ON MAXIMAL GROUPS OF ISOMETRIES

LUDVIK JANOS

ABSTRACT. The purpose of this note is to introduce the concept of "Optimal Metrization" for metrizable topological spaces. Let X be such a space, ρ a metric on X and $K(\rho)$ the group of all those homeomorphisms of X onto itself which preserve ρ . The metric ρ is said to be "optimal" provided there is no ρ^* with $K(\rho^*)$ properly containing $K(\rho)$. A space having at least one optimal metric is called "optimally metrizable." Examples of spaces which are and which are not optimally metrizable are given; it is shown that the real line R is, and that the usual metric is optimal.

1. Introduction and notation. Let X be a metrizable topological space. We denote by G(X) the group of all homeomorphisms of X onto itself and by M(X) the set of all metrics on X compatible with the topology of X. We observe that with each $\rho \in M(X)$ there is associated the subgroup $K(\rho) \subseteq G(X)$ (group of all isometries for ρ) defined by $K(\rho) = \{h \mid h \in G(X) \text{ and } \rho(x, y) = \rho(h(x), h(y)) \text{ for all } x, y \in X\}$. The basic idea motivating our investigations is the classification of a metric $\rho \in M(X)$ according to the size of the corresponding group $K(\rho)$.

CONVENTION. In this paper the set-theoretical inclusion is denoted by \supseteq , reserving \supset for the *proper* inclusion.

DEFINITION 1.1. A metric $\rho \in M(X)$ is said to be optimal iff there is no $\rho^* \in M(X)$ with $K(\rho^*) \supset K(\rho)$. A space X is said to be optimally metrizable iff there is at least one optimal metric in M(X).

Denoting by L(X) the lattice of all subgroups of G(X) we have the mapping $K: M(X) \rightarrow L(X)$ defined by $K(\rho) \in L(X)$ for $\rho \in M(X)$.

DEFINITION 1.2. The image of M(X) under K is the subset $P(X) \subseteq L(X)$ partially ordered by inclusion. Its elements are groups of isometries and its maximal element (if it exists) is called a *maximal* group of isometry.

It is obvious that X is optimally metrizable if and only if P(X) has a maximal element.

If $A \in L(X)$ and $h \in G(X)$ we denote by (A, h) the subgroup generated by A and h.

REMARK 1.1. It is obvious that a space X is not optimally metrizable iff to each $A \in P(X)$ there exists $h \in G(X)$ such that $h \notin A$ and $(A, h) \in P(X)$.

Received by the editors May 3, 1970.

AMS 1969 subject classifications. Primary 5480; Secondary 2240.

Key words and phrases. Group of isometries, optimal metric, optimally metrizable.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/compriset.com/light/l

2. General properties of the set P(X). We observe that if $\rho \in M(X)$ then for each $g \in G(X)$ the function $g\rho$ defined by $g\rho(x, y) = \rho(g(x), g(y))$ for all $x, y \in X$ is again a metric $\in M(X)$; thus G(X) acts on M(X) in this natural way.

THEOREM 2.1. For each $\rho \in M(X)$ and $g \in G(X)$ we have $K(g\rho) = g^{-1}K(\rho)g$. Thus P(X) contains with each $A \in P(X)$ all its conjugates $g^{-1}Ag \in P(X)$.

PROOF. By straightforward verification.

COROLLARY. If $\rho \in M(X)$ is optimal then $g\rho$ is also optimal for every $g \in G(X)$.

In the case X is compact we topologize G(X) by the uniform convergence topology and it is a well-known fact (see for example [1] and [2]) that any compact subgroup K of G(X) lies inside $K(\rho)$ for some ρ . Hence we obtain this obvious statement.

THEOREM 2.2. If X is compact then X is optimally metrizable iff G(X) has a maximal compact subgroup.

3. Optimal metrization property of some well-known spaces. We first observe that any set X with the discrete topology is optimally metrizable and the optimal metric ρ is the most trivial one defined by $\rho(x, y) = 1$ for $x \neq y$. In this case we have $K(\rho) = G(X)$ and P(X) = L(X). On the other hand we now show that the one-point compactification N^* of the set of positive integers N has not this property. Under N^* we understand the set $N \cup \{\infty\}$ metrized for example by: $\rho(n, m) = \lfloor 1/n - 1/m \rfloor$ for $n, m \in N$ and $\rho(n, \infty) = 1/n$ for $n \in N$.

THEOREM 3.1. The space N^* is not optimally metrizable.

PROOF. Suppose that K were a maximal compact subgroup of $G(N^*)$. Any orbit $K(n) = \{g(n) | g \in K\}$ is compact; so if it were infinite, then it would include ∞ . But no member of $G(N^*)$ moves ∞ , so K(n) is finite. Thus there are $n, m \in N$ with disjoint orbits K(n), K(m). Taking for h the simple transposition of m and n, we observe that the action of (K, h) differs from that of K only on the finite set $K(n) \cup K(m)$, and (K, h) is therefore again compact, which is impossible. Hence, N^* is not optimally metrizable.

THEOREM 3.2. The compact interval [a, b] is optimally metrizable and the usual metric |y-x| is optimal.

PROOF. We prove this showing that the group $K = \{e, r\}$ consisting of the identity e and the reflexion r (r(x) = a + b - x for $x \in [a, b])$ is maximal compact in G([a, b]). If this were not the case then there

LUDVIK JANOS

would exist a larger compact group $K' \supset K$. If $h \in K' \setminus K$ we may assume h is increasing since $r \cdot h$ also belongs to $K' \setminus K$. Since $h \neq e$ there is $p \in [a, b]$ such that $h(p) \neq p$, and we know that there is an interval $[c, d] \subseteq [a, b]$ with p in the interior and the only points fixed by h are c and d. Now $\{h^n \mid n \ge 1\}$ has a limit element g in K', so g(c), g(p), g(d) are limit points of $\{h^n(c)\}, \{h^n(p)\}, \{h^n(d)\}$ respectively. Thus g(c) = c, g(d) = d and g(p) = c or d which is impossible. Hence $K' = K = \{e, r\} = K(\rho)$ where $\rho(x, y) = |y-x|$ showing that this metric is optimal.

THEOREM 3.3. The circle S_1 is optimally metrizable.

PROOF. Representing the circle S_1 in the form $S_1 = \{e^{i\pi x} | x \in [-1, 1]\}$ we shall prove that the group $G \subseteq G(S_1)$ consisting of all rotations $e^{i\pi x} \rightarrow e^{i\pi x}(x+a)$ and the reflexion $e^{i\pi x} \rightarrow e^{-i\pi x}$ is a maximal compact subgroup. To this end we observe that the set $G(S_1; -1) \subseteq G(S_1)$ of all those elements of $G(S_1)$ which leave invariant the point $-1 = e^{-i\pi}$ is a *closed* subgroup of $G(S_1)$ which is homeomorphic and isomorphic to G[-1, 1]. If G^* were a compact group containing G, then according to Theorem 3.2 $G^* \cap G(S_1; -1) = G \cap G(S_1; -1)$. Now if g belongs to G^* , then we can find a rotation f such that $f(e^{-i\pi}) = g(e^{-i\pi})$. Thus $h = f^{-1}g$ belongs to $G^* \cap G(S_1; -1)$, h belongs to G, g = fh belong to Gand $G^* = G$ which proves our assertion.

THEOREM 3.4. The real line R is optimally metrizable and the usual metric |y-x| is optimal.

PROOF. The metric |y-x| is preserved by the group of all translations and reflexions. Denoting this group by K, assume that there is $\rho \in M(R)$ with $K(\rho) \supset K$. Let $f \in K(\rho) \setminus K$. Without loss of generality we may assume f increasing and having at least one fixed point since otherwise we would apply on f suitable operations in K. Let F be the set of all fixed points of f. From $F \neq \emptyset$ we know that $R \setminus F$ has a connected component C that is an interval with at least one endpoint a. If we choose b in C, then $\{f^n(b)\}$ or $\{f^{-n}(b)\}$ will approach a, but $\rho(f^{n+1}(b), f^n(b)) = \rho(f(b), b) = \rho(f^{-n-1}(b), f^{-n}(b))$ will not approach 0, which is impossible. Thus K is the maximal group of isometry corresponding to the metric |y-x| which completes our proof.

References

1. S. Eilenberg, Sur les groupes compacts d'homéomorphies, Fund. Math. 28 (1937), 75-80.

2. M. T. Wechsler, Homeomorphism groups of certain topological spaces, Ann. of Math. (2) 62 (1955), 360–373. MR 17, 287.

UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32601