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ON MATROIDS REPRESENTABLE OVER GF (3)

AND OTHER FIELDS

GEOFF WHITTLE

Abstract. The matroids that are representable over GF (3) and some other
fields depend on the choice of field. This paper gives matrix characterisations
of the classes that arise. These characterisations are analogues of the char-
acterisation of regular matroids as the ones that can be represented over the
rationals by a totally-unimodular matrix. Some consequences of the theory are
as follows. A matroid is representable over GF (3) and GF (5) if and only if it
is representable over GF (3) and the rationals, and this holds if and only if it is
representable over GF (p) for all odd primes p. A matroid is representable over
GF (3) and the complex numbers if and only if it is representable over GF (3)
and GF (7). A matroid is representable over GF (3), GF (4) and GF (5) if and
only if it is representable over every field except possibly GF (2). If a matroid
is representable over GF (p) for all odd primes p, then it is representable over
the rationals.

1. Introduction

It is a classical (1958) result of Tutte [15, 16] that a matroid is representable
over GF (2) and some field whose characteristic is not 2 if and only if it can be
represented over the rationals by a totally unimodular matrix, that is, by a matrix
over Q with the property that all of its subdeterminants are in {0, 1,−1}. This
paper focuses on the problem of finding analogues of Tutte’s result for the field
GF (3). This continues a study begun in [18] where a matrix characterisation of the
matroids representable over both GF (3) and the rationals is given. In this paper
the techniques of [18] are extended to give matrix characterisations of the matroids
representable over GF (3) and any other given field. We now outline some of the
highlights of the theory.

A dyadic–matrix is a matrix over the rationals with the property that all of its
subdeterminants belong to the set {0,±2i : i an integer}. A dyadic–matroid is
a matroid that can be represented over the rationals by the columns of a dyadic
matrix. A 6

√
1–matrix is a matrix over the complex numbers with the property that

all of its non-zero subdeterminants are complex sixth roots of unity. A 6
√

1–matroid
is a matroid that can be represented over the complex numbers by the columns
of a 6

√
1–matrix. Most of the work in the paper is dedicated to proving that if M

is a 3–connected, ternary matroid that is representable over some field that does
not have characteristic 3, then M is either a dyadic matroid or a 6

√
1–matroid. In

combination with other results this yields the following theorems as corollaries.

Theorem 1.1. The following are equivalent for a matroid M .
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1. M is representable over GF (3) and GF (5).
2. M is representable over GF (p) for all odd primes p.
3. M is representable over GF (3) and the rationals.
4. M is representable over GF (3) and the reals.
5. M is representable over GF (3) and GF (q) where q is an odd prime power

that is congruent to 2 mod 3.
6. M is a dyadic matroid.

Theorem 1.2. The following are equivalent for a matroid M .

1. M is representable over GF (3) and GF (4).
2. M is representable over GF (3) and GF (2k) where k is an even positive inte-

ger.
3. M is a 6

√
1–matroid.

Theorem 1.3. The following are equivalent for a matroid M .

1. M is representable over GF (3) and the complex numbers.
2. M is representable over GF (3) and GF (7).
3. M is representable over GF (3) and GF (q) where q is an odd prime power

that is congruent to 1 mod 3.
4. M is either a dyadic matroid, a 6

√
1–matroid, or can be obtained by taking

2–sums and direct sums of dyadic matroids and 6
√

1–matroids.

Let Q(α) denote the field obtained by extending the rationals by the transcenden-
tal α. A matrix over Q(α) is near-unimodular if all of its non-zero subdeterminants
are in {±αi(α − 1)j : i, j ∈ Z}. A matroid is near-regular if it can be represented
over Q(α) by the columns of a near-unimodular matrix.

Theorem 1.4. The following are equivalent for a matroid M .

1. M is representable over GF (3), GF (4) and GF (5).
2. M is representable over GF (3) and GF (8).
3. M is representable over all fields except possibly GF (2).
4. M is representable over GF (3), GF (4) and the rationals.
5. M is near-regular.

Theorem 1.5. Let F be a set of fields containing GF (3), and let M be the class
of matroids representable over all fields in F . Then for some q ∈ {2, 3, 4, 5, 7, 8},
M is the class of matroids representable over GF (3) and GF (q).

The above theorems resolve a number of natural conjectures on matroids rep-
resentable over GF (3) and other fields. In particular it follows from Theorem 1.1
that if a matroid is representable over GF (p) for all odd primes p, then it is repre-
sentable over the rationals. This is stated as [12, Problem 14.1.11]. It also follows
that a problem of Brylawski, stated as [12, Problem 14.1.7], can be answered in
the affirmative. It is an easy consequence of these theorems that a ternary matroid
that is representable over a field of characteristic 2 is representable over GF (4). A
special case of this resolves a conjecture of Zaslavsky [19, Conjecture 8B.1] in the
affirmative.

Given the above results it is clear that near-regular matroids, dyadic matroids
and 6

√
1–matroids form significant classes. It would be interesting to know more

about their structure. An obvious problem is to try to characterise them by ex-
cluded minors. I have no idea how difficult this is likely to be. Near-regular matroids
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are a particularly natural generalisation of regular matroids—near-regular matroids
are exactly the matroids representable over all fields except possibly GF (2), while
regular matroids are the ones representable over all fields. It would be of interest to
know what results for regular matroids extend to near-regular matroids. Oxley [12,
Problem 14.1.10] asks if there is an analogue of Seymour’s regular matroid decom-
position theorem [14] for the class of matroids representable over all odd primes.
This is just the class of dyadic matroids. I believe that this is a very interesting
question. As the class of dyadic matroids contains the class of near-regular ma-
troids it is natural to begin by seeking a Seymour type decomposition theorem for
near-regular matroids.

One can also speculate on the possibility of characterising the matroids repre-
sentable over other sets of fields. It will hardly escape the readers’ attention that
dyadic matroids, 6

√
1–matroids and near-regular matroids are all defined by refer-

ence to certain subgroups of multiplicative groups of fields. It is not hard to see how
these notions can be generalised. For a given subgroupG of the multiplicative group
of a field F, one can define the class of (G,F)–matroids to be those matroids that
have a representation over F in which all non-zero subdeterminants are in G. These
classes may reward a general study. It is probably hopelessly optimistic to expect
a positive answer to the following question. Given a set S of fields, at least one of
which is finite, is it the case that there exists a finite set {(G1,F1), . . . , (Gn,Fn)}
with the property that a 3–connected matroid M is representable over all fields in
S if and only if for some i ∈ {1, 2, . . . , n}, M is a (Gi,Fi)–matroid?

The paper is structured as follows. Section 2 mainly outlines known results that
are needed for this paper, particularly results from [18]. Section 3 establishes basic
properties of 6

√
1–matroids, a class that was not discussed in [18]. The matrix result

of Section 4 is needed in the proofs in Section 5. This latter section contains the
main results, and most of the argument.

2. Preliminaries

Familiarity is assumed with the elements of matroid theory. In particular it is
assumed that the reader is familiar with the theory of matroid representations and
matroid connectivity. For a good coverage of these topics we refer the reader to
Oxley [12]. Terminology in this paper accords with [12] with the exception that
we denote the simple matroid canonically associated with a matroid M by si(M).
Note that we regard the ground set of si(M) to be a subset of the ground set of M
rather than a partition of the ground set of M .

3–connected non-binary matroids. Much of the work of [18] is devoted to
proving the following fact, [18, Corollary 3.8].

2.1. Let M be a 3–connected, non-binary matroid with r(M) ≥ 4. Then there exists
an independent triple (a, b, c) of E(M) with the property that si(M/a), si(M/b),
si(M/c), si(M/a, b), and si(M/a, c) are all non-binary and 3–connected.

The above result is also essential in this paper. It is used in the proofs of
Theorem 5.1 and Lemma 5.2.

It is assumed that the reader is familiar with Seymour’s Splitter Theorem [14].
For a good discussion of this theorem and its consequences see [12, Chapter 11].
One consequence that is used several times in this paper is
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2.2. Let M be a non-binary, 3–connected matroid. If M is not a whirl, then there
exists x ∈ E(M) such that either M\x or M/x is non-binary and 3–connected.

Weak maps and homomorphisms. Let M and N be matroids on a common
ground set E. The identity map on E is a weak map from M to N if every
independent set in N is also independent in M . In this case, N is a weak-map
image of M . If, moreover, M and N have the same rank, N is a rank-preserving
weak-map image of M . A good survey of the theory of weak maps is given in Kung
and Nguyen [5]. In general there are few strong results describing the behaviour
of weak maps. However the following result for ternary matroids is proved in [13,
Theorem 1.1].

2.3. Let M and N be ternary matroids such that N is a rank-preserving, weak-
map image of M . If M is 3–connected, and N is connected and non-binary, then
M = N .

It is possible to determine whether one matroid is a weak-map image of another
by comparing representations. Let A and B be matrices of the same size, so that
their rows and columns are indexed by the same sets. Submatrices A′ and B′ of
A and B respectively are corresponding submatrices if their rows and columns are
indexed by the same subsets of the index sets of A and B. Lucas [9] proves

2.4. Let M1 and M2 be matroids on a common ground set E represented over fields
F1 and F2 by the r×n matrices [I|A1] and [I|A2] respectively, where corresponding
columns of [I|A1] and [I|A2] represent the same elements of E. Then M2 is a
weak-map image of M1 if and only if the following property holds. If D is a square
submatrix of [I|A1] with |D| = 0, and D′ is the corresponding submatrix of [I|A2],
then |D′| = 0.

In particular we have

2.5. M1 = M2 if and only if the following property holds. For each square submatrix
D of [I|A1] and corresponding submatrix D′ of [I|A2], we have |D| = 0 if and only
if |D′| = 0.

A necessary condition for 2.4 and 2.5 to hold is for representations of a matroid
M to be of the form [I|A], that is, to be in normal form. In this paper it is
always assumed that representations are in normal form. In accord with standard
practice we frequently drop reference to the identity matrix and simply say that M
is represented by A. With this convention, one regards the columns and rows of A
as representing elements of the ground set of M . The i-th row of A represents the
element represented by the i-th column of I.

Matroid representation is usually discussed in terms of representations over fields,
although of course it makes sense to represent matroids over integral domains.
There is a connection between homomorphisms of integral domains and weak maps.
Say I1 and I2 are integral domains and let ϕ : I1 → I2 be a function. For a matrix
A over I1, let ϕ(A) denote the matrix over I2 whose (i, j)–th entry is ϕ(aij). As
an immediate consequence of the definition of determinant and homomorphism we
have

2.6. If D is a square submatrix of A and ϕ is a homomorphism, then |ϕ(D)| =
ϕ(|D|).

As a direct consequence of 2.4 and 2.6 we have [5, Exercise 9.2].
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2.7. Let M1 be represented over the integral domain I1 by the matrix [I|A], let
ϕ : I1 → I2 be a homomorphism, and let M2 denote the matroid represented over
I2 by ϕ([I|A]). Then M2 is a weak-map image of M1.

There is a natural map from the integers to a given field F defined by sending
a positive integer n to the element 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n terms

. The image of a non-positive

integer is defined in an obvious way. This map is, of course, a homomorphism.
When we regard integers as elements of fields we always mean their images under
this homomorphism.

Near-regular matroids. Recall from the introduction that Q(α) denotes the
field obtained by extending the rationals by the transcendental α. Recall also
that a matrix is near-unimodular if it has a representation over Q(α) in which all
non-zero subdeterminants are in {±αi(α − 1)j : i, j ∈ Z}, and that a matroid is
near-regular if it can be represented over Q(α) by a near-unimodular matrix. If
the matrix B is obtained from the near-unimodular matrix A by multiplying each
entry of a row or column by a fixed element of the form ±αi(α − 1)j , then B is
obtained from A by a proper scaling. The following facts are all proved in [18].

2.8. Let A be a near-unimodular matrix and B be a matrix over Q(α). If B
is obtained from A by a sequence of proper scalings and pivots, then B is near-
unimodular.

2.9. The class of near-regular matroids is closed under duality, and is closed under
the taking of minors, direct sums and 2–sums.

In general near-regular matroids are not uniquely representable over a given field.
Nonetheless, we do have [18, Theorem 5.9].

2.10. Let M be a ternary, non-binary, 3–connected matroid that has an element
x ∈ E(M) with the property that M\x is non-binary, 3–connected and near-regular.
Assume that a near-unimodular representation of M\x extends to a representation
of M over Q(α). If the vector that represents x is scaled to have leading non-zero
coefficient 1, then that representation is near-unimodular. Hence M is near-regular.

2.11. Let M be a near-regular matroid with an element x such that M\x is 3–
connected and non-binary. Then any near-unimodular representation of M\x ex-
tends uniquely to a near-unimodular representation of M .

Let A be a near-unimodular matrix, and F be a field. For f in F − {0, 1}, let
A(f,F) denote the matrix over F obtained by making the substitution f = α in A.
It is easily seen that A(f,F) is well-defined. 2.12 below follows from results in [18]
and a routine generalisation of [18, Lemma 6.7].

2.12. Let M be a non-binary, 3–connected, near-regular matroid represented by the
near-unimodular matrix A, and let F be a field. If f ∈ F−{0, 1}, then A(f,F) is a
representation of M over F. Moreover, up to equivalence, every representation of
M over F can be obtained in this way.

An immediate consequence of 2.12 is

2.13. If M is near-regular, then M is representable over every field except possibly
GF (2).
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Dyadic matroids. Recall from the introduction that a matrix over Q is a dyadic
matrix if all non-zero subdeterminants are signed integral powers of 2, and that a
matroid is a dyadic matroid if it can be represented over the rationals by a dyadic
matrix. If the matrix B is obtained from the dyadic matrix A by multiplying each
entry of a given row or column by a fixed signed integral power of 2, then B is
obtained from A by a proper scaling. The following facts are either proved in [17]
or are consequences of results in [7, 8].

2.14. If the matrix B is obtained from the dyadic matrix A by a sequence of pivots
and proper scalings, then B is a dyadic matrix.

2.15. The class of dyadic matroids is closed under duality and the taking of minors,
direct sums and 2–sums.

2.16. If M is a dyadic matroid represented by the dyadic matrix A and F is a field
whose characteristic is not 2, then the matrix obtained by interpreting the entries
of A as elements of F is a representation of M over F. Hence dyadic matroids are
representable over any field whose characteristic is not 2.

2.17. Near-regular matroids are dyadic matroids.

3. Sixth Roots of Unity Matroids

Recall that a 6
√

1–matrix is a matrix over C with the property that all non-zero
subdeterminants are complex sixth roots of unity. A matroid is a 6

√
1–matroid if

it can be represented over C by a 6
√

1–matrix. Let r denote a complex root of the
polynomial α2−α+ 1. It is easily seen that a matrix over C is a 6

√
1–matrix if and

only if all subdeterminants are in {0,±1,±r,±(r−1)}. Of course−(r−1) is just the
other root of α2 − α + 1. Let A be a 6

√
1–matrix. The matrix B is obtained from

A by a proper scaling of A if B is obtained by multiplying some row or column
of A by a member of the set {±1,±r,±(r − 1)}. The following proposition is a
routine consequence of the fact that the sixth roots of unity form a subgroup of the
multiplicative group of the complex numbers.

Proposition 3.1. Let A be a 6
√

1–matrix, and B be a matrix over C.

1. If B is obtained from A by a sequence of proper scalings, then B is a 6
√

1–
matrix.

2. If B is obtained from A by a sequence of pivots, then B is a 6
√

1–matrix.

A more or less immediate consequence of Proposition 3.1 is

Proposition 3.2. The class of 6
√

1–matroids is minor closed and is closed under
duality.

A straightforward argument proves

Proposition 3.3. Direct sums and 2–sums of 6
√

1–matroids are 6
√

1–matroids.

We now consider how 6
√

1–matroids relate to other classes of matroids under
consideration. It will eventually be shown that the class of near-regular matroids is
the intersection of the classes of 6

√
1–matroids and dyadic matroids. We first prove

Proposition 3.4. Near-regular matroids are 6
√

1–matroids.
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Proof. Say M is near-regular. Then M has a near-unimodular representation [I|A].
Regard [I|A] as a matrix over C and let [I|A](r) be the matrix obtained by making
the substitution α = r in [I|A]. By 2.12, M [I|A] = M [[I|A](r)]. It follows from

this that M is a 6
√

1–matroid if [I|A](r) is a 6
√

1–matrix. We now show that this is
indeed the case.

Say D is a submatrix of [I|A], and D(r) is the corresponding submatrix of
[I|A](r). If |D| = 0, then certainly |D(r)| = 0, while if |D| = ±αi(α − 1)j , then
by [18, Lemma 5.6], |D(r)| = ±ri(r − 1)j. But {±1,±r,±(r − 1)} forms a group
under multiplication, so ±ri(r − 1)j ∈ {±1,±r,±(r− 1)}. It follows that [I|A](r)
is indeed a 6

√
1–matrix.

Of course the converse of Proposition 3.4 does not hold; it is shown in the proof
of Theorem 5.1 that AG(2, 3) is a 6

√
1–matroid (see also [1, Exercise 24.14], and [12,

Exercise 6.4.9]). But AG(2, 3) is certainly not near-regular. We now consider the
representability of 6

√
1–matroids. For a 6

√
1–matrix A, and a root ω of α2−α+1 over

a field F let A(ω,F) denote the matrix over F obtained by making the substitution
r = ω in A.

Proposition 3.5. Let M be a 6
√

1–matroid represented by the 6
√

1–matrix A, and
let F be a field for which α2 − α+ 1 is not irreducible. If ω is a root of α2 − α+ 1
over F, then A(ω,F) is an F–representation of M .

Proof. Let D be a square submatrix of A with corresponding submatrix D(ω,F)
of A(ω,F). By (2.5) it suffices to show that |D| = 0 if and only if |D(ω,F)| = 0.
Consider the subset Ir of C defined by Ir = {a + br : a, b ∈ Z}. Evidently Ir is
an integral domain. Define the function ϕ : Ir → F by ϕ(a + br) = a + bω. One
routinely checks that ϕ is a homomorphism. It is clear that A(ω,F) = ϕ(A). By
(2.6), |D(ω,F)| = |ϕ(D)| = ϕ(|D|). But |D| ∈ {0,±1,±r,±(r − 1)}. If |D| = 0,
then it is immediate that |D(ω,F)| = 0, so assume that |D| 6= 0. Then |D(ω,F)| ∈
{±1,±ω,±(ω − 1)}. But all members of this set are non-zero elements of F, so
|D(ω,F)| 6= 0.

4. A Matrix Lemma

In this section we prove a lemma for a certain type of near-unimodular matrix.
The result is needed for the proofs of Theorem 5.1 and Lemma 5.2. An n×n matrix
is semi-cyclic if for 1 ≤ i, j ≤ n we have aij = 1, if i = j or i = j + 1, and aij = 0
if i > j + 1 or i < j and j 6= n. In other words, A has the form

A =



1 0 0 0 0 a1

1 1 0 · · · 0 0 a2

0 1 1 0 0 a3

...
. . .

...
0 0 0 1 0 an−2

0 0 0 · · · 1 1 an−1

0 0 0 0 1 1


,

where, in general, no restriction is placed on the values of {a1, . . . , an−1}.

Lemma 4.1. Let A be a near-unimodular, semi-cyclic matrix. Then all members
of {a1, . . . , an−1} belong to the set

G = {0,±1,±α,±(α− 1),±1/α,±1/(α− 1),±α/(α− 1),±(α− 1)/α}.
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We first note a lemma. Let A denote the set

A = {0} ∪ {±αi(α − 1)j : i, j ∈ Z}.

Lemma 4.2. If a, b, b− 1, a− b and a− b+ 1 are all in A, then a, b, b− 1, a− b
and a− b+ 1 are all in G.

Proof. It was noted in the proof of [18, Proposition 5.4] that a routine check shows
that if both b and b− 1 are in A, then b ∈ S, where

S = {0, 1, α,−(α− 1), 1/α,−1/(α− 1), α/(α− 1), (α− 1)/α},
and both b and b− 1 are in G. Now a− b and a− b+ 1 are in A, so −(a− b) and
−(a− b)− 1 are in A. Therefore −(a− b) and −(a− b)− 1 are in G, and it follows
that a− b and a− b+ 1 are in G. Moreover, a− b ∈ −S, where −S = {−s : s ∈ S}.
But a = b+ (a − b), so a can be obtained by adding a member of S to a member
of −S. A further routine check shows that the only members of A that can be
obtained by adding a member of S to a member of −S are in G. Since a ∈ A, it
follows that a ∈ G, and the lemma is proved.

We now complete the proof of Lemma 4.1.

Proof. Say A is near-unimodular and semi-cyclic. The result is clear if A is 1× 1
or 2× 2, so assume that

A =



1 0 0 0 0 a1

1 1 0 · · · 0 0 a2

0 1 1 0 0 a3

...
. . .

...
0 0 0 1 0 an−2

0 0 0 · · · 1 1 an−1

0 0 0 0 1 1


is n× n where n ≥ 3. Note that

±|A| = a1 − a2 + a3 − · · · ± an−1 ∓ 1.

Now set b = a2 − a3 + · · · ± an−1. Then ±|A| = a1 − b + (−1)n−1. We now
consider some other subdeterminants of A. Certainly a1 is a subdeterminant of
A. By deleting the last row and second-to-last column of A we obtain a matrix
with a determinant equal to ±(a1 − b). Delete the first and last row, and the first
and second-to-last column of A to obtain a submatrix with determinant equal to
∓b. Delete the first row and the first column of A to obtain a submatrix with
determinant equal to ∓(b+ (−1)n).

Since A is near-unimodular, all of the above subdeterminants are in A. Clearly
x ∈ A if and only if −x ∈ A. Hence a1, a1 − b, a1 − b+ (−1)n−1, b and b+ (−1)n

are all in A. If n is odd, it follows immediately from Lemma 4.2 that a1 ∈ G. If n
is even, then −a1, −a1 − (−b), −a1 − (−b) + 1, −b and −b − 1 are all in A, and
again it follows by Lemma 4.2 that −a1 ∈ G, that is, a1 ∈ G.

Say 1 < i ≤ n−1. To show that ai ∈ G, apply the above argument to the matrix
obtained by deleting the first i− 1 rows and first i− 1 columns from A.

It is not hard to show that all subdeterminants of a near-unimodular, semi-cyclic
matrix belong to G, but we do not need this fact. Indeed the only fact needed is
that a1 ∈ G. A similar result that is even easier to show is
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Lemma 4.3. If A is a semi-cyclic dyadic matrix, then all entries of A are in
{0,±1,±1/2,±2}.

5. The Main Theorem

The key theorem of this paper is

Theorem 5.1. Let F be a field whose characteristic is not 3, and let M be a 3–
connected matroid that is representable over both GF (3) and F. Then M is either
a dyadic matroid or a 6

√
1–matroid.

Much of the work is involved in proving Lemma 5.2 below. This lemma is a
generalisation of [18, Theorem 6.6].

Lemma 5.2. Let F be a field whose characteristic is not 3, and let M be a 3–
connected matroid that is representable over both GF (3) and F. Assume that M is
not near-regular, but that all 3–connected minors of M are near-regular. Then M
is either a dyadic matroid or a 6

√
1–matroid but not both. If M is a dyadic matroid

then M is uniquely representable over F, and if M is a 6
√

1–matroid, then M has
at most two inequivalent representations over F.

Proof. Certainly r(M) > 2. Assume that r(M) = 3. Then the only rank–3 ternary
matroids satisfying the hypotheses of the lemma are the non-Fano matroid F−7
and the matroid AG(2, 3)\p obtained by deleting a point from the ternary affine
plane. This fact follows easily from analyses of 3–connected, rank–3, ternary ma-
troids given in [4, 6, 10]. Now F−7 is uniquely represented over any field whose
characteristic is not 2 by the matrix 1 0 0 1 0 1 1

0 1 0 1 1 0 1
0 0 1 0 1 1 1

 .
As a matrix over Q (or C) this is clearly a dyadic matrix, and certainly not a 6

√
1–

matrix. It follows that F−7 is a dyadic matroid and, since the above representation

is unique, F−7 is not a 6
√

1–matroid. Consider AG(2, 3)\p. For a field F with a root
ω of α2 − α+ 1, this matroid is represented by the matrix 1 0 0 1 0 1 1 1

0 1 0 1 1 0 1− ω 1
0 0 1 0 1 −ω −ω 1− ω

 .
Again, it is easily checked that when F = C, this matrix is a 6

√
1–matrix, and

that the representation is unique up to the choice of ω, so that AG(2, 3)\p has
at most two inequivalent representations over any field. Finally, AG(2, 3)\p is not
representable over Q, so it is certainly not a dyadic matroid.

Assume that M has rank r where r > 3. Certainly r(M∗) > 2. If r(M∗) = 3,
then the conclusion of the theorem holds for M∗, and consequently forM . Therefore
we may assume that both M and M∗ have rank at least 4. Since whirls are near-
regular ([18, Proposition 5.4]) M is not a whirl. By 2.2, there exists an element
x in the ground set E of M with the property that either M\x or M/x is 3–
connected and non-binary. It is routinely seen that under the current assumptions
no generality is lost in assuming that M\x is 3–connected and non-binary. By 2.1,
there exists an independent triple {a, b, c} of distinct elements of E −{x} with the
property that si(M\x/a), si(M\x/b), si(M\x/c), si(M\x/a, b), and si(M\x/a, c)
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are all 3–connected and non-binary. If {x, a, c} is collinear, then clearly {x, a, b} is
not collinear. Assume without loss of generality that {x, a, b} is not collinear.

We now focus on a particular representation ofM\x. SinceM\x is a 3–connected
minor of M , it is near-regular and therefore has a near-unimodular representation.
Since one can scale and pivot on a near-unimodular matrix it follows that M\x can
be represented by a near-unimodular matrix [I|A] where the last two columns of I
represent a and b respectively. Following standard practice we say that M\x is rep-
resented by A, the identity matrix being implicit. Let Aa, Ab, and Aa,b denote the
matrices obtained by deleting the second-to-last, the last, and the last two rows of
A respectively. Under the current convention, Aa, Ab, and Aa,b represent M\x/a,
M\x/b, and M\x/a, b respectively. Say s ∈ {a, b, {a, b}}. Certainly x is not a loop
of M/s. Since si(M/s) is 3–connected, si(M/s) is near-regular. Evidently, M/s is
also near-regular. We now show that a near-unimodular representation of M\x/s
extends uniquely to a near-unimodular representation of M/s where the vector rep-
resenting x is chosen to have leading non-zero entry 1. If x is in a non-trivial parallel
class of M/s this is clear, so assume that x is not in such a parallel class. Then
si(M/s) is a 3–connected extension of si(M\x/s). By 2.11, any near-unimodular
representation of si(M\x/s) extends uniquely to a near-unimodular representation
of si(M/s). The fact that a near-unimodular representation of M\x/s extends
uniquely to a near-unimodular representation of M/s now follows routinely. It
follows that a unique column can be added to each of Aa, Ab and Aa,b to obtain
representations of M/a, M/b and M/a, b respectively. Clearly the first r−2 entries
of these column vectors agree.

Let x = (x1, x2, . . . , xr) be defined as follows: (x1, x2, . . . , xr−2) is the vec-
tor that can be added to Aa,b to represent M/a, b, while xr−1 and xr are the
last entries of the vectors that can be added to Ab and Aa to represent M/b
and M/a respectively. Let M ′ be the matroid on E(M) that is represented by
the matrix [A|x], where, of course, x represents x. It now follows that M ′ is
a Q(α)–representable matroid on E(M) with the property that M ′\x = M\x,
M ′/a = M/a, and M ′/b = M/b. Certainly M 6= M ′, for otherwise, by 2.10, M
would be near-regular. We now show that, for some f ∈ F, the matrix obtained by
evaluating each entry of [A|x] at f represents M .

By 2.12, every F–representation of M\x is obtained from A by evaluating its
entries at an appropriate member of F. But some F–representation of M\x ex-
tends to an F–representation of M . Therefore there is an element f ∈ F with the
property that the representation A(f) of M\x obtained by evaluating the entries
of A at f extends to a representation of M . Say [A(f)|f ] represents M , where
f = (f1, f2, . . . , fr), and the leading non-zero entry of f is 1. Evidently,

(f1, f2, . . . , fr−1) = (x1(f), x2(f), . . . , xr−1(f)),

and

(f1, f2, . . . , fr−2, fr) = (x1(f), x2(f), . . . , xr−2(f), xr(f)).

It follows that f = x(f). In other words, the matrix [A|x](f) obtained by evaluating
each entry of [A|x] at f represents M . Certainly f 6∈ {0, 1}.

Since M is ternary, the above argument holds when F is GF (3). For this field
we must have f = −1, that is, [A|x](−1) represents M over GF (3). We now focus
on a particular subdeterminant of [A|x].
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Now M [A|x] 6= M , so by 2.5 there exists a submatrix D of [A|x] with the
property that, for the corresponding submatrices D(f) and D(−1) of [A|x](f) and
[A|x](−1) respectively, it is either the case that |D| = 0 and both |D(f)| 6= 0 and
|D(−1)| 6= 0, or the case that |D| 6= 0 and both |D(f)| = 0 and |D(−1)| = 0.
Consider such a submatrix D. It is evident that D meets the rows indexed by a
and b, so D is at least 2× 2. We now prove

5.3. It may be assumed without loss of generality that D is 2× 2.

Proof. The argument of this proof is probably unnecessarily pedantic but paranoia
got the better of me. Assume that D is n× n where n > 2. Consider the entries of
D that are in neither of the rows indexed by a or b, nor in the column x. We first
show that at least one of these entries is non-zero. Certainly if n > 3, then all these
entries cannot be 0, for otherwise we would have |D| = |D(f)| = 0, contradicting
the choice of D. Assume that D is 3× 3. Say D = [dij ] where the second and third
rows of D are indexed by a and b, and the third column of D contains entries from
x. We have d11 = d12 = 0. Set

D′ =

[
d21 d22

d31 d32

]
.

It is easily seen that |D| = 0 if and only if |D′| = 0 and that |D(f)| = 0 if and
only if |D′(f)| = 0. It now follows by the choice of D that |D′| = 0 if and only if
|D′(f)| 6= 0. But D and D′ are submatrices of A and A(f) respectively, and both
of these matrices represent M\x. Hence, by 2.5, |D′| = 0 if and only if |D′(f)| = 0;
a contradiction.

Therefore there exists a non-zero entry of D that is in neither of the rows indexed
by a and b nor in the column x. Assume without loss of generality that d11 is such
an entry. Then d11(f) is the corresponding entry of D(f). We now do operations
on D and D(f) respectively that amount, up to a scalar multiple, to pivots on D
and D(f) respectively. Let D′′ be the n× n matrix defined as follows: d′′ij = dij if
i = 1, and otherwise,

d′′ij =

∣∣∣∣ d11 d1j

di1 dij

∣∣∣∣ .
Let D(f)′′ be obtained from D(f) in precisely the same way that D′′ is obtained
from D. By elementary matrix theory |D| = |D′′| and |D(f)| = |D(f)′′|. We now
show that D(f)′′ = D′′(f). Consider corresponding entries of D′′ and D(f)′′. It
is easily seen that these are either corresponding entries of D and D(f) or sub-
determinants of corresponding 2× 2 near-unimodular submatrices of D and D(f).
In the first case it is clear, and in the second case it follows from 2.12, that an
entry of D(f)′′ is the evaluation at f of the corresponding entry of D′′, so that
indeed D(f)′′ = D′′(f). Let D′′11 denote the submatrix obtained by deleting the
first row and column of D′′. Evidently, |D′′11| = 0 if and only if |D′′| = 0. Sim-
ilarly |D(f)′′11| = 0 if and only if |D(f)′′| = 0 so that |D′′(f)11| = 0 if and only
if |D′′(f)| = 0. We conclude that |D′′11| = 0 if and only if |D′′(f)11| 6= 0. It now
follows routinely that after pivoting on d11 in [A|x] we obtain a matrix that has
all the desired properties of [A|x] and has an (n− 1)× (n− 1) submatrix with the
desired properties of D. Obvious comments complete the proof.
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Assume then, that D is 2× 2. One of the columns of D meets the column x of
A. Say y is the other column of A that meets D, and say y represents the element
y ∈ E. We now prove

5.4. It may be assumed without loss of generality that the entries of D are all in
{0,±1,±α,±(α− 1)}.

Proof. We first show that [A|x] can be scaled to obtain a matrix A′ with the
property that the submatrix D′ of A′ corresponding to D has all of its entries in
{0,±1,±α,±(α− 1)}. This scaling is proper in the sense that rows and columns
are multiplied only by entries of the form ±αi(α − 1)j.

Recall the bipartite graph B(H) associated with a matrix H. The vertices of
B(H) are the index sets of the rows and columns of H. An edge joins row i to
column j if and only if the (i, j)–th entry of the matrix is non-zero. It is known
[2, Proposition 2.4] that a matroid M [I|H] is connected if and only if B(H) is
connected. Consider B([A|x]). We let a, b, x, and y denote the vertices of B([A|x])
corresponding to the rows and columns of [A|x] that are represented by a, b, x,
and y respectively. In what follows we use a technique of finding shortest paths in
certain subgraphs of B([A|x]). This technique is familiar from Gerards’ proof [3]
of Tutte’s characterisation of totally-unimodular matrices.

Since M is 3–connected, {a, b, y} is either independent or is a circuit of M . We
consider two cases. For the first case, assume that {a, b, y} is independent.

Extending previous notation, let [A|x]a,b denote the matrix obtained by deleting
the last two rows from [A|x]. Now [A|x]a,b represents M/a, b. Since si(M\x/a, b)
is 3–connected, it follows that, apart from loops, M/a, b is connected. Loops of
M/a, b are represented by columns of zeros of [A|x]a,b, and these correspond to
isolated vertices of B([A|x]a,b). Therefore, apart from possible isolated vertices,
B([A|x]a,b) is a connected graph. Now {a, b, x} and {a, b, y} are both independent,
so neither x nor y is a loop of M/a, b. Therefore, neither x nor y is an isolated vertex
of B([A|x]a,b). It follows that there exists a path joining x and y. In particular
there exists a shortest path joining x and y. It is easily seen that the vertex induced
subgraph of a shortest path connecting two vertices of a simple graph (as B([A|x]a,b)
certainly is) contains just the path. It follows routinely that, after an appropriate
permutation of its rows and columns, [A|x]a,b has a submatrix of the form



∗ ∗ 0 0 0 0
0 ∗ ∗ · · · 0 0 0
0 0 ∗ 0 0 0

...
. . .

...
0 0 0 ∗ 0 0
0 0 0 · · · ∗ ∗ 0
0 0 0 0 ∗ ∗


.

In this matrix the elements labelled by ∗ are non-zero and the first and last columns
correspond to the vertices x and y respectively. Now say

D =

[
d11 d12

d21 d22

]
.
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Then, up to a permutation of its columns, [A|x] has a submatrix equal to

∗ ∗ 0 0 0 0
0 ∗ ∗ · · · 0 0 0
0 0 ∗ 0 0 0

...
. . .

...
0 0 0 ∗ 0 0
0 0 0 · · · ∗ ∗ 0
0 0 0 0 ∗ ∗
d11 a2 a3 · · · an−2 an−1 d12

d21 b2 b3 · · · bn−2 bn−1 d22


.

It is routinely seen that [A|x] can be properly scaled so that the above matrix is
transformed into a matrix of the form

1 1 0 0 0 0
0 1 1 · · · 0 0 0
0 0 1 0 0 0

...
. . .

...
0 0 0 1 0 0
0 0 0 · · · 1 1 0
0 0 0 0 1 1
d1 a′2 a′3 · · · a′n−2 a′n−1 1
d2 b′2 b′3 · · · b′n−2 b′n−1 1


.

Denote the matrices obtained from the above matrix by deleting the second-to-
last and last rows by Sa and Sb respectively. Then Sa and Sb are submatrices of
matrices obtained from [A|x]b and [A|x]a by a proper scaling. It follows that both
Sa and Sb are near-unimodular. Moreover, Sa and Sb are transposes of semi-cyclic
matrices. It now follows by Lemma 4.1 that both d1 and d2 are in

{0,±1,±α,±(α− 1),±1/α,±1/(α− 1),±α/(α− 1),±(α− 1)/α}.
Perform a final scaling on [A|x] by multiplying the entries in the second-to-last and
last row by the denominators of d1 and d2 respectively. Let A′ denote the matrix
that results from this final scaling, and D′ denote the submatrix of A′ corresponding
to D. It is clear that all the entries of D′ are in {0,±1,±α,±(α−1)}. Clearly none
of the scalings that have been performed have affected the desired properties of D
and it follows that in this case we can indeed assume that 5.4 holds.

Consider the second case. Assume that {a, b, y} is a circuit of M . We first
show that M\x, y is 3–connected and non-binary. Since y is a loop of the non-
binary matroid M\x/a, b it follows easily that M\x, y is non-binary. Assume that
M\x, y is not 3–connected. Then M\x, y has a 2–separation {J,K}. If both a
and b are in J , then it is evident that {J ∪ {y},K} is a 2–separation of the 3–
connected matroid M\x. It follows from this contradiction that we may assume
without loss of generality that a ∈ J and b ∈ K. Since M\x is 3–connected,
M\x, y is connected and it follows that this 2–separation is exact. Also, M\x, y
has no parallel classes. Therefore, rM\x,y(J) ≥ 2 and rM\x,y(K) ≥ 2. Since
r(M\x, y) ≥ 4, either rM\x,y(J) > 2 or rM\x,y(K) > 2. Assume without loss
of generality that rM\x,y(J) > 2. Now, a 6∈ clM\x,y(K), for otherwise we would
again contradict the fact that M\x is 3–connected. It now follows from elementary
facts on rank functions of contractions that rM\x,y/a(J − {a}) = rM\x,y(J) − 1,
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and rM\x,y/a(K) = rM\x,y(K). We deduce that {J − {a},K} is a 2–separation of
M\x, y/a with rM\x,y/a(J − {a}) ≥ 2 and rM\x,y/a(K) ≥ 2. It follows routinely
from this fact that si(M\x, y/a) is not 3–connected. But {y, a, b} is a circuit of
M so {b, y} is a parallel pair in M\x/a. Hence si(M\x, y/a) ∼= si(M\x/a) so
that si(M\x/a) is not 3–connected. But we know that this matroid is indeed 3–
connected. This contradiction establishes that M\x, y is 3–connected.

We now know that M\x and M\x, y are 3–connected and non-binary. Of course,
M\y is also 3–connected and non-binary. Let Ay denote the matrix obtained by
deleting y from A. We now show that [Ay|x] is a near-unimodular matrix.

It was noted above that si(M\x, y/a) ∼= si(M\x/a). Similarly si(M\x, y/b) ∼=
si(M\x/b), so that si(M\x, y/a) and si(M\x, y/b) are both 3–connected and non-
binary. Therefore Q(α)–representations of si(M\x, y/a) and si(M\x, y/b) extend
uniquely to representations of si(M\y/a) and si(M\y/b) respectively, where the
vector representing x is chosen to have leading non-zero coordinate 1. Since M\y
is near-regular, and M\x, y is 3–connected and non-binary, by 2.11 there is, up to
scaling, a unique extension of a Q(α)–representation of M\x, y to a representation
of M\y. It now follows that the unique vector with leading non-zero coordinate 1
that extends Ay to a representation of M\y is x. Hence [Ay|x] is a near-unimodular
matrix.

We now use another argument based on shortest paths, but this time we remove
some columns. Since M\x, y is connected there is a shortest path of B(Ay) joining
a and b. In this case it follows that after an appropriate permutation of its rows
and columns, Ay has a submatrix of the form



∗ 0 0 0 0 0
∗ ∗ 0 · · · 0 0 0
0 ∗ ∗ 0 0 0

...
. . .

...
0 0 0 ∗ ∗ 0
0 0 0 · · · 0 ∗ ∗
0 0 0 0 0 ∗


,

where the first and last rows are indexed by a and b respectively and again the
elements labelled by a ∗ are non-zero. Hence [A|x] has a submatrix equal to



∗ 0 0 0 0 0 d11 d12

∗ ∗ 0 · · · 0 0 0 y2 x2

0 ∗ ∗ 0 0 0 y3 x3

...
. . .

...
...

...
0 0 0 ∗ ∗ 0 yr−2 xr−2

0 0 0 · · · 0 ∗ ∗ yr−1 xr−1

0 0 0 0 0 ∗ d21 d22


.

Again it is clear that [A|x] can be properly scaled so that the above matrix is
transformed into a matrix of the form
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1 0 0 0 0 0 d1 d2

1 1 0 · · · 0 0 0 y′2 x′2
0 1 1 0 0 0 y′3 x′3

...
. . .

...
...

...
0 0 0 1 1 0 y′r−2 x′r−2

0 0 0 · · · 0 1 1 y′r−1 x′r−1

0 0 0 0 0 1 1 1


.

The matrices Sx and Sy obtained from the above matrix by deleting the second-to-
last and last column are semi-cyclic. But A and [Ay |x] are both near-unimodular
so Sx and Sy are near-unimodular. Again it follows by Lemma 4.1 that both d1

and d2 are in

{0,±1,±α,±(α− 1),±1/α,±1/(α− 1),±α/(α− 1),±(α− 1)/α}.

As before, perform a final scaling by multiplying the entries in the second-to-last
and last column of the above matrix by the denominators of d1 and d2 respectively.
Let A′ denote the matrix that results from this final scaling, and D′ denote the
submatrix of A′ corresponding to D. It is clear that all the entries of D′ are in
{0,±1,±α,±(α− 1)}.

It now follows that in both possible cases we can assume without loss of generality
that the entries of D are in {0,±1,±α,±(α− 1)}.

Assume then that D is 2 × 2 and that the entries of D are all in {0,±1,±α,
±(α − 1)}. It is clear that if |D| = 0, then both |D(f)| = 0 and |D(−1)| = 0.
Therefore we may assume that |D| 6= 0 and both |D(f)| = 0 and |D(−1)| = 0.
Consider possible values for |D|. Certainly |D| is not of the form ±αi(α− 1)j, for
then neither |D(f)| nor |D(−1)| would be zero. If |D| were of the form±2αi(α−1)j,
then |D(−1)| 6= 0, so this case does not occur. Assume that |D| is in

{α2 + 1, α2 − α− 1, α2 − 2α+ 2, α2 − 3α+ 1, α2 + α− 1, 2α2 − 2α+ 1}.

It is easily checked that −1 is a root of none of these polynomials over GF (3), so
that in any of these cases, |D(−1)| 6= 0, and it follows that this case does not occur.
One routinely checks that the only remaining cases are that |D| = α2 − α + 1, or
that, apart from a possible factor of α or α−1, |D| belongs to {α+1, α−2, 2α−1}.
It is clear that these last two cases can occur. We complete the proof of the lemma
by showing that in these cases M is either a dyadic matroid or a 6

√
1–matroid.

5.5. If |D| ∈ {α + 1, α − 2, 2α − 1}, then M is a dyadic matroid and is uniquely
representable over F.

Proof. In this case it is clear that F does not have characteristic 2, and that f ∈
{−1, 1/2, 2}. Certainly the choice of f is unique, so thatM is uniquely representable
over F. We now sort out some notation. First simplify things slightly by setting
B = [A|x]. To make things completely unambiguous, let B(e,E) denote the matrix
obtained over a field E by making the substitution α = e in the entries of B. There
are four matrices that we are interested in. We are already familiar with B, B(f,F),
and B(−1, GF (3)). Of course, M [B(f,F)] = M [B(−1, GF (3))] = M . Consider
also the matrix, B(f,Q). We complete the proof by showing that M = M [B(f,Q)],
and that B(f,Q) is a dyadic matrix.
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We first show that M [B(f,Q)] = M . Assume not. Then there is a submatrix
D′ of B with the property that |D′(f,Q)| 6= 0 if and only if both |D′(f,F)| = 0
and |D′(−1, GF (3))| = 0. It is clear that D′ meets both of the rows indexed by a
and b, and also meets the column x. Moreover, arguing just as in 5.3 and 5.4, we
may assume without loss of generality that D′ is 2× 2, and that the entries of D′

are all in {0,±1,±α,±(α− 1)}. We now consider possible values for |D′|.
If |D′| = 0, then |D′(f,Q)| = |D′(f,F)| = 0, so |D′| 6= 0. If |D′| is of the

form ±αi(α − 1)j or the form ±2αi(α − 1)j , then both |D′(f,Q)| and |D′(f,F)|
are non-zero, so this case does not occur. Say D′ = α2 − α + 1. Then, since the
characteristic of F is not equal to 3, neither −1, 2, nor 1/2 are roots of α2 − α+ 1
over F. Hence |D′(f,F)| 6= 0. But |D′(−1, GF (3))| = 0; a contradiction. Therefore
|D′| 6= α2 − α+ 1. Assume that |D′| is in

{α2 + 1, α2 − α− 1, α2 − 2α+ 2, α2 − 3α+ 1, α2 + α− 1, 2α2 − 2α+ 1}.

None of these polynomials has a root over GF (3) or over Q. Therefore |D′(f,Q)| 6=
0 and |D′(−1, GF (3))| 6= 0; a contradiction, so this case does not occur. Finally
assume that |D′| ∈ {α+1, α−2, 2α−1}. Say |D′| = α−2. Then |D′(−1, GF (3))| =
0. But we have assumed that |D′(f,Q)| 6= 0 if and only if |D′(−1, GF (3))| = 0.
Hence |D′(f,Q)| 6= 0. Therefore f 6= 2. But then |D′(f,F)| 6= 0. This is again a
contradiction, so |D′| 6= α−2. The arguments for |D| = α+ 1 and |D| = 2α−1 are
similar. All possible cases have been covered, and each leads to a contradiction, so
no submatrix D′ of B exists with the property that |D′(f,Q)| 6= 0 if and only if
both |D′(f,F)| = 0 and |D′(−1, GF (3))| = 0. It follows that M [B(f,Q)] = M .

It remains to show that B(f,Q) is a dyadic matrix. Certainly every non-zero
entry of B(f,Q) is an integral power of 2. By scaling if necessary we may assume
that every entry of B(f,Q) is a non-negative power of 2. Assume that B(f,Q) is
not a dyadic matrix. Then there exists a subdeterminant that has an odd prime
p as a factor. Consider the matrix B(f,GF (p)). This is just the matrix over
GF (p) obtained by interpreting the entries of B(f,Q) as integers mod p. Then
B(f,Q) has a submatrix with a non-zero determinant that has the property that
the corresponding submatrix of B(f,GF (p)) has a zero determinant. It follows that
M [B(f,Q)] 6= M [B(f,GF (p))]. By 2.4, M [B(f,GF (p))] is a weak-map image of
M [B(f,Q)], and by 2.5 this weak-map must be proper. But M [B(f,GF (p))]\x is
obtained by making the substitution f = α in a near-unimodular matrix for some
f in F−{0, 1}. It follows that M [B(f,GF (p))]\x = M [B]\x = M\x. Now M\x is
3–connected and non-binary. Hence M [B(f,GF (p))] is a single-element extension
of a 3–connected, non-binary matroid. Moreover it is easy to see that x is neither
a loop nor a coloop of M [B(f,GF (p))], so this matroid is connected. Finally we
note that since M [B(f,GF (p))] is a rank-preserving, weak-map image of a ternary
matroid, it has neither U2,5 nor U3,5 as a minor, and since it is representable over
GF (p) and p is odd, it has neither F7 nor F ∗7 as a minor. Hence M [B(f,GF (p))]
is ternary. We conclude that M [B(f,GF (p))] is a connected, ternary, non-binary
matroid that is a proper, rank-preserving, weak-map image of the 3–connected
ternary matroid M . By 2.3, this cannot happen. This contradiction shows that
B(f,Q) has no subdeterminant having p as a factor. We conclude that B(f,Q) is
a dyadic matrix, and it follows that M is a dyadic matroid.
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Note that, regarded as a matrix over C, B(f,Q) is certainly not a 6
√

1–matrix.
But B(f,Q) is the unique representation of M over C, and it follows that M is not
a 6
√

1–matroid.

5.6. If |D| = α2−α+ 1, then M is a 6
√

1–matroid and M has at most two inequiv-
alent representations over F.

Proof. Since B(f,F) represents M over F, and |D(f,F)| = 0, it must be the case
that f is a root of α2 − α + 1. It follows that M has at most two inequivalent
representations over F. (Note that for some fields (e.g. GF(4) or C) a field au-
tomorphism takes one root of α2 − α + 1 to the other, so that in these cases M
is uniquely representable. However for other fields (e.g. GF(7)) no such automor-
phism exists.)

As in 5.5 we have the matrices B, B(f,F), and B(−1, GF (3)). Consider also the
matrix B(r,C) over C obtained by making the substitution α = r in B where r is a
complex root of α2−α+1. We complete the proof by showing that M = M [B(r,C)]

and that B(r,C) is a 6
√

1–matrix.
Assume that M [B(r,C)] 6= M . Then arguing just as in the proof of 5.5 we

may assume that there exists a 2× 2 submatrix D′ of B with entries in {0,±1,±α,
±(α−1)}, and the property that |D′(r,C)| 6= 0 if and only if both |D′(f,F)| = 0 and
|D′(−1, GF (3))| = 0. As in 5.5 we show that this situation does not occur for any
of the possible values for |D′|. Evidently, the case |D′| = 0 causes no difficulties.
For all other cases, except the case |D′| = α2 − α + 1, it is easily checked that
|D′(r,C)| 6= 0 and that |D′(−1, GF (3))| 6= 0, so these cases do not occur. Finally,
if |D′| = α2 − α+ 1, then of course |D′(r,C)| = |D′(f,F)| = |D′(−1, GF (3))| = 0.
We conclude that no submatrix D′ of B exists with the property that |D′(r,C)| 6=
0 if and only if both |D′(f,F)| = 0 and |D′(−1, GF (3))| = 0. It follows that
M [B(r,C)] = M .

It remains to show that B(r,C) is a 6
√

1–matrix. Since r2 = r − 1, every sub-
determinant of B(r,C) can be expressed in the form ar + b, where a and b are
integers. We begin by showing that if a and b are both even, then a = b = 0.

Consider the field GF (4). Say the elements of GF (4) are {0, 1, ω, ω+ 1}. Then
ω is a root of α2 − α + 1 over GF (4). Let B(ω,GF (4)) denote the matrix over
GF (4) obtained by making the substitution ω = r in B(r,C) (or equivalently, the
substitution ω = α in B.) We now show that M [B(ω,GF (4))] = M . Consider the
integral domain Ir = {ar + b : a, b ∈ Z}. Define the function ϕ : Ir → GF (4) by
ϕ(ar+b) = (a mod 2)r+b mod 2. One routinely checks that ϕ is a homomorphism.
(This is just a case of the homomorphism defined in the proof of Proposition 3.5.) It
now follows by 2.7 that M [B(ω,GF (4))] is a weak-map image of M = M [B(r,C)].
This weak map is clearly rank preserving. We need to show that it cannot be
proper. We first show that M [B(ω,GF (4))] is ternary. Assume not. Then, since
no rank-preserving weak-map image of a ternary matroid has U2,5 or U3,5 as a minor,
M [B(ω,GF (4))] has either F7 or F ∗7 as a minor. Assume that M [B(ω,GF (4))] has
an F7–minor. Then there exists an independent set I and a coindependent set J
of M [B(ω,GF (4))] such that M [B(ω,GF (4))]/I\J ∼= F7. It is easily seen that in
this case M [B(ω,GF (4))]/I\J is a rank-preserving, weak-map image of M/I\J , a
ternary matroid. A straightforward argument shows that the only ternary matroid
that has F7 as a rank-preserving, weak-map image is the non-Fano matroid F−7 .
But F−7 is 3–connected and is not near-regular, so F−7 cannot be a proper minor
of M . Hence M = F−7 . This argument may be dualised so that we can conclude
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that either M or M∗ is isomorphic to F−7 . It follows that either M or M∗ has
rank less than or equal to 3. This contradicts the assumption that both these
matroids have rank at least 4. We conclude that M [B(ω,GF (4))] has neither F7

nor F ∗7 as a minor and hence that M [B(ω,GF (4))] is ternary. We now know that
M [B(ω,GF (4))] is a ternary, rank-preserving, weak-map image of M . Moreover,
arguing just as in 5.5, we deduce that M [B(ω,GF (4))] is connected and non-binary.
Therefore, M [B(ω,GF (4))] is a connected, ternary, non-binary matroid that is a
rank-preserving, weak-map image of the 3–connected ternary matroid M . Hence,
by 2.3, M = M [B(ω,GF (4))].

Now assume that some non-zero subdeterminant of B(r,C) is of the form ar+ b
where both a and b are even. Then, by 2.6, the corresponding subdeterminant
of B(ω,GF (4)) is equal to ϕ(ar + b), and ϕ(ar + b) = 0. But this implies that
M [B(ω,GF (4))] 6= M ; a contradiction. Hence all subdeterminants of B(r,C) are
of the form ar + b where at least one of a and b is odd.

To show that B(r,C) is a 6
√

1–matrix we need to show that all subdeterminants
are in {0,±1,±r,±(r − 1)}. Assume that B(r,C) has a submatrix that is not in
this set. By a familiar argument we may assume without loss of generality that
there exists a 2 × 2 submatrix D′ of B whose entries are in {0,±1,±α,±(α− 1)}
having the property that |D′(r,C)| 6∈ {0,±1,±r,±(r−1)}. Once again we consider
possible values for |D′|. Clearly |D′| 6= 0 and |D′| is not of the form ±αi(α−1)j . If
|D′| is of the form ±2αi(α− 1)j , then |D′(r,C)| is non-zero and is equal to ar + b
for some even integers a and b. We have shown above that this case does not occur.
Say |D′| is in

{α2 + 1, α2 − α− 1, α2 − 2α+ 2, α2 − 3α+ 1, α2 + α− 1, 2α2 − 2α+ 1}.

Then |D′(r,C)| is in

{r,−2,−(r− 1),−2r, 2(r− 1),−1}.

Members of this set are either in {0,±1,±r,±(r−1)} or of the form ar+ b for even
integers a and b, so this case does not occur. Clearly |D′| 6= α2 − α+ 1. The only
other case is if |D′| is, up to sign and a factor of α or α−1, in {α−2, α+1, 2α−1}.
Now B(−1, GF (3)) represents M overGF (3) so that in this case |D′(−1, GF (3))| =
0. But |D′(r,C)| ∈ {r − 2, r + 1, 2r − 1} so that |D′(r,C)| 6= 0. It now follows
from the fact that both B(r,C) and B(−1, GF (3)) represent M that this last case
cannot occur. No possible case is consistent with our assumption and it follows
that the assumption is false. We conclude that B(r,C) is indeed a 6

√
1–matrix and

5.6 is proved.

The lemma follows on combining 5.5 with 5.6, and noting that it is now clearly
the case that M cannot be both a dyadic matroid and a 6

√
1–matroid.

With Lemma 5.2 in hand we are in a position to establish some more facts on
dyadic matroids and 6

√
1–matroids.

Lemma 5.7. Let M be a 3–connected dyadic matroid that is not near-regular, and
let F be a field.

1. If M is representable over F, then M is uniquely representable over F.
2. M is representable over F if and only if the characteristic of F is not 2.
3. M is not a 6

√
1–matroid.
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Proof. Consider 1. Say M is representable over F. Clearly M has a 3–connected
minor N satisfying the hypotheses of Lemma 5.2. By this lemma, N is uniquely
representable over F. It is shown in [17] that an F–representation of a 3–connected
ternary matroid that extends to an F–representation of a 3–connected ternary
extension or coextension does so uniquely. That M is uniquely representable over
F follows from this fact.

Consider 2. It follows from 2.16 that if the characteristic of F is not 2, then M is
representable over F. Assume that the characteristic of F is 2. It clearly suffices to
consider dyadic matroids satisfying the hypotheses of Lemma 5.2. But, as noted in
the proof of 5.5, such matroids are not representable over a field of characteristic 2.

Consider 3. This follows from the fact thatM has a minor satisfying the hypothe-
ses of Lemma 5.2 and the fact that the class of 6

√
1–matroids is minor closed.

The proof of Lemma 5.8 below is similar to that of Lemma 5.7 and is omitted.

Lemma 5.8. Let M be a 3–connected 6
√

1–matroid that is not near-regular, and let
F be a field.

1. M is representable over F if and only if F has a root of α2 − α+ 1.
2. M is not a dyadic matroid.
3. Say M is representable over F. Then M is uniquely representable over F if

an automorphism of F takes one root of α2 − α + 1 to the other. Otherwise
M has exactly two inequivalent representations over F.

We now prove Theorem 5.1.

Proof. Clearly r(M) > 2. Assume that M has rank 3. A similar check to that for
the rank–3 case of Lemma 5.2 shows that M is either a restriction of the rank–3
ternary Dowling geometry Q3(GF (3)∗), or a restriction of the ternary affine plane
AG(2, 3). One easily checks that the following matrix is a dyadic matrix that
represents Q3(GF (3)∗): 1 0 0 1 1 0 0 1 1

0 1 0 1 −1 1 1 0 0
0 0 1 0 0 1 −1 1 −1

 .
Hence Q3(GF (3)∗) is a dyadic matroid. Also, if r is a complex root of α2 − α+ 1,
then  1 0 0 1 0 1 1 1 1

0 1 0 1 1 0 1− r 1 1− r
0 0 1 0 1 −r −r 1− r 1− r


represents AG(2, 3). Again it is easily checked that this matrix is a 6

√
1–matrix

so that AG(2, 3) is a 6
√

1–matroid. Since the classes of dyadic matroids and 6
√

1–
matroids are minor closed we conclude that the theorem holds when M has rank 3.

Assume that M has rank r where r > 3. If M is near-regular, then the theorem
certainly holds, so assume that M is not near-regular. If r(M∗) = 3, then the
conclusion of the theorem holds for M∗, and consequently for M . Hence we may
assume that both M and M∗ have rank at least 4. The proof is by induction on
the cardinality of the matroids satisfying the hypotheses of the theorem. If M is
near-regular, then by 2.17 and Proposition 3.4, M is both a dyadic matroid and a
6
√

1–matroid. If all 3–connected minors of M are near-regular, then the conclusion
follows by Lemma 5.2. This establishes the base case of the argument.
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Assume that the theorem holds for all 3–connected matroids satisfying the hy-
potheses of the theorem whose ground sets have cardinality less than |E(M)|. As-
sume that M has a proper 3–connected minor that is not near-regular. It follows
from a routine application of the splitter theorem [14] that there exists an element
x ∈ E(M) with the property thatM\x or M/x is 3–connected and not near-regular.
It is easily seen that under the current assumptions no generality is lost in assuming
that M\x is 3–connected and not near-regular. Using 2.1, and arguing as in the
proof of Lemma 5.2, we see that there exists a pair of elements in E(M) − {x}
with the property that {x, a, b} is not collinear and the property that si(M\x/a),
si(M\x/b), and si(M\x/a, b) are all non-binary and 3–connected. Assume that M
is represented over F by the matrix [I|A|x], where x represents x, the last two
columns of I represent a and b respectively, and x is scaled so that its leading non-
zero entry is 1. Again we typically suppress reference to I, and again we let Aa, Ab,
and Aa,b denote the matrices obtained by deleting the second-to-last, the last, and
the last two rows of A respectively. We also let xa, xb, and xa,b denote the vectors
obtained by deleting the second-to-last, the last, and the last two coordinates of
x respectively. We will extend this notational convention to other matrices and
vectors in an obvious way.

For reasons that will become apparent we further manipulate the representation
to ensure that A has a submatrix of a certain type. Since M\x/a, b is non-binary, it
has a U2,4–minor. A routine argument now shows that by further pivoting, scaling,
and row and column permutations we may assume without loss of generality that

A12 =

[
a11 a12

a21 a22

]
=

[
1 1
1 u

]
,

where u 6∈ {0, 1}. We first ensure that a potentially unpleasant situation does not
arise. Say s ∈ {a, b, {a, b}}.

5.9. If M\x is a dyadic matroid, then M/s is a dyadic matroid, and if M\x is a
6
√

1–matroid, then M/s is a 6
√

1–matroid.

Proof. Say M\x is a dyadic matroid. Then there exists a dyadic matrix [I|A′] that
represents M\x over C. (While dyadic–matrices are defined to be matrices over Q
we can of course regard them as matrices over C.) Evidently we may assume that
each column of [I|A′] represents the same element of E(M\x) as the corresponding
column of [I|A]. Equivalently, each row and column of A′ represents the same
element of E(M) as the corresponding row and column of A. For a matrix B
over C, let B(F) denote the matrix over F obtained by interpreting the entries
of B as entries of F when this is well defined. By Lemma 5.7.2, F does not have
characteristic 2. It is easily seen that A′(F) is well defined and represents M\x
over F. But by Lemma 5.7.1, M is uniquely representable over F. It now follows
that A and A′(F) are equal up to a scaling of A′. Perform this scaling if necessary
and assume without loss of generality that A = A′(F).

Now consider M/s. Clearly M/s is a dyadic matroid if and only if si(M/s) is
a dyadic matroid. Assume that si(M/s) is not a dyadic matroid. Then, by the

induction assumption, si(M/s) is a 6
√

1–matroid. Arguing as above, there exists a
6
√

1–matrix over C that represents si(M/s) and has the property that the matrix
over F obtained by evaluating its entries at one of the roots of α2 − α+ 1 is equal
to the submatrix of [A|x] that represents si(M/s). Clearly we can extend this to

M/s. That is, there exists a 6
√

1–matrix A′′ over C with the property that, for some
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roots ω and r of α2 − α+ 1 over F and C respectively, the matrix A′′(F) obtained
by making the substitution ω = r in A′′, has the property that A′′(F) = [As|xs].
Consider

A′12 =

[
a′11 a′12

a′21 a′22

]
.

Clearly

A′12(F) =

[
1 1
1 u

]
.

As we have set it up this does not guarantee that

A′12 =

[
1 1
1 u′

]
for some u′ ∈ C. However an easy argument shows that we may further properly
scale A′ to ensure that this is the case. In other words we may assume without loss
of generality that

A′12 =

[
1 1
1 u′

]
.

But A′12 is a dyadic matrix and u′ 6∈ {0, 1}, so u′ ∈ {−1, 1/2, 2}. It follows that
u ∈ {−1, 1/2, 2}. Now consider A′′12. Arguing as for A′12 we may assume that

A′′12 =

[
1 1
1 u′′

]
.

Here A′′12 is a 6
√

1–matrix, and u′′ 6∈ {0, 1}. It follows that u′′ ∈ {r,−(r − 1)}, and
that u ∈ {ω,−(ω − 1)}. But −(ω − 1) is just the other root of α2 − α + 1. We
conclude that some member of {−1, 1/2, 2} is a root of α2−α+ 1 over F. An easy
argument shows that the only fields for which a member of {−1, 1/2, 2} is a root
of α2 − α+ 1 are fields of characteristic 3. This contradicts the assumption that F
does not have characteristic 3. We conclude that M/s is not a 6

√
1–matroid, and it

follows that M/s is indeed a dyadic matroid.

The proof in the case that M\x is a 6
√

1–matroid is similar and is omitted.

We complete the proof of the theorem by proving

5.10. If M\x is a dyadic matroid, then M is a dyadic matroid, and if M\x is a
6
√

1–matroid, then M is a 6
√

1–matroid.

Proof. Say Z ∈ {dyadic, 6
√

1}. Assume that M\x is a Z–matroid, and let A′ be
a Z–matrix over C. As in 5.9 we may assume without loss of generality that
A′(F) = A. Say s ∈ {a, b, {a, b}}. We now show that there exists a unique vector
x′s over C, with leading non-zero coefficient 1, having the property that [A′s|x′s]
represents M/s over C. By 5.9, M/s is a Z–matroid. We consider possible cases.

Assume that M\x/s and M/s are both near-regular. Then arguing just as in
the proof of Lemma 5.2, it follows that there is a unique vector x′s over C such
that [A′s|x′s] represents M/s over C. Assume that neither M\x/s nor M/s are
near-regular. Then both si(M\x/s) and si(M/s) are uniquely representable over

C. (This is true when Z = 6
√

1, for there is an automorphism of C taking one
root of α2 − α + 1 to the other.) An easy argument now shows that there is a
unique vector x′s over C such that [A′s|x′s] represents M/s over C. The final case
requires the most effort. Assume that M\x/s is near-regular but M/s is not. In
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this case it is clear that some Z–matrix A′′s that represents M\x/s extends to a
matrix [A′′s |x′′s ] over C that represents M/s. Moreover, by 2.16 or Proposition 3.5,
[A′′s |x′′s ](F) represents M/s over F.

Say Z = dyadic. Then [A′′s |x′′s ](F) is the unique representation of M/s over F.
It follows that we may assume without loss of generality that [A′′s |x′′s ](F) = [As|xs].
Therefore the submatrix of [A′′s |x′′s ](F) indexed by its first two rows and columns
is equal to

U =

[
1 1
1 u

]
.

Since [A′′s |x′′s ] is a dyadic matrix, the submatrix of [A′′s |x′′s ] indexed by the first two
rows and columns is equal to U . But we already know that the submatrix of A′s
indexed by the first two rows and columns is equal to U . By 2.12 both [A′′s |x′′s ] and
A′s are evaluations of a near–unimodular matrix. It is now routinely seen that since
they agree on the above-mentioned submatrix A′′s and A′s must, up to a proper
scaling, be equal. We conclude that in this case there does exist a unique vector
xs with leading coefficient 1 such that [A′|x′s] represents M/s over C. If Z = 6

√
1,

then the same argument applies except that A′′s and A′s may differ in that we may
have A′′s = A′s. But conjugation is an automorphism of C, so A′′s extends to a
representation of M/s if and only if A′s does. In all possible cases there exists a
unique vector x′s over C, with leading non-zero coefficient 1, having the property
that [A′s|x′s] represents M/s over C.

Arguing just as in Lemma 5.2 it now follows that there exists a unique vec-
tor x′, with leading coefficient 1, that has the properties that [A′|x′](F) = [A|x],
M [A′a|x′a] = M/a, and M [A′b|x′b] = M/b. Our aim now is to show that M [A′|x′] =
M , and that [A′|x′] is a Z–matrix. We first obtain another representation of M .

Consider the matrix [A′|x′](GF (3)). Since A′ is a dyadic matrix, it follows by
2.16 that M [A′(GF (3))] = M\x. Since M is ternary, and M\x is connected, this
representation of M\x extends to a representation of M over GF (3) (there are
other ways of seeing this too). This representation agrees with [A′|x′](GF (3)) on
[A′s|x′s](GF (3)) for s ∈ {a, b, {a, b}}, since this is a Z–matrix representing M/s. By
a now familiar argument it follows that the vector that extends [A′](GF (3)) to a
representation of M is x′(GF (3)), that is, M [[A′|x′](GF (3))] = M .

We now show that M [A′|x′] = M . The argument is similar to argument in
Lemma 5.2 so some detail is omitted. Say M 6= M [A′|x′]. Then there exists
a submatrix D′ of [A′|x′] with the property that |D′| 6= 0 if and only if both
|D′(F)| = 0 and |D′(GF (3))| = 0. Arguing just as in 5.4 we may assume without
loss of generality that D′ is 2× 2.

Say Z = dyadic. Then arguing just as in 5.4, but this time using Lemma 4.3,
we may further assume that

D′ =

[
d1 d2

1 1

]
where d1, d2 ∈ {±1,±2,±1/2}. It follows that

|D′| ∈ {0,±1,±2,±1/2,±3,±4,±1/2,±3/2,±5/2}.
Evidently, if |D′| = 0, then |D′(F)| = 0 and |D′(GF (3))| = 0, so assume that
|D′| 6= 0. Then |D′(GF (3))| = 0, so |D′| ∈ {±3,±3/2}. But F does not have
characteristic 3, so in this case |D′(F)| 6= 0, contradicting the assumption that this
determinant is equal to 0.
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Say Z = 6
√

1. Again it follows that we may assume without loss of generality
that

D′ =

[
d1 d2

1 1

]
,

in this case d1, d2 ∈ {±1,±r,±(r− 1)}, and hence |D′| is in

{0,±1,±r,±(r− 1),±2,±2r,±2(r− 1),±(r + 1),±(2r− 1),±(r − 2)}.
Again we may assume that |D′| 6= 0. Then by our assumption, |D′(GF (3))| = 0.
But D′(GF (3)) is obtained by making the substitution r = −1. It follows that
|D′| ∈ {1+r, 2r−1, r−2}. But F does not have characteristic 3, and it is routinely
checked that for a root ω of α2 − α + 1 over F, 1 + ω, 2ω − 1 and ω − 2 are all
non-zero. Again we have contradicted our assumption and we can conclude that in
this case we also have M = M [A′|x′].

The fact that [A′|x′] is a Z–matrix now follows from arguments essentially iden-
tical to those in the latter parts of 5.5 and 5.6 in the cases Z = dyadic and Z = 6

√
1

respectively. It follows immediately that M is either a dyadic matroid or a 6
√

1–
matroid so that 5.10, is proved.

Theorem 5.1 follows immediately.

6. Summing Up

We now prove Theorems 1.1—1.5. Essentially these theorems represent little
more than a packaging of the information we have in an attempt to maximise the
readership of this paper. We first note a proposition.

Proposition 6.1. A matroid M is both dyadic and a 6
√

1–matroid if and only if it
is near-regular.

Proof. This follows from Lemma 5.7 and Lemma 5.8 in combination with 2.17 and
Proposition 3.4.

Proof of Theorem 1.1. By 2.16, if part 6 holds, then all other parts hold. Consider
the converses. Using quadratic residues it is easily seen that if q is an odd prime
power that is congruent to 2 (mod 3), then α2−α+1 has no root over GF (q). Let i
be any one of parts 1—5, and let M be a 3–connected matroid representable over all
the fields satisfying the conditions of part i. It is clear that at least one of the fields
satisfying the conditions of part i has no root of α2−α+ 1. By Lemma 5.8.1, if M
is a 6
√

1–matroid, then M is near-regular, and hence, by Proposition 6.1, a dyadic
matroid. On the other hand, if M is not a 6

√
1–matroid, then by Theorem 5.1, M

is a dyadic matroid. By 2.15, dyadic matroids are closed under direct sums and
2–sums, and the theorem follows.

Proof of Theorem 1.2. Part 1 is just a case of part 2. We show that parts 2 and 3 are
equivalent. Since GF (2k) has characteristic 2, by Lemma 5.7.2, any dyadic matroid
that is representable over this field is near-regular and is therefore a 6

√
1–matroid.

It now follows by Theorem 5.1, that any 3–connected matroid representable over
GF (3) and GF (2k) is a 6

√
1–matroid. By Proposition 3.3, 6

√
1–matroids are closed

under direct sums and 2–sums. Hence any matroid that is representable over GF (3)

and GF (2k) is a 6
√

1–matroid. On the other hand, since k is even, GF (2k) does have
a root of α2−α+1, and hence, by Proposition 3.5, any 6

√
1–matroid is representable

over GF (2k).
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Proof of Theorem 1.3. Each of the fields of conditions 1, 2, and 3 has a root of
α2 − α + 1, and none has characteristic 2. Hence, by 2.16 and Proposition 3.5,
if M is either a dyadic matroid or a 6

√
1–matroid, then M is representable over

any of these fields. Moreover any matroid that can be obtained by taking 2–sums
and direct sums of dyadic matroids and 6

√
1–matroids is representable over each of

these fields. On the other hand, by Theorem 5.1, any 3–connected matroid that
is representable over each of the fields of condition 1, 2, or 3 is either a dyadic
matroid or a 6

√
1–matroid. It follows that any matroid that is representable over

each of these fields can be constructed by taking 2–sums and direct sums of dyadic
matroids and 6

√
1-matroids.

Proof of Theorem 1.4. At least one of the fields of conditions 1, 2, 3 or 4 has char-
acteristic 2, and at least one does not have a root of α2 − α + 1. It now follows
by Lemmas 5.7 and 5.8 that if M is representable over each of the fields satisfying
conditions 1, 2, 3 or 4, then M must be near-regular. On the other hand, none of
the fields is GF (2), so by 2.13, any near-regular matroid is representable over each
of these fields.

Proof of Theorem 1.5. Say M is the class of matroids representable over GF (3)
and GF (q) where q ∈ {2, 3, 4, 5, 7, 8}. If q = 2, then M is the class of regular
matroids; if q = 3, then M is the class of ternary matroids; if q = 4, thenM is the
class of 6

√
1–matroids; if q = 5, then M is the class of dyadic matroids; if q = 7,

thenM is the class of matroids obtained by taking 2–sums and direct sums of 6
√

1–
matroids and dyadic matroids; and if q = 8, then M is the class of near-regular
matroids. In the light of results in this paper it is easily seen that if F is a set of
fields containing GF (3), then the class of matroids representable over all fields in
F must belong to one of the above classes.

Finally we note that we can specify exactly when a 3–connected ternary matroid
is uniquely representable over a field whose characteristic is not 3. The proof is a
straightforward consequences of results in this paper and is omitted.

Theorem 6.2. Let F be a field whose characteristic is not 3, and let M be a 3–
connected, ternary matroid representable over F. M is not uniquely representable
over F if and only if M is either a non-binary, near-regular matroid, or M is
a 6
√

1–matroid that is not near-regular and no automorphism of F takes one root
of α2 − α + 1 to the other. In the latter case, M has exactly two inequivalent
F–representations.
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