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ON MAXIMAL REARRANGEMENT INEQUALITIES
FOR THE FOURIER TRANSFORM
BY
W. B. JURKAT AND G. SAMPSON'

ABSTRACT. Suppose that w is a measurable function on R” and denote by W = w*
the decreasing rearrangement of |w| (provided that it exists). We show that the
n-dimensional Fourier transform f satisfies

Q) w71l <|| W(f)x||q < CH W(’)_/(.)I/If*

if | <g¢<ocandt® 9 '"W(r)\ fort > 0. We also show that

(C absolute constant},

(2) ”wj”‘l = (.n.q

( f nonnegative),

v f L S0

q

if | <<¢g <2 and w is nonnegative and symmetrically decreasing. Inequality (2)
implies that (1) is maximal in the sense that the left side reaches the right side if f is
nonnegative and symmetrically decreasing. Hence, (1) implies all other possible
estimates in terms of W and f*. The cases ¢ # 2 of (1) can be derived from the case
g = 2 (and same f) by a convexity principle which does not involve interpolation.
The analogue of (1) for Fourier series is due to H. L. Montgomery if ¢ = 2 (then the
extra condition on W is automatically satisfied).

1. Introduction. We consider the n-dimensional (n = 1) Fourier transform
fx) = [ J(y)elx-y)dy,  e(r) = exp(2mit) fort €R,
R"

where x -y is the scalar product and f € L'(R") or € L*(R") or just a “test
function”, i.e. smooth and “small” at oo; and we denote by f* the (1-dimensional)
decreasing rearrangement of | f| over (0, co) which has the property

[{x eR": [f(x)|=s}|=|{r € (0,00): f*(¢) = s}| fors>0.
Our objective is to estimate the “local averages”
a2 %)
[T o [ (422)
E E

in terms of T =| E| and f*. More generally, we want to estimate weighted norms, i.e.

(1.1) / |wf ‘q (1 < g < o0, w nonnegative and measurable),
R"
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626 W. B. JURKAT AND G. SAMPSON

in terms of w* = W and f* = F. So we are interested in determining the supremum
of (I1.1) if we vary w and f in such a way that W and F remain the same. An
equivalent problem is to estimate

(1.2) [)m(w(f‘)*)" (1<g< oo, W=0)

in terms of f*. If the estimate gives the sup within constant factors we call the
estimate maximal.

In this paper we give the maximal estimates for ¢ = 2 and, under a slight
restriction on W, also those for 1 < ¢ <2 (cf. Corollary 4). The corresponding
problem for Fourier series was recently discussed by H. L. Montgomery [9] for
g = 2. He also showed that the case ¢ > 2 can be derived from the case ¢ = 2 by a
general principle which does not involve interpolation. Through the introduction of
weights we are also able to deal with exponents 1 < g < 2. We have abstracted the
general principle (cf. §5) so that these cases can also be derived from the case g = 2.
The maximal upper estimates are given in §§3 and 6. We also found very sharp
lower estimates for Fourier transforms of positive functions (cf. §§4 and 7). These
can, e.g., be used to show that various forms of the upper estimates are maximal. In
§89 and 10 we discuss Fourier series and Fourier coefficients thereby adding new
results to those of H. L. Montgomery.

As an application of our maximal inequalities we can decide whether or not the
Fourier transform maps a given rearrangement invariant Banach space into another
given space of that type. A typical case would be an inequality of the form

[ ) =a{[Corr)” G <pa<w,

where 0 < W\, 0< ¥V 7, and A4 is a positive finite constant. Such inequalities
contain almost all known norm inequalities for the Fourier transform. We are
dealing with these questions in a separate paper [6]; cf. also a forthcoming paper of
B. Muckenhoupt [10].

2. Notations. Here we collect some notations which will be used throughout the
paper: Our functions f are permitted to be complex-valued. We say that f is radial on
R" if f(x) is defined for x # 0 and depends only on | x|= vx - x. It is convenient to
write f(x) = F(y,|x|"), where F(¢) is defined for r > 0 and vy, denotes the volume of
the n-dimensional unit ball. If f* exists (as a finite function) we define the
symmetrically decreasing rearrangement by f*1(x) = f*(y, | x|") for x # 0.

The arithmetic mean operator is defined by

1 N
mﬁﬁmf(y)dy (fE Lloc(R )»X 7&0).

Af(x) =

In the integration it may be convenient to use polar coordinates

y=1tn witht>0,

=1
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MAXIMAL REARRANGEMENT INEQUALITIES 627

Let dn denote the usual measure on the (n — 1)-dimensional unit sphere S
normalized by [+ 1dn = 1. Then we can write dy as a product measure d(v,t") dn.
Thus we see, e.g., that

Af*l(x) =

1 Yl
—_— t)dr=f™(y,|x["), x #=0,

where we use
o) =L [psyas. >,
tJy

for the averaged rearrangement.

We use P < Q to abbreviate an inequality | P|< b| Q| with some positive finite
constant b (independent of the specified variable quantities), and we use P X Q to
indicate P < Q and Q < P. Absolute constants will be denoted by ¢, C,... and will
be indexed if necessary. They are not necessarily the same at each occurrence.

3. The basic local upper estimate. We prove the following “local” version of
Bessel’s inequality.

THEOREM 1. For T > 0, f € L*(R") we have
2
(3.1) /'Tf*(t)2 dr < T(fl/rf*(t)dz) +fx (1) dr,
0 0 1T

where the implied constant is absolute.

Note that the constant is even independent of n, the dimension. For T — oo this
reduces to Bessel’s inequality. An analogous result for Fourier series is due to H. L.
Montgomery, cf. our §9.

PROOF. We only use the trivial estimate

(3.2) 0l = [ V)ldy = [ 7+(0) e
and Bessel’s inequality

PRI 2 x 2
(3.3) [l ax = [ 11 dy= [~ r+(0) ar
Fix s > 0 and decompose f = f; + f, so that
*(t) forO0<i<ys,
firo) = [é v fort > s,
and
) =(t+s) fort>0.
This is the usual procedure in Marcinkiewicz type interpolation: If f*(s) = 0 we
take f, = f; if f*(s) > 0 we take f, = f on the y-set where |f(y)|> f*(s) and on a

part of the y-set where |f(y)|= f*(s), but f; = 0 elsewhere. The second y-set is
needed only if f* has an interval of constancy about s and can be so selected that
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628 W. B. JURKAT AND (. SAMPSON

always f; = f on a set of measure s (if we only count the nonzero values). Then f,
and f, = f — f, have the desired properties.

Now, for any measurable set E of measure | E|= T with characteristic function x ,-
we have

a2 2 A2 2 .2
/Rn|f| X1;<<f”|f1| XE +fﬂ|f2l Xe < Tsup‘f,l +_/‘;”|f2|

<t([w) + [Crer{[r) 4 [

with absoulte constants (which can easily be given). Since
TaA 2 a2
/ f*(2)"dt = sup / 11 % g
0 |B=T"R"

the result follows by choosing s = 1/T.
Next we formulate (3.1) so that it becomes more convenient for our applications.
Denote the right side of (3.1) by B(T') for the moment. Since

fol/’*>f f* forO<t<T,

we get

wiry <[] e [ ()]

but also [,}//f* = (1/1)f*(1/t) for t > 0 and so we have with an absolute constant
0

B(1) <<_/(;T('/(;]/’f*)2dt

With a little more work we can show

(3.4) B(T) % /(/‘/’ )

but this follows later anyway. On the other hand, by Hardy’s inequality, we see that
T, T,
[7®0) de< [(f2() ar
0 0
with an absolute constant; in fact, we have X since f %) > f* Thus we obtain

COROLLARY 1. For T > 0, f € L*(R") we have

(3.5) /OT,“*’(z)2 dt <<fOT(/O‘/’f*)2dz =f1°/crf<*’(z)2 dt,

%, 1T 5 <,/ \2
3.6 ®(1) dt > () dr = ( *) dr
(3.6) J i@t [ a= [ [
with absolute constants.

Inequality (3.6) follows from (3.5) by replacing f and T by f and 1/T, respectively.
The introduction of the averaged rearrangements f*) and f‘*) has brought about
this perfect symmetry of the estimates.
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MAXIMAL REARRANGEMENT INEQUALITIES 629

4, The basic local lower estimate. We prove the following lower estimate for
positive functions.

THEOREM 2. For T > 0,0 < f € L'(R") we have

(4.1) [ f(x)ax > T fly+z2)dy (z€R)
W=T WM=n/T

with a constant depending only on n.

PROOF. We consider Fejér’s kernel

n

)':,;(y)_ k) =T (1 —lx))"

u ( sinmy,
=1

K(y)=1I "

=1

Since T"K(Ty) is the Fourier transform of k(x /T) we obtain, by Fubini’s theorem,
X N
(4.2) / k(7)e(—x ) f(x)dx=T"| K(Ty)f(y+ z)dy.
" R

It is convenient to use the square norm | x|, = max|x,| besides the euclidean norm
I x|=|x},. Observe that K = 0 and

K(y)=c" forly|l, <1/2.
Hence (4.2) implies

J

RIS

|/(x)|dx = c" sup T" f(y+2)dy.

<T Mo S1/2T

Inside the sup occur averages of f over every cube with side 1/7, and such a sup
becomes only smaller if 1/7 is replaced by m/T, m € N. Since the integral is
monotone in the range m/2T < 1/T, <(m+ 1)/2T, we get forany T}, 0 < T} <
27,

(4.3) f lf(x)|dx = c"T) f(y +z)dy
W <T T,

Mo =1/

with another c. The result follows by applying (4.3) with T and T, replaced by T/ vn'
and T/n.

REMARK. The proof indicates that the square metric is more natural in this context
and leads to better constants, cf. (4.3).

For an application of (4.1) we need two corollaries.

COROLLARY 2. If 0 < f € L'(R") then for x # 0

(4.4) Af™(x) = Alf|(x) > g(x) = fh- o O

with a constant depending only on n.

This follows by Theorem 2 since v, = (1/ v )", hence v,2/" < n. Note that g is
radial, g(x) = G(v, | x["), with

G() = [ f(yydy  (1>0).

M<(y,0)7/"
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630 W. B. JURKAT AND (. SAMPSON

COROLLARY 2". If f € L\R") and ¢ = f1*) then
(45) 00> [Vr(syds (1>0)
0
with a constant depending only on n.

This follows if we apply (4.4) to ¢ since, in that case,
" - N -1
ABII() = 60 (y,5"). g(x) = [T (=),

REMARKS. The constant in (4.5) can be improved if we replace ¢ = f!*!. the
decreasing rearrangement over “circles”, by ¢ =/f*’, the decreasing rearrangement
over “squares”, which is defined analogously using | x|, instead of |x|,. A similar
remark holds for (4.4).

APPLICATION. From (4.5) we see that (3.5) is maximal because, for ¢ = f1*! the
left side reaches the right side (at least for test functions). Since B(T ') (the right side
of (3.1)) lies inbetween, (3.4) also follows. So, in addition, (3.1) is maximal. Again, it
seems that ¢ =f*’ would be an even better choice to show this.

5. A convexity principle. There is a general principle that permits us to derive,
from (3.1) or (3.5) for fixed f and all T > 0, many further inequalities for f.

THEOREM 3. Assume that Y(s) = 0 is increasing and convex for s = 0, and similarly
that ®(s) = 0 is increasing and concave, further let U(t), G(t), H(t) be nonnegative
and measurable for t > 0. If G decreases, then

(5.1) /TG(I)U(t)dt</TH(t)U(t)dt<oo forall T >0
0 0

implies

(5.2) fT‘I'(G(t))U(t)dtSfT\I'(H(t))U(t)dt Jorall T > 0.
0 0

If H increases, then (5.1) implies

(5.3) /()T(D(G(t))U(t) dt sz(D(H(t))U(t) di forall T>0.
¥}

[The integrals in (5.2) and (5.3) are permitted to be + x].

There are similar results for integrals [ which follow by substitution. In the case
of U(t) = 1, the analogue of (5.2) for sums is due to R. M: Gabriel [2, Lemma 2]. In
that case one can obtain (5.2) also from the necessary and sufficient conditions of A.
Baernstein [1, Proposition 3], which are variants of similar results of Hardy,
Littlewood and Polya [S]. This procedure was used by H. L. Montgomery [9] without
stating the above result explicitly. A similar approach is possible for (5.3). It is
simpler, however, to give a direct proof: since ¥(s) = ¥(0) + [;¥'(¢) dr we can
obtain (by approximating ¥’ from below) a sequence ¥, (s) 7¥(s) for s =0
satisfying the same assumptions as ¥ and being continuously differentiable. So we
may assume, without loss of generality, that ¥’ is continuous (= 0 and increasing)
and similarly that @’ is continuous (= 0 and decreasing). Furthermore, by ap-
proximating G from below, we may assume in the first part that G(z) remains
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MAXIMAL REARRANGEMENT INEQUALITIES 631

bounded as r - +0; we may also normalize G(¢) so that it becomes left-continuous
for r > 0. Similarly. we may normalize H(r) in the second part so that it becomes
left-continuous for ¢ > 0.

Now observe that, for any paira = 0, b = 0,

Y(b) — ¥(a)=¥'(a)(b —a), O(b) — P(a) = @' (b)(b—a).
Hence in the first part, for ¢ > 0,
Y(H(1)) = ¥(G(1)) +¥()(H(1) = G(1)),  0=<y(z) =¥(G(1))N,
and in the second part, for t > 0,
O(H(1)) = @(G(1)) + o()(H(1) = G(1)),  0=<¢(r) = ®'(H(r))\.

Furthermore, (1) and ¢(¢) are left-continuous and bounded, since in the second
part H(r) remains clearly bounded as t - +0. So the functions y(H — G)U and
d(H — G)U are locally integrable and satisfy

(5.4) fOT\p(H~G)U>o, /OT<¢>(H—G)U>O for T> 0

in view of (5.1). But this implies (5.2) and (5.3).
We also need an n-dimensional version of Theorem 3.

THEOREM 3. Assume that Y(s) = O is increasing and convex for s = 0, and similarly
that ®(s) = 0 is increasing and concave, further let u(x), g(x) and h(x) be nonnega-
tive and measurable for x € R". If g is radial with decreasing G then

(5.5) / g(x)u(x)dx <Llsrh(x)u(x)dx< o forall T>0

=T

implies

(5.6) / ¥(g(x))ul(x)dx </ Y(h(x))u(x)dx forall T>0.
=T =T

If h is radial with increasing H then (5.5) implies

(5.7) f ®(g(x))u(x)dx <f ®(h(x))u(x)dx forall T > 0.
M=T M<T

[The integrals in (5.6) and (5.7) are permitted to be + o).

PROOF. We can make the same additional assumptions about ¥, ®, G, H as we
did in the proof of Theorem 3. Observe that Y(x) = ¥'(g(x)), ¢(x) = ®’'(h(x)) are
nonnegative bounded radial functions and that their associated functions are de-
creasing and left-continuous. So, instead of (5.4), we obtain

'¢-(h—g)u>o,f - (h—g)u=0 forT>0,

x=T X=T

since ¢ and ¢ can be approximated from below by linear combinations (with positive
coefficients) of characteristic functions of closed balls. Now the result follows in the
same way.
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632 W. B. JURKAT AND G. SAMPSON

6. General weighted upper estimates. The basic local upper estimates combined
with the convexity principle leads to inequalities which seem to contain all previ-
ously known results which were usually obtained by interpolation.

THEOREM 4. Assume that ¥Y(s) = 0 is an increasing convex function of 5% fors =0,
and similarly that ®(s)= 0 is an increasing concave function of s?; further let
f € LYXR"), and W and V be nonnegative and related by V(1) = > W(l/t) for t > 0.
Then we have, in case that W\,

61 [TeewsTv(c[V ) w=[Tr(cre )y
(6.2) '/(') ¥(1f (1)) V>/ (cf )W f (thl/{ )

and in case that V 7,

(6.3) fo%(zf‘<*>(t))W</O°°<p(c:/‘/’f*)W:f(%(cﬂ*))v

(6.4) /()w(p(f(*))V;jj (ctf ()W f (/I/: )

with absolute constants C, c.

PrROOF. By approximation from below we may assume W to be bounded in the
first part, and V to be bounded in the second part. To derive (6.1) let U(r) = W(t),
G(1) = f*(1)?, and H(r) = (cf,/'f*)%. From (3.5) we see that

fOTGS/OTH<oo, hencefOTGU</THU<oo for T > 0.

Now Theorem 3 yields the result (7 - + o0).
To derive (6.3) let U(t) = W(r), G(1) = [¢f */(1))?, and H(1) = (Ctf)/'f*)* which
is increasing. From (3.5) we see that

hence

/ GV( ) &< THV( ) *ew  (T>0)
L)y t?

Again Theorem 3 yields the result since r 2V(1/t) = W(t) = U(t).

If we replace f by f then (6.1) turns into (6.2), and (6.3) turns into (6.4). So the
proof is complete.

REMARKS. If we take, for W, the characteristic function of (0, T'] or, for V, the
characteristic function of {1 /T, o0), we obtain the following special cases of (6.1) to
(6.4):

@) [ s f(cf ) = [ v L.
66 [TH0) 5= [T f<*’)=/T°°~I'(cz/0’/’f*)%
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MAXIMAL REARRANGEMENT INEQUALITIES 633
1  [eg) G<[Tofcf '/’f*)i;= [ ater),
(6.8) / (F) >f f‘*’(t) /' (fl/t )

each for all 7 > 0. This is the “local” form of our inequalities. If we integrate them
with respect to a positive measure we obtain the corresponding “weighted” from as
in Theorem 4. So both forms are equivalent.

The analogue of (6.5) for Fourier series is due to H. L. Montgomery, cf. our §9.
The other inequalities are new. The upper inequalities are maximal in the following
sense: If we take ¢ = f[*, f € L'(R"), we infer, from Corollary 2’,

(6.9) fow\p(&(*))w>f0°°\1r(c,,fo'/’f*)W
(6.10) /()°°¢(z&><*>(z))w>/0°°q>(c,,zfo'/’f*)W

So if we vary fin (6.1) or (6.3) without changing f* then the left sides reach the right
sides for f = ¢ in the way described. Also (6.5) and (6.7) are maximal as special
cases.

In connection with (6.1) we mention the following rearrangement inequalities for
nonnegative w with w* = W

oC o
< [*] V(MY < | V(A FIN Wi = V(W

L7 < [ (700wt = [Pe(f9w < [ w(Af)wt = [T(f)
So all these terms are estimated in (6.1). Since

frf*(t)z dr </Tf(*)(t)2 dt < C/Tf*(t)2 dr,

0 0 0
it follows from Theorem 3 (same ¥ and W as before) that

[Te(yw =< [C¥(foyw < [Tw(cfw

0 0 0

So we can replace f*) in (6.1) by f* without any loss. This may not be the case in
(6.3). But at least we have the following rearrangement inequalities for radial
w(x) = W(y,|x"):

f |f(y)|dy <f F(y) dy = Y"Lxlnf”*(’)d’
M=} M=<lx| 0

f"q)(fb1<|v| A )w(x)dngowq)(fo’f*)w(t)d"

So also, terms like [®(|x|"A| f Pw(x) dx can be estimated by (6.3). Repeating the
proof, one further sees that terms like [®(|x|"|f[)w(x) dx can again be estimated by
the right side of (6.3), since this is so for ®(s) = s%; but such estimates may not be
maximal.

Next we discuss the special cases ¥(s) =s 2 <¢< 0), P(s) =57 (1 <p <2).
We get, from Theorem 4 by combining the upper estimates and the lower estimates,
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634 W. B. JURKAT AND G. SAMPSON
COROLLARY 3. Let 1 < g < o0 and suppose that
1
0< W(t)\, V(t):t'_(z/‘”W(7)/' (1>0).

Then there are absolute constants C and ¢ such that

(6.11) me(WfA(*’)q< C"fox(Vf‘*’)q,
(6.12) wa(VfW*))"chfOx(Wf(*))"

hold for f € L*(R").

These inequalities are *“weighted” extensions of the usual inequalities of Hardy,
Littlewood and Paley. The corresponding “local” forms (6.5), (6.7) look as follows

(T>0,fe L*):
T2 )4 X a-2p00( )9

(6.13) [Io@ia<c [ o@ya (2<q<w),
0 1/T

(6.14) thl’*zf"*)(t)” dr < Cl’foc )Y d  (1<p<2),
0 /T

and similarly for the lower inequalities. Note that for p — 17 both sides of (6.14) go
to + oo unless f = 0. For T — oo these inequalities turn into the usual inequalities of
Hardy, Littlewood and Paley with the difference that the averaged rearrangements
occur. This makes no difference on the left side of (6.13), but on the right side it
permits the absolute constant C. This is lost if one replaces f¢* by f*, as is well
known.

Note that (3.5) is the case ¢ = 2 of (6.13), and just as (3.5) is equivalent to (3.1)
there is the following equivalent form of (6.13)

(6.15) fOTf*(t)th < T(fol/rf*(t) dt)q +/:Tt"“2f*(t)"dt

with a constant depending only on ¢, but not necessarily of the form C¥9. Likewise,
(6.14) is equivalent to

(6.16) fortl"zf*(t)” dr < TP“(/OI/Tf*(t) dz)p +fl;f*(t)" dt

with a constant depending only on p. It is interesting to observe that these two
inequalities can also be proved directly from the special case T = oo by the
interpolation procedure of Theorem 1. However, one obtains a better constant going
via Theorem 3. This phenomenon was observed by H. L. Montgomery in the case of
Fourier series, cf. our §9.

Finally we note that instead of the maximal inequality (6.1) we can prove, e.g.,

(6.17) f:qr(wf*) sfox\lf(CWfOl/’f*) dt,

(6.18) /()”qf(uf|¢|) 2.[()x\p(cnwj(')'/’f*) d, 6= [,
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MAXIMAL REARRANGEMENT INEQUALITIES 635

for the same ¥ and W, using (3.1) and Theorem 3 for (6.17) and (4.5), Hardy’s
inequality and Theorem 3 for (6.18). This is a natural extension of the maximal
inequality (6.11).

7. General weighted lower estimates. The basic local lower estimate combined with
the convexity principle leads to general lower inequalities which can, e.g., be used to
show that certain weaker forms of (6.1) and (6.3) are still maximal.

THEOREM 5. Let 1 < a < oo and assume that Y(s) = 0 is an increasing convex
function at s® for s = 0; further suppose that w(x) = W(v,|x["), v{x) = V(v,|x|")
satisfy

0< W(t)N,  V(t)=t2W(1/t) fort>0.
Then we have, for 0 < f € L'(R"),
7.1 v(c)f)w= [ ¥(c|x|"Af)o(x)dx
(7.1) (Gl = [ ¥(elx"Ar)o(x)
with constants C, and c, depending only on a and n, respectively.

PROOF. By an n-dimensional version of Hardy’s inequality we obtain

_{‘ST(AVAI)des (Ca|f|)adx (T >0),

=T
and in view of Corollary 2 (using the notation from there)
fmq(c,,g)“ dx <qu(ca|f‘|)" dx  (T>0).
Now Theorem 3’ applies and yields

(7.2) [ ¥(e,g)dx< fl el ex

xj=T

or more generally
¥ ws< | ¥(C|f|)w.
fRn (c,8) <j;!” ( alfl)

But this is the same as (7.1) with another c,, since

~ ] —

fR"\I'(c,.g)w =f0°°\P(c,,G(t))W(t)dt :fooc\lr(an( ))V(t)dt

:L,,\P(CnynlxlnAf)U(x) dx.

REMARKS. Note that (7.2) is the local form of (7.1). In the special case that f is
radial, f(x) = F(y,{x["), we simply have

(13) [ ¥(Glfl)w >f°°\1f(c,,f0’F) V(¢) di = f()wxp(cnfol/'p) w(t) dr.

0
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636 W. B. JURKAT AND G. SAMPSON

Take « = 2 and compare this with

(7.4) fR”\P(|fA|)w</OOC\I/(C/0]/If*)W(t)dt,

a weakened form of (6.1). We see that (7.4) is still maximal by taking f = f*). If we
weaken (6.3) to

(7.5) /R"<1>(4|Slx||f“(y)ldy)w(x) dx </qu>(af0‘/’f*) W(t)dr,

we can see, from Corollary 2 directly, that this is still maximal by taking f = f*!.
Of particular interest is the special case ¥(s) = s witha = q.

COROLLARY 4. Let 1 < g < oo and suppose that w(x) = W(y,|x|"), v(x)=
V(v |xI") satisfy

0< W(t)\, V(t):t““’-/‘”W(%) fort>0.
Then we have, for 0 < f € L'(R"),
21\ 9
7.6 Cw = c,vAf)!
(7.6) L€)' = [ (eAr)
with constants C,, c, depending only on g, n, respectively.

This should be compared with the weakened form of (6.11), viz.

* Y9 < i (%))9
(7.7) [T cof (v
or, equivalently,
Flel}9 < [*1)9
(7.8) L w7 < cof (A7)
or, still weaker,
wl ]} < (k)9
(7.9) L) = cof (o)

It follows that these inequalities are still maximal by taking f = f!*). For ¢ = 2 this
follows also from (6.18).

8. Variants of the convexity principle. For the applications of Theorem 3 in §§6
and 7 it would be natural to permit constants on the outside, i.e. to ask for
inequalities of the type

fO°°\1f(G)U<<fO°°\1/(H)U, f0°°q>(c;)u <</O°Cq>(H)U,

where ¥(s) and ®(s) are positive increasing and convex, concave, respectively, for
s > 0. So we should like to replace ¥(s) and ®(s) by positive continuous functions
Y(s) and ¢(s) such that

(8.1) Y(s)x¥(s), o(s)x®(s) fors=>0.
[In the applications we also need the existence of Y(+0) and ¢(+0).]
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In this section we discuss sufficient conditions for positive continuous functions i
and ¢ so that there exist positive increasing convex or concave functions ¥ and ¢
satisfying (8.1).

First we note that the condition (8.1) separates into a condition for small s and
into another independent condition for large s: Let 0 < @ < b < o0 and suppose that
¥, and @, are positive increasing and convex, concave, resp., on (0, a], while ¥, and
®, are nonconstant positive increasing and convex, concave, resp., on [b, o).
Further assume that y(s) and ¢(s) are positive, continuous for s > 0, satisfying

Y(s)R¥(s), o(s)x®,(s) on(0,aq],
Y(s)X¥y(s), o(s)=xDy(s) on[b,o0).

Then there exist positive increasing convex, resp. concave functions ¥(s) and ®(s)
for s > 0 such that (8.1) holds. We can take, e.g.,

(8.2)

$,(s) for0 <s=<a,
V(s)={¢,(a) + m(s —a) forasss<p,
1(‘{!/2(5‘) +d fors = b,

where we select m = Yi(a™). ¢ = m/Y3(b" ), and then d so that the definitions at
s = b match. (Make b large if necessary to ensure that y;(b" ) >0.) Then the
positive increasing convex function y, is first extended linearly by an increasing
linear function and then extended by an increasing convex function coming from ;.
The same construction gives . It is easy to see that (8.1) holds.

Next we are concerned with simple sufficient conditions for (8.2).

LEMMA 1. Suppose that the positive continuous function { satisfies
Y(s)Xs“L (s) ass— +0,

(83) Y(s)Xs®Ly(s) ass— +oo,

where a,, a, > 1, and L \(s) and L,(s) are positive slowly varying functions. Then
satisfies (8.2) with suitable a, b. A corresponding result holds for ¢ with exponents
0<a <l,0<a,<l

PROOF. Let 8,(s) = s*'L(s), 8,(s) = s2L,(s). To construct ¥, we define

1 1
W) =ol5) rork=r,

and connect these values linearly. Observe that for s — +0
0,(2s) = (2% + 0(1))8,(s),
(s) — 8,(s/2)

BB Z0) = (a1 4 o(1))sm L (5) 2 2 %

since L (2s)/L,(s) — 1. Therefore, ¥, is positive increasing and convex if we take
k, large enough. Moreover, ¥ ,(s) X ,(s) as s — +0. The construction of @, is the
same. For ¥, and ®, we interpolate the values 6,(2%).
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In order to permit other exponents a;, a, = 1 we turn to logarithmco-exponential
functions F in the sense of Hardy [3].

LEMMA 2. If the positive continuous function y satisfies
Y(s)RE(s)<s (s— +0),

(8.4) l,l/(S)XEz(S)»S (S—*‘*"OC).

with logarithmco-exponential functions E| and E,, then  satisfies (8.2) with suitable
a, b. If the positive continuous function ¢ satisfies

o(s)RE|(s), s<E(s)<l (5s— +0),

(8:5) S()RExs). 1< Efs) <5 (5 +),

then ¢ satisfies (8.2) with suitable a, b.

PrROOF. Using the fact that derivatives of logarithmco-exponential functions have
eventually fixed sign, we see that E,| in (8.4) is either positive increasing and convex
itself or E, Xs, in which case we replace E, by 5. Then we may take ¢, = E|.
Similarly, £, in (8.4) is either nonconstant positive increasing and convex or E, X s.
Finally, E, and E, in (8.5) are either nonconstant positive increasing and concave or
®s or X1. The choices of ®, and ®, are clear unless £,% 1, but then we take
Oys)=1—1/5(s = T o0).

REMARK. Note that the following conditions are necessary in the context of (8.2):

¥ (s) <s ass - +0  (if ¥,(0) = 0),
s<®(s)<1l ass— +0  (if®,(0)=0),
s < ¥y(s) ass —» +oo  (since ¥, is nonconstant),

l<®,(s)<s ass— too.

So the extra conditions on E, and E, in Lemma 2 cannot be avoided. That means
that our question (8.1) is completely answered for functions ¢ and ¢ which show
logarithmco-exponential behavior at 0 and at oo; and in the more general case of
power behavior modified by slowly varying factors, we have simple sufficient
conditions. This can be applied, in particular, to Theorems 4 and 5 and increases the
range of these inequalities.

9. Analogues for Fourier series. We use a separate notation in this and the
following section: Let f € L?[0, 1] have the Fourier expansion

£(x) ~_§ ae(nx),

and let f* denote the decreasing rearrangement of |f| on [0, 1]; similarly let a,

n = 0, be the decreasing rearrangement of |a,|, —~o0 < n < oo (neglecting zeros if
necessary). Then the basic local upper estimate of H. L. Montgomery [9] is

(9.1) _/(;Tf*(t)zdt«T( 3 a:;)2+ S a2 (0<T<1),

n<t,/T n>1,/T
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where the implied constant is absolute. Introduce further
a*(s)=a* forn<s<n+1,n=0,

B(t) = /l/’a*(s) ds, t>0,
0

g(x) = 2 a*e(nx), 0<x<lI.
n=0

The right side of (9.1) is (with absolute constants)
x/TB(t)zdtx/T|g(x)|2dx (0<T<1)
0 0

(note that [/B(1)? dr < J] |g(x)f dx follows by (9.4) and Hardy’s inequality), and
therefore (9.1) is maximal: the left side reaches the right side for f = g (consider a¥
given and vary a,, ). It is convenient to use Hardy’s inequality to reformulate (9.1) as
follows:

T(*) 2 T 2 — * (%) 2 <
(9.2) fof (¢) dz<<j03(z) dt [wa (sVds (0<T<1),

where
o =4 [P dx 0<is,
tJ

1
(%) = — *
a™)(t) tfoa (s)ds, ¢>0.

Analogously to Theorem 2 we can prove the following basic local lower estimate
in case that allq, = 0:

(9.3) [1fx)lax>T F a, (0<T=1),
0 m<2/T

where the implied constant is absolute ( f € L? or f € L"). For decreasing a,, this can
also be obtained by following Hardy and Littlewood [4, p. 7]; cf. also Zygmund [12,
11, p. 129]. It is convenient to use

a(s) =ay;, - <s<oo,

in order to write the right side of (9.3) as an integral. In the special case f = g we
have with an absolute constant

(9.4) g™(T) >lT/0T|g(x)|dx >>f0‘”a*(s) ds=B(T) (<T<I).

Since Theorem 3 is also valid for finite intervals we now obtain the following
analogue of Theorems 4 and 5. Here we use the additional notation

b(1) =fll//:a(s)ds, >0,

Aa(1) :%fia(s)ds, t>0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



640 W.B. JURKAT AND G. SAMPSON

THEOREM 6. Assume that f € L*[0,1] and V(t) = t*W(1/t) for t = 1. Now we
have three cases:
() If 0 < W(1)\ (0 <t <1)and ¥(s) = 0 is an increasing convex function of s*
fors = 0, then

1 1 0
9.5 2 (%) < 4 — (%)
(9:5) [¥(row < [(emw = [“w(ca()v
(i) If 0 < V(t) 7 (t = 1) and ®(s) = 0 is an increasing concave function of s* for
s = 0, then
(%) * (%)
(9.6) [ ®(1f (1)) W</ (ctB(e))W f‘ ®(Ca®)V.

) IfFOs W(O)N (0<t< 1), 1 <a< oo, and ¥(s) =0 is an increasing convex
function of s* for s = 0, then

(9.7) fo'\lf(lf|)W>f0'\1f(cab)W:flxqr(zcama)V,

provided that all a, = 0.
[Here C is an absolute constant and c, depends only in a.]

The proofs of (9.5), (9.6) and (9.7) parallel those of (6.1), (6.3) and (7.1),
respectively. There are equivalent local forms of these inequalities. The local form of
(9.5) is due to H. L. Montgomery [9}; the other inequalities are new. The inequalities
(9.5) and (9.6) are maximal in view of (9.4). In (9.5) one can replace f*’ by f*
without loss, but even the weaker inequality with |f| in place of f*) is maximal in
view of (9.7). In (9.6) one can also replace f* by f* or |f|, but these inequalities
may not be maximal anymore. However, if we replace 1f *)(1) = [{f* by [{|f] the
inequality remains maximal.

Particularly interesting are the special cases ¥(s) = 57 (2 < g < ), ®(s) = s*
(1 <p=<2),and ¥(s) = s* of (9.5), (9.6) and (9.7), respectively. We only mention
the first two local forms using the notation

n

(%) — * = .
a o /ank’ n=0;

(9.8) [ro@ia<cs 3 nae (0<T<1),
0 n=1/T

(9.9) frzp—zﬂ*)(t)” di<cr S a»r (0<T<1).
0 n=1/T

These are local versions of the inequalities of Hardy, Littlewood and Paley. The
averaged rearrangement on the right permits the occurrence of the absolute constant.
Inequality (9.8) for T = 1 is due to Littlewood [7], who observed this phenomenon
first. The averaged rearrangements on the left are less essential. If p —» 1 both sides
of (9.9) becomes infinite unless f = 0. Finally we mention that (9.1) can be extended
to orthogonal series, and the same is true for the more general upper estimates
derived from it, in particular for (9.8) and (9.9).
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10. Analogues for Fourier coefficients. We briefly discuss Fourier coefficients (the
inverse operation to forming a Fourier series) since this is not automatically implied
as in the case of Fourier transforms. Here the basic local upper estimate is

101y Y a*2<<N(f f*(t)dt) +f (Y dt (Nreal = 1)

nsN
for all f € L?[0, 1], the implied constant being absolute. The proof parallels that of
Theorem 1 and is based only on Bessel’s inequality and the trivial estimate.

Therefore (10.1) can be extended to orthogonal series. We can rewrite (10.1) as
follows (using Hardy’s inequality):

(10.2) f;Na(*’ )ds<<f (f )zdszfl'/Nﬂ*’(z)zdt (N=1),

the implied constant being absolute ( f € L?). In the range N € [1,2] this should be
checked directly.

Analogously to Theorem 2 we can prove the following basic local lower estimate
in case that f = 0 on [0, 1]:

(10.3) S |a|>>1vf Y(x)dx  (Nreal = 1),

=N

the implied constant being absolute ( f € L' or L?). For decreasing f this can also be
obtained by following Zygmund [12, II, p. 130]. Inequality (10.3) can be rewritten as

(10.4) A|a|(N)>>fO‘/”f(x)dx (N=1)
and implies (with absolute constants)
(10.5) a<*>(N)>>fO'/Nf(x)dx (N=1).
Next we can apply Theorem 3 with the intervals shifted by 1 analogously to the
proof of (6.1) or (6.2) etc.

THEOREM 7. Assume that f € L*[0, 1) and V(t) = t *W(1/t) for 0 < t < 1. Now we
have three cases:
() If 0 < W(t)N\ (¢t = 1) and Y(s) = 0 is an increasing convex function of s* for
s =0, then

(10.6) [I°‘°\If(a"'=>)W<flac ( /'/' ) fo'\y(aﬂ*’(z))V.

(i) If0 < V(1) 7 (0 <t < 1) and ®(s) = 0 is an increasing concave function of s*
fors =0, then

(10.7) j;w(l)(ta‘*)(t))W</lxd>(th0]/’f*) W= f()'«p(c SN%

i) If 0Os W)\ (12 1), 1 <a< oo, and ¥(s) =0 is an increasing convex
function of s* for s = 0, then

(108)/ (la(s)]) W(1+[s|)ds>f (ff)W:/O'\P(cafo’f)V
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provided that f 2 0 on [0, 1]. (C is absolute; c, depends on o only.)
The proof of (10.8) reduces to

* N L/ N -
[, Je@ra=*(["r) e vz

with a constant depending only on «. For N € [1, 4] this can be seen directly while
larger N can be treated by (10.4) using Hardy’s inequality. The other proofs are as
before.

There are equivalent local forms of the inequalties (10.6) and (10.7). All these
inequalities are new. The upper estimates and various weaker forms are maximal
estimates in terms of f*. Of particular interest are the special cases ¥(s) = 59
(2 =< g <o0)and ®(s) = s” (0 < p < 2) of (10.6) and (10.7), respectively. We only
mention the local forms

(10.9) » a(*);fscqf' 17N dr (N real = 2),
/N

nsN

(1.10) 3 (n+ 1) Fap<crfl fOGYd (Nreal >2).
NN 1/N
These are local versions of the inequalities of Hardy, Littlewood and Polya. The
averaged rearrangements on the right are responsible for the quality of the constant,
while the averaged rearrangements on the left are not so essential.

In case p = 1, we have

ar 1 1
n * . 2 >
(10.11) > TS C/(;f (t)mm(log t,logN) d (N=2)

n<snN

which, for N — oo, turns into
L a* 1 1
" < % 2
Eo—'“ 1 <Cf0f (1)log —dr.
[Note that the last integral is finite iff [ f*log™ f* = [} |f|log™ |f|< o0.]
By setting ®(z) = ¢? in (10.7) and letting p — +0 we can infer that (this has the
same effect as permitting ®(s) = log s, see Hardy, Littlewood and Polya [S, p. 135,
no. 187])

[Mrog(a (1) L< [ tog(cre ) dr (W= 1),
1 t /N

(%)
log[(n + Da'* ] <
nsN (n + 1)2

where we assumed af > 1 in the last inequality in order to make the indicated
simplifications.

Finally we mention that the upper estimates can be extended to orthogonal series,
in particular (10.9) and (10.10).

The “global” forms of our inequalities, i.e. limits for ¥ - + o0 or W =1 in (10.6)
and (9.5), or ¥ = 1 in (10.7) and (9.6) contain, in particular, the known results given

lel log(f™(¢))dt+C, (N=2),
/2N
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in Zygmund [12, 11, p. 158, 7 and 8]. For the comparison one should make use of our
§8 and consider the influence of f*) as compared with f*, cf. (10.11).
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