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Abstract. Let p be the unique singularity of a normal two-dimensional
Stein space V. Let m be the maximal ideal in v8p, the local ring of germs of
holomorphic functions at p. We first define the maximal ideal cycle which
serves to identify the maximal ideal. We give an "upper" estimate for
maximal ideal cycle in terms of the canonical divisor which is computable
via the topological information, i.e., the weighted dual graph of the singu-
larity. Let M -» V be a resolution of V. It is known that h = dim H l(M, 0 )
is independent of resolution. Rational singularities in the sense of M. Artin
are equivalent to h = 0. Minimally elliptic singularity in the sense of Laufer
is equivalent to saying that h = 1 and ^6^, is Gorenstein. In this paper we
develop a theory for a general class of weakly elliptic singularities which
satisfy a maximality condition. Maximally elliptic singularities may have h
arbitrarily large. Also minimally elliptic singlarities are maximally elliptic
singularities. We prove that maximally elliptic singularities are Gorenstein
singularities. We are able to identify the maximal ideal. Therefore, the
important invariants of the singularities (such as multiplicity) are extracted
from the topological information. For weakly elliptic singularities we intro-
duce a new concept called "elliptic sequence". This elliptic sequence is
defined purely topologically, i.e., it can be computed explicitly via the
intersection matrix. We prove that — K, where K is the canonical divisor, is
equal to the summation of the elliptic sequence. Moreover, the analytic data
dimHl(M, 6) is bounded by the topological data, the length of elliptic
sequence. We also prove that A = 2 and vGp Gorenstein implies that the
singularity is weakly elliptic.

0. Introduction. Let/? be a singularity of a normal two-dimensional analytic
space V. In [2], M. Artin introduced a definition for/? to be rational. Rational
singularities have also been studied by, for instance, Du Val, Tyurina, Laufer
and Lipman. In [37], Wagreich introduced a definition for p to be weakly
elliptic (see Definition 1.6). Weakly elliptic singularities have occurred
naturally in papers by Grauert [7], Hirzebruch [12], Laufer [22], Orlik and
Wagreich [27], [28] and Wagreich [37], [38]. Karras and Saito have studied
some of these particular elliptic singularities. Recently, Laufer [24] developed
a theory for a general class of weakly elliptic singularities which satisfy a
minimality condition. These are the so-called minimally elliptic singularities.
Suppose F is a Stein space and/» is its only singularity. Let it: A/-* V be a
resolution of  V. It is known that h = dim //'(M, 0) is independent of
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resolution. One might classify singularities by h. Rational singularity is
equivalent to h = 0. Minimally elliptic singularity is equivalent to saying that
h = 1 and v6p is Gorenstein. In this paper, we develop a theory for a general
class of weakly elliptic singularities which satisfy a maximality condition.
Maximally elliptic singularities may have h = dim H*{M, 0) arbitrarily large.
Also minimally elliptic singularities in the sense of Laufer [24] are maximally
elliptic singularities. It is clear that maximally elliptic singularities should play
an important role in the theory of normal two-dimensional singularities,
especially from the point of view of classification of normal two-dimensional
singularities. Our main results are the following.

Theorem A. Let ti: M —> F be a resolution of a normal two-dimensional
Stein space with p as its only singular point. Suppose dim HX(M, 0) > 1 and
y&p is Gorenstein; then the maximal ideal cycle cannot be greater than or equal

to - K'.

Theorem B. Let m: M —> V be a resolution of the normal two-dimensional
Stein space with p as its only singularity. Suppose y6 is Gorenstein and
Hl(M, 0) s C2. Thenp is a weakly elliptic singularity.

Theorem C. Use the notation of Definition 3.3. Suppose p is not a minimally
elliptic singularity and K' exists. Then the elliptic sequence is of the following
form:

ZB¡¡ = z, zBi,..., zB/, zB;+i — ZE,      / > 0.

Moreover, -K' = 2'=0Z«, + E and dim H\M, 0) < / + 2 = the length of
the elliptic sequence.

Theorem D. Use the notation of Definition 3.3. Suppose p is a maximally
elliptic singularity. If ZE-ZE < —2, then «10 = 0(—Z), in particular, the
multiplicity of v6p is equal to —Z • Z. If ZE- ZE < - 3, then

H°(M,6(-Z))®cH0(M,e(-nZ))^H°(M,6(-{n + 1)Z))
is surjective for all n > 1. If we assume further that the length of the elliptic
sequence is equal to two, then the above map is surjective for all n > I. In this
case

m"^ H°(A,Q(-nZ))   foralln>\
where A = ir~ '(/?).

Theorem E. If p is a maximally elliptic singularity, then p is a Gorenstein
singularity.

One important question in the theory of normal two-dimensional
singularities is "the identification of the maximal ideal m of ^0/'. In §2.4 we
first define the maximal ideal cycle which partially serves to identify the
maximal ideal. In [2], the argument of M. Artin gave a lower estimate for
maximal ideal cycle in terms of the fundamental cycle. Our Theorem A gives
an "upper" estimate for maximal ideal cycle in terms of the canonical divisor
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MAXIMALLY ELLIPTIC SINGULARITIES 271

which is computable via the topological information, i.e., the weighted dual
graph. Theorem B permits us to develop a theory for those Gorenstein
singularities with dim Hl(M, 0) = 2. In §3.1, we introduce a new concept
called "elliptic sequence". It turns out that weakly elliptic singularities can be
effectively studied by the method of elliptic sequence. For instance, it allows
us to give a complete topological classification of elliptic double points. In
order to compute the canonical divisor, one has to solve a system of linear
equations, which is very painful. Theorem C provides us a quick and easy
method to compute the canonical divisor. Moreover, it tells us that the
analytic data dim Hl(M, 0) is bounded by the topological data, the length of
the elliptic sequence. We remark that the elliptic sequence is defined purely
topologically, i.e., it can be computed easily via the intersection matrix. In
Theorem D, we are able to identify the maximal ideal. Therefore, the
important invariants of the singularities (such as the multiplicity) are ex-
tracted from the topological information. Theorem D can also be used to
compute the Hubert function for the ring v6p. All complete intersection and
hypersurface singularities are Gorenstein. Theorem E explains the reason why
maximally elliptic singularities play an important role in the theory of normal
two-dimensional singularities. We can also give a topological classification of
maximally elliptic hypersurface singularities. However, the list is too long to
be included.

We shall adopt Laufer's terminology [24] throughout this paper. Our
presentation goes as follows:

In Chapter I we provide the necessary basic knowledge to read this paper.
Most of it can be found in [24]. In Chapter II, we examine the structure of the
exceptional set of weakly elliptic singularities and prove Laufer-type
vanishing theorem.

We gratefully acknowledge the encouragement and help of Professor
Henry B. Laufer during the investigation of these results. We would also like
to thank Professors Bennett, Kuga, Sah, Siu and Wagreich for their
encouragement and discussion of mathematics.

Chapter I. Preliminaries
Let m: M -> V be a resolution of normal two-dimensional Stein space V.

We assume that/? is the only singularity of V. Let

tt-\p) = A = U  A„       I < i < n,
i

be the decomposition of the exceptional set A into irreducible components.
Suppose TT is the minimal good resolution. The topological nature of the
embedding of A in M is described by the weighted dual graph T [14], [19].
The vertices of T correspond to the A¡. The edge of T connecting the vertices
corresponding to A¡ and Ap i ^ j, corresponds to the points of A¡ n A¡.
Finally, associated to each A¡ is its genus, g¡, as a Riemann surface, and its
weight, A¡ ■ A¡, the topological self-intersection number. T will denote the
graph, along with the genera and the weights.
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272 S. S.-T. YAU

Definition 1.1. deg A¡ = 2^ • A¡,j =£ i.
A cycle (or divisorial cycle) D on A is an integral combination of the A¡.

D = "S,d¡A¡, 1 < i < n, with d¡ an integer. In this paper, "cycle" will always
mean a cycle on A. There is a natural partial ordering, denoted by <,
between cycles defined by comparing the coefficients. We shall only be
considering cycles D > 0. We let supp D = \D\ = \JA¡, d¡ ¥= 0, denote the
support of D.

Let 0 be the sheaf of germs of holomorphic functions on M. Let 0(—D)
be the sheaf of germs of holomorphic functions on M which vanish to order d¡
on A,. Let 6D denote 0 /0 (- D). We use "dim" to denote dimension over C.

X(D) = dim H° (M, 6D) - dim H1 (M, GD). (1.1)
Some authors work instead with the arithmetic genus Pa{D) = 1 — x(^)- The
Riemann-Roch Theorem [31, p. 75] says

X{D)=-\{D-D + DK). (1.2)
In (1.2), K is the canonical divisor on M. D • K may be defined as follows. Let
to be a meromorphic 2-form on M, i.e. a meromorphic section of K. Let (to) be
the divisor of co. Then D ■ K = D • (w) and this number is independent of the
choice of to. In fact, let g, be the geometric genus of A¡, i.e. the genus of the
desingularization of A¡. Then [31, p. 75]

ArK= -ArAi + 2gi-2 + 2Si (1.3)
where <5, is the "number" of nodes and cusps on At. Each singular point on A¡
other than a node or cusp counts as at least two nodes. Fortunately, such
more complicated singularities will not occur in this paper.

The minimal resolution of V is characterized by there being no A¡ which is
a nonsingular rational curve with A¡ • A¡ = — 1 [7, p. 364]. The intersection
matrix {A¡ • Af) is negative definite [26] so by (1.3) we see the following.

Proposition 1.2. it is the minimal resolution of V if and only if A¡ ■ K > 0
for all A¡.

It follows immediately from (1.2) that if B and C are cycles then

x(5+C) = x(5) + x(C)-5-C. (1.4)
Associated to tt is a unique fundamental cycle Z [2, pp. 131-132] such that

Z > 0, Ai:• Z < 0 all A¡, and such that Z is minimal with respect to those two
properties. Z may be computed from the intersection matrix as follows [20, p.
607] via what is called a computation sequence (in the sense of Laufer) for Z:

Z0 = 0, Z, = Ah, Z2 = Zt+ Ah, ...,

Zj = Z,_, +Aij,...,Z, = Z,_, + Ah = Z,

where A,t is arbitrary and Aij-ZJ_l > 0, 1 <j < I. 0(-Zy-_,)/0(-Zy)
represents the sheaf of germs of sections of a line bundle over A¡ of Chern
class —A, • Z,_,. So
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MAXIMALLY ELLIPTIC SINGULARITIES 273

H°(M, 0(-Z7._,)/0(-Z7.)) = 0   for, > 1.

o^H-Zj^/ei-z^^e^^e^^o (1.5)
is an exact sequence. From the long exact homology sequence for (1.5), it
follows by induction that

H°(M, SZk) = C,       1 < k < /, (1.6)

dim H' {M, 0ZJ = 2 dim H » (M, 0 ( - Zj_ x )/0( - Zy )),
1 < j < k.   (1.7)

Since M is two dimensional and not compact,

H2{M, f) = 0 (1.8)
for any coherent sheaf fonM [33].

Lemma 1.3. Let Zk be part of a computation sequence for Z and such that
X(Zk) = 0. Then dim H\M, &D) < 1 for all cycles D such that 0 < D < Zk.
Also, x(D) > 0.

Definition 1.4. A cycle E > 0 is minimally elliptic if x(£) = 0 and
X(Z>) > 0 for all cycles D such that 0 < D < E.

Proposition 1.5. Let Zk > 0 be part of a computation sequence for the
fundamental cycle and such that x(Zk) = 0. Let B = 26,^1, and C = 2 c¡A¡,
1 < i < n,be any cycles such that 0 < B, C < Zk and x(B) = x(0 = 0. Let
M = 2 min(¿>1, c¡)A¡, 1 < i < n. Then M > 0 an¿/ x(^0 = 0. /« particular,
there exists a unique minimally elliptic cycle E with E < Zk.

Wagreich [37] defined the singularity p to be elliptic if x(^) > 0 for all
cycles D > 0 and x(^) = 0 for some cycles F > 0. He proved that this
definition is independent of the resolution. It is easy to see that under this
hypothesis, x(Z) = 0. The converse is also true [37], [24]. Henceforth, we will
adopt the following definition.

Definition 1.6./? is said to be weakly elliptic if x(Z) = 0.
The following analogue to Proposition 1.5 holds for weakly elliptic singu-

larity.

Proposition 1.7. Suppose that x(D) > 0 for all cycles D > 0. Let B =
2 b¡A¡ and C = ~2c¡A¡, 1 < i < n, be any cycles such that 0 < B, C and
X(B) = x(C) = 0. Let M = 2 min(è,., c^A¡, 1 < i < n. Then M > 0 and
X(M) = 0. In particular, there exists a unique minimally elliptic cycle E.

Lemma 1.8. Let E be a minimally elliptic cycle. Then for A¡ c supp E,
A¡- E = — A¡ ■ K. Suppose additionally that tt is thé minimal resolution. Then E
is the fundamental cycle for the singularity having supp E as its exceptional set.
Also, if Ek is part of a computation sequence for E as a fundamental cycle and
Aj c supp(£ — Ek), then the computation sequence may be continued past Ek so
as to terminate at E = E, with A¡ = A¡.1 'i J
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Theorem 1.9. Let it: M -*V be the minimal solution of the normal two-
dimensional variety V with one singular point p. Let Z be the fundamental cycle
on the exceptional set A = tt ~'(/»). Then the following are equivalent:

(1) Z is a minimally elliptic cycle,
(2) A¡- Z = — A¡ • Kfor all irreducible components A¡ in A,
(3) x(Z) — 0 and any connected proper subvariety of A is the exceptional set

for a rational singularity.

Definition 1.10. Let p be a normal two-dimensiona; singularity, p is
minimally elliptic if the minimal resolution tt: M —> V of a neighborhood of p
satisfies the conditions of Theorem 1.9.

Chapter II. Basic Theory For Weakly Elliptic
Singularities and Maximal Ideal Cycle

1. Minimal good resolution of weakly elliptic singularities. In this section, we
study the minimal good resolution of weakly elliptic singularities. We want to
understand the nature of the computation sequence for the fundamental cycle
Z and what kind of curves can be in the exceptional fibre.

Lemma 2.1. Let tt: M —> V be a resolution of the normal two-dimensional
space V with p as its only singularity. Let tt~\p) = A = \JA¡, 1 < i' < n, be
the decomposition of the exceptional set A into irreducible components. Suppose
there exists a minimally elliptic cycle E on A. Then supp is = Ax, if and only if
either Ax is a nonsingular elliptic curve or Ax is a singular rational curve with
node or cusp singularity. If supp E = \JA¡, 1 < / < k, and k > 2, then
X(AX) = • • • = x(-Ak) = 1 and Ax, . . . ,Ak are nonsingular rational curves.

Let Z be the fundamental cycle on A. If x(Z) = 0 and n > 2, then x(Ak+i)
= • ■ • = x(An) = 1- In particular, if supp E consists of more than one irre-
ducible component, then all A¡, 1 < / < n, are nonsingular rational curves. If
supp E = Ax, then all A¡, 2 < / < «, are nonsingular rational curves.

Proof. We claim that supp E = A, if, and only if, x(A i) = 0. Suppose
supp E = Ax. Then E = nAx for some positive integer n.

x(nAx) = x(^) + x((« - iMi) -("- iMr^i
= "X(^i) -\n{n - \)AX-AX.

Since x(£) = 0, x(^i) — 1(« — l)^i * -¿i- By definition of minimally elliptic
cycle   (Definition   1.10),   x(^i) =Hn ~ l)Ai ' A\ > °-   However,   xO4,) =
j(n — 1)^4] • AX < 0. Therefore x(^i) = 0. Conversely, if xiA\) = 0> then
E = Av This completes the proof of our claim. By (1.2) and (1.3),

x(A,) = —\{AX-AX + Ax- K),      where K is the canonical
divisor on M,

= -\(AX-AX - Ax ■ Ax + 2gx - 2 + 25,),    where 5, is the
"number" of nodes and cusps on A,

- 4 - ft - *i-
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Therefore,
X(/t,) = 0,     l-g,-S,=0,

(l)g, = 1 and 5, = 0,   or
(2)g, = 0andS, = 1.

So supp E = Ax if either Ax is a nonsingular elliptic curve or Ax is a singular
rational curve with node or cusp singularity. If supp E = A, u • • • U Ak,
k > 2, then x(A¡) > 0 for A¡ Ç supp E by the definition of minimally elliptic
cycle. On the other hand, x(A) < 1 by (1.1) and (1.6). So xOi) = 1 and,
hence, \ — g¡ — 8¡ = 1 for 1 < i < k. This implies that g, = 0 = 5„ i.e. A¡,
L < »* < k, are nonsingular rational curves.

To prove the rest of the lemma, it suffices to show that if x(Z) = 0, then
X(A¡) = 1 for A¡ £ supp E. x(Z) = 0 implies that x(^) > 0 for D > 0 [24,
Corollary 4.3]. By (1.1) and (1.6), we know that x(A¡) < 1. So 0 < x(A¡) < 1-
However, x(^,) cannot be equal to zero by Proposition 1.7. Therefore
x(A¡) = 1 for A¡ ¡Z supp E, i.e., A¡ g supp E are nonsingular rational curves.

Proposition 2.2. Let tt: M -^ V be the minimal resolution for a weakly
elliptic singularity p. Let tt': M' -» V be the minimal resolution such that A¡ are
nonsingular and have normal crossings, i.e. the A'¡ meet transversely and no
three meet at a point. Then tt = tt' and all the A¡ are rational curves except for
the following cases.

(1) A, is a nonsingular elliptic curve. A2, . . ■, An are nonsingular rational
curves. In this case, tt = tt'. In fact, 0 < A¡, • A¡ < 1 for i =f= j.

(2) Ax is a rational curve with a node singularity. A2, . . . ,An are nonsingular
rational curves and have normal crossings. In fact, 0 < A¡ • A, < 1 for i =£ j.

(3) Ax is a rational curve with a cusp singularity. A2, . . ., An are nonsingular
rational curves and have normal crossings. In fact 0 < Ai, • A, < 1 for i ¥= j.

(4) All A¡ are nonsingular rational curves and have normal crossings except
Ax and A2 having first order tangential contact at one point. In fact Ax • A2 = 2
and 0 < A, ■ Aj < 1 for i + j, (i,j) + (1, 2) and (i,j) * (2, 1).

(5) All Aj are nonsingular rational curves and have normal crossings except
Ax, A2, A3 all meeting transversely at the same point. In fact, if n > 4, then
0 < A¡, • Aj < 1 for 1 < i < n,j > 4, i ^j and Ax- A2= l,A3- (Ax + AJ =
2.

In case (2), tt' has the following weighted dual graph as its subgraph:

^CZI^ with w, > 5.
-w, -1 ?

In cases (3)-(5), tt' has the following weighted dual graph as its subgraph:

r ~w2

-Wj -1 -vv3    with w¡ > 2,       1 < / < 3.
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The proof is long but straightforward with many cases.

Corollary 2.3. Let tt be the minimal resolution with nonsingular A¡ and
normal crossings for a weakly elliptic singularity. Let E be the minimally elliptic
cycle, E < Z, the fundamental cycle. Then E may be chosen as part of a
computation sequence for Z and E = Zk. Moreover, if Zj < E is part of a
computation sequence for Z and Am c supp(£ — ZJ), then the computation
sequence may be continued past Zj so that A¡ = Am.

Proof. The proof is the same as Corollary 3.6 of [24].

Proposition 2.4. Let tt be the minimal good resolution for a minimally
elliptic singularity. Suppose tt is not the minimal resolution. Then the fundamen-
tal cycle is one of the following forms

(0
-1

A,

■w~ with w2 > 5,
Z = 2AX +A2,

(II)

_W3    ,    A3

-w, ■wA

A2 A j A4

with w¡> 2,
2 < / < 4.

(l)IfA2-A2< -3,A3-A3< -3,A4-A4 < -3, then
Z = 3AX + A2 + A3 + A4.

(2)IfA2-A2 = -2,^3-^3 = -3,A4-A4 < -6, then
Z = 6AX + 3A2 + 2^3 + A4.

(3)IfA2-A2= -2,A3-A3< -4,A4-A4< -4, then
Z = 4AX +2A2 + A3 + A4.

Proof. An easy case by case checking.

Proposition 2.5. Let tt: M —* V be the minimal good resolution of a normal
two-dimensional Stein space withp as its only weakly elliptic singular point.

Case 1. If supp E has at least two irreducible components, then for any
computation sequence of the form

Z0 = U, Zx = Ajf, . . . , Zk = is, . . . , Z¡ = Z,

we have A¡ • Zj_x = 1 for j =£ k and Ait ■ Zk_x = 2. If supp Z — supp E=£0,
then for any A¡t Çsupp Z — supp E we can choose a computation sequence of
the form

Zq = 0, Z| = A¡, . . . , Zr, Zr+X, . . . , Zr+k = is t Zr, . . . , Z¡ = Z

such that supp Zr Çsupp Z — supp E and Zr+1 — Zr, . . ., Zr+k — Zr = E is
part of a computation sequence for Z. Moreover, any computation sequence of
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the above form has the following properties: A¡ ■ Zj_x — 1 for j ¥= r + k and

lr+k r+K—l

Case 2. If supp E has only one irreducible component, then for any
computation sequence of the form

Z0 = 0, Z, = Ah = E, . . ., Z, = Z,
we have A¡ ■ Zj_x = I for all j. If supp Z — supp E^ 0, then for any A¡ Ç
supp Z — supp E, we can choose a computation sequence of the form

Z0 = 0, Z] = Ait, . . ., Zr, Zr+X = Zr + A¡+¡, . . . ,Z¡ = Z
where Ai +1 = E. Moreover, any computation sequence of the above form has
Aj. • Zj_x = 1 for allj.

Proof. Case 1.

0<Ajk-Zk_x = Aik.(E-Ajt)
= — A¡k • K — Ajt • A¡k   by Lemma 1.8
= -2*4 + 2-

So g¡k = 0 and Aik ■ Zk_x = 2. Since X(Z) = 0, H\M, 0Z) = C by (1.1) and
(1.6). As all A¡ are nonsingular rational curves, therefore (1.7) and the
Riemann-Roch Theorem will show that A¡ ■ Zj_x = 1 for j ^ k.

From the above proof, we know that for any A¡ Ç supp E such that there
exist Aj Ç supp E and A¡ ■ Aj > 0, then e, = 1 and A¡ • Aj = \, where e¡ is the
coefficient of A¡ in E. It is easy to see that the computation sequence in Case
1 of the proposition can be chosen. Now we are going to prove the last
statement of Case 1. By the above argument, we know A¡   (Zr+k_x — Zr) =
2 and, hence, A¡^k • Zr+k_x > 2 because Ai+k C supp E and
Zr Çsupp Z — supp E. Since HX{M, 0Z) = C, by (1.7) and the Riemann-
Roch Theorem, there is at most one A¡ • Z,  , = 2. So A¡    • Zr+k_, = 2 andij        j—\ lr+k r + K     l

Ai.-Zj_x = 1 for y't*= r + k.
'Case 2. Since x(£) = x(Z) = 0, (1.1) and (1.6) imply that H\M, 0z) = C

= H\M, 6e). So by (1.7) and the Riemann-Roch Theorem, it follows
immediately that A¡ ■ Zj_x = 1, for allj.

Now let us prove the last statement of Case 2. By Lemma 2.1 we know that
A¡+¡ is a nonsingular elliptic curve. Moreover, for any Aj ^ A¡+¡, Aj is a
nonsingular rational curve. By (1.7) and Hl(M, 0Z) = C, we have

dimHl(M, 0(-Zr)/0(-Zr - AirJ) < 1.
The Chern class of the line bundle associated to 0 (— Zr)/0 ( — Zr — A¡ ) on
A¡+¡ is —Ai+i-Zr < —1. By the Serre duality theorem and the Riemann-
Roch Theorem,

dim H'(M, 0(-Zr)/0(-Zr - A,J) = 2g,+i - 2 + Au-Zr = A¡r+/Zr.
So

Air+¡-Zr = 1 = dim i/'(M, 0(-Zr)/0(-Zr - A,J).
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By (1.7), the Serre duality theorem and the Riemann-Roch Theorem, we
know that Ai-ZJ_x = 1 for ally. Moreover, A, are nonsingular rational
curves for y ^ r + 1.

Corollary 2.6. Let tt: M -» V be the minimal good resolution of a normal
two-dimensional Stein space V with p as its only weakly elliptic singular point.
Suppose supp E = Ax. Let Z = 2 z¡A¡. Then z, = 1.

Proof. This is contained in the proof of Case 2 of the above proposition.

2. Laufer-type vanishing theorem.

Proposition 2.7. Letp be a weakly elliptic singularity. Let tt: M -» V be the
minimal good resolution of a Stein neighborhood V of p having p as its only
singular point. Let Y > 0 be a cycle on the exceptional set A such that
Ai-.• Y < 0 for all irreducible components A¡ of A. Let Z be the fundamental
cycle and E the minimally elliptic cycle. Let 0 = Z0, . . . , Z, = Z be a compu-
tation sequence for Z with E = Zk and A¡k such that A¡k- Y < 0. Then
H\M, 0(- Y - Zj)) = Ofor 0 < j < I.

Proof. The proof is similar to the proof of Lemma 3.11 in [24].

Proposition 2.8. Let p, tt, M, V, Y, Z and E be as in Proposition 2.7. Let
E = 2',mle¡At. Suppose E ■ Y < 0. Let A, be an arbitrary Ai c supp E. Then

p: H°(M, 0(- Y)) -» H°(M, 0(- T)/0(- Y - Ax))
is surjective if A, is an elliptic curve or if there exists Aj Ç supp E, Aj =£ Ax
with Aj • Y < 0 or if ex > 1. If Ax is a rational curve, Aj- Y = 0 for Aj ¥^ A,,
Aj Ç supp E, and ex = 1, then the image of p is a subspace S of codimension 1
in H\M, 0(- y)/0(- Y - Ax)). If dim S > 2, then the elements of S have
no common zeros as sections of line bundle L on Ax associated to
0(- 7)/0(— Y — Ax). If dim. S = \, then there is one common zero at a point
q £ A with q & Aj where Aj- Y = 0 and Aj Ç supp E.

Proof. The proof is similar to the proof of Lemma 3.12 in [24].

3. Structure theorem for weighted dual graphs of weakly elliptic singularities.
For weighted dual graphs of weakly elliptic singularities, we can obtain some
information from the following two propositions. Much more complete
information is given in Chapter III.

Proposition 2.9. Let tt: M -» V be a resolution of a normal 2-dimensional
Stein space V with p as its only weakly elliptic singularity. Let E be the
minimally elliptic cycle on A = tt ~ \p). Suppose B is a connected subvariety of
A such that B 2 supp E. Then B is the exceptional set of a rational singularity.

Proof. The fact that B is exceptional in M follows from [19, Lemma 5.11,
p. 89]. Let ZB denote the fundamental cycle on B. It follows by [2, Theorem
3, p. 132] that x(ZB) < 1. On the other hand, since p is a weakly elliptic
singular point, x(ZB) > 0, x(ZB) cannot be equal to zero. Otherwise it will
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contradict the minimality of the minimally elliptic cycle by Proposition 1.7
since B ¿} supp E. Therefore x(ZB) = 1. Applying Theorem 3 of [2], our
result follows.

Proposition 2.10. Let tt: M-+V be a resolution of a normal two-
dimensional Stein space with p as its only weakly elliptic singular point. Let E
be the minimally elliptic cycle on the exceptional set A = tt ~'(/>)• Suppose B is
a connected subvariety of A containing \E\. Then B is the exceptional set for
weakly elliptic singularity. In particular, if B — supp E, then B is a minimally
elliptic singularity.

Proof. As in Proposition 2.10, we know that B is exceptional in M. Let ZB
be the fundamental cycle on B. Then x(ZB) < 1 by Theorem 3 of [2]. Since p
is a weakly elliptic singularity, so x(ZB) > 0. Hence, 0 < x(ZB) < 1. x(ZB)
cannot be equal to one. Otherwise it will imply that B is an exceptional set of
rational singularity by Theorem 3 of [2]. Since B D \E\, Theorem 1 of [2] says
that x(£) > 1- This is a contradiction, so x(ZB) = 0 and B is the exceptional
set for a weakly elliptic singularity.

4. Maximal ideal cycle. Let tt: M-» V be the resolution of a normal
two-dimensional space V with/? as its only singularity. Let m be the maximal
ideal in vBp. One important question in normal two-dimensional singularity
is the "identification of m". In this setion, we define the maximal ideal cycle
which serves partially to identify the maximal ideal.

Definition 2.11. Let A be the exceptional set in the resolution tt: M -» V
of a 2-dimensional space V with p as its only singularity. Suppose that
Mi)i</<« are tne irreducible components of A. Let m be the maximal ideal in
yep. If/ E m, then the divisor of/, (/) = [/] + D, where [/] = 2n,v4, and D

does not involve any of A¡. Let Y be the positive cycle such that Y =
inf/Sm[/]. Then Y is called the maximal ideal cycle.

Proposition 2.12. Use the notation of Definition 2.11. The maximal ideal
cycle is a positive cycle s.t. Y'• A¡ < Ofor all A¡ <Z A. In particular, Y > Z. In
fact iffy ...,/. E m such thatfx, . . . ,fr generate m, then Y = inf1</<r [/].

Proof. Easy.

Proposition 2.13. Use the notation of Definition 2.11. Let Y be the maximal
ideal cycle, then w0 Ç 0(— Y). Moreover, if w0 is locally principal, i.e.
w0 = 0 (-D) for some positive divisor D, then D = Y and mO = 0(-F).

Proof. Easy.
Definition 2.14. Let o: M' -> M be & monoidal transformation with center

q E M. We associate with the curve C Ç M,q £ C, the curve C*, the proper
transform of C in M '. If q is a point of multiplicity n of the curve C, we
associate with this curve the curve C* + nL c M' where L = o~l(q). With
the divisor Z = 2fc,C,, we associate the divisor o*(Z) = 2/c,C,í* + k¡n¡L,
where n, is the multiplicity of the point q on the curve C.
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Lemma 2.15. Let tt: M —» V be a resolution of a normal two-dimensional
analytic space with p as its only singularity. Let A = Tr~l(p) = \JA¡ be the
decomposition of A into irreducible components. Suppose W is a positive cycle on
A such that W• Aj < Ofor all Aj Q A. For any positive cycle X on A such that
X > W, X2 < W2. Also, X2 = W2 if and only if X = W.

Proof. Let X = W + 2/1,-4, where n, > 0. Then

X2 = W2 + 2^ MA ■ W) + S WÁA, ■ A}).
•J

Now A¡ ■ W < 0 by the hypothesis. The last expression is nonpositive since
(A¡ • Aj) is negative definite. Moreover, this expression is zero if and only if
n¡ = 0 for all i by the definiteness.

Lemma 2.16. Let tt: M -» V be a normal two-dimensional analytic space with
p as its only singularity. Let A = tt~1(p) = U'=i^4, be the decomposition of A
into irreducible components. Let o: M' —» M be a monoidal transformation with
point q as center. Let D = ir~\q) and Ai be the proper transform of A[ by a.
Then

(TT-oy\p) = Dul   U    A'i

Suppose X is a positive cycle on A such that A,, • X < 0 for all A¡ Ç A. Then
D ■ o*(X) = 0 and A; ■ o*(X) < Ofor all 1 < i < t.

Proof. Since A¡ is linearly equivalent to some divisor not passing through
q, hence X is also linearly equivalent to some divisor not passing through q. It
follows that tt*(X)-D = 0. By p. 421 of [37], X • Ai, = a*(X) ■ a*(A¡). So
0 > X ■ Aj implies that

0 > a*(X) ■ o*{A,) = o*(X)(A; + m¡D) = a*(X)-A¡.

Theorem 2.17. Let tt: M -* V be a normal two-dimensional analytic space
with p as its only singularity. Let A = tt~\p) = Ui_i^4, be the decomposition
of A into irreducible components. Let Y be the maximal ideal cycle associated to
tt. Then the multiplicity of K0 > — Y ■ Y. If m® is locally principal, then the
multiplicity of y6p = - Y- Y.

Proof. If w0 is locally principal, then w0 = 0(-T) by Proposition 2.13.
In this case Theorem 2.7 of [37] says that multiplicity of y6p is equal to
-Y- Y.

In the general case, let tt': M'->Mbe the monoidal transformation with
center w0. The map tt' is a composition of monoidal transformations a with
points as center (see [42, lemma, p. 538]). Let A1 = (w • TTr)~1(p) = U ;_i-<4,'-
Then Lemma 2.16 says that A'¡ ■ tt'*{Y) < 0 for all 1 < i < s. Let 0' be the
structure sheaf on M'. Let Y' be the maximal ideal cycle relative to tt • tt'.
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Then w0' = 0'(- Y'). But w0' ç 0'(-7r'*(y)). So Y' > tt'*(Y). Theorem
2.7 of [37] and Lemma 2.15 will show that the multiplicity (^0^) = - Y' ■ Y'
> -[tt'*(Y)]2. However, for any proper modification o and divisor L, we
know that [a*(L)]2 = L2. So (tt'*(L))2 = L2. In particular, (tt'*(Y))2 = Y2.
Therefore multiplicity of v8p > — Y2.

Definition 2.18. Let/? be the only singularity of the normal two-dimen-
sional space V. Let tt: M-> V be the resolution of V. Let A = \JA¡,
1 < i < n, be the decomposition of A = tt~ x{p) into irreducible components.
Let K be the canonical divisor on M. We define the negative cycle K' =
2&,j4, on A where k¡ E Z, the set of integers, to be a cycle such that
Aj ■ K' = Aj- K for all A¡ ÇA. (K' does not always exist.)

The following theorem gives a "nonlower" estimate of the maximal ideal
cycle in terms of the cycle K'.

Theorem 2.19. Let tt: M^>V be the minimal resolution of a normal
two-dimensional Stein space with p as its only singular point. Suppose K' exists
and dim HX{M, 0) > 2; then the maximal ideal cycle Y relative to tt cannot be
greater than or equal to — K'.

Proof. By Theorem 3.2, p. 603 of [20], we know that H\M, 6(K')) = 0.
The following cohomology exact sequence,

H1 (M, 6(K')) -> Hl (M, 0) -* Hx (M, B_K.) -+0,

shows that H\M, S_K.) « HX(M, 0). Since

x(-K')=-{-[(-K')-K+(-K')-(-K')]
= -±[{-K')-K' + (-K')(-K')]=0

by (1.2), hence (1.1) says that
dim H°(M, e_K.) = dim HX(M, 0_K.) = dim Hx (M, 6) > 2.

Suppose on the contrary that Y > — K'. Since tt is the minimal resolution,
Aj ■ K' > 0 for all A¡, so —K' > Zby the definition of the fundamental cycle
Z. It follows that there is a natural injective map

H°(M, e(K'))-*H°(M,6(-Z)).
We claim that this map is actually surjective. Given any g E H°(M, 0( — Z)),
we know that g is actually a function on V which vanishes at p. By
Proposition 2.13, g E H\M, 0(- Y)). However, Y > - K' implies that
H°(M, 0(- Y)) Ç H\M, 6(K')). So g can also be considered as an element
in H°(M, 6(K')). This proves our claim. Look at the following commutative
diagram with exact rows.
0 ̂  H°(M, B(K')) -+ H°(M, 0) -» H°(M, 6_K.) -* Hx (M, 0(/T)) - 0

+1 ti + T
0^ H°(M, 0(-Z)) -* H°{M, 0) -> H°(M, 0Z) =a C -* Hx (M, 0(- Z)).

Since H\M, 0Z) ^ C by (1.6), so H°(M, 0) -» H°(M, 0Z) is surjective.
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We have H°(M, 6_K.) is isomorphic to H°(M, 0Z). However,
dim H°(M,e z)= \ <dimH\M,e_K,). This leads to a contradiction.
Q.E.D.

If vGp is a Gorenstein ring, i.e. there is some neighborhood Q of pin V and
a holomorphic 2-form « on Q — p such that u> has no zeros on Q — p, then
K' exists.

Theorem 2.20. If we assume v6p is Gorenstein in Theorem 2.19, then the
same result holds even if tt is not necessarily the minimal resolution.

Proof. As v&p is Gorenstein, there exists u E H\M - A, ß) having no
zeros near A. Serre duality gives H X{M, 0 ) as dual to Hl(M, ß), where ß is
the canonical sheaf, i.e. the sheaf of germs of holomorphic 2-forms. By
Theorem 3.4, p. 604 of [20], for suitable M, which can be chosen to be
arbitrarily small neighborhoods of A = tt ~ x(p), //*( M, ß) may be identified
with H°(M - A, ß)/i/°(M, ß). So

dim H°(M- A, ti)/H°(M, ß) = n > 2.

There exist u2> . . . , w„ in H°(M — A, ß) such that the image of
w, w2, . . ., w„ in H°(M — A, ß)///°(M, ß) forms a basis. Since w is nonzero
in a neighborhood of A, we may assume that co, = /to, 2 < i < n, where
/ E H°(M, 0). Moreover we can assume that / are vanishing at p, i.e.,
/• E H°(M, w0). Otherwise we simply replace/ by/ — /(/?), 2 < i < n.

Suppose our theorem is false. Then the maximal ideal cycle Y > [«]. Since
m0 Ç 0(- Y) by Proposition 2.13, we have w, =/<o, 2 < i < n, all in
H°(M, ß). This contradicts the fact that the image of w, w2> • • • > wn forms a
basis for #°(A/ - A, Ü)/H%M, ß).

Chapter III. Elliptic Sequences and
Maximally Elliptic Singularities

One might classify hypersurface singularities by h = dim H X(M, 0 ). If
h = 0, then the singularity is rational [20]. If h = 1, then the singularity is
minimally elliptic [24]. Let us consider the condition h = 2. All hypersurface
singularities, as well as complete intersection, are Gorenstein, so the following
theorem applies.

Theorem 3.1. Let tt: M —> V be a resolution of the normal two-dimensional
Stein space V with p as its only singularity. Suppose yQp is Gorenstein and
HX(M, 0) = C2. Thenp is a weakly elliptic singularity.

Proof. Let tt~x(p) = A = \JA¡, 1 < / < n, be the decomposition of the
exceptional set A into irreducible components and Z be the fundamental
cycle on A. Since HX{M, 0) is independent of the choice of the resolution
[20, Lemma 3.1, p. 599], [2, p. 124], we may assume that tt is the minimal good
resolution. By (1.6), H°(M, 0Z) = C. So we have the following exact
cohomology sequence:

0 -» Hx (M, 0(- Z)) -> Hx (M, 0) -» Hx (M, 0Z) ̂  0.
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Since HX(M, 0) = C2, dim HX(M, 0Z) is either 0, 1 or 2. If HX(M, 0z) = 0,
then x(Z) = dim H°(M, 0Z) - dim H\M, 0Z) = 1, i.e. p(Z) = 1 - x(Z)
= 0. By Theorem 3 of [2],p is a rational singularity. However, as HX{M, 0)
= C2, the first direct image R V*0K is not zero by Lemma 3.1 of [20]. This
leads to a contradiction. If H\M, 0Z) = C2, then HX(M, 0(-Z)) = 0. As
v6p is Gorenstein, there exists co E H°(M - A, ß) having no zeros near A,

where ß is the canonical sheaf, i.e. the sheaf of germs of holomorphic
2-forms. By Theorem 3.4, p. 604 of [20], for suitable M, which can be chosen
to be arbitrarily small neighborhoods of A = tt ~ x(p), Hl(M, ß) may be
identified with H°(M - A, Q)/H°(M, ß). So dim H°(M - A, ß)/i/°(M, ß)
= 2 and there exists co' E H°(M — A, ß) such that the image of co, co' in
H°(M — A, Sl)/H°(M, ß) forms a basis. Since co is nonzero in a neigh-
borhood of A, we may assume that co' =/co where/ E H\M, 0). Further-
more, replacing / by / - /(/>), if necessary, we can assume that / E
H°(M, m&). Let w¡ be the order of the pole of co on A¡. Consider a cover as in
Lemma 3.8 of [24]. On Px,

co = (co,(x„yx)/yxw>) dxx A dyx
where  co,(.x„v,)  is  a  holomorphic  function,  co,(x,, 0) ^ 0.  There  is  a
holomorphic function/(x,), r < xx < R, such that

r co1(x„v1)
J        >>p-'/(*i)      1      dxxAdyx*0.

Let Xq, = yx'~xf{xx) and X0J = 0 for 2 < j < t. Then by Lemma 3.8 of [24],
cls[À] ̂  0 in HX(M, 0). Let Z = 2z,.^,., 1 < / < n, be the fundamental cycle.
If wx — 1 > z„ then À may be thought of as also a cocycle in i/'(A^(%),
0(-Z)). So cls[A] = 0 in H\M', 0(-Z)) and necessarily in H\M', 0).
Thus w, — 1 > z, is impossible, i.e. wx < z,. As w0 Ç 0( —Z), p. 133 of [2],
we have co' = /co E H\M, ß), i.e., co, co' cannot form a basis for H°(M —
A, ß)/H°(M, ß). This is a contradiction. So the only possible case is
HX(M, 0Z) = C. Hence X(Z) = dim H\M, 0Z) - dim H\M, 0z) = 0, i.e.
p is a weakly elliptic singularity.   Q.E.D.

However, that dim HX{M, 0) = 3 and y6p is Gorenstein do not imply/) is
a weakly elliptic singularity.

Example. Let V be the locus in C3 of z2 = x6 + y6. Then the dual
weighted graph is

g = 2
-1

It can be calculated by [23] that dim H\M, 0) = 3.

Theorem 3.2. Let V be a normal two-dimensional Stein space with p as its
only singularity. Suppose vBp is Gorenstein, i.e. there is some neighborhood Q of
p in V and a holomorphic 2-form co on Q — p such that u has no zeros on
Q — p. If there exists f E v6p such that co, /co, f2u, . . . ,f"~xa is a basis for
Hl(M, ß), thenp is a weakly elliptic singular point.
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Proof. Replacing / by / — /(/?), if necessary, we may assume that / E
H°(M,m6). By (1.6), H°(M, 0Z) = C. So we have the following exact
cohomology sequence.

0^>HX(M, e(-Z))^Hx(M, B)^Hl(M, ©z)^0.

By Theorem 3.1, we need only consider the case n > 3. It is easy to see that
dim HX(M, 0Z) > 0. Otherwise, as observed in the proof of Theorem 3.1, p
will be a rational singular point. To prove that p is a weakly elliptic singular
point, it suffices to show that H X{M, 0Z) = C. Suppose on the contrary that
dim HX(M, 0Z) > 2. Then dim HX{M, 0(-Z)) < n - 2. Let the notation
be as in the proof of Theorem 3.1. We know that there exists Ax Ç A such
that on Px,

= w\\x\>yi)    ,    A , - iax >0,0 < i < n- 1,    (3.1)

where co,(a:„ v,) is a holomorphic function, co,(jc,, 0) 3£ 0. (co) = — ~Zw¡A¡ and
if) = "EüjAj + D = [f] + D. D does not involve any A¡. There are
holomorphic functions g¡(xx), r < xx < JR, such that

r i <0i(*i>>'i)J       rr'-"'-.^!)    V-J   d^ A ♦, * 0.

Let A¿! = vr1""1'"^,^,) and A¿, = 0 for 2 < y" < í. Then by Lemma 3.8 of
[24], cls[A']^0 in H\M, 0). In fact, {X'} forms a basis for H\M, 0)
because <X',/co> = 0 for / ^ j. Since

dim^'(A/, 0) -dimi/1^, G(-Z)) = dim HX(M, 0Z) > 2,
there are at least two A'1, X'2 which are not in H '(M, 0 (- Z)). Hence,
w, — i,a, — 1 < z, and w, — i2ax — 1 < z,, i.e., w, < zx + ixax, wx < z, +
i2ßi. Since i, M= /2 and 1 < /,, i2 < n — 1, we may assume that wx < zx + (n
- 2)ax. But [/] • A, < 0 for all A¡ Ç ^ by p. 133 of [2]. So [/] > Z, by the
definition of fundamental cycle Z. In particular, z, < a,. So, w, < (n — l)a,.
This contradicts (3.1).   Q.E.D.

A partial converse of Theorem 3.2 will be proved later. Weakly elliptic
singularities can be effectively studied by the following method of elliptic
sequences.

Definition 3.3. Let A be the exceptional set of the niinimal good resolution
tt: M -» V where F is a normal two-dimensional Stein space with/? as its only
weakly elliptic singularity. If E • Z < 0, we say that the elliptic sequence is
{Z} and the length of elliptic sequence is equal to one. Suppose E • Z = 0. Let
Bx be the maximal connected subvariety of A such that Bx D supp E and
Aj,• Z — 0 VAj ç By Since A is an exceptional set, Z- Z < 0. So Bx is
properly contained in A. Suppose ZB • E = 0. Let B2 be the maximal
connected subvariety of Bx such that B2 D \E\ and A¡ • ZB¡ = 0 VA¡ Ç B2. By
the same argument as above, B2 is properly contained in Bx. Continuing this
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process,   we   finally   obtain  Bm   with   ZBm • E < 0.   We   call   {ZBo = Z,
ZB , . . . , ZB } the elliptic sequence and the length of elliptic sequence is m + 1.

Example 1. Let /? be a weakly elliptic singularity whose weighted dual
graph is of the following form:

-2

-2

-2 -2   -2  -3   -2 -2 -2  -3    -2   -2   -2 -2

1
2

Z= 1     11     12    3    2    1     11     11

1
2

ZBi=0    1    112321    11    10

1
2

zb2 =001123211100

1
2

Zfi3=0001    2321     1000
1
2

£" = 000123210000

The elliptic sequence is {Z = ZB, ZB], ZBz, ZBj} and the length of elliptic
sequence is 4.

Remark 3.4. The elliptic sequence is defined purely topologically.
Example 2. Let /? be a weakly elliptic singularity whose weighted dual

graph is of the following form:
-2

-2 -2 -2 -3 -2 -3 -2 -2 -2

Z=1 1  1  1

zBl = o 1 1 1

ZB = 0 0 1 1

zB = o 0 0 1

1111

1110

110 0

10 0 0
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The elliptic sequence is {Z = ZB , ZB , ZB, ZB = ZE) and the length of the
elliptic sequence is 4.

Proposition 3.5. Let tt: M —» V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only weakly elliptic singularity. Then
for any A¡ Ç \E\, A¡ are nonsingular rational curves with self-intersection
number less than or equal to — 2.

Proof. The fact that A¡ Ç \E\ are nonsingular rational curves follows from
Lemma 2.1. Suppose there exists A¡ Ç \E\ such that A¡ ■ A¡ = — 1. It follows
easily from Proposition 2.2 that A¡ is a "star" in the dual weighted graph T of
exceptional set tt~x(p) = A, i.e., there exist Ax, A2, A3 Ç A such that T has
the following graph as its subgraph:

-1

"■2 ni s*3

or there exist Ax ç A such that T has the following graph as its subgraph:

Then x(^i + A2 + A3 + 2A¡) = 0 in the former case, and x(Ai + 2/1,) = 0
in the latter case. These are impossible by Proposition 1.7 and that A¡ g
supp E.

Lemma 3.6. Let T be a weighted dual graph including genera for the vertices
associated to the minimal good resolution of the normal two-dimensional weakly
elliptic singularity p. Suppose p is not a minimally elliptic singularity; then
-K' > Z + E whenever K' exists. If E ■ Z <0 and \E\c A, then K' does
not exist.

Proof. If tt is the minimal resolution, then A¡ • K' > 0 for all A¡ Ç A by
Proposition 1.2. So — K' > Z > E by the definition of fundamental cycle.
Suppose tt is not the minimal resolution. Then the corresponding dual
weighted graph T consists of either

-w,
(a) w. > 5,

or

(b)

-H>,

-w. -ic.

A4       A3
w, >2,   1 < / < 3,
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as its proper subgraph. In case (a), E = Ax + A2. We claim that k'x =fc 0 where
K' = 2,k¡A¡. For if k'x = 0, then Ax • K' < 0 since K' is a negative cycle. On
the other hand,

Ax ■ K' = Ax ■ K-Ax ■ Ax + 2g, - 2 > 3 > 0.
This is a contradiction. Hence k'x J= 0. We claim that k'2 cannot also be zero.
For if k'2 = 0, then A2• K' < -2 since A2- Ax = 2. On the other hand,

A2 ■ K' = A2 ■ K = -A2 ■ A2 + 2g2 - 2 = 1 - 2 = -1.

This is a contradiction. Hence, k'2 =£ 0. It follows that —K'>E. In case (b),
E = Ax + A2 + A3 + 2A4. We claim that one of k'¡, 1 < / < 3, cannot equal
zero. For if k\ = k'2 = k'3 = 0, then A4- K' > 0. This is because there exists
no A¡ £ \E\, A,, « A4 > 0 by the proof of Proposition 3.5. However,

A4-K' = A4-K= -A4-A4 + 2g4-2=l-2= -I.
This is a contradiction. So we may assume k\ ^ 0. If k'2 = 0, then A2 ■ K' <
0. On the other hand,

A2 • K' = A2 • K = — A2 ■ A2 — 2 > 0.
Hence, A2 • K' = 0 and A2-A2 = -2. If Ä:3 also equals 0, then a similar
argument will show A3 • A3 = —2. The intersection matrix cannot be negative
definite. So we may assume that k3 i= 0. We claim that k'4 ̂  0. For if k'4 = 0,
then A4 ■ (K') < -2. On the other hand,

A4- K' = A4- K = A4- A4 + 2g4 - 2 = -\.

This is a contradiction. So k'4 ̂  0. We claim that k'2 ̂  0. For if k'2 = 0, then
A2 ■ (K') < - 1. On the other hand,

A2- K' = A2- K = A2- A2 + 2g2 - 2 > 0.

This is a contradiction. We claim that k'4 < —2. For if k'4= —1, then
A4- K' = k'x + k'2 + k3 + I < -2. On the other hand,

A4-K' = A4-K= -A4-A4 + 2g4-2= -1.

This is a contradiction. So k'4 < —2. We have proved in both cases (a) and
(b) — K' > E. We claim that actually -K' > E. Since /? is not a minimally
elliptic singularity, there exists A¡ Ç |¿s|, A¡, n E =^0. It suffices to prove
k'¡ =£ 0. For if k¡ = 0, then A¡ ■ K' < 0. On the other hand,

A,   K' = ArK= -A¡ ■ A¡ + 2g, - 2 = -A¡ ■ A,, - 2 > 0.
This is a contradiction. Therefore — K' = E + D where D is a nonzero
positive cycle. We claim that A¡- D < 0 for all Ai ÇA. If A¡ Ç\E\, then
/J,(-iO = A,(-K) = ArE by Lemma 1.8. So At- D - 0. If 4, Ç |£"|, then
v4, • ̂ 4,- < — 2 and, hence,

A;(-K') = v4,(-^) = Á, A, + 2 < 0.
However, ̂ , Ç \E\, so ^, • £" > 0. It follows that ArD = A¡(- K') - A¡E <
0. This proves our claim. By definition of the fundamental cycle, D > Z. So,
in particular, - K' > Z + E.

Suppose E • Z < 0, we want to prove K' does not exist. Suppose on the
contrary that K' exists. By the above proof, - K' = Z + D where D is a
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positive cycle. By (1.2),
x(-K')=-±[(-K')-K+(-K').(-K')]

= -\[(-K')-(K') + K'-K'] =0,
so 0 = x(Z + D) = x(Z) + x(D) - Z • D. Since/? is a weakly elliptic singu-
larity, x(Z) > 0 and xC^) > 0. Also Z • D < 0 because Z is the fundamental
cycle and D is a positive cycle. It follows easily that x(^) = 0 and Z • D = 0.
Since Z • £ < 0, |£>| 2 |£|. By Proposition 1.7, we conclude that D = 0. But
then Z = - K' > Z + E, which is absurd.

Theorem 3.7. Let tt: M —> V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only weakly elliptic singularity.
Suppose p is not a minimally elliptic singularity and K' exists. Then the elliptic
sequence is of the following form:

ZBo = Z, ZB¡, . . . , ZB/, ZB/+¡ = ZE,        I > U.
Moreover, — K' = 2'=,0ZB + E.

Proof. Lemma 3.6 says that length of the elliptic sequence is greater than
or equal to 2 and - K' > Z + E. So - K' = Z + Dx where Dx is a nonzero
positive cycle on A. By (1.2), x(~^') = 0. So 0 = x(Z + Dx) = x(Z) +
x(D\) - Z• Dx. Since/? is a weakly elliptic singularity, x(Z) = 0, xC^i) > 0.
Because Z is the fundamental cycle and Dx is a positive cycle, so Z • Dx < 0.
Consequently, x(A) = 0 and Z-Z),=0. By Proposition 1.7, x(^i) = 0
implies that \DX\ is connected and contains |£|. We claim that \DX\ = Bx.
Since Dx • Z = 0 and \DX\ is connected and contains |is |, we have |£>]| Ç Bx.
Suppose |D,| 7¿= By Then there exists A, g |D,|, A¡ Ç Bx and A¡ n \DX\ =£0.
Hence, A¡(- K') = A¡{Z + Dx) = A¡ ■ Dx > 0. On the other hand, since A¡ Ç
\E\, A¡ ■ (-K') = A{:• A¡ + 2 < 0, by Proposition 3.5. This is a contradiction.
Hence, \BX\ = \DX\. Let Ux be a holomorphically convex neighborhood of Bx
such that O,: C/¡ ̂  F, represents 5, as exceptional set where Vx is a normal
two-dimensional Stein space with <bx(Bx) as its only singularity. We claim that
the K' cycle on Ux which is denoted by K'Ui exists and K^ = — Dx. In fact
for any A Ç Bx,

Ar(-Dx)=Ar(-Z-Dx)
= A¡- K   where K is the canonical divisor on M

= -4-4 + 2& -2
= v4, • ̂     where Kv is the canonical divisor on Ux.

So - Dx = KÚ. By induction on the length of elliptic sequence, the proof
reduces to the following proposition.

Proposition 3.8. Let tt: M -> V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only weakly elliptic singularity.
Suppose p is not a minimally elliptic singularity and K' exists. If the length of
the elliptic sequence is equal to two, then the elliptic sequence is (Z, ZE}.
Moreover — K' = Z + E.
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Proof. Lemma 3.6 says that -K' > Z. So - K' = Z + D where D is a
nonzero positive cycle on A. By (1.2), x(- K') = 0. So 0 = x(Z + D) = x(Z)
+ x(^) — Z • D. Since /? is a weakly elliptic singularity, x(Z) = 0 and
X(D) > 0. As Z is the fundamental cycle and D is a positive cycle, we have
Z • D < 0. Consequently, x(^) = 0 and Z • D = 0. Arguing as above, we
know that \BX\ = \D\. Moreover K'u exists and K^ = — D where Ux is a
holomorphic convex neighborhood of Bx. By Lemma 3.6, i?, ^= \E\ cannot
occur since the length of the elliptic sequence is equal to two. So \D | = Bx =
\B\. We claim that D = E. Since x(£>) = 0, we have D > E, i.e., D = E +
D', where D' is a positive cycle with |D'| Ç \E\. Since A,'D- A¡ ■ {-K'v)
-A,'E for all /4, Ç \E\, so ^, • D' = 0 for all A¡ Ç \E\. It follows that
D'D' = 0. Therefore D' = 0 and £> = £". We have proved the elliptic
sequence is {Z, ZE) and - K' = Z + £.   Q.E.D.

Let /? be the only singularity of the two-dimensional hypersurface Stein
space V. Let tt: M —> V be a resolution of V. Let A = U,-<4„ 1 < / < n, be
the decomposition of A = tt~x(p) into irreducible components. Let /x be the
Milnor number of p. Then Lauf er [23] proved that

jti = n + K' ■ K' - dim Hx (A; C) + 12 dim Hx (M, 0).        (3.2)

(3.2) has various applications. One is that it gives a means of calculating
dim HX(M, 0) for hypersurface singularities. This calculation is very difficult,
if not impossible, in general. However, given a weighted dual graph corre-
sponding to a singularity, we have to solve a system of linear equations in
order to find K'. For weakly elliptic singularities, Theorem 3.7 provides us a
quick method to find K'.

2. Maximally elliptic singularities. The length of the elliptic sequence gives
information about h = dim H X(M, 0 ).

Theorem 3.9. Let tt: M -» V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only weakly elliptic singularity. Then
dim HX(M, 6) is less than or equal to the length of the elliptic sequence if K'
exists.

Proof. If the length of the elliptic sequence is equal to 1, i.e. the elliptic
sequence consists of the fundamental cycle Z only, then Z • E < 0. By
Theorem 4.1 of [24], HX{M, 0) = C. So from now on, we may assume that
the elliptic sequence is of the following form:

ZB¡¡  =   Z, ZB¡,   .   .   .   ,  ZB¡,  Zg/+i   =   ZE; I    >   0,

and K' = -(2'_0ZB. + E) by Theorem 3.7. Choose a computation sequence
for the fundamental cycle Z of the following form:

Z0 = 0, Zx,. .., Zk = is, . . ., Zr¡ = ZB¡, . . .,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



290 S. S.-T. YAU

Consider the following sheaf exact sequence:

0-> 0(-Z)/0(-Z - Z,)-» ©z+z, -> 0Z ̂ 0

0^ 0(-Z - Zfc_,)/6(-Z - £)-» 0z+£ -> 0Z+Zt_, ->0

o^eí-z-v^/eí-z-zj^e^^^e^^-^o

o^ of - 2 ^,1/0 - 2 z* - z, j -> e2,_Ä.+Z| -» e^.Ä ->o

o^ el- 2 z* - z,_, J/0Í - 2 2B, - e j _ e^.Ä(+J

2^_oZÄ +ZA_!

o -> © ( - 2 zB¡ - zri_r x )/© Í - 2 zB¡ - zBj+í

e2^.Af+zí/+1 -» ^SUZ^. + z,,,,., ~*°

o -» © í - 2 zB)/e i - 2 zB¡ - z, J -> e2,.Äj+;

©s' „z   ->0

-2 z^-z^.Veí-i zs,-£
í-0 /        \      ,»0

0w{.^^-»Osí.A,^.,-»©.   (3.3)
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Let ZB = 2y B,zjAj- We remark that if E = Ax is an elliptic curve, then
Bzx = 1 for all i by Corollary 2.6. The usual long cohomology exact sequence
or (3.3), (1.6) and Reimann-Roch Theorem will show that

dim HX{M, 02',.,^, +e) < / + 2 = length of the elliptic sequence

because

H° M,
e(-^-oZA-z,_,)

0(-2^_oZB/ - Zh)

are nonzero only if h = k. Since

and   Hx M,
e(-^-0zA-zft_,)
e{-2UzB, - z„)

Hx M, 0|-2  Z,-£
/ = 0

= //'(m, 0(ü:')) = o

by Corollary 3.3 of [20], the exact sequence

Hx f!zH HX(M, 6)^HX(M, 0st_A#+i)->0
\    '=u /j

shows that

dim Hx (A/, 0) = dim i/1 (M, 02Î_A+£) < / + 2.   Q.E.D.

The following example, which is due to Laufer, shows that dim H '(M, 0 )
can be strictly less than the length of the elliptic sequence even for hypersur-
face singularities. As far as the author's knowledge is concerned, this is the
first known example for double-point singularity with maximal ideal cycle
strictly greater than the fundamental cycle.

Example 3 (Laufer). Let V be the locus in C3 of z2 = v(x4 + v6). Then
the dual weighted graph is

-1

torus

This is a weakly elliptic singualrity and the length of the elliptic sequence is
equal to three. It can be calculated that ¡i = 22, where /x is the Milnor
number. By Theorem 3.7,

- K' = ZBo + ZB¡ + E,       K'   K' = Z¿o + Z¡t + E2= -3.

By (3.2), we know dim H \M, 0 ) = 2.
The following two examples show that dim HX(M, 0) can actually equal

the length of the elliptic sequence.
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Example 4. Let V be the locus in C3 of z2 = v3 + x9+6'. Then the dual
weighted graph is

-2   -2'

-2

This is a weakly elliptic singularity and the length of the elliptic sequence is
equal to / + 1. It can be calculated that the Milnor number /* = 16 + 12/. By
Theorem 3.7,

/-i                           i-\
- K' = 2  ZB+ E,   K'2 = 2  Z¿+ E2-(/ + 1).

i = 0        ' i=0

By (3.2), we know that dim//'(A/, 0) = / + 1 = length of the elliptic
sequence.

Example 5. Let V be the locus in C3 of z2 = v3 + xxx+6'. Then the dual
weighted graph is

-2

l>0

-2     -2      -2 -2

This is a weakly elliptic singularity and the length of the elliptic sequence is
equal to / + 1. It can be calculated that the Milnor number (i = 20 + 12/. By
Theorem 3.7,

/-i i-1
- K' = 2  ZB+ E,   K'2 = 2  Z2+ E2 = -(/ + 1).

<=o      ' i=0

By (3.2), we know that dim HX(M, 0) = / + 1 = length of the elliptic
sequence.

Example 6 (Wagreich). Let V be the locus in C3 of z3 = x3 + y3!+x. Then
the dual graph is

-2

-2
-4

/- 1

,1-1 l-\

-2 -2 -2
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This is a weakly elliptic singularity and the length of the elliptic sequence is
equal to /. It can be calculated that the Milnor number u = 12/. By Theorem
3.7, -K' = 2'i~x0ZBi + E, K'2 = -(31 + 1). By (3.2) we know that
dim HX(M, 0) = / = length of the elliptic sequence.

Example 7 (Wagreich). Let V be the locus in C3 of z3 = x3 + v3/+2. Then
the dual weighted graph is

l-\

-2

-2

-2

-3

-2

l-\

l-l

-2       -3 •-2

This is a weakly elliptic singularity and the length of the elliptic sequence is
equal to /. It can be calculated that the Milnor number u = 12/ + 4. By
Theorem 3.7, -K' - %~J0ZB¡ + E, K'2 = -31. By (3.2) we know that
dim HX(M, 0) = / = length of the elliptic sequence.

Definition 3.10. Let F be a normal 2-dimensional Stein space with/? as its
only weakly elliptic singularity. Let tt: M -» V be the minimal good
resolution. Suppose K' exists. If dim HX(M, 0) = length of the elliptic
sequence, then/? is called a maximally elliptic singularity.

Theorem 3.11. Let tt: M -> V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only maximally elliptic singular point.
Then y6p is Gorenstein.

Proof. If length of the elliptic sequence is equal to one, then Lemma 3.6
says that/? is a minimally elliptic singularity. By Theorem 3.10 of [24], K0 is
Gorenstein. Therefore we may suppose that the length of the elliptic sequence
is greater than or equal to two. By Theorem 3.7, we know that the elliptic
sequence is of the following form:

Zßn   —    Z,   ZB   , , ZB. Z.    =ZE,   / > 0   and    - K' = 2 ZB+ E.

Serre duality gives HX(M, 0) as dual to Hl(M, ß) where ß is the canonical
sheaf, i.e. the sheaf of germs of holomorphic 2-forms. By Theorem 3.4, p. 604
of [20], for suitable M, which can be arbitrarily small neighborhoods of
A = T~\p), Hl(M, ß) may be identified with H°(M - A, Q)/H°(M, ß).
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Let Í/, be a holomorphically convex neighborhood of Bx such that $,:
Ux -» Vx represents Bx as an exceptional set where Vx is a normal two-
dimensional Stein space with <S>X(BX) as its only weakly elliptic singularity. We
claim that Kv, the K' cycle on Ux, exists. In fact

— Kir, = ZB¡ + • • • + ZB¡ + E,
because for all A¡ C B,Mi

A, Í-ÍzBí-e\ = a¡-J:^zBi-e\

= Ar(K') = 2gi-2-ArAi.

So the length of the elliptic sequence relative to 4», is / + 1. Let co,, . . ., co/+2
E H°(M - A, ß) such that its images form a basis for H°(M -
A, ß)/i/°(A/, ß). Suppose, on the contrary, that v6p is not Gorenstein. We
claim that the pole sets of co„ 1 < / < / + 2, are contained in Bx. For if there
exists co„ say co„ having a pole set which is not contained in Bx, then the
divisor of co, has the following form:

(co,) = - 2 a,4,+   2    bjAj+ 2  dkXk,      a, > 0, b} >0,dk> 0,
i-\ j=t+\ fc=l

where t > I, Xr £ A, Xr n A ^=0, VI < r < n„ and there exists 1 < i < t
such that A, Ç Bx. For any Ah Ç A,

Ah ■ (#') = Ah ■ (co,),       Ah ■ ((co,) - K') = 0.

Let
t n

[<»i] = - 2  a,A,+    2    bjAj.
/-I j-t+\

Then Ah • ([co,] — K') < 0 for all Ah Ç A. Since v0p is not a Gorenstein ring,
either there exists 0 < bj, t + 1 < j < n, or there exists dk > 0, 0 < k < n,,
by Lemma 3.6. If the former case occurs, then [co,] — K' =£ 0 because ]£' is a
negative cycle. If the latter case occurs, we claim that [co,] - K' =£ 0 also. For
let 0 < r < nx such that dr > 0. There exists Ar Ç A such that Ar ■ Xr > 0.
Then

Ar- ([co,] - #') = ^-[co,] - A,•*'- ^-[co,] - ^f- (co,)

= Ar-[ax] - Ar [«i}+ 2 ^*]
* = 0 /

= ->ir- 2 ^*< -4<o.
* = 0

Therefore [co,] — K' is not zero in any cases. Notice that some coefficient of
A¡ !Z Bx in [co,] — K' is strictly less than the corresponding coefficient of that
component in the fundamental cycle Z because —K' = 2'_0ZBi + E. If
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[ux] - K' is a positive cycle, we let Z1 = inf([co,] - K', Z). It follows from
M. Artin's argument, pp. 131-132 of [2] that Z1 is also a positive cycle and
Z ' • Ak < 0 for all Ak ÇA. However, Zx < Z. This contradicts the definition
of the fundamental cycle Z. So [co,] — K' cannot be a positive cycle. Let

Z0 - [«,] - Ä" - 2  Mi"    2     94'       i > °' CJ >0,s<n.
1=1 7=i+l

Without loss of generality, we may assume that cs+x = max(c,), j + 1 < y <
n. Consider

n

Zi = cs+\Z + 2J+,Z0 = ¿, z¡A¡,
i-0

where Z - 2"_ xz,A,. Since Z0 • A, < 0 for all 4 Ç 4, we have /*,- • Z, < 0 for
all A¡ ÇA. Also z,1 > 0 for 1 < i < j and zx+x = 0. By changing the index if
necessary, we may assume zx+2 = min(z/), s + 2 < i < n. If zj+2 > 0, then
Z, is a positive cycle with supp Z, c A because zx+x = 0. If zx+2 < 0,
consider

n

Z2 — ~zs+2Z + zs+2Zx = ¿ */■«#>
í=i

then A, ■ Z2 < 0 for all /l, ç A, z2 > 0 for 1 < i < s + 1 and z2+2 = 0.
Continuing this process, we finally get a positive cycle D on A with supp D
C /Í and yl, • £> < 0 for all A¡ ÇA. But this is impossible by previous
argument. We conclude that the pole set of co,, 1 < / < / + 2, is contained in
By It follows that co,/t7„ the restriction of co, to i/„ is in H°(UX — Bx, ß) for
all 1 < i < / + 2. Since the length of the elliptic sequence on Ux is / + 1, by
Theorem 3.9, dim H\UX, 0) < / + 1. Hence

dim H°(UX- By Q)/H°(UX, ß) < / + 1
and there exist X,, . . ., X/+2 E C, not all X, = 0, such that

X,co,/f7, + • • • + X/+2co/+2/f7, E H°(Uy ß),
where wj Ux is the restriction of co, on Ux. It follows that

X,co, + • • • + X/+2co/+2 E H°(M, ß),
which contradicts our assumption that images of co„ . . ., co/+2 form a basis
for H°(M - A, ti)/H(M, ß).

Theorem 3.12. Let tt: M -» V be the minimal good resolution of a normal
two-dimensional Stein space with p as its only maximally elliptic singularity. If
ZE  ZE< -2, then m0 = 0(-Z).

Proof. If the length of the elliptic sequence is equal to one, then Lemma
3.6 says that /? is a minimally elliptic singularity. By [24] we have mQ =
©(— Z). From now on, we assume that the length of the elliptic sequence is
greater than one. By Theorem 3.7, the elliptic sequence is of the form
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/
ZBo = Z, ZBi,..., ZBi, ZE = ZB;+i,   / > 0,   and    - K' = 2 ZA+ £.

Í-0

Suppose Ax Ç By We want to prove that

H°(M, 0(-Z)/0(-Z - Ax)) = C
and

H°(M, 6(-Z))-*H°(M, 0(-Z)/0(-Z - Ax))
is surjective. We know that the Chern class of the line bundle associated to
0(- Z)/0(-Z - Ax) is -Ax ■ Z = 0. By the Riemann-Roch Theorem,

dim H°(M, 0(-Z)/0(-Z-^,)) < 1.
In fact, H\M, 0(-Z)/0(-Z - AJ) = 0 only if Ax is an elliptic curve and
0(-Z)/0(-Z - Ax) is a sheaf of germs of sections of a nontrivial line
bundle over Ax. Suppose, on the contrary, that H°(M, 0(—Z)/0( —Z -
A,)) is not isomorphic to C or

H°(M, e(-Z))^H°(M, 0(-Z)/0(-Z-^,))
is not surjective. Then

H°(M, 0(-Z - AX))^H°(M, 0(-Z))
is an isomorphism. Choose a computation sequence for Z as follows:

Z0 = 0, Zx = A^ = Ay . . ., Zr/ = ZB¡, . . ., Zr¡+¡ = Z.
Consider the following sheaf exact sequences.

O->0(-Z- Z2)-»0(-Z- Z,)-^0(-Z- Z,)/0(-Z- Z2)->0
O^0(-Z- Z3)-h>0(-Z- Z2)-»0(-Z- Z2)/0(-Z- Z3)->0

o^e<-z-^j^%(-z-^.j^e<-z-zl>.l)/0(-z-TZj-*a
(3-4)

The Chern classes of the line bundles associated to 0(-Z - Z¡)/0(—Z —
Z/+I) for 1 < i < r¡ — 1 are strictly less than zero. By the Riemann-Roch
Theorem,

H°(M, 0(-Z - Z,)/0(-Z - Z,+,)) = 0   for 1 < i < r, - 1.
The corresponding long coholomogy exact sequences of (3.4) will show that

H°(M, 0(-Z - Zi+X))^H°(M, 0(-Z - Z,))
are isomorphisms, for 1 < i < r¡ — 1. By composing the maps, we get

H°(M, 0(-Z - ZBi))^i/°(A/, 0(-Z))

is an isomorphism. However, by [2], w0 c 0(—Z). Therefore, if g E
H°(M, w0), then g E H°(M, 0(-Z - ZB)). Since K0, is Gorenstein, there
exists u E H°(M — A, ß) having no zeros near yl.  Serre duality gives
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HX(M, 0) as dual to Hl(M, ß), where ß is the canonical sheaf, i.e., the sheaf
of germs of holomorphic 2-forms. By Theorem 3.4, p. 604 of [20], for suitable
M, which can be chosen to be arbitrarily small neighborhoods of A =
tt-\p), Hl(M, Q) may be identified with H°(M - A, Ü)/H\M, ß). Since/?
is the maximally elliptic singularity,

dim H°(M - A, ti)/H°{M, Q) = / + 2

and there exist co,, . . . , co/+, E H\M - A, ß) such that images of
co„ ... , co/+1, co form a basis of H°(M - A, ti)/H°(M, ß). As co is nonzero
in a neighborhood of A, we may assume that co, = /co, where/ E H\M, 0).
Moreover, we can assume that/ are vanishing at/?; otherwise we need only
replace/ by/ - /(/?). Let Ux be a holomorphic convex neighborhood of B2
such that <3>: Ux -» Vx represents B2 as an exceptional set where Vx is a
normal two-dimensional Stein space with ^(BJ as its only weakly elliptic
singular point. Observe that the K' cycle on Ux which is denoted by K^ is
equal to 2'_2 ZB + E. Since in this case, the length of the elliptic sequence is
/ by Theorem 3.9, dim H '( ¿7„ 0 ) < /. On the other hand, as (co) = 2'_0ZB, +
E and H°(M, mB) ç H°(M, 0(-Z - ZB)), we can restrict co,' =
/,co, . . . , co/+, = /+,co to (7, and get {co,/i/„ . . . , co/+,/i/,} which is linearly
independent in H\UX - B2, Si)/H°(Ux, ß). But this is impossible since
dim Hl(M, 0) < /. So we conclude that

H°(M, 0(-Z)/0(-Z - Ax)) = C
and

H°(M, 0(-Z))-»i/°(M, B(-Z)/B(-Z- Ax))

is surjective. Given a point a E Ax, let

fGH°{M,B(-Z)/B{-Z-Ax))

be nonzero near a as a section of the line bundle. / E H°(M, 0(—Z))
projecting onto / will generate 0( —Z) near a since it must vanish to the
prescribed order on A, near a and will have no other zeros near a.

In order to prove 0(— Z) Ç m, it remains to prove 0( —Z) Ç mB near
A — By There are two subcases.

Case (i). There exists A¡ Ç supp E such that E • ZE + 1 < A, • ZE < — 1 or
E = Ai is a nonsingular elliptic curve. For any A, Ç supp is, choose a
computation sequence for the fundamental cycle Z of the following form:

Z0 = 0, Z, = yj,^ = ^4,, . . . , Zr, Zr+1, . . . , Zr+k ■£, + £,..., Zr/+| = Z,
in which supp Zr Çsupp Z - supp £ and Zr+, - Zr, . . . , Zr+it - Zr = is is
part of a computation sequence for Z. If suppis has at least two irreducible
components, then our hypothesis guarantees that the computation sequence
can be so chosen such that A¡r    • ZE < 0 by Proposition 2.5. Consider the
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following sheaf exact sequence for « > 0:

Diagram A (page 299).

We claim that

2   ZBj + ZE j ■Ai< 0   for all À, Q A.

It is obvious that

Ai\ 2  ZBj + ZE j < 0   for A¡ Ç supp E.

If A, g supp E, then A¡ • ZE = A,- E by Proposition 2.5. Hence

4-,(Í¡ ZBj + ZE\ = Arl 2 z^ + i?)
17=0 U-o

= a,-- (-#') = -^,-ä: = 2-i- V^< < 0   for ,4, g supp .E.
This proves our claim.

ZF — nZ — Z;e(- 2 zB¡ -zE-nz- Zj_x y el- 2 z,

is the sheaf of germs of sections of a line bundle over A¡ of Chern class
— A¡ • (2'_o ZB_ + ZE + nZ + Zj_x). If supp E has at least two irreducible
components, from Proposition 2.5,

Auk ■ (Zr+k-i) = 2   and   A¡. ■ Zj_x = 1    for y J= r + k.
So

Thus

Aij' \ 2  ZB + ZE + nZ + Zj_x I < 1    for ally and all n.

h1\m,el - 2 zBj - z£ - «z- z,_,W- 2 za, - zE- nz- z\\

and the maps

H 1I M, el - 2  Za, - Z£ - nZ - Z,I \ -> Hl Í M, ©I - 2  Zft - ZE - nZ - Zj_x J J

in (3.5) are surjective. Composing the maps, we see that

P:H1Im,gI-2, zBi-z£-/iZ-z,)|^/f'JM,ei-2 zB-zE-z\\

is surjective for all n > 0. For sufficiently large n, p is the zero map by [7, §4
Satz 1, p. 355]. Hence

H] M,B 2 zBi-ze-Zj)
,=o /

= 0.
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If supp E = A¡ is a nonsingular elliptic curve, then A¡ • A¡ < — 2. By
Corollary 2.6, we know that e¡ = z, = 1, where E = 2e,^l,, Z = "2z,A,. From
Proposition 2.5, A, • Zj_x = 1 for ally". Therefore

Ai      2  ZB + ZE + nZ + Z'_, ) < 1    for ally =£ r + 1
;=0

and

4u,'     2   ZB +ZE + nZ + Zr) < -1
( = 0

Thus the Riemann-Roch Theorem will show that

Hx M, 0(-2zz»,. - z£- «z- z,
(=0 hH~& nZ - Z, -0

for ally and n. A similar argument will show that

//' ^.6|-2 zB-zL
1=0

-■) = 0.

In particular,

H]
i
2
i=0

m,0 -2 zb-ze-a ■) = 0.

Therefore

#°(m, ei- 2 zA - z£ H ̂ h°Im, g(- 2 z, - zE j/ei -2 z* - zÄ- ^j)

is surjective. We remark that the above argument is also applicable to the
following situation. With notation as above, there exists Aj Ç supp E, Aj ^
A:   , such that A, ■ ZF < 0.

Case (ii). Supp E has at least two irreducible components and there exists
A, Ç \E\ such that e, = 1, A, ■ ZE < 0 and A} ■ ZE = 0 for all ̂  Ç |£"| where
■4; ̂  Ay The proof of Case (i) fails only because A¡r+k ̂ A¡, i.e., A¡^ ■ ZE <
0. Suppose first that

Ax nAUi = AX r\A,*0.
Choose a computation sequence for Z with E - Zk, A¡k = A¡, A¡k+¡ — Ax. By
Proposition 2.7,

Hx M,e\- 2 zB-z,
/ = 0

-*) = 0   for ally.
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Hence

H°im,e(- .2 zBi-zEJUff°jm,el- 2 zBi-zÄJ/ef - 2 za,- z--z4+I)J

is surjective. It follows that

H°Ug(-Ízb-ze)) and *f«•**-*-*>    ,)
\     V  i-o   '       /*/ \     e(-X-oZB,-zE-zk+l)l

have the same image R in

0 -> tf °  M,

#°(m, ei- 2 zBi - zJ/el - 2 z^ -zE- ax\\.

»(-XU-* - z# --») \      „/ ei-s'-oZjk-Zi)
-V I -» ff °   3f,

e(-2i_oZ, - z£

6(-2:-oZfi-Z£)      \

e(-2!-0zfll-z£-zit) j"*'

is an exact sequence. Thus the image of

©(   ¿•¡-¡¡Zb, — ZE     Zk+X)

H°\M,

which is injected into

M, ©I - 2 zB¡ -ZE-Zk 1/0
( = 0 \      ,=0

Zb¡     ZE     Zk+]

H° M,e -2 zB -z,
<-o ■M-!■^Ä ^£        ■" 1

via the natural map is contained in R. If

H° M,el- 2 zB, -zE-zkj/0(- 2 Zj, -zE-zk+x\ *o,

then the elements of R have no common zeros on A, — (^4, n -4,) as sections
of the line bundle LonAx associated to 0( — 2'=0Zs — Z£)/6(-2'_0Zb -
ZE-AX).U

H" m,b[- 2 zBi -zE- zA/el- 2 zBi -zE- zk+x j = 0,

then .4, • (2'=oZB. + ZE) = 0. Hence

1 m, el- 2 zBi - zE y el - 2 zB¡ -ze-a = c
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We claim that

S. S.-T. YAU

h°Im, e|-2 zBi - z£ )) ->/Wm, ei- 2 zBi - ze\/g(- 2 zB¡ -zE- a])

is surjective. It suffices to prove that the map is not a zero map. Suppose it is
the minimal resolution; then ZE = E and hence A¡ • ZE < —2. So

A,-\ 2  ZB+ZE)< -2
Li-0

and

H°

The image of

2
j = 0

M, ©   - 2 ZBi - ZE \/B\ - 2 ZB¡ -ZE- A,
i
2
i = 0

> 3.

o:H°(m,g(- 2  ZBi-ZEjj

^//°(m, el- 2 zai - z£ J/ef- 2 zB¡ -zE- a)\

is a subspace S of codimension 1 in

H°
i

M,e -2 z.-z£ /© -2 z„-z
/

«i
i' = 0 /        \      / = 0

Hence the elements of S have no common zeros as sections of the line bundle
L, on A¡ associated toi i

©1-2 zBi-zJ/©(-2 zB¡-zE
i = 0 /=0

by Proposition 2.8. If tt is not the minimal resolution, we still get that the
elements of S have no common zeros as sections of the line bundle L, oil4,
associated to

2 Za-Z* 1/01-2 Zb-Ze-a\
¡=o ( = 0

by an easy case-by-case check using Proposition 2.8 with Y = ^!¡_0ZB¡ + ZE.
It follows that

h°(m, g( - ¿o zBi - ze\\^h°Im, el - 2 zBi - zE )/g( -2 za, - zE - ^,J j

is not a zero map and, hence, a surjective map.
To finish the proof of Case (ii), it remains to consider those Ax g\E\ such

that Ax n A¡ =0 and the computation sequence for Z starting from Ax in
order to reach \E\ must first reach A¡. Choose a computation sequence for Z
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with E = Zk, Ak = A„ Ayt n A, ¥0, A¡t+: = AX,AXZ |Zfc+,_,| and Ay,
k + 1 < y < k + t, are distinct to each other such that A¡ Ç \E\. By Propo-
sition 2.7,

Hx M0|-2 zB-zE
i = 0

-«) = 0   for ally.

Hence

h°Im, el-2 zBi - zE X\-*h4m, el - 2 zB¡ - zE J/el - 2q za - z£ - z4+,j)

is surjective. It follows that

h°Im, e(-2 z^-ZeJ) and Hl M,
e(-si-oZ»-z»)

e(_2,_0za - z£ — z4+()

have the same image R in

h°Im, g(- 2 zB/ - zJ/el - 2 Z, - zE - aM.

0->H°\M,

H°\M,

©(      2,-oZft Z£ Zk + ,_i)

0(~2,_oZs. — Z£ - Zk+I)

e(-2',-oZA - z£)

.//° K-2'i-oZa-Zb)

i      e(~,?oZi,'"Z£~Z'fc+')J

*(    S/.oZs,      Zk+I_¡)

is an exact sequence. Thus the image of

m.e(- 2 zBi -zE- z,+,_, )/©(- 2zB¡ -zE- zk+l
i = 0 /        \      ,=0

H°

which is injected into

H° M,©(- .2 zB¡-zE)/©(-2o Z ».      Z£      ^4,

via the natural map is contained in R. If

H° m, e( - 2 zB¡ -zE- zk+i_x )/©(- 2 zBi -zE- zk+\
1 = 0 1 = 0

*o,

then the elements of R have no common zeros on Ax — (Ax (~) Aik+I_) as
sections of the line bundle L, on A, associated to

/
2

i = 0
e -2 z„-z£ /© -2 z„-z£2

i = 0
-4
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If

H° m,bI- 2 zBi -zE- zk+t_x y el- 2 zB¡ -zE- zk+l\ = o,

then ,4, • (2'=0zb + ZE) - 0. Hence

i/° = C.m,el- 2 zB¡ - zA/el- 2 zB¡ -zE- a\

But by induction, we know that the elements of the image of

h°Im, el-2 zBj-z£JJ

-*h°Im, e(-f2 zBi - zA/ei- 2 zBi - z£ --W-.jJ

have no common zeros on /I, - (/I, n A¡ ) as sections of the line
bundle L,       on A¡      associated to

4-2 z- - z£ j/el - 2 zBi - z£ - ¿4+<_l
It follows that

h0Im,6Í-2 zfli-z£jJ^//0JM,el-2 zB-z£)/eí-2oza-z£-^1Jj

is again surjective. So far we have proved 6(- Z) Ç m©. But w© Ç 0( — Z)
by [2]. This completes our proof of the theorem.

Proposition 3.13. Let tt: M -> V be the minimal good resolution of a normal
two-dimensional Stein space withp as its only maximally elliptic singularity. Let

ZBq = Z, ZB|, . . . , ZB¡, ZE = zB(+i

be the elliptic sequence. Then for any 0 < h < /, there exists f E
H\M, 0(-2*=oZB)) such that f £ H\M, 6(-2*Í¿Zb.)). /« /ac/ f/ie
vanishing order of f on Aj is precisely 2?=0 ¿A> where ZB¡ = 24 BizkAk and

AjQBk+l.
Proof. By the definition of maximally elliptic singularity, dim H '(M, 0 )

= the length of the elliptic sequence. By the proof of Theorem 3.9, we know
that maximal ellipticity implies

H ' (M, e^_A) = Ch+i   for all 0 < h < I.

Moreover,

are surjective. Consider the following commutative diagram with exact rows:

Diagram B (page 305).
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Since H \M, 0(-2'=ozB| - ZE)) = Oby Proposition 2.8,

H°(M,B)^H°(M,B^b+Ze)
is surjective. It follows that

H°(M, b)^h°(m,b^_oZb)
are surjective for ail 0 < h < /. An easy diagram chase will show that there
exists / E H°(M, 0(-2*=oZB,)) but / g H\M, 0(-2*:¿ZB)). Let Aj ç
Bh+X. Choose a computation sequence for ZB    of the following form:

Z0 = 0, Z, = A„ ...,Zr    = ZB   .u »      I j' »      r,_h Bh+,

Look at the sheaf exact sequence:

Diagram C (page 305).

If the vanishing order of / on Aj is larger than 2'=0 BZj, then the usual
cohomology    exact    sequence    argument   will    show    that   / E
H°(M,B(-2?Io'Zb,))' which is a contradiction.   Q.E.D.

The following corollary is a partial converse of Theorem 3.2.

Corollary 3.14. Let V be a normal two-dimensional Stein space with p as
its only maximally elliptic singular point. Let

z«0 = z, zB¡,..., zB¡, zBi+i = ZE

be the elliptic sequence. If there exists Ax Ç \E\ such that the coefficients of Ax
in ZB¡, 0 < i < /, are equal, then there exist f E H°(M, 0), co E H°(M -
A,ü) such that co,/co, . . . ,//+1coforms a basis of Hl(M, 0).

Proof. An easy consequence of Theorems 3.7, 3.11 and Proposition 3.13.
The following theorem will be useful in calculating the Hubert function
dim mn/mn+x.

Theorem 3.15. Let tt: M -» V be the minimal good resolution of a normal
2-dimensional Stein space with p as its only maximally elliptic singularity. If
ZE- ZE < — 3, then

H°(M, B(-Z))0cH°(M,B(-nZ))^H°(M,B(-(n + 1)Z))
is surjective for all n > 1. If we assume further that the length of the elliptic
sequence is equal to two, then the above map is surjective for all n > I. In this
case,

mn~ H°(A, B(-nZ))   for all n > 0
where A = tt~x(p).

Proof. It is true that H%A, 0(-Z)) = proj lim H°(U, B(-Z)), U a
neighborhood of A. Since Z is minimal, H°(A, 0(-Z)) = m. By Theorem
3.7, the elliptic sequence is of the form

/
ZBo = Z, ZB¡, . . ., ZB¡, ZE   and   K' = - 2  ZB- E.

i=0
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Step 1. We are going to show

Hl M0|-2 zBi-zE
i = 0

I   ®CH° M,bI

f,BÍ-(n

M,B\-nZ- 2 ZB-ZE
i=i

+ 1)Z - 2 2  ZB¡ - 2ZE
i=i

is surjective for all « > 1. It suffices to show
/        e(-2{.0z8,.-z£)    \ /        e(-«z-si.1zfli-z£)
\       G(-2Z -2_,Z4- ZE)       C      1       e(-(/,+ l)Z-2_,ZÄ-Z£)

G(-(n+\)Z-22Z'i.xZB¡-2ZE)
h°\m, —)--

G(-(n + 2)Z - 2%.^ - 2ZE)

is surjective for all « > 1.
Let us first demonstrate this fact. We first show that the image of

(3.6)

contains

m,0|-2 zB-zE
i = 0

Ü1 M, 0   -nZ-2  ZB -Z£
i = i

tf° M, 0Í

for some m. Let

/„...,/e#°

mZ — 2 2  ZB — 2Z£
i = i

M, 0|-nZ- 2 ZB-Z£
i=i

generate B(—nZ- 2'_,ZB - ZE) as an 0-module. Proposition 2.8 and the
proof of Theorem 3.12 guarantee that such/'s do exist. The 0 -module map

/
p: © 0   -Z - 2  ZA - Z£ I -* ©I -(« + 1)Z - 2 2 ZBi - 2ZE I

given by (g,, ...,&)-* 2/g, is then surjective. Let K = ker p.

o->ä-->© el-z- 2 z^-zA X e(-(/i + i)z-2 2 zÄ -2z£ J^o

is exact. Multiplying by 0 ( - kZ), we get

Diagram D (page 308).

with the vertical maps the inclusion maps, is commutative. The verification
that the first line is exact is the same as the verification that [19, (5.5)] was
exact.

Diagram E (page 308)
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is commutative with exact rows. By [7, §4 Satz 1, p. 355], o^ is the zero map
for sufficiently large k. Then given

h<=H° M, 0   -(« + k + 1)Z - 2 2  ZB - 2Z£
i = i

A« (A) = Pf(g) for some g, by exactness. Letting m = n + k + 1, we have that
the image of

i/c M, 0|-Z-2 zB-zE
i = i

®CH° M, B \-nZ ízB¡-zA

contains

H° M, 0   - mZ - 2 2  ZB - 2ZE
\ '=1

as required.
If m > n + 1 > 2, we shall show that the image of

i/°

contains

2
i = 0

^.0-2 zB-zE \   ®CH° M,bI nZ-'Z ZB¡ - Zt
i=i

H° M, 0   -(m - 1)Z - 2 2 ZB¡ - 2ZE
i = i

By induction argument, we will be done. Look at the diagram:

Diagram F (page 309).

Since m > 2,

Hx M, 0 [ - mZ - 2 2  ZBi - 2ZE
i = i

= 0

by Proposition 2.7. Hence the vertical sequence is exact. We also notice that
the maps

H°

H"

M, 0 -z- 2 zB-zE
i = i

H' M,
0(-Z-2!-,Zg(-Z£)
B(-2Z-%_XZB¡-ZE)

M, 0   -(m-2)Z- 2  ZB- Zh
i=i

H° M,
B(-(m-2)Z-lli_xZB¡-ZE)

B{-{m-\)Z-%_xZB¡-ZE)
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are surjective because

Hx
M,B\-2Z- 2  ZB - ZE

1 = 1

= 0

= HX M, 0   -(m-l)Z-2  ZB-Zt
i
2i=i

by Proposition 2.7. The horizontal map in (3.7) is surjective by hypothesis. It
follows easily that the image of

contains

m,0|-z-2 zB-zt
1 = 1

j   ®H°  M,Bl-nZ- 2 ZB¡ - ZE J

Hc M, B\ -(m - 1)Z - 2 2  ZB¡ - 2Zl
i = i )

It remains to prove (3.6) is surjective for all n. The proof breaks up into
three subcases.

(i) There is an A¡, call it A„ such that ZE • ZE + 1 < Ax- ZE < —2.
(ii) There is an A„ call it A „ such that A, • ZE = ZE • ZE.
(iii) A¡- ZE = — 1 or 0, all A¡ Ç supp E. Take A, • ZE = — 1.
In case (i), all irreducible components are nonsingular rational curves.

Choose a computation sequence for Z with E = Zk, Zr;+i = Z and A¡k = Ax.
Consider

„/ G(-Z-B-ZE)      \ J       G(-nZ-B-ZE-Zj_x)\

J        \       6(-Z-B-ZB-A¿) \ G(-nZ-B-ZE-Zj)   j

■ Ä°   M,
6(-(n + 1)Z - 25 - 2Z£ - Z,-.
S(-(« + 1)Z-2B-2Z£ (3.8)

where B = SLiZ-,
To show that t in (3.6) in surjective, it will suffice to show that r, in (3.8) is

surjective for ally. Indeed, since all of the first cohomology groups

Hx A/,oJ-/iZ-2  ZB-ZE-Zj\ = 0   for ally,

by Proposition 2.7,

H° m, e ~nZ - 2  ZB¡ - ZE L
,=i /

/©   -(« + 1)Z -2 zBi-zA
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can be written via successive quotients as

B(-nZ-B-ZE-Zj) ]
0^H° M,

H°

H(

B(-(n + \)Z- B - ZE)

B(-nZ-B-ZE-Zj_x)
B(-(n + \)Z- B - ZE)

B{-nZ-B-ZE-Zj_x)
B(-nZ- B - ZE- Zj)

where we denote B = 2'=,ZB.

M,

M, ->0,        1 < j < r!+x - 1,

h°Im, e[-(/i + 1)Z - 2 2   ZB - 2Z
i-i

;)/ei-(n + 2)Z - 2 2  ZB - 2Zt■))

also can be written via similar successive quotients. Moreover,

H] Af,e(-.2  ZB-ZE-Ai
1=0

= 0

by Proposition 2.8 and the proof of Theorem 3.12. Now consider the
commutative diagrams:

Diagram G (page 309),

1 < y < rl+x, where we denote 2'=0ZB, = G and %=XZB¡ = B. Thus if (3.8)
is surjective for ally, (3.6) is also surjective.

Suppose that the target space in (3.8) is nonzero, i.e.,

- Ai ■ ((a + 1)Z + 2 2  ZB¡ + 2ZE + Zj_x    > 0.
i = i

We need

-^•iz + 2 zB¡ + zAzB¡ + zF\>o

and

- At- InZ + 2 ZBi + ZE + Zj_x j > 0.

Fory ¥ k, Atj ■ Zj_x = 1. If -Atj ■ (2!i=oZBi + ZE) > 0, then

- AAnZ + 2  ZBi + ZE + Zj_x J > 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MAXIMALLY ELLIPTIC SINGULARITIES 313

If -Atj ■ (2i_oZ- + ZE) = 0, then

-AÁnZ+ 2 ZBi + ZE + Zj_A

= -Ah ■ Un + 1)Z + 2 2  ZBi + 2Z£ + Z,_, j > 0.

For j = k, Aik • Zk_x = 2. By construction A¡k ■ ZE < —2 and so (3.8) is
surjective for ally.

Let us now do case (ii). Suppose supp E has more than one irreducible
component. The proof of case (i) fails only because the maps

H° m,0Í-2 zB-zA

HL A/,o|-2 zB-zE
i = 0

W-¿ z^-z,--^)
and

H° Mt0l-2 Z^-Z-j

i/° *, el- 2 zB/ - zE\/el- 2 zB, - z£ - 4J

need not be surjective, where A¡    Ç\E\ and the computation sequence
starting from A¡    in order to reach |is | must first reach A,. In (3.8),

H°\M,
G{-%.0ZBi - ZE) \ = h°Im, K-2i-oZ*-ZÄ)

ö(-2i-oZA -zM-Ak) )        \     e(-2í_0zaí - _w - ^i)

must be replaced by the subspace S of Proposition 2.8.

Also,
i'=0

dim S = -AÁ 2  ZB + ZE    = -.4,   ZE= -ZEZE>2.

dim //°( a/, el-«z - 2 z4 - z£ - z»_, J/ei -nz - 2 z^ - zE - zk\\

1,1/= -Ax J nZ + 2   ZB + Z£ + Z*_, J + 1 = -Ax ■ ZE - 2 + 1 > 2.■)
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Under these conditions

B(-nZ-%_xZB¡-ZE-Zk_x)
rk: S ®c H° M,

->H°

B(-nZ-%,xZB¡-ZE-Zk)

{-{n + \)Z-2%=xZB¡-2ZE-Zk_x)

9(-(« + 1)Z - 22U,ZB/ - 2Z£ - Zk)
M

is still surjective. Namely, consider the subspace T of S of sections which
vanish at some given point, say a E Ax. T has codimension 1 in S. If all the
elements of T have a common zero at some point b ¥= a E A, or if all have a
second order zero at a, then T, having codimension 2 in

i/° M, 0 2 zB;-z£)/©(-2 zB¡-zE-Aik
i=0 1 = 0

represents all sections of a suitable line bundle over Ax. Then rk is readily
seen to be surjective, as in the proof of [19, Lemma 7.9, pp. 144-146], but
more easily. If the elements of T have no common zeros, then think of T as
codimension 1 subspace of the sections of a line bundle and replace S by T in
the previous case. Eventually we see that rk is surjective when dim T = \.

Also in (3.8),

H° m, el - 2 zB¡ - zA/el- 2 zB¡ -zE- aUí
i'=0 /        \      1=0

must be replaced by subspace Rl+k which is the image of

«¡W: H° ^.0-2 zB-zE
i=0

H° M,e -2 zB-zE \/e -2 z.-zÁ
i = 0 1=0

<U.)

if q>l+k is not surjective. By the proof of Theorem 3.12, case (ii), we know that
Rl+k has at most codimension 1 in

Hl M,e -2 zB
1 = 0

)/e{-iz-- ZE - A,

Moreover, the elements of Rt+k have no common zeros as sections of the line
bundle on A¡    associated to

»i-2zB;-z£j /©|-2 zBi-zE
i = 0
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We claim that if tpt+k is not surjective, then

dim h°[m, el-nz - 2 zB¡ -zE- zl+k_x J/el - riZ — 2 zB -z„,))

315

>2.

Since <p,+k is not surjective, it follows from the proof of case (ii) of Theorem
3.12 that

- Aik+i ■ I 2 zB¡ + ZE]>\.

We will prove that actually

-A¡k+i[ízB¡ + zE)*i.

For if -Aik+i ■ (2',-fj ZBi + ZE) = 1, then

1 = 0
a/, © - 2 zB¡ - zE /© - 2 zBt -zE- Ait+i

i = 0
= C2.

An inductive argument, as in the proof of case (ii) of Theorem 3.12, will show
that there exists/ E H°(M, 0(-2'=oZB - ZE)) such that the image of/in

H° M, 2 zB(-z£)/©(-2 zB¡-zE
i=0 /        \      i=0

as section of the line bundle associated to

C9 2 zB¡ - zE ]/©(- 2 zB¡ -zE- Ait+i
i = 0 /        \      1=0

has no zero on Aik+¡ n A¿~   . Hence, the image of/cannot be in the image of

- 2 zB¡ -zE- zk+l_A/el- 2 zB¡ -zE- zk+t
i=0 /        \      i=0

which is injected into

= C

H° M,B\- 2  ZB-Z1
i = 0

j/ßj-Ez,-^-^,)
via the natural map and which is contained in R,+k. Hence tpl+k is surjective.
This contradicts our assumption. We conclude that

4j 2 zBi + zE) > i

and, hence,

dim.^0JM,ei -■ nZ — ¿j  ZB. — Zi
i-i

-z,+*_,J/ei-2¿-inZ — 2  ZB. — ZE — Z,,+k)) >2.
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Now repeating the argument above, we get

®(-nZ-Z'i_xZBi-ZE-Zt+k_x)
r,+k: Rt+k ®c H

H"

M,

M,

B(-nZ-2'^xZBi-ZE-Zl+k)

©(-(« + 1)Z - 2%_XZB¡ - 2Z£ - Zt+k_x)

©(-(« + 1)Z - 22{_,Z- - 2Z£ - Zt+k)

is surjective.
In case E = A, = ZE is an elliptic curve, we know that

H°\M,
e(-2!-0z^-z£)

G(-%_0ZB¡-ZE-AX)
H°\M.

){-riZ-%_xZB¡-ZE)

H°\M

){-nZ -%.xZBi- ZE- Z,)

6(-(n + 1)Z - 22;_,ZB| - 2Z,

6(-(n + 1)Z - 22l_,ZB/ - 2Z£ -Z,)j

is surjective. This is shown in [30]. The result follows from the proof above
and the proof of case (i).

in case (iii), the proof of case (i) fails only because

h°Im,gI-nZ - 2   ZB_ - ZE- Zk H nZ — ¿j  Zs — Zi -z,))-o-

We can still get

+ 1)Z - 2 2   ZB - 2ZE

+ 1)Z - 2 2  ZB¡ - 2ZE

as an image as follows: There are two subcases. First, suppose that Ax can be
chosen so that Ax • ZE < 0 and e, > 1 in E = "Ze¡A¡. In this subcase ZE = E.
Then choose a computation sequence for Z with A¡ • ZE < 0, E = Zk,
Ax = A¡k and with Zq, q < k, such that A¡ = Ax, Ax £ supp(is - Ax — Z)
and A¡- Zq_x < 0, i =£ l, A¡ ç supp E. Such a computation sequence can be
formed by letting A¡ = Ax only when A¡ Ç\E\ cannot be chosen otherwise.
Then also 0, Zq — Zq_x, Zq+X — Zq_x, . . ., Zk — Zq__x is part of a compu-
tation sequence for ZE = Zk, which, by Corollary 2.3, can be continued to
terminate at A,. Recall that Ah ■ ZE < 0 by construction. Hence

Hx m,bI nZ - 2  ZB¡ - ZE- (Zk - Zq
1=1

■■>) = 0
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and also

H1 M, 0   - 2  Z
\      i=0

B, = 0.

In place of (3.8), we use

e(-2'i-oZBl-zE-Zq_x)
H°\M,

0(-2i.oZ- - ZE - Zq)    I

8JM ^>(-^-%.xzBi-zE-{zk_x-zq_x))\
\  '  e(-nz--L'i.lzBi-zE-(zk-zq_x)) )

I       e(-(n + \)Z - 2%_XZB, - 2Z£ - Zk_x ) ^
-*H°\ M,

e(-(n + \)Z - 2%.^ - 2ZE - Zk)    )

Look at the following commutative diagram:

Diagram H (page 318)
with the vertical column on the right exact. Our result follows easily.

In the other subcase, there must be Ax, A2 and A3 all distinct, such that
A i • ZE < 0, 1 < i < 3, and e, = 1, 1 < / < 3. Choose a computation
sequence for ZE with E = Zk such that Ah ■ Ax > 0, A¡k = Ax, and such that
when Zq with q < k, A¡ = A2 is reached, A,, • Zq_ x < 0 for / =^ 1, 2. We may
suppose A3 c supp Zq_x, for otherwise we reverse the roles of A2 and A3.
Since A¡ • Ax > 0 and ex = 1, Zq_x + Ax is part of a computation sequence
for ZE. 0, Zq — Zq_x, . . . , Zk — Zq_x is also part of a computation sequence
for Zp. Therefore

H] M,e -2 z,
i=0

-«-i = 0

and

H] m, el nZ - 2  ZB - Z£ - (Z* - Zq_x)
i=\

= 0

by Proposition 2.7. In place of (3.8), we use

h°\m,
e(-G-zE-zg_x)

6(-G-ZE-Z._x-Ax)
H°\M,

e(-nZ- B - ZE- (Z,•k-l •-1-\ »

e(-nZ-B-ZE-(Zk

/     e(-(» + iH°[M, -V-
\ ©(-(» +

1)Z - 2B - 2Z£
1)Z - 2B - 2Z¿

■M
-z,-,)\
-zj   )

where G = 2'=0zb, and 5 = 2'=,ZB/
Look at the following commutative diagram:

Diagram I (page 319)
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



318 S. S.-T. YAU

N

N*

N
I

."<N

N*

N

N

N

N

N

N

N'

M

as
î

a;
Î

&3
î

N

N

N_

W
I

Nc
I

N

N
i

W
I

N

N
I

N

N
i

N

N

W

N

_5_
a:

N
I

N

N
i

Nc
I

N

N
i

W
I

N

©
a:

N
i

No

W~
I

N
I

n!
w
I

N

N
I

N

I

-1«N

N

N

N

No
I

W

N
I

.N̂

N

W

o
as

o
33

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MAXIMALLY ELLIPTIC SINGULARITIES 319

N

O
a3

N

N

N
rs

as
î

N
I
mN

rs
I

O)
(S
I

N

N
I

N
rs
I

03
cs
I

N

+
c

I
©

a:
î

<
o
<

N
I

05

Oa;

®

N
I

-N̂
I

05

I
N

N
I

«O
I

N

O

as

N
I

N

N

05
I

N
E
I

N

as

N
I

03

N
rs
I

S3

O
as

N

O
as

N
I

05
I

N
I

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



320 S. S. T. YAU

with the vertical column on the right exact. The results follow readily. This
completes the proof of Step 1.

Step 2. We are going to show that
(3.9) We can get

H° M, 0(-(/i+ l)Z)/6Í-(n + l)Z-22 ZB-2ZE

as an image for all n > 1.
The proof of (3.9) breaks up into two subcases,
(i) supp E has more than one irreducible component,
(ii) supp E is a nonsingular elliptic curve.
In case (i), choose a computation sequence for Z of the following form.

Z0 = 0, Z, = Ait ■ ■ ■ Zk = Zk_x + Ak = E, . . . ,
Zrg = ZE, . . . , Zr¡ = ZB¡, . . . , Zr¡ = ZB¡, ..., z,í+i = ZB¡> = z,

where A¡k = A, and A, • ZE < 0. Consider

/        e(-z)    \       „/     e(-"Z-2t,zB/-z,_,)\
yB        B .,: i/°   A/, —-^-—- \®CH° \M, —,---¿- \y**-.*.*     y    ei-z-Ay))  c    \      e(-«z-2?.,zBi-z,) /

(-(w + pz-s^z.-z,.,)^

(-(»+ I)Z-2*_,ZÄ-Zy)   j'

0<y < rA+„ -1 < A < /- 1,

ä°U,

«i        e(-z)    \
n.....«j     y     e(-z-A¡) )

e(-nz- 2',.,Za - z£ - zí.,z. - Z,_, )
c       1        6(-«Z-S'wZ,-Z£- 2Î_,Z. - Zy_, )

/       G(-(« + l)Z-2í_,ZB|-Z£-2*
i/°   A/,

î.,z.-z,_,)\

2*.,ZB|-Zy)   /'e(-(« + i)z - %„xzB¡ - zE - 2*

0 < y < rA+„-l </></- 1.     (3.10)

To show that (3.9) is true, it will suffice to show that yB B .j, y'B ».j are
surjective for all 0 < y < yA+1, —1 < h < / — 1. Consider the following
sheaf exact sequences:

e(-nZ-G„ -Zj) e(-nZ-Gh-Zj_x)       fl(-iiZ - Gh - Zy_,)
0_> 6(-nZ-2G,-2ZE) "* S(-/tZ - 2G, - 2Z£) ~*   0(-/iZ - GA - Z,)

6(-/iZ-C/-ZE-GA-Z>)       Ö(-/iZ-G,-Z^-G,,- Zy_,)
"* e(-nZ-2G,-2ZE) * 6(-nZ - 2G, - 2ZE)

e(-nZ-G,-ZE-Gh-Zj_x)

e(-nZ-G,-ZE-Gh-Zj)
• 0, -1 < A < /- 1, 1 < j < r¡l-h>
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where we denote G_, = 0, Z0 = 0, Gh = 2/_,ZB/ We claim that

H° uel-M,6-«Z-S  Z. - Zj_t   /6   -nZ - 2 2 Z-j " 2Z,-i

Hc r,ei 5-.)/e(- »iM, ©( -«Z - 2 Zji - Zj.A/ei-nZ - 2 z- - Zj

are surjective for all -1 < h < I - 1 and 0 < j < rh+x. The Chern class of
line bundle associated to

(-
e\-nz- 2 zB - Zj_

1 = 1

is

,(.

:y_,J/e|-iiz-¿ zBi-z,j

-^[nZ+2   Z-+Z,_
/—■ l

which is less than zero for y > 1 and 0 for y = 1. Therefore for/ > 1, the
claim is trivially true because

For y = 0,

,e|m,e\-nz- 2 z.,- z,_
1= 1

-M-nZ - 2  ZÄ/ - Zj
Í-1 0= 0.

i/< .ei-iiz-i z-W — «Z — 2  ZR — Z
» = i ■) = c.

By Proposition 3.13, we know that there exists

f<EH°

such that the image of/in

,el-nz- 2 zj

#° ,ei-«z-2zBij/©i - nZ - 2  ZB - Z,
/=! )

is nonzero. It follows that
- nZ - 2*_0ZA )

H° \M, ——K-
\       6(-nZ{-nZ-21'i.xZB¡-2ZE)

is surjective. We next prove that

/       \    e(-«z-2t.1z.-z1) j

H]
f      ©(-nZ - 2//.,Z- - Z£ - 2*_,ZB| - z,_,)

i"> -7-\—e(-nz - %.xzBt - Z- - 2?_,Z-. - z,)
= 0

for — 1 < h < / — 1 and 0 < y < rA+1.
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el-nz- 2 zB¡-zE- 2 z- - Zj_x )/e| -«z - 2 zB, - zE - 2 z* - Zj j

is the sheaf of germs of sections of a line bundle over A, of Chern class
-A, ■ (nZ + 2'_iZs + ZE + 2*_,ZB + Z,_,). Recall that by construction
A¡k • ZE < — 1. Therefore,

- Ah- \nZ + 2   ZB, + 2  ZS/ + Z,_,     > -1.
/-l j=i

By the Riemann-Roch Theorem, we have

,.)

H M,
e(-nZ - %,XZB¡ -ZE- 2*_, ZB¡ - Zj-i)

= 0.
e(-nZ - 2',.i ZB¡ -ZE- 2*_, ZB¡ - Zj)

Now the usual long cohomology exact sequence argument will show that

e(-nz - 2!„ zBi -ZE- 2?., ZB¡ - Zj_x)

e(-nZ-2%_xZB¡-2ZE)

e(-nz-2:.,ZB¡ -ZE-2*..ZBi - Zk_x)

e(-nZ - 21., ZBi -ZE- 2*., ZB¡ - Zk)

Hl M,

H° M,

is surjective for all   — 1 < h < / - 1  and 0 < y < rh+l. So far we have
proved

¿7<
<

M, e(-nZ)/e\ -nZ - 2 2  zb, - 2Z£
1 — 1

can be written via successive quotients.

e(-nZ-Gh -Zj_x)
e(-nZ-2G,-2ZE) )

I e(-nZ- Gh- Z¡)   \ i

\      eC-az-c*-^) /
I e(-nZ -G,-ZE-Gh- Zj) \ I       e(-nZ - G, - ZE - Gh - Zj_x) \

°-*H  [ 6(-nZ-2G,-2ZE) J~*B  \M' 6(--Z - 2G, - 2ZE) )6(-nZ - 2G, - 2ZE)

ze ~ Gh - Zj_, )(e(-/iz- g,-
M, —,--

0(-/iZ- G, -Z£-Gh-   Zj)
•0,

— 1 < A < / — 1, 1 < y < r,_h, where we denote G_, = 0, Z0 = 0, G„ =
yh   7•¿i-i^ä,-

By the proof of Theorem 3.12, we know that

H°(M, 0(-Z))-> Jï°(il/, 0(-Z)/0(-Z - A,))
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is surjective for all A,, Ç Bx. Since n > 2,

hxIm, el -nZ- 2 zA.-z,.))«o

= Hi I M, el -nZ - 2   ZBi - ZE - 2   ZA - Zj J I

by Proposition 2.8. Now look at the following commutative diagrams:

Diagram J (page 324),

— 1<A</— 1, l</< r,_h, where we denote Gh = 2*_iZ^, G_, =0,
Z0 = 0. Thus if yB B.d and y'B B.j are surjective V— 1<A</— 1,
0 < j < rh+i, then (3.9) is true.

By the Riemann-Roch Theorem, the target space of yB ...yBhj 1S nonzero
only if j = 1. In that case -Ati • Z = 0 and -Ah ■ (nZ + 2*.^) = 0.
Hence yB B is surjective for all h and y. Suppose that the target space of
y Bo,.... b„.j is nonzero, i.e.,

- Ah • ((«
/ h

+ \)z + 2 z- + z£ + 2 z- + Zj_
i=i i-i

:y_,J>o.
We need

- A,. ■ Z > 0   and    - A\. • I «Z + 2 Zs + Z£ + 2 ZB + Zy_
/
2i=i í-,)>a

But this is obvious because A¡ • Z — 0íotA¡ C5,.
7 7

In case (ii), ¿¿ = Z£ = >1, is a nonsingular elliptic curve. We first show that

H°(M- w
0(-Z)

Z-Ax)
®H° M,

0(-nZ-2?.,Z.)
0(-fiZ-2î-,Z- -Z,)

i/1 A/,
e(-(fi + i)z-z»_1z.)

e<-(ii + l)Z.-2*.IZ4-2I)

is surjective. The Chern classes of the line bundles associated to

(3.11)

0(-z)/0(-z - ax),  et-nz - £ zB)/el-nz - 2 zBi - z, j

and

0Í-(1 + n)Z - 2  ZB)/el-(n + \)Z - ¿ ZB¡ - Z, j,
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respectively, are equal to zero. By Proposition 3.13, there exist

/oe//°(A/,0(-Z)),   fnthBH°

fn + \,h e H°

M, 0 \-nZ- 2 ZB¡
\ i-0        ',

M, 0   -(/i+ 1)Z- 2 Z-.

the images of/0,/nA and/n+1A in

//°(A/,0(-z)/e(-z-^,)),ifo|M,ei-nz-2 zA/el-nz- 2 zB(-z,j)

and

Hc ,©í-(*i + l)Z-¿ ZB)/el-(n-(n+ 1)Z- 2 ZB - Z
h

S
í-1

-)

respectively, are nonzero. It follows from the Riemann-Roch Theorem that

H°(M,6(-Z)/e(-Z-Ax))^C,

H( M, 01 "Z-2  ZBi)/0(-nZ-2 ZB-ZX
i = i

^C

and

H°lM,el-(n + l)Z- 2 Zfi/j/0Í-(H + l)Z- 2 z^-z.jUc

Hence the maps (3.11) are surjective. We next show that

e(-/iZ-2:_,Z4-z£-Z*_,zB,)
\    e(-z-Ax) )       \    6(_/lZ_2/

h°\m,

-iZ^     ZE     ¿•i-.\ZB¡     Z, )

e(-(w-n)z-2:.,zA-z£-2t1Z5,)    \

0(-(« + 1)Z - 2(.,ZB( - Z£ - 2î_,Zfli - Z, ) I
(3.12)

is surjective. The Chern class of the line bundle associated to

/ / h
e I - nz - 2 zBt - zE - 2 zB

\ ¿-i i=i

is equal to

)/e(-«z-í Zjj — Z£     ¿i ZB¡
/-i

t"z.)

- ¿,-   rtZ+ 2 zÄ/ + Z£ +I, A= -AX-ZE > 3.
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The Chern class of the line bundle associated to

0Í-(/«+ i)z- 2 zB-zE - % zA/el-(n + \)z - 2 zBt-zE- 2 zBt - z, j

is equal to

- AMn + \)Z + 2  ZB¡ + ZM + 2  Z-, J =—— ./i i   *   Zr    (P    J.

Therefore

dimtf0 M,

= dim //°

0(-/iZ-Sj._1Z-.-Z--2*.1Z-.)

0(-nZ - 2/<_,Z- - ZE - 2?.,Z- - Z,)

0(-(/i + 1)Z - 2i.,Z- - ZE - 2*_,zA)
M,

e(-(- + i)z - 2Í..Z. - z- - 2*.iZÄ( - z.)

By   what   we   have   already   proved,   the   line   bundle   associated   to
0(— Z)/0(— Z — yi,) is a trivial Une bundle. Hence the maps in (3.12) are
surjective. The rest of the proof is the same as case (i).

Step 3. Consider the commutative diagram:

Diagram K (page 326)
with the column sequence on the right exact. The map of the first row is
surjective by Step 1. It follows that the map of second row is also surjective.

Let us make the following observation. The only thing that we need n > 1
in the proof of the map

H°(M, 0(-Z)) ® H°(M, 6(-nZ))-*H°(M, 0(-(« + 1)Z))
being surjective is to get vanishing first cohomology

H] M,el nZ S z*
h
S zBi
i=i

zj

-l < h < l-\,0< j < rh+i.

If the length of the elliptic sequence is equal to two, this is automatically
satisfied by Proposition 2.7.    Q.E.D.
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