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ON MAXIMAL GROUPS OF ISOMETRIES

LUDVIK JANOS

Abstract. The purpose of this note is to introduce the concept

of "Optimal Metrization" for metrizable topological spaces. Let X

be such a space, p a metric on X and K(p) the group of all those

homeomorphisms of X onto itself which preserve p. The metric p is

said to be "optimal" provided there is no p* with K(p*) properly

containing K(p). A space having at least one optimal metric is

called "optimally metrizable." Examples of spaces which are and

which are not optimally metrizable are given; it is shown that the

real line R is, and that the usual metric is optimal.

1. Introduction and notation. Let AT be a metrizable topological

space. We denote by G(X) the group of all homeomorphisms of X

onto itself and by M(X) the set of all metrics on X compatible with

the topology of X. We observe that with each pEM(X) there is

associated the subgroup K(p)ÇZG(X) (group of all isometries for p)

defined by K(p) = {h\hEG(X) and p(x, y)=p(h(x), h(y)) for all
x, yEX}. The basic idea motivating our investigations is the classifi-

cation of a metric pE M(X) according to the size of the corresponding

group K(p).

Convention. In this paper the set-theoretical inclusion is denoted

by 2, reserving D for the proper inclusion.

Definition 1.1. A metric pEM(X) is said to be optimal iff there

is no p*EM(X) with K(p*) Z)K(p). A space X is said to be optimally

metrizable iff there is at least one optimal metric in M(X).

Denoting by L(X) the lattice of all subgroups of G(X) we have the

mapping K:M(X)-*L(X) defined by K(p)EL(X) for pEM(X).
Definition 1.2. The image of M(X) under K is the subset P(X)

QL(X) partially ordered by inclusion. Its elements are groups of

isometries and its maximal element (if it exists) is called a maximal

group of isometry.

It is obvious that X is optimally metrizable if and only if P(X) has

a maximal element.

If A EL(X) and hEG(X) we denote by (^4, h) the subgroup gener-

ated by A and h.
Remark 1.1. It is obvious that a space X is not optimally metriz-

able iff to each AEP(X) there exists hEG(X) such that h(£A and

(A,h)EP(X).
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2. General properties of the set P(X). We observe that if pEM(X)

then for each gEG(X) the function gp defined by gp(x, y) = p(g(x), g(y))

for all x, yEX is again a metric EM(X) ; thus G(X) acts on M(X) in

this natural way.

Theorem 2.1. For each pEM(X) and gEG(X) we have K(gp)

= g~1K(p)g. Thus PiX) contains with each A EPiX) all its conjugates

g-^AgEPiX).

Proof. By straightforward verification.

Corollary. If pEM(X) is optimal then gp is also optimal for every

gEG(X).

In the case X is compact we topologize G(X) by the uniform con-

vergence topology and it is a well-known fact (see for example [l]

and [2]) that any compact subgroup K of G(X) lies inside K(p) for

some p. Hence we obtain this obvious statement.

Theorem 2.2. If X is compact then X is optimally metrizable iff

GiX) has a maximal compact subgroup.

3. Optimal metrization property of some well-known spaces. We

first observe that any set X with the discrete topology is optimally

metrizable and the optimal metric p is the most trivial one defined

by pix, y) = 1 for x^y. In this case we have i£(p) =GiX) and PiX)

= L(Ar). On the other hand we now show that the one-point com-

pactification N* of the set of positive integers N has not this property.

Under N* we understand the set NVJ { 00 } metrized for example

by: pin, m) = | l/n — \/m\ for n, mEN and pin, <*>) = \/n for nEN.

Theorem 3.1. The space N* is not optimally metrizable.

Proof. Suppose that K were a maximal compact subgroup of

GiN*). Any orbit Kin) = {gin)\gEK} is compact; so if it were

infinite, then it would include °o. But no member of GiN*) moves

00, so K(n) is finite. Thus there are n, mEN with disjoint orbits

K(n), K(m). Taking for h the simple transposition of m and n, we

observe that the action of iK, h) differs from that of K only on the

finite set K(n)KJK(m), and (K, h) is therefore again compact, which

is impossible. Hence, N* is not optimally metrizable.

Theorem 3.2. The compact interval [a, b] is optimally metrizable

and the usual metric \y—x\ is optimal.

Proof. We prove this showing that the group K = {e, r} consisting

of the identity e and the reflexion r (r(x) =a+b—x for xE [a, b]) is

maximal compact in G([a, b]). If this were not the case then there
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would exist a larger compact group K'ZDK. If hEK'\K we may

assume h is increasing since r-h also belongs to K'\K. Since h^e

there is pE[a, b] such that h(p)¿¿p, and we know that there is an

interval [c, d]ç [a, b] with p in the interior and the only points fixed

by h are c and d. Now {hn\ «^ 1} has a limit element g in i£', so g(c),

sip), & id) are limit points of {h"(c)}, {hn(p)\, {hn(d)\ respectively.

Thus g(c) =c, g(d) =d and g(p) =c or d which is impossible. Hence

K'=K={e, r\=K(p) where p(x, y) = \y—x\ showing that this

metric is optimal.

Theorem 3.3. The circle Si is optimally metrizable.

Proof. Representing the circle Si in the form Si = {eiTZ\ xE [-1, 1 ]}

we shall prove that the group GÇZG(Si) consisting of all rotations

etii_>e.Ti(i+a) ancj thg reflexion eirx—*e~iTX is a maximal compact sub-

group. To this end we observe that the set G(Si; —l)QG(Si) of all

those elements of G(Si) which leave invariant the point — 1 =e~ir is a

closed subgroup of G(Si) which is homeomorphic and isomorphic to

G[ — 1, l]. If G* were a compact group containing G, then according

to Theorem 3.2 G*r\G(Si; -1) =GnG(Si; -1). Now if g belongs to

G*, then we can find a rotation/ such that/(e_,T) =g(e~*T). Thus

h=f~lg belongs to G*i^GiSi; —1), h belongs to G, g=fh belong to G

and G* =G which proves our assertion.

Theorem 3.4. The real line R is optimally metrizable and the usual

metric \y—x\ is optimal.

Proof. The metric | y — x | is preserved by the group of all trans-

lations and reflexions. Denoting this group by K, assume that there

ispEM(R) with K(p) Z)K. LetfEK(p)\K. Without loss of generality

we may assume/ increasing and having at least one fixed point since

otherwise we would apply on/ suitable operations in K. Let F be the

set of all fixed points of / From F^0 we know that R\F has a

connected component C that is an interval with at least one endpoint

a. If we choose b in C, then {f"(b)} or {f~"(b)} will approach a, but

Pifn+1ib),fnib))=pifib), b)=pif—íib),f-»ib)) will not approach 0,
which is impossible. Thus K is the maximal group of isometry cor-

responding to the metric |y — x\ which completes our proof.
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