ON MAXIMAL TRANSITIVE SUBTOURNAMENTS

by J. W. MOON \dagger
(Received 11th March 1971)

1. Introduction

A tournament T_{n} consists of a finite set of nodes $1,2, \ldots, n$ such that each pair of distinct nodes i and j is joined by exactly one of the arcs $i j$ or $j i$. If the arc $i j$ is in T_{n} we say that i beats j or j loses to i and write $i \rightarrow j$. If each node of a subtournament A beats each node of a subtournament B we write $A \rightarrow B$ and let $A+B$ denote the tournament determined by the nodes of A and B.

A tournament T_{n} is transitive if its nodes can be labelled in such a way that $i \rightarrow j$ if and only if $i>j$; in this case we call node n the top node. A transitive subtournament of a tournament T_{n} is maximal if it is not a proper subtournament of any other transitive subtournament of T_{n}. Let $f(n)$ denote the maximum number of maximal transitive subtournaments a tournament T_{n} can have; we find by inspection, for example, that $f(1)=f(2)=1$ and $f(3)=f(4)=3$. Our object here is to prove the following result.

Theorem. If $n=5 m+r$, where $m \geqq 1$ and $0 \leqq r \leqq 4$, then

$$
c_{r} 7^{m-1} \leqq f(n) \leqq(1.717)^{n}
$$

where $c_{0}=7, c_{1}=9, c_{2}=15, c_{3}=19$, and $c_{4}=31$.
Corollary. If $\theta=\lim _{n \rightarrow \infty}(f(n))^{1 / n}$, then θ exists and $1.4757 \leqq \theta \leqq 1.717$.

2. A lower bound for $f(n)$

A tournament T_{n} is strong if it cannot be expressed as $T_{n}=A+B$ for some nonempty tournaments A and B. If T_{n} is not strong it has a unique expression of the type $T_{n}=A+B+\ldots+K$ where the non-empty tournaments A, B, \ldots, K all are strong; if this is the case, then $f\left(T_{n}\right)=f(A) f(B) \ldots f(K)$ where $f(X)$ denotes the number of maximal transitive subtournaments in the tournament X. It follows, therefore, that if $a+b=n$ then

$$
\begin{equation*}
f(n) \geqq f(a) f(b) . \tag{1}
\end{equation*}
$$

If T_{n} is any tournament with n nodes, let T_{n+2} denote the tournament obtained by adjoining two nodes p and q to T_{n} such that $p \rightarrow T_{n}, T_{n} \rightarrow q$, and $q \rightarrow p$. It is not difficult to see that $f\left(T_{n+2}\right)=2 f\left(T_{n}\right)+1$; consequently,

$$
\begin{equation*}
f(n+2) \geqq 2 f(n)+1 \tag{2}
\end{equation*}
$$

\dagger On leave from the University of Alberta.

Since $f(3)=3$, it follows that $f(5) \geqq 7, f(7) \geqq 15$, and $f(9) \geqq 31$; furthermore, $f(6) \geqq(f(3))^{2}=9$, by (1), whence $f(8) \geqq 19$ by (2).

Let us now suppose that $n=5 m+r$ where $m \geqq 2$ and $0 \leqq r \leqq 4$. Then

$$
f(n) \geqq f(5(m-1)) f(5+r) \geqq c_{r}(f(5))^{m-1} \geqq c_{r} 7^{m-1}
$$

by (1) and the results in the preceding paragraph. We remark that the existence of the limit in the corollary follows from inequality (1) and a well-known result on sub-additive functions (2, Problem 98, pp. 17, 171).

3. An upper bound for $f(n)$: a special case

We shall prove that $f\left(T_{n}\right) \leqq \beta^{n}$, where $\beta=1 \cdot 717$, by induction on n. The inequality certainly holds when $1 \leqq n \leqq 4$ and we may restrict our attention to strong tournaments T_{n} in view of the observation made earlier.

The score of a node i in a tournament is the number s_{i} of nodes that i beats. If x is the top node of any maximal transitive subtournament M of a tournament T_{n}, let N denote the tournament obtained from M by deleting x (M must have at least two nodes when $n \geqq 2$). It is easy to verify that N is a maximal transitive subtournament of the tournament determined by the s_{x} nodes of T_{n} that lose to x; thus x is the top node of at most $f\left(s_{x}\right)$ maximal transitive subtournaments of T_{n}. It follows, therefore, that if $\left(s_{1}, \ldots, s_{n}\right)$ denotes the score sequence of a tournament T_{n}, then

$$
\begin{equation*}
f\left(T_{n}\right) \leqq \sum_{i=1}^{n} f\left(s_{i}\right) \tag{3}
\end{equation*}
$$

If T_{n} is strong then $s_{i} \leqq n-2$ for every node i. In this section we treat the case where there exists a node p in T_{n} such that $s_{p}=n-2$. Let q denote the unique node of T_{n} that beats p. If two nodes of T_{n} have score $n-2$, then we may take p and q to be these nodes. If three nodes had score $n-2$ then these nodes would beat all the remaining nodes when $n>3$ and T_{n} would not be strong. Thus we may suppose that $s_{i} \leqq n-3$ for any node i of T_{n} other than p or q. Let T_{a} and T_{b} denote the subtournaments determined by those nodes of T_{n} other than p that beat q and lose to q, respectively. Since $s_{q} \leqq n-2$ it must be that $a \geqq 1$ and $b \leqq n-3$.

Node q is the only node that beats p. It follows that every maximal transitive subtournament of T_{n} that does not contain q must certainly contain p. It is not difficult to see that there are at most $f(n-2)$ such subtournaments. A maximal transitive subtournament that contains both p and q cannot contain any nodes of T_{a}, for it would not be transitive otherwise. There are at most $f(b)$ such subtournaments (we adopt the convention that $f(0)=1$).

We now consider those maximal transitive subtournaments of T_{n} that contain q but not p. There are certainly no more than $f(n-1)$ such subtournaments in general. We can obtain a sharper bound when $a \leqq 2$ by observing that the top node of such subtournaments must belong to T_{a}; if this were not the case then they would contain no nodes of T_{a} and node p could be adjoined
without destroying the transitivity properly. Hence, there are at most $a f(n-3)$ such subtournaments.

We may suppose that $f(m)<\beta^{m}$ if $m<n$ and that $f(m)$ is an increasing function. It follows, therefore, that if T_{n} is strong and has a node of score $n-2$, then

$$
f\left(T_{n}\right) \leqq \begin{cases}2 f(n-3)+f(n-2) & \leqq(2+\beta) \beta^{n-3} \\ f(n-4)+2 f(n-3)+f(n-2) \leqq(1+\beta)^{2} \beta^{n-4} \\ f(n-5)+f(n-2)+f(n-1) & \leqq\left(1+\beta^{3}+\beta^{4}\right) \beta^{n-5}\end{cases}
$$

according as $b=n-3, b=n-4$, or $b \leqq n-5$. Each of the last three bounds is smaller than β^{n} when $\beta=1.717$ and a similar argument shows that $f\left(T_{n}\right) \leqq \beta^{n}$ when T_{n} is strong and has a node of score 1. (Notice that the first three bounds imply that $f\left(T_{5}\right) \leqq 7$ when T_{5} has a node of score 1 or 3 ; we shall use this inequality in the next section.)

4. An upper bound for $f(n)$: the general case

Let T_{n} denote a strong tournament with no nodes of score 1 or $n-2$; if the nodes of T_{n} are labelled so that the sequence $s=\left(s_{1}, \ldots, s_{n}\right)$ of scores is nondecreasing, then it follows from our assumptions that

$$
\begin{gather*}
2 \leqq s_{1} \leqq \ldots \leqq s_{n} \leqq n-3 \tag{4}\\
\sum_{i=1}^{k} s_{i} \geqq\binom{ k}{2}+1, \text { for } 1 \leqq k \leqq n-1, \text { and } \tag{5}\\
\sum_{i=1}^{n} s_{i}=\binom{n}{2} \tag{6}
\end{gather*}
$$

We remark that for any sequence s satisfying these conditions there exists at least one tournament with score sequence s; this is a consequence of a theorem due to Landau (see (1; p. 61)).

We first treat the cases where $5 \leqq n \leqq 8$. It follows from inequality (3) that $f\left(T_{n}\right) \leqq n f(n-3)$ for tournaments T_{n} whose scores satisfy conditions (4)-(6). Consequently, $f\left(T_{5}\right)<5 \cdot 1, f\left(T_{6}\right) \leqq 6 \cdot 3, f\left(T_{7}\right) \leqq 7 \cdot 3$, and $f\left(T_{8}\right) \leqq 8 \cdot 7$ for such tournaments when $5 \leqq n \leqq 8$. All these bounds are less than β^{n} for the appropriate values of n, so we may now suppose that $n \geqq 9$ and that $f(m) \leqq \beta^{m}$ for $m<n$.

If $n \geqq 9$, let S_{n} denote the set of all sequences $s=\left(s_{1}, \ldots, s_{n}\right)$ of n integers that satisfy conditions (4)-(6). Let s^{*} denote the sequence ($2,2,2,2,4,6,6,6,6$) or $(2,2,2,2,3,5,6, \ldots, n-6, n-4, n-3, n-3, n-3, n-3)$ according as $n=9$ or $n \geqq 10$; it is easy to verify that $s^{*} \in S_{n}$. If $g(x)=\beta^{x}$ let

$$
G(s)=g\left(s_{1}\right)+\ldots+g\left(s_{n}\right)
$$

for any s in S_{n}. We shall prove the following result in the next section.

Lemma. If $s \in S_{n}$ where $n \geqq 9$, then $G(s) \leqq G\left(s^{*}\right)$.
It follows from inequality (3), the induction hypothesis, and the lemma, that

$$
f\left(T_{9}\right) \leqq G(s) \leqq G\left(s^{*}\right)=4 \beta^{2}+\beta^{4}+4 \beta^{6} \leqq \beta^{9}
$$

and, in general, that

$$
\begin{aligned}
& f\left(T_{n}\right) \leqq G(s) \leqq G\left(s^{*}\right)=4 \beta^{2}+\beta^{3}+\left(\beta^{n-5}-\beta^{5}\right) /(\beta-1)+\beta^{n-4}+4 \beta^{n-3} \\
& \leqq \beta^{n-5} /(\beta-1)+\beta^{n-4}+4 \beta^{n-3} \leqq \beta^{n}
\end{aligned}
$$

when $\beta=1$ 717. This will suffice to complete the proof of the theorem. (We remark that it is easy to show that if T_{n} is strong and $n \geqq 3$ then the minimum value $f\left(T_{n}\right)$ can have is 3 .)

5. Proof of the lemma

Let s denote any sequence in S_{n} such that $G(s)=\max \left\{G(t): t \in S_{n}\right\}$; such a sequence certainly exists. We shall prove the lemma by establishing a series of assertions (the only property of the function $g(x)$ that we use is that it is strictly convex).

Assertion 1. If two consecutive elements of s are equal, they must equal 2 or $n-3$.

Suppose there exist integers u and v, where $1 \leqq u<v \leqq n$, such that

$$
2<s_{u}=\ldots=s_{v}<n-3 ;
$$

we may suppose that $s_{u-1}<s_{u}$ if $u>1$ and $s_{v}<s_{v+1}$ if $v<n$. Let $r=\left(r_{1}, \ldots, r_{n}\right)$ denote the sequence that differs from s only in that $r_{u}=s_{u}-1$ and $r_{v}=s_{v}+1$. The sequence r certainly satisfies conditions (4) and (6); it satisfies condition (5) as well unless there exists an integer k, where $u \leqq k<v$, such that

$$
\begin{equation*}
\sum_{i=1}^{k} s_{i}=\binom{k}{2}+1 \tag{7}
\end{equation*}
$$

If $k=1$ then $s_{1}=1$ and if $k=n-1$ then $s_{n}=n-2$ by (6); both these alternatives contradict condition (4) so we may suppose $2 \leqq k \leqq n-2$.

It follows from (7) and condition (5) that

$$
s_{k}=\sum_{i=1}^{k} s_{i}-\sum_{i=1}^{k-1} s_{i} \leqq\binom{ k}{2}+1-\binom{k-1}{2}-1=k-1
$$

Furthermore, $s_{k+1}=s_{k}$ so

$$
\sum_{i=1}^{k+1} s_{i} \leqq\binom{ k}{2}+1+(k-1)=\binom{k+1}{2}
$$

This contradicts condition (5) so it must be that the assumption that equation (7) holds is incorrect. Consequently, if assertion 1 does not hold then the sequence r is in S_{n}. Since g is a strictly convex function it follows that

$$
G(r)-G(s)=(g(x+1)-g(x))-(g(x)-g(x-1))>0
$$

where $x=s_{u}=s_{v}$. This contradicts the definition of s so it must be that assertion 1 does in fact hold.

Assertion 2. The sequence s must start with between two and four 2's and end with between two and four $(n-3)$'s.

There are at most $(n-4)-2=n-6 s_{i}$'s between 3 and $n-4$, inclusive, by Assertion 1; thus there are at least six s_{i} 's equal to 2 or $n-3$. It is easy to verify that s would not satisfy condition (5) if it started with more than four 2 's or ended with more than four $(n-3)$'s. Assertion 2 now follows.

Assertion 3. The sequence s must start with four 2's and end with four ($n-3$)'s.

If s does not start with four 2's then $2=s_{1}=\ldots=s_{a-1}<s_{a}$ where $a=3$ or 4, by Assertion 2. Now $a+1<n-3$, since $n \geqq 9$, so $s_{a}<s_{a+1}<s_{a+2}$, by Assertions 1 and 2. Let $r=\left(r_{1}, \ldots, r_{n}\right)$ denote the sequence that differs from s only in that $r_{a}=s_{a}-1$ and $r_{a+1}=s_{a+1}+1$. It is easy to verify that r is in S_{n} in this case. However,

$$
G(r)-G(s)=(g(y+1)-g(y))-(g(x)-g(x-1))>0
$$

where $x=s_{a}<s_{a+1}=y$. This contradiction implies that s must start with four 2 's and the last part of the assertion can be proved in a similar way.

Assertion 4. $s=s^{*}$.

It follows from Assertions 1 and 3 that the middle $n-8$ elements of s consist of $n-8$ of the $n-6$ numbers $3,4, \ldots, n-4$. Condition (6) implies that if h is one of the missing numbers then $n-1-h$ is the other, where we may suppose that $3 \leqq h<\frac{1}{2}(n-1)$. If $h \geqq 5$ then s does not satisfy condition (5) when $k=6$ so $h=3$ or 4 . When $n=9$ the only possibility is that $h=3$; when $n \geqq 10$ both values are possible but the function G has the larger value for the sequence corresponding to $h=4$. It follows, therefore, that $s=s^{*}$ and the lemma is proved.

The preparation of this paper was assisted by a grant from the National Research Council of Canada.

REFERENCES

(1) J. W. Moon, Topics on Tournaments (Holt, New York, 1968).
(2) G. Pólya u. G. Szegö, Aufgaben und Lehrsätze aus der Analysis, I (Springer, Berlin, 1925).

Mathematical Institutf
 OXford

