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Abstract. It is shown that matrices over algebraically closed fields that are farthest apart in

the commuting graph must be non-derogatory. Rank-one matrices and diagonalizable matrices are

also characterized in terms of the commuting graph.
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1. Introduction and preliminaries. LetMn(F) be an algebra of n×nmatrices

over a field F. Its commuting graph Γ(Mn(F)) is a simple graph (i.e., undirected and

loopless) with the vertex set consisting of all non-scalar matrices. Two distinct vertices

X,Y form an edge X Y if the corresponding matrices commute, i.e., if XY = Y X .

To date, much research has concerned the isomorphisms between commuting

graphs (see, e.g., [1, 16]) and the determination of the diameter of commuting graphs

of various algebraic structures (see, e.g., [4, 6, 10, 11, 19]). If n ≥ 3 and F is alge-

braically closed field, then the diameter of Γ(Mn(F)) is always four, and if F is not

algebraically closed, then either the commuting graph is disconnected or the diameter

is between four and six [4]. It is conjectured that the diameter is at most five [4].

Note that for n = 2 the commuting graph is always disconnected [5, Remark 8]. In

the present paper, we are interested in the commuting graph of matrix algebra Mn(F)

over algebraically closed field F with n ≥ 3. In particular, we study vertices which

are farthest apart in the commuting graph, i.e., at the distance four.

Let us briefly recall some standard definitions and notations. Throughout the

paper F is an algebraically closed field. We make no assumption on the characteristic

of F. Further, Mm,n(F) is the space of m× n matrices over F with a standard basis

∗Received by the editors on December 22, 2010. Accepted for publication on December 26, 2011.

Handling Editor: Bryan L. Shader. The work is partially supported by a grant from the Ministry of

Higher Education, Science and Technology, Slovenia.
†Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, SI-1000 Ljubljana,
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Eij , and Mn(F) = Mn,n(F) is the matrix algebra with identity In and the zero matrix

0n. When it is clear from the context, we omit the subscript. Given an integer k ≥ 2,

we denote by Jk(µ) = µIk +
∑k−1

i=1 Ei(i+1) ∈ Mk(F) the upper-triangular elementary

Jordan block corresponding to an eigenvalue µ. Let J1(µ) = µ ∈ F. For convenience,

we use Jk to denote Jk(0). Matrix B is a conjugate to A if B = S−1AS for some

invertible matrix S. The transpose of a matrix A is denoted by AT , and rkA denotes

its rank. Given a subset Ω ⊆ Mn(F), let

C(Ω) = {X ∈ Mn(F) : AX = XA for every A ∈ Ω}.

The set C(Ω) is called the centralizer of Ω. If Ω is a singleton set {A}, then we set

C(A) = C({A}). Note that by a double centralizer theorem, C(C(A)) = F[A] where

F[A] is the unital subalgebra of Mn(F) generated by A (see [21, Theorem 2, p. 106]).

A centralizer induces two natural relations on Mn(F). One is the equivalence

relation, defined by A ∼ B if C(A) = C(B). We call such two matrices centralizer-

equivalent (or C-equivalent). The other relation is a preorder given by A � B if

C(A) ⊆ C(B). It was already observed that minimal and maximal matrices in this

preorder are of special importance, see for example [8, 9, 20]. Recall that a matrix A

is minimal if C(X) ⊆ C(A) implies C(X) = C(A). It was shown in [20, Lemma 3.2]

that a matrix A is minimal if and only if it is non-derogatory which means that its

Jordan canonical form is equal to J = Jn1
(λ1)⊕ · · · ⊕ Jnk

(λk) with λi 6= λj for i 6= j.

In this case,

C(J) = F[Jn1
(λ1)]⊕ · · · ⊕ F[Jnk

(λk)] = F[J ] (1.1)

(see, for example, [7, Proposition 4.1] or [13, Theorem 3.2.4.2]). So C(A) = F[A] if A

is non-derogatory. A matrix is derogatory if it is not non-derogatory or equivalently, if

it is not minimal, which we abbreviate to non-minimal. Recall also that a non-scalar

matrix A is maximal if C(A) ⊆ C(X) implies C(A) = C(X) or X is a scalar matrix.

It is known (see [8, Lemma 4] and also [20, Lemma 3.1]) that a matrix is maximal

if and only if it is equal to αI + βP or to αI + N , where P 2 = P is a non-scalar

idempotent, N 6= 0 is a square-zero matrix (i.e., N2 = 0), and a scalar β is nonzero.

It should be noted that in [8, 20] the description of minimal and maximal matrices

was given only for the field of complex numbers, but the arguments can be applied

almost unchanged for arbitrary algebraically closed fields.

A path of length k in a commuting graph, denoted by X0 X1 · · · Xk, is

a sequence of k + 1 distinct vertices X0, . . . , Xk such that Xi−1 Xi is an edge for

i = 1, . . . , k. The distance d(A,B) between a pair of distinct vertices A and B is the

length of a shortest path between them, and d(A,B) = 0 if A = B. If there exists no

path between them, then we define d(A,B) = ∞. The diameter of commuting graph

is the maximal distance between any pair of vertices in it.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 243-256, February 2012



ELA

On Maximal Distances in a Commuting Graph 245

The main purpose of this paper is to characterize matrices for which the diameter

of commuting graph Γ(Mn(F)) is attained, that is, to prove the following theorem.

Theorem 1.1. Let n ≥ 3 and let F be algebraically closed field. Then the

following statements are equivalent for a non-scalar matrix A ∈ Mn(F).

(i) A is non-derogatory.

(ii) A is minimal with respect to the preorder �.

(iii) There exists a matrix X ∈ Mn(F) such that d(A,X) = 4.

Hence, a matrix A is non-derogatory if and only if there exists a matrix X , such

that for every B ∈ C(A) and every Y ∈ C(X) we have C(B) ∩ C(Y ) = FI.

Remark 1.2. There exist infinitely many non-derogatory matrices which are

pairwise at the maximal distance but each of them is at distance two from a fixed

rank-one matrix; see Lemma 2.7.

To prove Theorem 1.1, we need the characterization of matrices that are C-

equivalent to matrices of rank one. Since these matrices are important, e.g., in theory

of preservers [17], we state this characterization as a theorem.

Theorem 1.3. Let n ≥ 3 and let F be algebraically closed field. Then the

following statements are equivalent for a non-scalar matrix A ∈ Mn(F).

(i) A = λI +R for some rank-one matrix R ∈ Mn(F) and some scalar λ ∈ F.

(ii) A is C-equivalent to a rank-one matrix.

(iii) d(A,X) ≤ 2 for every non-minimal matrix X ∈ Mn(F).

So, C(A) = C(R) for some rank-one matrix R if and only if C(A)∩C(X) contains

a non-scalar matrix for each derogatory matrix X .

We will conclude the paper with the characterization of diagonalizable matrices.

Theorem 1.4. Let n ≥ 3 and let F be algebraically closed field. Then the

following statements are equivalent for a non-scalar matrix A ∈ Mn(F).

(i) A is diagonalizable.

(ii) There exists a minimal B ∈ C(A) such that for each path B X Y in

Γ(Mn(F)) there exists a minimal matrix M such that X M Y is a path

in Γ(Mn(F)).

Recall, if X commutes with a minimal matrix M , then X ∈ F[M ] by (1.1).

Thus, Theorem 1.4 says that a matrix A is diagonalizable if and only if for every

non-derogatory B ∈ C(A) and arbitrary X ∈ C(B) and Y ∈ C(X), there exists a

non-derogatory matrix M with X,Y ∈ F[M ].
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2. Proofs. Throughout F is an algebraically closed field and n ≥ 3. We start

with four lemmas that we need to characterize rank-one matrices.

Lemma 2.1. For every non-scalar matrix A ∈ Mn(F), there exists a rank-one

matrix R ∈ Mn(F) with d(A,R) ≤ 1.

Proof. It suffices to show that A commutes with at least one matrix of rank one.

Let x and y be eigenvectors of A and of AT , respectively, corresponding to the same

eigenvalue λ. Then R = xyT is a rank-one matrix with AR = (Ax)yT = λxyT =

x(AT y)T = RA.

Using Lemma 2.1, we can give an alternative proof of the result [4, Corollary 7]

on the diameter of a commuting graph.

Corollary 2.2. The distance between arbitrary two matrices in the commuting

graph is at most four.

Proof. Let A and B be arbitrary matrices. By Lemma 2.1, there exist rank-one

matrices R1 = xfT ∈ C(A) and R3 = ygT ∈ C(B). Since n ≥ 3 we can find a nonzero

z ∈ F
n with fT z = gT z = 0 and a nonzero h ∈ F

n with hT x = hT y = 0. Then, for

a rank-one matrix R2 = zhT , we obtain A R1 R2 R3 B.

Lemma 2.3. Let A = Jk1
⊕ Jk2

∈ Mk1+k2
(F) be a nilpotent matrix with two

Jordan blocks of sizes k1, k2. Then, for each rank-one R ∈ Mk1+k2
(F), there exists a

rank-one matrix Z ∈ C(A) ∩ C(R).

Proof. If k1 = k2 = 1, then A is a zero matrix and the conclusion is obvious.

Otherwise, k1 ≥ 2 or k2 ≥ 2. Let k = k1 + k2 and let e1, . . . , en be the standard

basis of column vectors in F
n. For every choice of λ1, λ2, µ1, µ2 ∈ F, the matrix Z =

λ1µ1E1k1
+λ1µ2E1k+λ2µ1E(k1+1)k1

+λ2µ2E(k1+1)k = (λ1e1+λ2ek1+1)(µ1ek1
+µ2ek)

t

is of rank at most one and commutes with A. Let R ∈ Mk1+k2
(F) be a rank-one

matrix. Then R = abT for some column vectors a, b ∈ F
k and we may choose

(λ1, λ2) 6= (0, 0) and (µ1, µ2) 6= (0, 0) so that Za = Ztb = 0. With this choice,

ZR = RZ = 0.

Lemma 2.4. Suppose that a non-scalar matrix A ∈ Mn(F) is not minimal. Then

d(A,R) ≤ 2 for each rank-one matrix R ∈ Mn(F).

Proof. Since A is non-minimal, at least two of its Jordan blocks, Jk1
(λ1) and

Jk2
(λ2), satisfy λ1 = λ2 = λ. Let k = k1 + k2. As C(A) = C(A − λI) and by using

appropriate conjugation, we may assume that A = Jk1
⊕ Jk2

⊕ Ã for some matrix

Ã ∈ Mn−k(F). A rank-one matrix R can be written as R = xyT with x = x1 ⊕ x2 ∈

F
k ⊕ F

n−k and y = y1 ⊕ y2 ∈ F
k ⊕ F

n−k. We define two vectors x̂1, ŷ1 ∈ F
k to be

x̂1 = x1 if x1 6= 0, and x̂1 = e1 if x1 = 0. Similarly, it is defined that ŷ1 = y1 if y1 6= 0,

and ŷ1 = e1 if y1 = 0. By Lemma 2.3, there exists a rank-one Ẑ ∈ Mk(F) which
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commutes with x̂1ŷ
T
1 and with Jk1

⊕ Jk2
. Since Ẑx̂1ŷ

T
1 = x̂1ŷ

T
1 ẐT = x̂1(Ẑŷ1)

T ,

x̂1 6= 0 and ŷ1 6= 0, it follows that there is a scalar λ such that Ẑx1 = λx1 and

ẐT y1 = λy1.

Let Z = Ẑ ⊕ λIn−k. Then Z ∈ C(Jk1
⊕ Jk2

) ⊕ (FIn−k) ⊆ C(A) is a non-scalar

matrix. Clearly, Zx = Ẑx1 ⊕ λx2 = λx and ZT y = λy. Hence, Z commutes with

R = xyT and A.

Lemma 2.5. Let n ≥ 4. Suppose that a non-scalar A ∈ Mn(F) is either

(i) a maximal matrix with 2 ≤ rkA ≤ n− 2, or

(ii) a nilpotent matrix with A3 = 0 and rk(A2) = 1.

Then there exists a non-scalar and non-minimal matrix X with d(A,X) ≥ 3.

Proof. Suppose (i) holds. It was already mentioned in the first section that a

maximal matrix A is either A = αI+N for some square-zero matrixN or A = αI+βP

for some idempotent P . Since A is singular, it follows that A = N , A = βP , or

A = β(P − I).

Let k = rkA. If A is a square-zero matrix, then 2 ≤ k ≤ n
2 . For every ℓ,

we define sℓ = (1, 1, . . . , 1)T ∈ F
ℓ and z2ℓ = (0, 1, 0, 1, . . . , 0, 1)T ∈ F

2ℓ. Also, let

N2ℓ =
⊕ℓ

i=1 J
T
2 ∈ M2ℓ(F). Note that N2

2ℓ = 0 and rkN2ℓ = ℓ. It is easy to see that

a matrix


N2k−2 0 z2k−2

0 0n−2k+1 sn−2k+1

0 0 01


 (2.1)

is a square-zero of rank k, hence conjugate to A. So, we can assume without loss

of generality that A is already in the form (2.1). Define also a non-minimal matrix

X = J2 ⊕ 01 ⊕D, where D is a diagonal matrix with n− 3 distinct nonzero diagonal

entries.

Let B ∈ C(X) ∩ C(A) be arbitrary. We prove that B is a scalar matrix. Since

B ∈ C(X), it easily follows that B = B3 ⊕ Dn−3 for some B3 =
[
α β γ
0 α 0
0 δ ǫ

]
and some

Dn−3 = diag(λ3, . . . , λn). By denoting λn = λ, we have Ben = λen. Also B ∈ C(A),

i.e., BA = AB. Therefore, BAen = ABen = λAen, and x = Aen = (e2 + e4 + · · ·+

e2k−2)+(e2k−1+· · ·+en−1) is an eigenvector of B corresponding to eigenvalue λ. Since

B = B3⊕Dn−3, we obtain Be2 = λe2 and Dn−3 = diag(λ, µ5, λ, . . . , µ2k−3, λ, . . . , λ).

From Be2 = λe2, it follows B3 =
[
λ 0 γ
0 λ 0
0 0 ǫ

]
. Also, λe2k−2 = Be2k−2 = BAe2k−3 =

ABe2k−3 = µ2k−3Ae2k−3 = µ2k−3e2k−2, so µ2k−3 = λ. Proceeding backwards gives

µ2k−3 = · · · = µ5 = λ, so B = B3 ⊕ λIn−3. If k = 2, then x = e2 + e3 + · · · + en−1

is an eigenvector of B so B3 = λI3. If k ≥ 3, then λe4 = Be4 = BAe3 = ABe3 =

A(ǫe3 + γe1) = ǫe4 + γe2, so γ = 0 and ǫ = λ, and so B = λI. This completes the

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 243-256, February 2012



ELA

248 G. Dolinar, B. Kuzma, and P. Oblak

proof that d(A,X) ≥ 3 if A2 = 0.

If A is a scalar multiple of an idempotent, then we may assume that A is an

idempotent of rank k with n
2 ≤ k ≤ n − 2, because C(µA) = C(A) = C(I − A) for

µ 6= 0 and if A is an idempotent then rk(I − A) = n − rkA. Using an appropriate

conjugation, we can additionally assume that A =

[
Ik W

0 0n−k

]
, where k × (n − k)

matrix W has ones at positions (k, 1), (k, n−k), and (i, n−k− i+1), i = 1, . . . , n−k,

and zeros elsewhere. We also take a non-minimal matrix X = Jk ⊕ 01 ⊕ In−k−1.

Let B ∈ C(X) ∩ C(A) be arbitrary. Since B ∈ C(A), it is easy to see that

B =

[
M MW −WN

0 N

]
for some M ∈ Mk(F), N ∈ Mn−k(F). Since B ∈ C(X),

we deduce that M =
∑k

i=1 miJ
i−1
k is upper-triangular Toeplitz, N = λ ⊕ Y with

λ ∈ F, Y =
[
yij

]
2≤i,j≤n−k

∈ Mn−k−1(F), and (MW − WN)ij = 0, except possibly

for i = j = 1. By equations

0 = (MW −WN)k,1 = m1 − λ,

0 = (MW −WN)k,n−k = m1 − yn−k,n−k,

0 = (MW −WN)i,n−k = mk−i+1 for all i with (n− k) ≤ i ≤ (k − 1),

it follows that m1 = yn−k,n−k = λ and, if n
2 < k, m2 = m3 = · · · = m2k−n+1 = 0.

Moreover, if n
2 < k, then 0 = (MW − WN)i,1 = mn−k−i+1 + mk−i+1 for i =

(n − k − 1), . . . , 2, and since m2 = m3 = · · · = m2k−n+1 = 0, we recursively obtain

m2k−n+2 = · · · = mk−1 = 0. If n
2 = k, then 0 = (MW − WN)i,1 = mk−i+1 for

i = 2, 3, . . . , n − k − 1 = k − 1 and again m2 = · · · = mk−1 = 0. Now, equation

0 = (MW − WN)1,n−k = m1 + mk − yn−k,n−k = mk completes the proof that

M = λIk.

We proceed by 0 = (MW − WN)i,n−k−i+1 = m1 − yn−k−i+1,n−k−i+1 for i =

2, . . . , n − k − 1 and 0 = (MW − WN)i,j = −yn−k−i+1,j for i = 1, 2, . . . , n − k − 1

and j = 2, 3, . . . , n− k, such that i + j 6= n− k + 1. It follows that N = λIn−k and

(MW −WN) = 0. Thus, B = λI and d(A,X) ≥ 3.

(ii) Let A be a nilpotent matrix such that A3 = 0 and rk(A2) = 1. We may

assume A is already in its Jordan canonical form, i.e.,

A = J3 ⊕

k⊕

i=1

J2 ⊕ 0n−3−2k.

The centralizer of A is contained in the set of matrices of the form B =

[
T S1

S2 V

]
,

where T = t1I3 + t2J3 + t3J
2
3 ∈ M3(F), V ∈ Mn−3(F), and where the first column of
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S2 ∈ Mn−3,3(F) as well as the last row of S1 ∈ M3,n−3(F) contain only zero entries.

We define a non-minimal matrix X = 1⊕ 0⊕ Jn−2.

Let B ∈ C(A) ∩ C(X) be arbitrary. Since B ∈ C(X), its off-diagonal entries in

the first row and the first column are all zero. Comparing with the above form for

B, we deduce that T = t1I3. Moreover, B ∈ C(X) also implies that the bottom-right

(n − 2) × (n − 2) block of B is upper triangular Toeplitz matrix, which is equal to

t′1In−2 for some t′1 ∈ F, by the fact that the third row of S1 vanishes. Actually, t1 = t′1
because a 3× 3 block T overlaps with (n− 2)× (n− 2) bottom right block. Further,

B ∈ C(X) implies that the only possible off-diagonal nonzero entries in the second row

and column are at positions (2, n), and (3, 2). Actually, B32 = T32 = 0, while from

B ∈ C(A) we deduce that if B2n 6= 0, then also B1(n−1) 6= 0, which would contradict

the fact that the first row of B has zero off-diagonal entries. Hence, B = t1I is a

scalar matrix, and therefore, d(A,X) ≥ 3.

Proof of Theorem 1.3. If (i) holds, then C(A) = C(λI + R) = C(R). Hence,

A is C-equivalent to a rank-one matrix R. Inversely, if A is C-equivalent to some

rank-one matrix R′, i.e., if C(A) = C(R′), then, by a double centralizer theorem,

A ∈ C(C(A)) = C(C(R′)) = F[R′] = {λI + µR′ : λ, µ ∈ F}. Thus, (i) follows with

R = µR′, and hence (i) is equivalent to (ii). Let us prove that (ii) is also equivalent

to (iii). Recall that non-minimal matrices are exactly derogatory ones.

If n = 3, then the Jordan canonical form of every non-minimal matrix X has at

most three Jordan blocks, and two of them must have the same eigenvalue, say λ.

Then X is C-equivalent to a rank-one matrix X − λI. Hence, by Lemma 2.4, (ii) and

(iii) are equivalent for n = 3.

It remains to prove the equivalence for n ≥ 4.

(ii)=⇒ (iii). We can assume without loss of generality that A = R is rank-one.

Let X be an arbitrary non-minimal matrix. Then, by Lemma 2.4, d(A,X) ≤ 2.

¬(ii) =⇒ ¬(iii). Suppose that A is not C-equivalent to a rank-one matrix. Note

that there exists at least one non-invertible maximal matrix M � A. In fact, if

A = A1 ⊕ · · · ⊕ Ar is a primary decomposition of A (see, e.g., [12]), then, by [7,

Proposition 4.1], F[A] = F[A1]⊕· · ·⊕F[Ar]. Hence, using the Jordan structure of Ai,

we can find a polynomial p such that M = p(A) is a non-scalar idempotent matrix or

a non-scalar square-zero matrix. Hence, 1 ≤ rkM ≤ n − 1. Note that rkM = n− 1

implies M is an idempotent, and therefore, it is C-equivalent to a maximal matrix of

rank one. Thus, we can assume that 1 ≤ rkM ≤ n− 2.

If there exists a maximal M � A with 2 ≤ rkM ≤ n − 2, then, by Lemma 2.5,

there exists a non-scalar and non-minimal matrix X with d(M,X) ≥ 3. Hence, also

d(A,X) ≥ 3 because C(A) ⊆ C(M).
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Otherwise, every maximal matrix M � A is C-equivalent to a rank-one idempo-

tent matrix or to a rank-one nilpotent matrix. Note that M � A if C(A) ⊆ C(M),

which implies M ∈ C(C(M)) ⊆ C(C(A)) = F[A]. Therefore, for n ≥ 4, the primary

decomposition of A contains at most two blocks, and in the Jordan structure of each

block there are only blocks of size at most three. Moreover, A can have only one

Jordan block of maximal size. This implies that (1) A is C-equivalent to a nilpotent

matrix whose Jordan structure is equal to J3⊕
⊕k

i=1 J2⊕0n−3−2k, (2) A is C-equivalent

to a matrix whose Jordan structure is equal to 1⊕J2 ⊕ 0n−3, or (3) A is C-equivalent

to a matrix whose Jordan structure is equal to 1⊕ J3 ⊕
⊕k

i=1 J2 ⊕ 0n−4−2k.

In the case (1), Lemma 2.5 assures that there exists a non-minimal X with

d(A,X) ≥ 3. In the case (2) we have, modulo conjugation, A = 1 ⊕ J2 ⊕ 0n−3.

It is easy to see that X = J2 ⊕ Jn−2 is non-minimal and d(A,X) ≥ 3. In case (3) we

have, modulo conjugation, A � A′ = 0 ⊕ J3 ⊕
⊕k

i=1 J2 ⊕ 0n−4−2k. By Lemma 2.5,

there exists a non-minimal matrix X with d(A′, X) ≥ 3 and hence, d(A,X) ≥ 3.

It was proven in [4, Lemma 2] that for matrices of order n ≥ 3 the diameter of the

commuting graph is at most four (see also Corollary 2.2 above) and that d(J, JT ) = 4.

These results imply that the diameter of the commuting graph of matrix algebra over

algebraically closed field is equal to four. It is well-known that the transpose of a

matrix is conjugate to the original (see, for example, [13, p. 134]). Thus, [4, Lemma

2] implies that the maximal distance from J to some of its conjugates is equal to

four. Our next lemma will strengthen this result by considering maximal distances

between an arbitrary minimal matrix A ∈ Mn(F) and matrices from conjugation orbit

{S−1BS : S invertible} of another minimal matrix B ∈ Mn(F). Recall that a matrix

is minimal if it is conjugate to
k⊕

i=1

Jni
(λi), where λi 6= λj for i 6= j, and (n1, n2, . . . , nk)

is a partition of n. In the following lemma we show that for two arbitrary partitions

of n, we can find two minimal matrices at distance four, having their Jordan forms

corresponding to the two partitions. One of the matrices is already in its Jordan

canonical form, while the other is a matrix which is conjugate to its Jordan canonical

form by an invertible matrix with all of its minors nonzero. Such invertible matrix is,

for example, a Cauchy matrix
[

1
xi−yj

]
ij

(see [18]).

Lemma 2.6. Let S be a matrix with all of its minors nonzero. For two arbitrary

minimal matrices A =
k⊕

i=1

Jni
(λi) ∈ Mn(F) and B =

l⊕
i=1

Jmi
(µi) ∈ Mn(F), we have

d(A,S−1BS) = 4.

Proof. Assume to the contrary that d(A,S−1BS) ≤ 3. Since C(A) = C(αA) for all

nonzero α ∈ F, we can make every path longer by adding vertices which correspond to

scalar multiples of matrices. Hence, there exists a path A X Y S−1BS of length

3 in Γ(Mn(F)). We can assume without loss of generality that X and Y are maximal
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matrices. If X is not maximal, then there exists a maximal X ′ � X . Thus, we could

consider a path A X ′ Y S−1BS of length 3, since A, Y ∈ C(X) ⊆ C(X ′). A

similar argument applies to Y .

We now show that no two maximal matrices X ∈ C(A) and Y ∈ C(S−1BS)

commute and thus obtain a contradiction to the assumption d(A,S−1BS) ≤ 3. Since

all maximal matrices are C-equivalent either to a non-scalar square-zero matrix or to

a non-scalar idempotent matrix, we will consider the following three cases.

First, let us assume that both X and Y are nonzero square-zero matrices. Note

that A =
⊕k

i=1 Jni
(λi) and B =

⊕l
i=1 Jmi

(µi) are minimal and hence, λi 6= λj and

µi 6= µj for i 6= j. Thus, we have that

X = T1 ⊕ T2 ⊕ · · · ⊕ Tk and Y = S−1(T ′
1 ⊕ T ′

2 ⊕ · · · ⊕ T ′
l )S,

where all Ti and T ′
j are upper triangular Toeplitz matrices. Since X is a nonzero

square-zero matrix, its image ImX is a linear combination of a subset of vectors of

standard basis, i.e., ImX = Lin{eσ(1), eσ(2), . . . , eσ(r)} for some permutation σ of

length n and some integer r, 1 ≤ r ≤ n
2 . Moreover, since the nonzero X is Toeplitz

block-diagonal matrix, there exists a column with exactly one nonzero entry, i.e.,

there exist indices t and s such that Xet = αes 6= 0. For simplicity, we denote

T = T ′
1 ⊕ T ′

2 ⊕ · · · ⊕ T ′
l . Now, assume Y X = XY . Then S−1TSXet = Y Xet =

XY et ∈ ImX , and therefore,

αTSes ∈ S(ImX) = Lin{Seσ(1), Seσ(2), . . . , Seσ(r)}

which is clearly possible if and only if the rank of the n× r matrix

M =

[
1

α
Seσ(1),

1

α
Seσ(2), . . . ,

1

α
Seσ(r)

]
(2.2)

is the same as the rank of the augmented matrix [M |TSes]. However, we will show

that this is not the case. Since all minors of S are nonzero, the s-th column of S, Ses,

has no zero entries, and it cannot be annihilated by a nonzero Toeplitz block-diagonal

matrix T , i.e., TSes 6= 0. However T 2 = 0, so T has at least n
2 zero rows, hence the

vector TSes has at least n
2 zero entries. Recall that r ≤ n

2 and consequently there

exists an (r + 1)× (r +1) submatrix of the augmented matrix having exactly r zeros

and one nonzero element in its last column. Using the Laplace expansion along the

last column of this (r + 1) × (r + 1) submatrix, we observe that its determinant is

equal to a multiple of an r × r minor of the matrix M which, by (2.2), is equal to

( 1
α
)r times an r × r minor of S. By the assumption every minor of S is nonzero

and so r + 1 = rk [M |TSes] > rkM = r. This implies TSes /∈ S(ImX), which is a

contradiction.

Second, suppose that a non-scalar idempotent matrix X ∈ C(A) commutes with

a non-scalar square-zero matrix Y ∈ C(S−1BS). We can assume that r = rkX ≤
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n
2 . Otherwise, we can take I − X instead of X . Hence, X =

∑r
i=1 Eσ(i)σ(i) and

Y = S−1TS, where σ is an appropriate permutation of length n and T = T ′
1 ⊕ T ′

2 ⊕

· · · ⊕ T ′
l is as above. Let t = σ(1). As before, if Y X = XY , then S−1TSXet ∈

ImX = Lin{eσ(1), eσ(2), . . . , eσ(r)}, that is, TSet ∈ Lin{Seσ(1), Seσ(2), . . . , Seσ(r)}.

We proceed as in the first case to obtain a contradiction.

By the symmetry the only case remaining is the case when X and Y are both

non-scalar idempotents. Then X =
∑r

i=1 Eσ(i)σ(i) and Y = S−1PS for idempotent

P =
∑s

i=1 Eτ(i)τ(i) and appropriate permutations σ and τ of length n. We can

assume that r ≤ n
2 , since otherwise we substitute X by I − X , and s ≤ n

2 , since

otherwise we substitute Y by I − Y . Again, let t = σ(1). If Y X = XY , then

S−1PSXet ∈ ImX = Lin{eσ(1), eσ(2), . . . , eσ(r)} as before, or equivalently PSet ∈

Lin{Seσ(1), Seσ(2), . . . , Seσ(r)}. Since PSet has n − s ≥ n
2 zero entries, we obtain a

contradiction as in the first case. This shows that d(A,S−1BS) ≥ 4. But the diameter

of commuting graph is equal to four and hence, d(A,S−1BS) = 4.

Now we prove that minimal matrices are the ones which maximize the distance

in a commuting graph.

Proof of Theorem 1.1. We already know that (i) and (ii) are equivalent by [20].

Also, (ii) =⇒ (iii) follows by Lemma 2.6. To prove (iii) =⇒ (ii) consider a non-

minimal matrix A and let X be an arbitrary non-scalar matrix. By Lemma 2.1 there

exists a rank-one matrix R with d(X,R) ≤ 1. By Theorem 1.3 we have d(A,R) ≤ 2,

so by a triangle inequality it follows d(A,X) ≤ 3.

We continue by proving the assertions in Remark 1.2.

Lemma 2.7. There exist an infinite family of matrices (Xα)α ∈ Mn(F) and a

rank-one matrix Z such that d(Xα, Xβ) = 4 for α 6= β and d(Xα, Z) = 2 for all α.

Proof. Suppose first that n ≥ 4 and let A = diag(λ1, . . . , λn) where λi are pairwise

distinct. Since |F| = ∞, we may choose a nonzero scalar γ with γ2 6= 2 − n to form

an infinite family of rank-one nilpotent matrices Rα = x(fT + αgT ), α ∈ F, where

x = (1, . . . , 1, γ)T , f = (2 − n, 1, . . . , 1, 0)T and g = (2 − n − γ2, 1, . . . , 1, γ)T . Note

that RαRβ = 0 for all α, β ∈ F. Thus, matrices Sα = I + Rα are invertible with

S−1
α = I −Rα. For every α ∈ F, let Xα = SαAS

−1
α . We claim that d(Xα, Xβ) = 4 for

α 6= β.

Fix α, β ∈ F and denote S = S−1
α Sβ = (I − Rα)(I + Rβ) = I + x̃gT , where

x̃ = (β − α)x. Since the distance is invariant for simultaneous conjugation, we can

replace (Xα, Xβ) with (A,SAS−1). Now, to prove d(A,SAS−1) = 4, it suffices to

show that, non-scalar matrices D1 ∈ C(A) and SDS−1 ∈ S C(A)S−1 do not commute.

Assume to the contrary that D1 and SDS−1 commute. This implies that D1(I+
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x̃gT )D(I − x̃gT ) = (I + x̃gT )D(I − x̃gT )D1. Since A is minimal (hence, non-

derogatory), C(A) consists of diagonal matrices only, which implies that D1 and D

are diagonal. Since diagonal matrices commute, after expansion and simplification,

we get

(D1x̃)(Dg)T − (D1Dx̃)gT − (gTDx̃)(D1x̃)g
T

= x̃
(
D1Dg − (gTDx̃)D1g

)T
− (Dx̃)(D1g)

T . (2.3)

Observe that g andDg are linearly independent because each entry of g is nonzero and

D is a non-scalar diagonal matrix. Hence there exists a vector y such that gT y = 0

and (Dg)T y = 1. Then post-multiplying both sides of equation (2.3) with y gives

D1x̃ = µx̃+ νDx̃, where µ = (D1Dg− (gTDx̃)D1g)
T y and ν = −(D1g)

T y. We infer

that (D1−νD−µI)x̃ = 0. This implies that D1 = µI+νD, since x̃ has all its entries

nonzero. Hence, equation (2.3) is simplified into

(Dx̃)(Dg)T − (D2x̃)gT − (gTDx̃)(Dx̃)gT

= x̃
(
D2g − (gTDx̃)Dg

)T
− (Dx̃)(Dg)T . (2.4)

If charF 6= 2, we choose a vector z such that gT z = 0 and (Dg)T z = 1. By evaluating

both sides of equation (2.4) at z, we obtain that

2Dx̃ = ((D2g)T z − (gTDx̃))x̃.

Then x̃ is an eigenvector of a non-scalar diagonal matrix 2D, which is a contradiction

because all entries of x̃ are nonzero. Hence, d(Xα, Xβ) = 4 for each α 6= β.

If charF = 2, then we choose a vector z such that gT z = 1 and (Dg)T z = 0.

Similarly, this simplifies equation (2.4) into D2x̃ + (gTDx̃)Dx̃ = λx̃, where λ =

(D2g)T z. Arguing as above,D2+(gTDx̃)D−λI = 0. SinceD is a non-scalar diagonal

matrix, which is annihilated by a quadratic polynomial p(t) = t2 + (gTDx̃)t − λ =

(t−δ1)(t−δ2), it has exactly two distinct eigenvalues, say δ1 and δ2 (with multiplicities

k and n − k, respectively). Hence, D = diag(d1, d2, . . . , dn), where di ∈ {δ1, δ2} and

without loss of generality d1 = δ1. Comparing the coefficients of polynomial p in

characteristics 2, we obtain

δ1 + δ2 = (gTDx̃) = (β − α)
(
(2− n− γ2)d1 +

n−1∑

i=2

di + γ2dn

)
. (2.5)

Note that d1 + d2 + · · · + dn = kδ1 + (n − k)δ2. If dn = δ1, then (2.5) simplifies

into δ1 + δ2 = (β − α)(n − k)(δ1 + δ2). If dn = δ2, then it simplifies into δ1 + δ2 =

(β − α)(n − k + γ2 + 1)(δ1 + δ2). Since D is not a scalar matrix, we can divide by

δ1 + δ2 to obtain either (β −α)(n− k) = 1 or (β −α)(n− k+ γ2 + 1) = 1. Note that
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n−k ∈ {0, 1} (mod 2), and therefore, we obtain that β ∈ α+{1, 1
γ2+1 ,

1
γ2+2}. Clearly,

we can choose an infinite subset of indices A = {0, α1, α1 +α2, α1+α2+α3, . . . } ⊆ F

such that α− β /∈ {1, 1
γ2+1 ,

1
γ2+2} for α, β ∈ A and for this subset, d(Xα, Xβ) = 4.

It remains to find a matrix Z such that d(Xα, Z) = 2 for each α. Observe that

the rank-one matrix

SαE11S
−1
α = (I + x(f + αg)T )e1e

T
1 (I − x(f + αg)T )

commutes with Xα = SαAS
−1
α . Since n ≥ 4 and g = x+ (1− n− γ2)e1, there exists

a nonzero vector w with wT e1 = wT x = wT f = wT g = 0. Then rank-one matrix

Z = wwT commutes with SαE11S
−1
α and hence, we have path Xα SαE11S

−1
α Z

in Γ(Mn(F)) for every α. Actually no shorter path between Xα and Z exists, because

otherwise d(Xα, Xβ) ≤ 3 for each β, which is a contradiction. Thus, d(Xα, Z) = 2

for every α.

Consider now the remaining case n = 3. Choose Z = E11 and define matri-

ces Rα = (0, 1, α)T (0, α,−1), α ∈ F, that form an infinite family of pairwise non-

commuting nilpotent rank-one matrices. Notice that each Rα commutes with E11.

Moreover, for each α ∈ F, define a nilpotent matrix Xα =




0 α −1

1 0 0

α 0 0


 with

rank-two. Note that X2
α = Rα. Since n = 3 and Xα is minimal, all non-scalar ma-

trices which commute with Xα are C-equivalent to either Xα or Rα. Therefore, as

d(Rα, Rβ) = 2 for α 6= β, we see that d(Xα, Xβ) = 4 for α 6= β.

Diagonalizable matrices can also be classified using the distance in the commuting

graph. Before doing that we need two lemmas.

Lemma 2.8. Suppose a minimal matrix B ∈ Mn(F) is diagonalizable and let

B X Y be a path in Γ(Mn(F)). Then there exists a minimal matrix M ∈ C(X) ∩

C(Y ).

Proof. Assume with no loss of generality that B is diagonal. Since B is minimal

and hence non-derogatory, every X ∈ C(B) is also diagonal. Using simultaneous

conjugation on (B,X) we may further assume that X = λ1In1
⊕ · · · ⊕ λkInk

, with

λ1, . . . , λk pairwise distinct and n1, . . . , nk ≥ 1. Since Y ∈ C(X) = Mn1
(F) ⊕ · · · ⊕

Mnk
(F), it follows that Y = Y1 ⊕ · · · ⊕ Yk is block-diagonal. Thus, we can find

an invertible block-diagonal matrix S = S1 ⊕ · · · ⊕ Sk such that S−1XS = X and

S−1Y S =
⊕k

i=1 S
−1
i YiSi =

⊕s
i=1 Jmi

(µi) is in upper-triangular Jordan form, mi ≥ 1,

s ≥ k. Then we can choose distinct ν1, . . . , νs ∈ F such that the matrix M =

S
⊕s

i=1 Jmi
(νi)S

−1 is neither equal to X nor Y . Also, since ν1, . . . , νs are distinct,

M is minimal and it commutes with X and with Y .

Lemma 2.9. Suppose a minimal B ∈ Mn(F) is not diagonalizable. Then there
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exist non-scalar matrices X,Y forming a path B X Y in Γ(Mn(F)) such that

C(X) ∩ C(Y ) contains only non-minimal matrices.

Proof. Without loss of generality assume B is already in its upper-triangular

Jordan form, B = Jn1
(λ1) ⊕ · · · ⊕ Jnk

(λk) with λ1, . . . , λnk
distinct and n1 ≥ 2.

Define X = E1n1
= Jn1−1

n1
⊕ 0n−n1

∈ C(B), and for fixed k ∈ {1, . . . , n} \ {1, n1}

define Y = E1k. Clearly, X commutes with Y . Let us show that no minimal A =

S
⊕s

j=1 Jnj
(µj)S

−1 commutes with both X and Y . Since X,Y ∈ C(A) = F[A]

are of rank one, it follows that X ∈ FS
(
0mj1−1

⊕ J
nj1

−1
nj1

⊕ 0sj1−1

)
S−1 and Y ∈

FS
(
0mj2−1

⊕J
nj2

−1
nj2

⊕ 0sj2−1

)
S−1 for some j1, j2, where mji−1 = n1+ · · ·+nji−1 and

sji−1 = n−mji−1 − nji . However, rk(X + Y ) = rk(E1n1
+ E1k) = 1 and so j1 = j2,

which implies X and Y must be linearly dependent, giving a contradiction.

Proof of Theorem 1.4. Suppose A is diagonalizable and assume without loss of

generality that A is already diagonal. Choose distinct scalars µ1, . . . , µn to form a

minimal matrix B = diag(µ1, . . . , µn) which clearly commutes with A. Then (ii)

follows from Lemma 2.8.

If A is not diagonalizable, then choose a minimal B ∈ C(A). Note that such B al-

ways exists. For example, if A = S
⊕k

i=1 Jni
(λi)S

−1, then B = S
⊕k

i=1 Jni
(µi)S

−1 ∈

C(A) is minimal for distinct scalars µ1, . . . , µk. Since C(B) = F[B], it follows that

A ∈ F[B] which implies that B itself is not diagonalizable. It now follows from

Lemma 2.9 that there exist X,Y with B X Y , but no minimal matrix commutes

with both X and Y . Thus, (ii) does not hold, which proves the theorem.
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