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SVAZEK 13 (1968) APLIKACE MATEMATIKY CIsLo 4

ON MAXIMIZING A CONCAVE FUNCTION SUBJECT TO LINEAR
CONSTRAINTS BY NEWTON’S METHOD

JitkA ZAGKOVA

(Received August 8, 1967)

1. Newton’s method for finding the point at which a function f(x) of several
variables attains its maximum (minimum) is defined by the approximation scheme

(1) X, = X, + o0, [F(x,)]7" Vf(x,).

Here —F(x) denotes the matrix of second-order derivatives of the function f(x)
at point x. The a,’s are eligible; they can be chosen all equal to 1 (the classical case)
or they can be chosen according to the principle of small steps or according to the
principle of steepest ascent.

Newton’s method can be adapted for solving nonlinear programming problems.
We shall confine ourselves to the problem of maximizing a concave function subject
to linear constraints. We shall derive such an adaptation by replacing the gradient
direction by Newton’s direction in J. B. Rosen’s gradient projection method [3]
and we shall discuss its properties both from the theoretical (convergence problems)
as well as practical point of view (computational improvements, a numerical example).
This is the contents of Sect. 2, 3, 4, 5 and 7 of the present paper. At the same time,
a program in ALGOL is to appear in the respective part of this journal.

Another adaptation of Newton’s method (for maximizing concave functions of
a special type constrained to a simplex) has been suggested by Hdjek [1, Sect. 5]
in connection with a problem in statistical sampling techniques. In Section 5 of the
present paper, the convergence of Hdjek’s method is proved in one-dimensional
case, whilst a counter-example is given in the two-dimensional case.

2. (A) Let the convex polyhedral set
X ={xeE,:ax —b,=2x)=20,i=1,..,k}

be bounded and nonempty.
(B) Let the objective function f(x) = f(x,, ..., x,,) have continuous second-order
derivatives on some open set containing 2'; let the matrix

2
F(x) = — <if~~> Lj=1,..,m
be positive definite at all points x € &
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The problem is to find the point at which f(x) attains its maximal value on Z.

Let a;, iefiy ..., i} = {1,...,k} be linearly independent vectors; set 2 =
= {xeE,:a/x — b, = (x)=0,i=1i,...,1}, let x, be any point of 2.
(Consequently, x, lies in the intersection of ¢ independent hyperplanes.) Suppose,
without loss of generality, that {iy,....i,} = {L.....¢}. Denote F, = F(x,). In
addition to the usual inner product and nerm, denoted by (.,.) and | . || respectively,
define the inner product

(xa Y)o = x"Fyy .

Denote as L, and |. ||, the corresponding to it relation of orthogonality and norm,
respectively. Let n; be the inward pointing normal of the hyperplane a’x = 0, i.c.,
the vector satisfying n; L, x for all x in this hyperplane and such that |n;], = 1.
Then Fyn; = u;a; follows, i.e.,

-1
n; = pFg'a;,

where u;, = (aiTFo'la,')‘? Because of the possibility of multiplying the inequalities
alx = b, by any positive number we can assume that u; = 1,i = 1,..., q.

Let 2" be the g-dimensional subspace of E,, spanned by (independent) vectors
n. ...n;then 2% = {x:alx =0,i=1,..., g} isobviouslya(m ~ g)-dimensional
subspace of E,, and it holds 21" 1, 2 E = 20 g 2,

Define the matrices N, = [n,,....n] and A, = [a,. ..., q,]. Similarly as in [3],
the following lemma holds.

Lemma 1. The matrix P{"" = N (NJF,N)~! NIF, is a projection matrix which
takes any vector in E,, into 9 and the matrix
(3) Pflz) =E — P;” =E — Nq(NqTFONq)“l NqTFO

into 99,
Further, let N,_; = [n, ... n,_,] and denote P{", P?), the corresponding
projection matrices. Then

is a projection matrix which takes any vector in E

m

P(Z_) n ”2
4 P(Z):p(2—) _” q—1""ql|
“ I T oN

which is easy to verify by multiplying of partitioned matrices.
Some lemmas, which are similar to those in [3] as to the assertions as well as to
the proofs, will be introduced now (without proof).

Lemma 2. If [(NJF,N,)"'[ < n, then |P2\n ||l = n~%.

Lemma 3. If xqe 2 then x, + P;z)yeﬂ for arbitrary yeE,. If xo€ 2 and
X, =X, +2zeX then Alz = 0.
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Let y(x) be the maximal eigenvalue of the matrix

F(x) = — < &f ) let y = max y(x).

Ox; 0x; xe%

Further, denote the gradient of f(x) by g(x) = Vf(x).

Lemma 4. For arbitrary x, xq € Z, the inequality
(X - xo)T g(xo) - -%y“x - XOHZ = f(x) - f(xo) = ('x - XO)T g(xo)
holds.

B), the following assertions are valid:

Theorem 1. Under assumptions (A), (
1 £ g £ m) hyperplanes which are linearly

(@) If xoqe & lies on exactly q{
independent, say
xgel = {x:alx=>b,i=1..,4q},

then thefunctionf(x) attains its global maximum on X at the point x, if and only if
(5) PMFy ' g(xo) = 0 and (NJF,N,) ' NI g(x,) £0.

(ii) If x, is interior to A, then the function f(x) attains its global maximum
on X at the point x, if and only if

(6) Fi'g(xy) = 0.
Proof. (i) The function f(x) attains its maximum at the point X, if and only if
—(x = x0)" gxp) 2 0
holds for all vectors x satisfying the inequalities
al(x —x) =20, i=1,..,q.
But this holds true (see Karlin [2, Theor. B. 3.4]) if and only if there exists a g-di-

mensional vector r < 0 such that

q
g(xo) = Z rda;,
i=1

N
or, equivalently,
(7 Fo' g(xo) = Nr.
Multiplying both sides of (7) by (NJFoN,) ™" NJF;, we get
= (NIFN N glx) 0,
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which completes the proof of (i). The proof of (ii) is obvious.

3. Let us suppose, for the sake of simplicity, that our problem is non-degenerated,
i.e., in the polyhedral set %, each (m — e)-dimensional face lies in the intersection
of exactly e (independem) hyperplanes, 0 < ¢ < m.

Let us define a finite or infinite sequence {x,} according to the following rule.
Let x, € 2. Denote

F,=F(x,). 4(x,)=Fgx,), |y|s=yFy. et

Let x, belong to the intersection 2 of exactly g independent hyperplanes, 1 < g < m;
let us set

®) r=r(x,) = (N;F,N,)"" Ng g(x,),

0, = maxr;,
12i<q

PV A(x,) = N r(x,), PP A(x,) = A(x,) — PV A(x,).

(Remm‘k that matrix N, depends on x, and that formulas (8) are in accordance
with (3).)
Choosc i > 0 such that (N7 F(x) N)™'|| < 5 for all points x from the boundary
of . (Columns of N are again the normals of all the hyperplanes which x belongs to.)
a) Let either x, be interior to 2" and (6) holds, or x, € 2 and (5) holds. Then the
function f(x) attains its maximum on 2 at the point x, and the sequence terminates.
b) Let either x, be interior to ' and A4(x,) + 0, or x,e 2 and [P 4(x,)], >
> max {0, fo,n"*}. The algorithm will be defined for the latter case only; the
corresponding formulas for the former one follow by replacing P{¥ A(x,) by 4(x,).
Define

(9) X" P10 Xn + Tnzn

where

1P A

and where 7, is chosen in the way described below which ensures both x,,, € &
and f(x,.) > f(x,). According to Lemma 3. x,,, € 2 for arbitrary 7. In addition,
J{x,.1) 20 fori=gq+1,...k is required. Denote

Z4x,
T, = (%) for alz, <0,
T
”C“izn
= o0 for ajz, =0,
(10) 1™ = min {r; > 0}.
g+1<izk

342



Considering that z, = 0 and % is bounded, we have 1™ < o, For 0 <t £ /™.,

we have x,,, € 4. Now, if we choose,

_ min (o0 LIPS 4G
(11) . (( A “2>

we can easily establish (by means of Lemma 4) that

(12) fx, + 1,2,) — f(x,) = 41,[PP A(x,)], -
c) Let 0, > 0 and [P A(x,)|, < +o.n *. Suppose for simplicity that ¢, = r,
and define
xn+1 = Xn + T”Z" *
where

L, P, A(x,)
S TN

and t, is again chosen in such a way that x,, , € & and f(x,.,) > f(x,). We have
A(x,) = PV A(x,) + P A(x,) :ilr,.ni + P A(x,),
hence
P, A(x,) = r,Pn, + PP A(x,) .
Comparing with (4) we conclude that

(Pe2ing, A(x,)), _ a,Py”s A( )

. g-1"q —
S L [

and thus a]P{*| A(x,) > 0. We have again x,,, € 4 for any 7€ (0, t\"), where

7™ has the same meaning as above. Further, z, + 0, in view of
(2) 2) (2)
]!P A Il" = ql'P(q 1"an: - ”P A )Hﬂ = 299'7 B
Choosing

(M) HP(Z) A(x,,)!|3

(13) Ty = min <Tn‘ > HP(Z) A )”2)

we can establish by means of Lemma 4 that

(14) f(x, + 1,2,) — f(x,) = $5,[[P2y A(x,)], = dreon F
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4. Now, let us go into the convergence problem of the suggested algorithm.
Logically, two cases can occur. Either (i) there is an infinite subsequence {x, } of the
sequence {x,} such that 7, < ti*" holds for each its term, or (ii) in the sequence
{x,}, 7, = 0™ holds for all n starting from some n,. First, let us follow the case (i).

(i) Suppose, without loss of generality, that the mentioned subsequence {x,}
is convergent, say X, — x*, and that the points x, are all relative interior points
of the same face & n & of the polyhedral set %, where & = {x: alx =b, i=
=i, ..., i;}. Denote P resp. P = E — P{*) the projection matrices onto sub-
spaces ¥ = {x:ax =0,i=i,,...,i} and ¥ (which is L, — orthogonal
to &), respectively. Further, let gy (x) = max {0, max r, (x)}, where the vector

e

r(x) satisfies the relation P{" A(x) = N, r,(x), N, = [71:; ...»n; |- Then (12) and (14)
give
f(xnk+ l) - f(x"k) > f(x”l;+ 1) - f(xﬂk) > l/lnk
where
v

‘:ESIJHP.EZ)A(XJ‘)H;' for '|P§Z)A("j)”i I oglx;)

\

I

Yol n™t for [P A(x))|; < In7Fou(x;).

(If ¥ n & = & then the points x,_are interior to & and ; = —é—erA(xj)ﬁ,-.)

Let the limit point x* belong to 2 = {x:ajx = b, i=i,... i, <, let
P, P be the corresponding projection matrices and r be the vector of coordinates
of P{" A(x*) with respect to the basis {n;,...,n; }. The sequence f(x,) ~ f{x*),

and because of continuity, P{® 4(x,, ) — P A(x*) and o,(x, ) — o4(x*). Moreover,

Flx*) = f(x,.) > Y ¥, hence ,, — 0 and P® A(x*) = 0, o,(x*) = 0. Evidently,
K=o

PV A(x*) = 0, too, and 4(x*) can be written both as

A(x*) = PV A(x*) = i ri{x*)yn;

i
j=1

as well as
A(x*) = PV A(x*) = Y ry j(x*) 0y,
i=1

where r, (x*) £ 0,(x*) = 0. Here {i,, ..., i} = {i;,..., i;} and from the unique
expression of the vector A(x*) in the basis {n;, ..., n; } it follows r{x*) £ 0,j =
=1, ..., q. Thus the necessary and sufficient condition for the point x* be the maxi-
mum point of f on Z is satisfied.

(ii) Let us follow the second case. Let the sequence {x,} be infinite and let an
integer n, exist, such that for every n > n,, 7, = t™ holds. In the original Rosen’s
paper [3], this alternative was omitted. Though we don’t know any example, the
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possibility of its occurence is not excluded from the logical point of view and can
be the cause of the ‘““zigzagging’ effect.
Now, let x,,, = x, + ©™z, for n > n, and either

P ()], > cox) o [P d(x,)], < < olx,)

where ¢ = 177 % and the symbols N, P®)_ g refer to the intersection of all hyperplanes
that x, belongs to.

In the former case, a face of smaller dimension is reached for 7, = t*™). Hence this
case cannot occur in an infinite number of steps, as a vertex of the polyhedral set &
woulid be necessarily reached after a finite number of occurrences.

Hence, it remains to handle the following case: There is n, = n, such that

[P A(x,)

I < co(x,), ofx,)>0

and 7, = 5" hold for all n = n, and, moreover, the points of the sequence {x,},,
lie in faces of constant dimension m — s, 5 > 0.

If the sequence {x,} possesses more than one point of accumulation then there
exists a convergent subsequence {x,.} to each of them and lim inf t™ > 0. From

o
the monotone convergence of the sequences {f(x,.)}, from (14) and from continuity,
we can prove, similarly as in the case (i), that all the points of accumulation of the
sequence {x,,} are the maximum points of f on 4 — which contradicts the strict
concavity of f.

Hence. there is a limit x* of the sequence {x,}; let x*€ 2 = {x:a/x = b, i =
= iy,.... I,} and let all the points of {x,}; are relative interior to faces &, N 2. ...
oo, &y 0 X altogether of dimension m — s. Denote P} the projection matrix into
the subspace ¥, e = 1, ..., h. (The index @ has the same meaning as in the
definition of 2*).) For given e, let {x,.} be the subsequence of {x,} containing all
points x, € &, then

0 < [P2 A0 < ¢ 00 ).

Lemma 5. Suppose gy (x*) = O for some e. Then x* is the point at which f attains
its maximum value on .

Proof. If g, (x*) = Oforsome e e {1,..., h} then P2 A(x*) = Oand P{¥ A(x*) =
= 0 follow. The vector 4(x*) can be written both as

q
A(x*) = P A(x*) = erjn-
i=

12

as well as
A(x*) = PULA(X*) = Y 1y, (x*) ny,
j=1

345



whore n; arc normals to the hyperplanes whose intersection is 2, ry, (x*) are
components of the vector r,_ and rye,j(x*) < de(x*) = 0 holds. Because of the
unique expression of 4(x*) in the basis {n,, ..., n 1, =0,j=1,..,4, follows.

i

The existence of such e will be proved for m £ 3.
Theorem 2. For m < 3, the sequence {x,} defined in Section 3 converges to the
point at which f attains its maximum value on Z.

The proof will be given for m = 3; the case m = 2 can be handled in the same
manner as sub 1. below. Moreover, we can consider the case (ii) only. For the non-
degenerated problem we have to discuss the following five eventualities:

1. Let {x*} = 2 be a vertex which is the intersection of edges &, &,, & each
of which contains an infinite subsequence of {x,}7°. Now, P A(x*) = 0 and r; < 0,
i = 1,2, 3, the return to any edge &, &,, %5 beeing impossible, because x* is the
maximum point of f on each set &; n &, j = 1,2,3. The point x* is the sought

solution.

2. Let in the case 1., the infinite subsequences of {xn nocan be drawn from the
edges &, &, only. Numerate the respective points in such a way that for k = ky =
= [(no + 1))2], Xy, € Ly, Xps1 € L2 and Xy > X*, X4 — x*. Let

2 ={x:alx=b,i=1223}
: b, i=1,3}

N
I
2
‘_0
x
I

&, ={x:alx="0, i=273}
Fo = {x:alx = by}

and P{¥) be the projection matrix onto the set P = {x:alx = 0}. Then we have
for n = nq

(M jﬁff(xn)
[P A(x.)]l,

alPP A(xy) >0, aiPP A(x,) <0,

Xpr1 = Xy

a']Fp(lm A(XZk—i—i) <0, agp(f) A(x2k+ 1) >0

which gives aTP® A(x*) = ajP{® A(x*) = 0 for k — o0, i.e. 04,(X*) = 04,(x*) = 0
and according to Lemma 5, x* is the sought solution.

Similarly, it is possible to prove the convergence in the remaining three cases.

3. {x*} = 2 is a vertex which is the intersection of two-dimensional faces &,
&,, &5 each of which contains an infinite subsequence of {x,,},‘f;.
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4. As in the case 3., but only the faces &, &, contain infinitely many points
of {x,}x2.

5. x* e 2, where the edge 2 is the intersection of two-dimensional faces &, &,
each of which contains an infinite subsequence of {x,}.

For more-dimensional cases, the discussion is very complicated and it seems
impossible to generalize this proof.

5. Up to this point, x, has been supposed to lie on exactly g hyperplanes, supposed
to be linearly independent. If x, lies in addition on further hyperplanes which are
linearly dependent on the original set, the degeneracy occurs. It is possible to remove
it in a similar manner as in linear programming, i.e., by means of small perturbations
of the position of the dependent hyperplanes. The algorithm itself can be adapted
in the way suggested in [3].

Two modifications of the suggested algorithm, which reduce the amount of compu-
tations required per step and don’t affect the convergence, will be mentioned now.

First, the definition of the inner product need not be changed and the inverse F, '
need not be computed at every step of the algorithm. For instance, let v > 0 be an
integer given in advance. Suppose that at the n-th step, inner product (x, y), was
defined and the matrix F, ' established. We can keep this definition of the inner
product even in the following (v — 1) steps, using F, ' g(x,. ;) instead of Newton’s
direction A(x,,ﬂ) for 1 < j < v. The projection matrices for 1 < j < v can then
be computed by means of recursion relations of the type (4) (cf. 3]).

Secondly, the use of formulas (11) and (13) for determining 7, is not very advant-
ageous. Instead, the length t of each step can be chosen by the method of steepest
ascent which means to solve (at least approximately) one-dimensional maximization
at each step. If the function f(x) possesses concave second derivatives in all directions,
a result stated below as Theorem 3 can be used for solving this problem, i.c., for
maximizing f(xo + 1z,) on 0 £ 7 < ™,

In spite of these modifications, the amount of computations per step is still quite
large in the suggested method. It seems that it would be proper to use it for acceler-
ation of computations or for refinement of solution yielded by some of the gradient
methods in those cases when the gradient method converges slowly or even does
not converge to the correct solution because of rounding errors.

6. Now, we shall investigate an adaptation of the classical Newton’s method
(Le., of the scheme (1) with «, = 1) to the constrained problems. We shall start
with the following quite simple one-dimensional result, which is nevertheless interest-
ing, as it does not require the initial approximation to lic in the contractivity domain
of the respective mapping.

Theorem 3. Let f(t) be a function of one real variable, let f'() exist and be
continuous, negative and concave on {a, b. Denote t* the point at which f(t) attains
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its maximal value on (a, b). Let ty € {a, b>. For n = 1, define

JM for t, — G )e<a by,

15 nt1 = by —
() T ) £t
= q for 1, — ;@:,((i:)) <a,
f{t)
=b - .
for &, — f"(t) > b

Then one of the following cases occurs:
L {6} o™
2. {t}e ~ 1~
3. There is an integer ng = nyfty) such that
fo <ty <. < by <tF <t and {t,}2 N t*.
4. There is an integer ny = nyfty) such that

to >0 > o>ty > 5> 1 and {1172 7k,

njng

The proof will be carried out in two steps.

(i) First, we shall prove this auxiliary assertion:

(*) If the sequence {t,} converges then lim 1, = t*.
n— o0

By means of relations {15}, a continuous mapping T of (a, b) into itself is defined:

Tt =t + max {a — t; min l:~ f~((?) b — t]}

If i = lim ¢, then { is the fixed point of T} i.e.,
b — z:l} =0,

max {a — I; min [_ Ji_(,
A

which can occur exactly in one of the following three cases:
a) 1 ‘
b) a <i<b, fi)=0,
c) i ‘

This proves 7 = t*.

Nu’ !

(ii) Let 1* = b; then f'(1) = 0 for all te<a, by and ¢, < t,,, < b for arbitrary
1, € {a, by. The sequence {1,}¢ is nondecreasing. bounded from above and lim ¢, = b

n—+%0
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because of (*). Similarly, if ¢ = a then the sequence {t,}5 is nonincreasing and

lim t, = a.

n—w

If a < t* < b then f/(t*) = 0 and

O Y )
Py~ ’)[ £(t) ]

where 0 < 6 < 1, thus

Hf_’(&t_)ﬁ_ *:‘ R _f”(t*+0(tn_t*)) )
"y ”P £t J

Suppose for the moment that 1, — (f'(1,)/f"(1,)) € (a, b). Then

s =17 = = 1 = TR,

As a consequence of concavity, the function f”(z) is either nondecreasing for ¢ < ¢*
or nonincreasing for ¢ > t*. Suppose f"(1) is nonincreasing for t > t*; the second
case is similar. Then f"(¢* + 0(t — t*))[f"(f) < 1 for any t > 1*. Assoon as 1, > t*,
then t,, > t, = t* for all n > n,, the sequence {t,‘};”; is nonincreasing, bounded from
below and according to (x) we have [7,};2 \ r*. Especially, for f, > * case |
occurs. For t, < t* t, < t; holds. Suppose t, < t, < ...t < t*. Then either
e <ty S F or t, > t* and the case 3. occurs with ny = k + [, If such an

integer n, does not exist then

holds for all n and {t,} 7~ t*.

If t, — (f'(t,)f"(t,) ¢ a, b), then obviously n = n, — 1 and the steady con-
vergence starts from the point 1, = b resp. a.

In [1], a problem concerning statistical sampling techniques is studied and reduced
to maximization of the concave function

H J-1

(16) f(P\) = Z [‘Zl("jh - ‘ZJ,,) p; + ”Jh]é

h=1 j=
on the set

J-1
P={peE, :p;=0 j=1,..,J—1, éjpjg 1.
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The a;,’s are non-negative constants satisfying following conditions:
a) There are no numbers 4; = 0, Y A; = | such that

i*k

ay = Z A iy
iFh
holds for all h = 1, ..., H.
b) There is no decomposition of the set , J} in to sets =/, # such that

H

{1,
1/2 > z
Z a = Z _yhalh

holds for all ie &/, je A.
This special problem is suggested to be solved by means of the following adaptation
of the classical Newton’s method. Denote

('}\2
F(p) = — <~ f—)
op; OPji/ij=1,...,0-1

Alp) = F(p)~" Vf(p)

and
J=-1 J-1

PJZI—;T_P;', 4,p) = — 2 4,p),
where 4/p), j = L....,J — 1, are components of the vector 4(p). Let p,e 2.
If p, + A(p,) € 2 define p,4, = p, + A(p,). Let p, + A(p,) ¢ 2 and

A/p) <0 for jeZ < {1,...,J}

4p,) >0 for jed < {1,..,J}.

Denote
Z min (pjn; - AJ(PH))
jeZ

Z Al(Pn)

jeX

o, ==
“n

where p,. j = 1,...,J — I, are components of the vector p, and p,,
For j = 1, ..., J define

i

J-1
1 — Z Pjn-
=1

“7) pjn+1 = pjn + Aj(Pn) if AJ(PH) é 0 and pjn + Aj(Pn) 2 09
pjn+l = pjn + “n AJ(PH) 1f A](PH) > O 3
Pin+1 = 0 if Pin + Aj(P'l) <0.

Then obviously Puiy = (Pins1s o Paetas I)T e
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The question 1. about the convergence of this algorithm and 2. about its modific-
ation in case some derivatives of f fail to exist in some point of # (which occurs
if and only if some a;, = 0) remained open. Let us follow the case J = 2.

Theorem 4. Let J =2 in (16) and ay, > 0 for all j=1,2 and h = 1,..., H.
Then the sequence {p,} defined by formulas (17) converges to the point p* at which
the function f(p) attains its maximal value on 2.

Proof. Now, 2 = (0, 1) and formulas (17) coincide with (15). The function f
is concave and its second derivative exists at all points in <0, 1>, is continuous and
concave. The assumptions of Theorem 3 are satisfied.

If some aj, = 0, we can indicate an interval I = (0, 1) which contains the sought
solution p* and on which the algorithm converges.

Theorem 5. Let a,, =0, he #, a;, >0, he #,, a,, =0, he #,, a,, > 0,
he #,, where S0 H, =0, #, H,<={1,..,H}.
Then the point at which the function
H
f(p) =3 [(as — az) p + az]*
1

h=

attains its maximum on {0, 1> belongs to the interval {¢;, 1 — &,)> where

(18) e =14 for f(})z0,
2 Nam
\/81 — hedt' s <
2 — S U VI
hgﬂ\/( ax1) hw;yfz J&ag, + az))

< ]li for 1'(3) <0,

(19) e2=1% for f(3)20,
Z \/a2h
V""'fz — he 'y <
A c Ay — dyy
2a + R
he};fg\/( 1) h¢yf§yf’2 V@& a, + az)

<L for f'(3)<0.

V2

Proof. 1t is desired to find &,, ¢, < 4 such that f'(1 —&,) £ 0 and f'(¢,)
hold.

I\
o
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a) If f'(4) £ O then ¢, = 4 can be taken. Let f'() > 0, ie.,

Z \/(2“111) - Z \/( ) Z **fl—“'—:—a—z'l—.— >0

hedH2 hM’w*z \/(%(am + aZh))

and

Y J@ay)+ Y Aw T G

et neot o \J(3(ay, — azh))
If ¢ £ 1, then
, Ayp — Ay
241 — &) = sy +
S ) /8 h;’l’x\/ a h;; \/(01;. + e(az — alh))
< _ /0 4 / 2a + G1n __.-_9_2"__
- E hezl 2 z ( Ih) ;13(’2 \/(%(a”. + azh))

and for ¢ = ¢, defined by (19), f'(1 — &,) < O and &, < 4 hold.

b) If f'(3) = O then &, = } can be taken. For f'(4) < 0, the conditions f'(¢;) = 0
and ¢; < 4 can be verified for ¢, defined by (18) in quite similar manner as in the
previous case.

A similar result holds even for J > 2. Before stating it, let us recall that the problem
(16) and that of maximizing the function

(20) fi(p) = Z (Z app;)

h=1 j=1

on the set
J
Py=1{pekE;:p;20,j=1,...,0Yp =1},
ji=1
are equivalent.

Theorem 6. Let
ay, =0, ied < {1,....J},
i, ¥ 0, je.%‘-—-{],...,J}——Jz/_

Then the function f(p) does not attain its maximal value on 2, at such a point p*

for which pj‘ = 0 for some j € B. Moreover, to any relative interior point p € P,
there is eq > 0 such that

fi(p* + &(p — p%)) > f(p¥)
holds for 0 < ¢ £ &.

Proof see in [4].
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The problem of convergence for J > 2 is more complicated. If a;, > 0 for all
ji=1,...,J,h=1,..., H, then the mapping T of the set £ into itself given by for-
mulas (17) is continuous and according to the Brouwer’s fixed point theorem, T pos-
sesses at least one fixed point. However, the fixed point of the mapping T need not
be the point at which the function f(p) attains its maximum on £ and the sequence
{p,} given by (17) need not converge to the solution of the problem, as demonstrated
by the following example.

Example. Find the maximum of

f(pla Pz) = \/(%Px - zlil’z + %) + \/(%Pz + 3‘1) + \/(_%Pl + %)

ontheset Z = {p;,p,:p, =20,p, 20, p, + p, £ 1}. Hereis J =3, H = 3 and

(aj) =

[SIEEF N,
FSTWISPNIN
NG =

Let pyy = 1, pyg = 0. Then

1 A
Vf(Po) = (]12) ’ FO = <_18 —322) s
8 32 64

). o= (&) Ao = %= —a<o

s

R

IS
Wi N

F(;]:Alg—("

and » = 0. The algorithm terminates in the point p;o = 1, pyo = 0. Nevertheless,
there is a direction in which f(p) does increase on 2. Let us have, e.g., p, + p, = 1;
denoting p = p, we get the function f,(p) =4 /(p + 1)+ 2./(2 — p) which
does not attain its maximum on the interval <0, 1) at the point p = 1 but at the

point p = 121 Consequently, f(0, 1) < (132, 155)-

7. The above-mentioned example will be solved by means of the projected Newton’s
direction method, explained in Sections 2—4. Starting from the point p;o = 1,
P20 = 0 and determining the length t according to the principle of steepest ascent,
the projected Newton’s direction method yields the exact solution already after the
first step, as can be easily seen.

Now, for illustration, let us start from an interior point, e.g., from pyo = p2p = %
Then

Flpo) = i+ 3+ Vi = 1768,

0.1975\  _ 0.4652 0.2818
8\Po) = , F O =k
(Po) (o.oszz) ' (0.2818 1.3385)

A(po) = k (0.1067) ’

0.1256

and
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where k is a positive constant. The condition p, + 7 4(p,) € Z gives 1 < ™ =

= (1/3-0.2323) = 1.4349. The function f(Po + T 4(Po)) is increasing in the point
7 =1t™ thus we have 7, = T™ and p;; = 3 + 1.4349 - 0.1067 = 0.4864, p,, =
= 1 + 1.4349 - 0.1256 = 0.5136. Now,

f(p)) = 0.6148% + 0.3784% + 0.1682% = 1.8093,

g(p)) = 0.18336)’ Frl = 19.0051 0.39818 0.25930 ,
0.04380/ 0.25930 0.69746

A(py) :(

1.60346
148411/

The point p, € 2 = {pe E, : p; + p, = 1}, the corresponding normal is

= kF! -1\ _ K 0.65748
—1 0.95676
where the value K = 3.43132 follows from the condition n{F;n, = 1. The projection

0.346
PP 4(p:) = 4(p1) ~ minT g(p) = (—0 346>

and the one-dimensional maximization in the direction P{* A(p,) yields p,, =
=131 - 0.8782, p,, = 0.1218, p, € 2, f(p,) = 1.836. The gradient

g(p,) = 0.1049 <:> ,

hence A(p,) = —0.1049n, and PP A(p,) =0, 0, = —0.1049 < 0. According
to Theorem 1, p, is the desired solution.
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Vytah

POUZITI NEWTONOVY METODY PRO VYHLEDANI MAXIMA
KONKAVNi FUNKCE PRI LINEARNICH OMEZENICH

JITKA ZACKOVA

Newtonovu metodu lze upravit pro feSeni tloh nelinedrniho programovdni — pro
vyhleddni maxima konkadvni funkce na omczeném konvexnim polyedru. Navrhovand
modifikace spolivd v tom, Ze se pouZivi Newtonova sméru namisto gradientu
v Rosenové [3] metodé projekee gradientu. V prdci je odvozen piislusny algoritmus
(odst. 2 a 3) a studuje se jeho konvergence (odst. 4). V odstavei 5 jsou navrZeny
nékteré upravy vhodné pro numerické vypolty; postup vypoctu je ilustrovdn na pii-
kladg (odst. 7).

Jinou upravu Newtonovy metody pro vyhleddni maxima konkdvni funkce specidl-
niho typu na jednotkovém simplexu navrhl Hdjek [1, odst. 5] v souvislosti s feSenim
jedné ulohy pravdépodobnostniho vybéru. Tato metoda konverguje v jednorozmér-
ném piipadé, jak je dokdzdno v odstavci 5, avSak v odstavci 6 je uveden piiklad.
kdy ve dvourozmérném pripadé metoda nekonverguje.

Peszrome

NPUMEHEHUVE METOIOA HBIOTOHA K MAKCUMUM3ALIUU
BOTHYTOW ®VHKIUWU MMPU JUHENUHBIX OTPAHUYEHUSIX

NTKA JKAUYKOBA

B H'dCTOﬂUlCﬁ CTaThe M3y4vactcsa M()LLPI,(bMKaLU/IS’.’ METOda HI)I-OTOHa JJIsl pCILCHU S
334449 HEJJMHEHHOTO TIPOTPaMMIPOBAHUS — LIS M2 KCUMKM321UU BOTHYTON (QyHKImu
TIpH JIMHEHHBIX orpanuyeHusax. IIpeiokernnast Meaydukauys 3akirovaeTcs B 3aMe-
HicHWH TpaauenTa HanpabienueMm HbioToua B rpamuentiem meteny Posena [3].
Usyuaercs CXOAWMOCTD COOTBETCTBYIOWIETro anropudma (oTaern 4) U B oTaene 5
npe/ToKEHBl HEKOTOpbIE M3MEHCHWS yACOHBIE [Asl NP2KTHYECKEX BBIMUCIICHUH.
IMpuMeneHue MeTOJIa TOKA3ako Ha npumepe (oTnes 7).

Hpyroit moandukaguei Metoaa HproTOHA MUTS MaKCHMK3aLUUY BOTRYTOH QyHKIMK
YACTHOrO THMA HA €OMHHYHOM crMIulekce 3anumasics Faex [1, otgen 5] B cBs3u
€ pelieHNEM O/IHOM 32J1a4u BCPOSITHOCTHCH BoIOOpKY. B oTIese 5 HacTOsILUEH CTAaThU
J0Ka3aHa CXOJAHMOCTH ITOTO MET0/a B OGHOMEPHCM CJIYUYae U B OTJesic 6 noka3an
/IBYXMEPHDBIHA NPHMED, B KOTOPCM METOL HC CXOAKTCH.
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