret sharing
scheme is weakly ideal. Since the scheme is canonic, Theorem 3 [6] yields that it is ideal
too.

The last part of the theorem follows trivially.

LetMq,N denote the class of matroids associated with ideal secret sharing schemes
with q keys andN participants including the dealer. If a scheme is connected, then the
associated matroid is connected too. If a scheme does not have degenerate participants,
then the associated matroid has no loops. Theorem 6 shows that for any particularq, the
structure ofMq,N is determined byq-ary balanced maximum-order correlation immune
functions. According to the construction from [6] it follows that, forq a prime power,
Mq,N contains all the matroids representable over a field (nearfield) withq elements.
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In the next section we prove that in the binary case,q = 2,M2,N is exactly the class of
matroids representable over the binary field.

4. Binary Ideal Schemes

In this section we consider ideal secret sharing schemes withq = |K| = |S| = 2
keys, which we call binary ideal schemes. Recall [17] that a matroidM on E is called
representable over a fieldF if there exists a rank-preserving function (not necessarily
an injection)ϕ: E → V whereV is a vector space overF . In particular, a matroidM
is binary if it is representable over the binary field GF(2). There are many equivalent
characterizations of binary matroids, see [17]. For example, we use the following circuit
characterization: a collectionC of nonempty subsets of a finite setE is the set of circuits
of a binary matroid onE if and only if for every two distinct members ofC, C1 andC2,
it is true thatC1 6⊆ C2 and that the symmetric differenceC11C2 contains a member
C of C. Equivalently, a collectionC of nonempty subsets ofE is the set of circuits of
a binary matroid onE if and only if the members ofC are minimal and the symmetric
difference of any collection of distinct members ofC is the union of disjoint members
of C, see [17]. Combining this characterization with the fact proved in [14] that the only
maximum-order correlation immune and balanced boolean functions are nonconstant
affine functions, and also using the construction [6] of canonic ideal schemes whose
associated matroids are representable over a field, we now prove thatM2,N is the class
of binary matroids.

Theorem 7. A matroid is the associated matroid for a binary ideal secret sharing
scheme if and only if it is representable over the binary field.

Proof. If a matroidM is binary, then the construction from the proof of Theorem 2 of
[6] described at the end of this section gives a canonic ideal scheme whose associated
matroid isM . Conversely, letF be the distribution matrix of a canonic ideal scheme
and let M(F) be the associated matroid. By Theorem 6, for any circuitC of M(F)
such that|C| = m ≥ 2 there exists a balanced maximum-order correlation immune
boolean functionf : {0, 1}m → {0, 1} such that f (F(r,C)) = 0 for everyr ∈ R.
Siegenthaler [14] has proved that the only balanced maximum-order correlation immune
boolean functions are nonconstant affine functions in GF(2), that is, every such function
f : {0, 1}m→ {0, 1} has the algebraic normal formf (x1, . . . , xm) = c+∑m

i=1 xi , where
the addition is modulo 2 andc is a binary constant. Consequently, ifC1 andC2 are any
two distinct circuits ofM(F)whose cardinalities are both greater than 1, then there exist
binary constantsc1 andc2 such that

c1+
∑
p∈C1

F(r, p) = c2+
∑
p∈C2

F(r, p) = 0, r ∈ R. (1)

Since the common variables in (1) cancel out, we have

c1+ c2+
∑

p∈C11C2

F(r, p) = 0, r ∈ R. (2)
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By Theorem 6 we then get thatC11C2 is a dependent set ofM(F) and hence must
contain a circuit ofM(F) as a subset. On the other hand, if at least one of the circuitsC1

andC2 is a loop (of cardinality 1), then their symmetric difference clearly contains this
loop as a subset. The circuit characterization of binary matroids then yields thatM(F)
is binary.

Our next objective is to characterize the access structures achievable by connected
binary ideal schemes. A direct consequence of Theorems 4 [6], [11] and 7 is the following
implicit characterization of the achievable minimal access structures.

Lemma 1. Let P∗ = P ∪ p0 be a set of participants where p0 6∈ P. A minimal
collection0m of subsets ofP is the minimal access structure of a connected binary ideal
secret sharing scheme with p0 as a dealer if and only if a connected binary matroid on
P∗ exists whose set of circuits containing p0 is given as{p0 ∪ A : A ∈ 0m}.

In order to derive an explicit characterization of the achievable minimal access struc-
tures, we need an additional lemma about the binary matroids.

Lemma 2. Let M be a connected binary matroid on a finite set E and let x be an
arbitrary element of E. LetC denote the set of circuits of M and letCx denote the set of
circuits of M containing x. ThenC\Cx is equal to the set1(Cx) of minimal elements of
the collection{C11C2 : C1,C2 ∈ Cx,C1 6= C2}.

Proof. Since no element of1(Cx) containsx and, due to the circuit characterization
of binary matroids, every element of1(Cx) contains a circuit ofM , it follows that every
element of1(Cx) belongs toC\Cx.

On the other hand, suppose thatC is any circuit fromC\Cx. SinceM is connected,
there exists a circuit ofM containing bothx and any element ofC, that is, a circuit
C1 from Cx that has a nonempty intersection withC. Choose anyC1 so thatC ∪ C1 is
minimal over all suchC1. According to the circuit characterization of binary matroids,
the symmetric difference of any set of distinct circuits is the union of disjoint circuits.
As bothC andC1 are circuits, their symmetric differenceC1C1 then contains a circuit
C2 fromCx. SinceC2 6⊆ C1, it follows thatC2∩C 6= ∅. Now, suppose thatC2 is a proper
subset ofC1C1. ThenC2 is also a proper subset ofC ∪ C1 and henceC ∪ C1 is not
minimal. Thus,C2 must be equal toC1C1. This means thatC = C11C2, where both
C1 andC2 belong toCx. Equivalently, every circuit fromC\Cx is an element of1(Cx).

The desired explicit characterization of the minimal access structures achievable by
connected binary ideal schemes is then given by the following theorem.

Theorem 8. LetP∗ = P ∪ p0 be a set of participants where p0 6∈ P and let0m be
a minimal collection of subsets ofP whose union is equal toP. Let1(0m) denote the
set of minimal elements of the collection{A11A2 : A1, A2 ∈ 0m, A1 6= A2}. Further,
let 0′m and0′′m denote the sets of minimal elements of the collections{A11A2 : A1 ∈
1(0m), A2 ∈ 0m, A1 6= A2} and {A11A2 : A1, A2 ∈ 1(0m), A1 6= A2}, respectively.
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Then0m is the minimal access structure of a connected binary ideal secret sharing
scheme with p0 as a dealer if and only if a connected binary matroid onP∗ exists whose
set of circuits is given asC(0m) = 1(0m) ∪ {p0 ∪ A : A ∈ 0m}. Such a matroid exists
if and only if:

(1◦) no element of1(0m) is contained in any element of0m,
(2◦) for every element of0′m there exists an element of0m or 1(0m) contained in it,

and
(3◦) for every element of0′′m there exists an element of1(0m) contained in it.

Proof. The first part of the theorem is a direct consequence of Lemmas 1 and 2 com-
bined. As for the second part, the required matroid exists if and only if the collection
C(0m) is minimal and the symmetric difference of every two distinct elements ofC(0m)

contains an element ofC(0m). Since no element of{p0 ∪ A : A ∈ 0m} is contained
in any element of1(0m), the collectionC(0m) is minimal if and only if condition (1◦)
is satisfied. Now, by the definition of1(0m), the symmetric difference of every two
distinct elements of{p0∪ A : A ∈ 0m} contains an element of1(0m). It then remains to
check the mutual symmetric differences of elements of1(0m) and{p0 ∪ A : A ∈ 0m},
respectively, and the symmetric differences of distinct elements of1(0m). Clearly, the
symmetric difference of any element of{p0 ∪ A : A ∈ 0m} and any element of1(0m)

contains an element ofC(0m) if and only if condition (2◦) is true. Similarly, the sym-
metric difference of any two distinct elements of1(0m) contains an element ofC(0m)

if and only if condition (3◦) is satisfied.

The achievability conditions from Theorem 8 can be checked in computational time
quadratic in the cardinality of0m. Moreover, any minimal collection0m can in principle
be iteratively modified by removing or adding certain elements so that conditions (1◦),
(2◦), and (3◦) be gradually met. If0m is achievable, then it suffices to check the symmetric
differences of no more than four distinct elements of0m. If 0m has to be modified, then
higher order symmetric differences have to be tested as well. For an achievable0m,
Theorem 8 specifies a way of determining the set of circuits of the connected binary
matroid associated with a binary ideal scheme that can realize0m. The scheme itself can
then be constructed by first deriving a standard representation of the associated binary
matroid from the set of its circuits and then by using the construction from [6]. More
precisely, a standard representation of the binary matroidM onP∗ with C(0m) as the set
of its circuits is obtained by the technique described in [17]. Starting fromC(0m) first
find a baseB = {b1, . . . ,bn} of M such thatb1 = p0, wheren is the rank ofM , which is
easy. LetP∗\B = {e1, . . . ,em}, n+m= |P| + 1, and letCj be the fundamental circuit
of ej in the baseB, that is, the unique circuit such thatej ∈ Cj ⊂ B∪ ej , see [17]. Then
a standard representation ofM over GF(2) is given by the columns of the binary matrix

b1 · · ·bn e1 · · ·em

A′ = [ In A ],
(3)

whereIn is the identity matrix of dimensionsn× n andA = [ Ai j ]n,m with Ai j = 1 if bi

belongs toCj andAi j = 0 otherwise.
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So, the columns ofA′ define an ordered set of binary vectors of dimensionn, {ϕ(p)}p∈P∗ .
According to [6], the corresponding canonic binary ideal scheme is then defined by
F(r, p) = r · ϕ(p), p ∈ P∗, r ∈ GF(2)n, where “·” denotes the dot product. Let
r = (r1, . . . , rn), wherer1 = k is the secret bit to be shared. When the dealerp0 = b1

wants to distribute shares corresponding to a secret bitk, he first picksr1 = k at random
according to a prior probability distribution, chooses uniformly at random the binary
vector(r2, . . . , rn), and then distributes the sharer · ϕ(p) to a participantp, for every
p ∈ P.

5. Conclusion

In this paper we continue the study of Brickell and Davenport [6] and Martin [11]
regarding the matroid characterization of connected ideal secret sharing schemes. We first
provide some additional insight into the results from [6] and then obtain a characterization
of ideal schemes with an arbitrary numberq of keys in terms ofq-ary balanced maximum-
order correlation immune functions. Forq = 2, we prove that a necessary and sufficient
condition for a matroid to be associated with such a scheme is that it is representable over
the binary field. We also derive a characterization of the access structures achievable by
connected binary ideal schemes and describe an efficient method for their construction.
Clearly, the same access structures are also achievable by connected ideal schemes with
q = 2n keys.

An interesting open problem is to extend our results regarding the matroid and access
structure characterizations as well as the construction of binary ideal schemes to ideal
schemes with an arbitrary numberq of keys. A possible way of approaching this problem
is by studying the properties of balanced maximum-order correlation immune functions
over arbitrary finite sets. The structure of the associated matroids is expected to be
constrained by such properties, which is in accordance with the intriguing Seymour’s
result [12] that there exists a matroid (Vamos) that cannot be associated with any ideal
scheme. We believe that the reason for this is in the strict definitions of the information
rate and the entropy structure of ideal schemes. So, we make the following:

Conjecture. Letρ be the rank function of an arbitrary matroid on a set of participants
P∗ such thatρ(p) = 1, p ∈ P∗ (nondegenerate participants). Then, for everyε > 0,
there exists a canonic secret sharing scheme F onP∗ such that, for any participant
p ∈ P∗, |H(P)/H(p)−ρ(P)| < ε for every P⊆ P∗, where H is the entropy operator.
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