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Abstract

We introduce a new class of problems concerned with the computation of maximum flows
through two-dimensional polyhedral domains. Given a polyhedral space (e.g., a simple
polygon with holes), we want to find the maximum “flow” from a source edge to a sink
edge. Flow is defined to be a divergence-free vector field on the interior of the domain, and
capacity constraints are specified by giving the maximum magnitude of the flow vector at
any point. The problem is the natural extension to the continuous domain of the discrete
problem of finding maximum flows through a capacitated network. For this problem,
Strang proved that max flow equals min cut; we address the problem of constructing min
cuts and max flows. We give polynomial-time algorithms for maximum flow from a source
edge to a sink edge through a simple polygon with uniform capacity constraint (with or
without holes), maximum flow through a simple polygon from many sources to many sinks,
and maximum flow through weighted polygonal regions. Central to our methodology is the
intimate connection between the max-flow problem and its dual, the min-cut problem. We
show how the continuous Dijkstra paradigm of solving shortest paths problems corresponds
to a continuous version of the uppermost path algorithm for computation of maximum flow
in a planar network.

Key Words: maximum flow, minimum cut, shortest paths, continuous Dijkstra, shortest
path maps, Voronoi diagrams, computational geometry, duality

T A preliminary version of this paper appeared in the Proceedings of the Fourth Annual ACM Symposium
on Computational Geometry, Urbana-Champaign, June 6-8, 1988.

i Partially supported by NSF Grants IRI-8710858 and ECSE-8857642 and by a grant from Hughes Research

Laboratories.






1. Introduction

Computing maximum flows in a capacitated network has been a very important problem
in combinatorial optimization, and many efficient polynomial-time algorithms exist [EK,
Ga, GT, IS, etc.]. It is natural to ask how to generalize the maximum flow problem to a
continuous (two-dimensional) domain. When generalized to the continuum, the max flow
problem becomes that of computing an optimal two-dimensional vector field (in contrast
to the problem of computing an optimal flow in a network, which assigns a single non-
negative flow value to each arc). Gomory and Hu have addressed the problem of flows in
continua from the point of view of approximating them with a discrete network (see [Hu)).
Strang [St] and Iri [Ir] have shown duality results that max flow equals min cut for flows in
continua. Since the min cut problem is, as we will see, an instance of a geometric shortest
path problem, Papadimitriou [Pa] has recently suggested that examining algorithms to
compute maximum flows in continua may suggest new methods of attacking the shortest
path problem in weighted regions (see [MP]). It is the purpose of this paper to examine
the complexity of computing maximum flows in the continuum and to analyze the duality
relationship between the maximum flow problem and the shortest path problem.

Several applications motivate our problem. First, consider the problem of moving
fleets of parts through a domain. Parts can be moved at a certain speed, and they must
avoid holes (obstacles) in the domain. If the parts are small, then the problem can be
approximated by a continuum of “fluid” which must flow through the domain. The max-
imum flow gives us the rate at which parts can be moved through the domain. There
are applications of this problem to routing flows of vehicles through factory floors and to
routing fleets of ships through enemy radar stations or to routing planes through mountain
passes.

Another application can be seen in routing wires on a circuit board among components
(obstacles). The value of the maximum flow is an approximation to the number of wires
that can be routed between terminals. Given a maximum flow field, we can route the wires
along the “streamlines” of the vector field. Still another application is in the automatic
determination of the amount of flow that can be sent through a part that is designed on a
CAD system. For instance, we may be designing a particular type of valve or pipe fitting,

and we need to know how much fluid will be able to flow through the part.
2. Notation and Problem Formulation

We begin with a precise statement of our problem, following the notation of Strang [St].
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We are given a compact connected domain €2, which we assume to be a polyhedral domain
in two dimensions, described by a total of ng vertices. Specifically, 2 is a simple polygon
with holes, represented as a list of vertices comprising its outer boundary (say, in clockwise
order), together with a list of A holes, each given by an ordered list of vertices.

Let I' = 0§ denote the boundary of Q. There is an open subset, I'y C T, of the
boundary through which flow can enter €, and there is an open subset, I'; C I, disjoint
from Ty, through which flow can exit . We assume that I'y; and T'; each contain a finite
number of connected components. Thus, each connected component will consist of either
a polygonal path or a polygonal cycle. We assume without loss of generality that the
endpoints of any polygonal path component of I'; are vertices of Q. T’y (resp., I'y) is
naturally called the set of sources (resp., sinks). We abuse notation slightly by referring
to the connected components of 'y (resp., I';) as the “sources” (resp., the “sinks”).

Let I'y, = T'\ (T's UT) be the portion of the boundary of € which is neither source
nor sink. We think of 'y, as the “walls” of the domain which cannot be penetrated by
flow. Since we are assuming that {2 is bounded, its complement, ¢ will have precisely one
unbounded connected component; we let I'o, C T be the boundary of this component.

We are given a flow capacity constraint function, ¢ : § — R% U {+00}. We require
that the magnitude of the flow vector = .vint p €  is bounded by ¢(p) > 0. We consider
only the case in which ¢ is piecewise-constant over a given polygonal subdivision of Q of
size n.. We then define n = ng + n. to be the total combinatorial complexity of the
problem statement, including the number of vertices in the descriptions of Q (nq) and the
subdivision (n.). In most of our discussion, ¢ will be constant over (2, in which case we can
take ¢ = 1 without loss of generality. (An alternative specification of our problem would
have () always simply connected (no holes), since we could “simulate” a hole by making
¢ = 0 over the polygon that defines the hole.)

The max flow problem is to compute a vector field o : @ — R?, a flow, that solves the

following program:
Mazximaze /LZ/ o-nds
Iy
subject to lo| <c¢ inQ,
oc-n=0 onl,,
divo=0 in£.

Here, n is the unit normal vector to I' which is outward pointing, and 4 is said to be the

value of flow o.



We are assuming that there are no source or sink points internal to . Hence, the
statement of flow conservation is that the field o is divergence-free. Note that flow conser-
vation implies that for any feasible o, p = th oc-nds=— fI‘, o -n ds;ie., “flow in equals
flow out”.

The flow across any simple curve, C, is obtained by integrating fc o - n ds along the
curve (where n is the unit normal to C). We will refer to any o* that solves the above
program as a maximum flow field, or a max flow, for short. We let p* denote the value
of an optimal flow o*. Note that in general there may be many possible maximum flow
fields o*.

The specification of our problem here is slightly different from that of Strang [St].
In addition to the bounds on the magnitude of ¢ and the conservation of flow, Strang
requires that o -n = Af on I, and he maximizes A\. The real-valued function f describes
the intensity of sources/sinks on the boundary of Q. Our formulation can be seen to be
equivalent to a special case of Strang’s.

In order to illustrate some of these concepts, we refer to Figure 2.1. We show a
domain §) consisting of a simple polygon with two holes. The set of sources, I';, consists
of two connected components, one having a single line segment and the other having two
segments. The set of sinks consists of a single edge on one of the polygonal holes. We
assume that the capacity function c(p) is everywhere constant (without loss of generality,
it equals 1). We indicate a maximum flow field by showing a set of regions with small
“arrows” to denote the vector o. Everywhere outside of these regions the flow field is zero.
The value p* of the maximum flow is p1 + 2.

A cut is defined as a (not necessarily connected) subset S of Q such that S contains
all sources and no sinks (i.e., I's C S and SNT; = ). We will denote by vy that portion of
the boundary (85) of S which “separates” I'y from I';. We make the definition of 4 more
precise as follows: v = [3S \ Ty \ [[s N 8(int(S))], where int(S) denotes the interior of set
S, and 8(X) denotes the boundary of set X. The rationale for this definition is that we
want to measure only that portion of the boundary of S which cuts through the inside of
Q (hence, we subtract the set T'y,), but it may be that the set S contains portions of T’
without containing any neighboring points of int(2). We need to subtract those portions
of the boundary of S which do have interior points of S nearby; hence, we subtract the set

I, N d(int(S)). For example, if S =T, we get v = T',, while if $ = Q\ T, we get v =T.
Remark: An equivalent way to define the set v would be to append to S a set K, of
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Figure 2.1. Example of a maximum flow field.

“sources” just outside Q which are adjacent to the sources I, (think of K, as very thin
little strips along side each portion of T'y), take the boundary of the set SU K s, Intersect
this with 2, and then subtract I'y,. Then, v = [8(S U K,) \ T',,] N €.

Frequently, we will speak of v (rather than S) as the “cut”, since it is a set of paths
which separate  into two or more connected components, with sources and sinks being
in different components. The capacity, C(S), of a cut S is the line integral f,y ¢ ds. Any
cut v* which minimizes f,y c ds over all cuts v is called a minimum capacity cut, or a min
cut, for short. For the example in Figure 2.1, the min cut is shown as a heavy gray line.

If T's and T'; each consist of only one connected component, then ~* will be either a
single simple path or a single simple cycle. Specifically, if I', and T’y lie in the same con-
nected component of I, then v* will be a simple path; otherwise, v* will be a cycle. (This
is true since, if S contains more than one connected component, then C (S) can be reduced
by deleting all of those components of S which do not border T',. See Lemma 51.) Ifec=1,
then the capacity of a cut is simply the length of v, while for arbitrary piecewise-constant

functions ¢, the capacity is the “weighted length” of v. This suggests that minimum cuts
g g 24 gg

5)



are intimately related to shortest paths through weighted regions (see [MP}).

In fact, the max flow and min cut problems are “dual” to one another. It is not hard
to see that “weak duality” must hold, namely, that the value of any feasible flow field
cannot exceed the capacity of any cut. (This is just a statement of the classical divergence
theorem.) Strang [St] has proved a max-flow/min-cut theorem, which is a statement of
“strong duality”: the value of the maximum flow, p*, is equal to the capacity, C(S™), of a
minimum capacity cut, S*. Strang, however, offers no algorithm for computing either the

min cut or the max flow. Iri [Ir] has worked on similar results in higher dimensions.

3. Summary of Results

We are interested in the computational complexity of computing the value, p*, of a max
flow (which is equivalent to computing the length, |v*|, of a min cut) and of constructing
max flow fields 0. We give polynomial-time algorithms for both of these problems, under
a variety of different assumptions on , I's, T, and ¢. Our results are summarized below.

1). We consider the problem of computing max flow through a uniformly capacitated
(¢ = 1) simple polygon, from a single source edge to a single sink edge. This problem is
solved in time O(nlogn). We generalize to the case of many source and many sink edges
within the same time bound.

2). We consider the generalization to the case in which Q is a (multiply-connected)
simple polygon with A holes, and there are many sources and sinks on the outer boundary
T... We prove a lower bound of Q(n+ hlog k) on computing the max flow field. We define
a new type of Voronoi diagram based on the 0/1/co weighted region path metric, and
show how it can be used to map the max flow problem in § into a simple network flow
problem. By a “continuous-Dijkstra” type method, we obtain an O(nh+nlogn) algorithm
for computing the necessary Voronoi diagram, and thereby to solve the max flow problem
within the same time bound. Our algorithm can be interpreted as a continuous version of
the uppermost path algorithm for max flow in planar graphs.

3). We solve the general case of uniformly capacitated domains in which the source
and sink sets can be arbitrary (with many source and sink edges lying on boundaries of
many different holes).

4). We consider the more general case in which the capacity constraint function c is
piecewise constant. We relate the maximum flow problem to the shortest path problem in

weighted regions [MP], and thereby get a polynomial-time algorithm for max flows.



4. Basic Facts About Flow Fields

A divergence-free vector field is one that is “conservative” in that for any small subregion
of int(Q2), the net flow in or out is zero. If o is piecewise-constant over a subdivision,
then it is clearly divergence-free within any region over which it is constant. In order to
verify that the field is conservative, then, we need only check that flow is conserved at
the boundaries of the subdivision. Flow will be conserved at a boundary if and only if
the (constant) vectors in the regions on either side have the same dot product with a unit
vector normal to the boundary. In the case that the magnitudes of the flow vectors are
the same on either side of the boundary, this implies that the boundary forms an angular

bisector between the flow vectors on either side. Refer to Figure 4.1.

Figure 4.1. A conservative piecewise-constant flow field.

Another important case of a conservative vector field is that in which the vector o at
any point has some constant magnitude and is oriented to be tangent to a circle centered on
some fixed origin. Specifically, if # and 8 are the unit vectors in a polar coordinate frame,
and C' is any constant, then the field ¢ = C# is conservative (as can be checked by taking
its divergence). We refer to such fields as radial about the origin. Refer to Figure 4.2.
Note that such fields are not piecewise-constant, even though the vector magnitudes are,
since the direction of the vector ¢ varies.

It is possible to compose more complex conservative vector fields by concatenating
trapezoidal and circular sector regions, as shown in Figure 4.3. The field is defined to
be zero everywhere outside of the trapezoids and sectors. Within each trapezoid the
field is constant, with magnitude C and orientation parallel to the parallel sides of the

trapezoid. Within each sector, the field is radial, with magnitude C. The crucial property
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Figure 4.2. A radial flow field.

of the subdivision which makes the resulting field conservative is the manner in which the
trapezoids and sectors are put together, which must be done in such a way that flow is

conserved across boundaries.

Figure 4.3. “Plumbing”: combining constant and radial flows.

Figure 4.3 suggests the metaphor of referring to the construction of these flow fields
as “plumbing”. Indeed, the trapezoids can be thought of as sections of “pipe” or “tubes”,
while the sectors serve as “elbows”. We can depict a flow field by showing the “streamlines”,
which are defined by the paths that a particle would take if released within a force field
given by o.

In the problems addressed in this paper, the capacity function is piecewise-constant
(usually it is the constant 1). It is not hard to see that it suffices to consider only those

flow fields whose flow vector is everywhere at its upper bound c. Also, while radial flows
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arise naturally in the continuous version of the uppermost path algorithm (Section 7), we
will see constructively that it suffices to consider only piecewise-constant flow fields (i.e.,
that radial flows can be replaced by “straight” ones).

As far as representing a piecewise-constant maximum flow field, we can simply use any
standard data structure (e.g., [GS]) for representing a planar subdivision, with each cell
in the subdivision labelled by the value of o within the cell. We will see that there exists
an optimal piecewise-constant flow field for which the size of the corresponding planar
subdivision is only linear (O(n)).

Another simple property of optimal flow fields that was noted in [St] is the following:
The maximum flow field o* must be normal to the minimum cut v*. This follows from

the max flow-min cut theorem of Strang ([St], page 126).

5. Flows in a Simple Polygon

Consider first the case in which there is precisely one source edge, I',, and one sink edge, I';,
and we are working in a uniformly capacitated (¢ = 1) simple polygon Q (without holes).
Then, the set T'y, consists of two connected components, T' (“top”) and B (“bottom”). (In
the clockwise ordering of ', T appears after I'; and before I',.) Refer to Figure 5.1. Note
that either T' or B may be a single point.

The Min Cut Problem
Let us begin with a statement of a fact that holds even if  has holes.

Lemma 5.1 If there is only one source and one sink and both lie on the same component

of I, then there is a min cut set S consisting of only one connected component.

Proof: Let S be an optimal cut. We can assume that S is closed. (If S is not closed,
then note that the cut given by the closure of S is also optimal.) Then, S must contain
I's. If S has more than one connected component, then there must be one component, say
S', whose boundary includes I';. Consider any other component S”. There is no reason
to include S” in the cut S, since its boundary must be disjoint from I'y, and it can only
make the capacity of the cut larger. Thus, we could replace S by S’ and still have a valid

cut, whose capacity is at least as small as that of S. |

The lemma tells us that the problem of finding a min cut (in the special case of a
single source and single sink) is simply the problem of finding a shortest path within Q

from B to T'. In the case of no holes, it is easy to see that the shortest path will be a single
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\Sink Iy
Figure 5.1. Maximum flow in a simple polygon.

line segment. (The path would not “bend” at a vertex, since each vertex is in fact part of
either B or T.) In the context of the 0/1/co weighted region problem of [GMMN,Mi2], we
can consider the exterior of the polygon to be an obstacle (a weight oo region), each of the
two simple chains B and T to be zero-weight regions, the interior of Q and I'; and T’y to
be weight 1, and the start and goal points to be arbitrary points of B and T'. The results
of [GMMN,Mi2] tell us that the min cut can be found in time O(n?), which is obvious also

from the fact that the min cut is a single segment joining B and T
Using the Voronoi Diagram

We can do better by observing that the min cut is closely related to the Voronoi diagram
of Q. The notion of a Voronoi diagram of a set of “source” objects (e.g., vertices, segments,
and curves) is a natural extension of the definition of a Voronoi diagram of a set of points.
The (generalized) Voronoi diagram of a set X of (open) line segments and vertices is the
locus of all points which are equidistant to two or more of the segments and vertices. The
Voronoi diagram of a simple polygon (possibly with holes) is obtained by taking X to
be the set of edges and vertices of the polygon and results in an internal and an external

Voronoi diagram. A closely related notion for a polygon is that of the medial axis transform
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(or skeleton), which is the locus of points which are the centers of circles that touch two
or more distinct points of the boundary of the polygon. Thus, every point of the medial
axis is also a point of the Voronoi diagram. It is known that Voronoi diagrams and medial
axis transforms can be computed in time ©(n log n) for polygons with n vertices [Ya)]. See
also [Ki,Le] for more details on Voronoi diagrams and medial axis transforms for polygonal

regions.

For our region 2, we will let V.D(Q2) denote the (usual) internal Voronoi diagram. In
order to avoid confusion, we will refer to “sources” used in the specification of a Voronoi
diagram as Voronoi-sources, or V-sources for short, to distinguish them from the notion of

“sources” (I's) used in the specification of the max flow problem.

For our flow problem in polygon {2, it is not true that there must exist a Voronoi
edge in V. D() which will correspond to a min cut: consider a narrow rectangle whose
source and sink are on the longer sides. It is true that the min cut in the simple case of a
single source and single sink will correspond to some Voronoi edge in the Voronoi diagram
of B and T, so we could just search it for a Voronoi edge for which the corresponding
line segment joining B and T lies within Q and is shortest among all such segments. This
appraoch however does not generalize easily to the case of many sources and sinks. Instead,
we will see that the min cut corresponds to an edge in an appropriately defined skeleton
of a “perforated polygon with flaps”, and this framework will generalize to include other

cases as well.

The basic problem with the diagram V D() is that it includes the effects of “inter-
action” between all pairs of boundary elements, including the sources and sinks, and does
not include the interactions between some pairs of boundary elements which may constrict
the flow into a sink or out of a source. Our solution will be to “perforate” the boundary
of the original polygon at the sources and sinks, and then to attach “flaps” (Riemann
sheets) at the perforations. The purpose of the flaps is to allow us to “propagate” the
Voronoi diagram through the source/sink openings into the exterior of the region, without
involving other edges of the polygon. Physically, we are allowing flow to enter and leave
through sources/sinks without regards to how the flow might have been able to the get
through ° to get to the sources or away from the sinks; the flow might have come from
“out of thin air” and then disappear “into thin air”. We need some definitions to make

our discussion more precise.

Let Q be a polygonal region in R?, possibly with holes. Let I'p C T be an (open)
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subset of Qs boundary. ['p is referred to as a perforation of 2. Assume that I'p has only
finitely many (ip) connected components; in particular, assume that the endpoints of each
connected component of I'p is one of the ng vertices of Q. Welet g =T\ T'p (in the
special case of a single source and single sink, I'g = BUT). Then the perforated polygon
P(Q,Tp) is defined to be 2 augmented by a set of Riemann sheets as follows: we attach
a Riemann sheet F,. for each connected component 7 of I'p, attaching it to the base sheet
R? (which contains the original region ) along . We refer to the sheets Fi as flaps.
Thus, for each point (z,y) in the plane, there exists a set of ¢p +1 copies of the point, one
in the base sheet ®2, and one in each of the :p flaps.

We define a notion of visibility on P(,T'p) as follows: If points p and ¢ both lie in
Q) on the base sheet 2, then p and ¢ are visible if and only if pg C €2 (this is the usual
notion of visibility in a region); if p and ¢ are both on flap F'r, then they are always visible;
if p and ¢ lie on different flaps, then they are never visible; and if p lies on flap Fr and ¢
lies in Q on the base sheet, then p and ¢ are visible if and only if pgN 7 # 0 and qq' C Q,
where ¢' is the first point where the ray from ¢ towards p intersects 7. Given the notion of
visibility between any two points of P, we can define a natural distance function dp(p, q)

to be the Euclidean distance from p to ¢ if p and ¢ are visible, and +oo otherwise.

Remark: The purpose of the Riemann sheets is to allow us to investigate the following
multi-valued function: Let f(p) be the distance from a point p = (x,y) to the closest point
¢ of some component of I'g such that the ray from ¢ towards p crosses the perforation I'p
before exiting 0. Then, f(p) is multi-valued, since it acquires different values according to

which component 7 of I'p is crossed first by the ray from ¢ towards p.

We define the skeleton S(Q,T'p) of the perforated polygon P(2,T'p) to be the locus
of points p € P such that p is equidistant (according to dp) from two or more connected
components of I'g. An example is given in Figure 5.2. The structure of the skeleton is

given by the following lemma.

Lemma 5.2 The skeleton S(Q,T'p) of a perforated polygon (without holes) of size n
is an embedding of a forest whose edges consist of a union of O(n) straight line segments
and arcs of parabolas. Furthermore, two edges of S that meet at a node of degree two do

so smoothly (with continuous slope).

Proof: The structure of the edges of S(2,I'p) follows from elementary analytic geom-

etry: we get line segment bisectors between two edges and parabolic bisectors between a
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Figure 5.2. Example of a skeleton S(Q,T'p).

vertex and an edge. (See [Ya] for similar proofs in the unperforated case.) The fact that
S(£2,Tp) is a forest follows from the fact that there are no holes in Q: If there were a cycle,

then some portion of I'g would have to lie inside of it. |

In order to avoid confusion between edges of the polygon Q and “edges” of the forest
represented by S(§2,T'p), we will refer to the latter as skeletal edges. The skeleton S of a
perforated polygon is an embedding of a forest on a set of Riemann sheets (flaps). It is not
hard to see that each flap has at least one skeletal edge on it that goes off to infinity along a
ray. We can truncate these skeletal edges to make the embedding finite, and thereby speak
of “leaves” of the forest. (Alternatively, we could speak of leaves “at infinity” to represent
the ends of the infinite skeletal edges.) Our goal is to compute the skeleton S(R2,T'p) in
time O(nlogn).

Lemma 5.3  The skeleton S of the perforated polygon (Q,T'p) without holes can be

computed in time O(nlogn).
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Proof: We begin by constructing the Voronoi diagram V. D(£2) in time O(nlogn) (e.g.,
by using the algorithm of Yap [Ya]). We will assume for simplicity that the components
of T'p are single edges. (If not, then removing the vertices from a component of I'p will
break it into single edges, and will not fundamentally change the problem.) Let edge e
be one of the edges of T'p, let V(e) be the Voronoi cell of e within £, and let F be the
flap corresponding to e. In the original computation of VD(Q), the edge e was included
as a V-source. We now remove e as a V-source, deleting the Voronoi edges (V-edges) that
make up the boundaries of each cell V(e). Now, we imagine what happens as we allow the
Voronoi diagram to “propagate” into the cell V(e) and then through the opening e into
the flap F,. Basically, we are subdividing V(e) and F, according to the set of V-sources
which were adjacent to e in the original diagram VD(§2). Refer to Figure 5.3.

First, we claim that the medial axis portion of the Voronoi diagram VD(Q) that lies
in Q\ [Ueery V(e)] yvields the skeleton § within that region. This follows trivially from the
fact that the medial axis is the locus of centers of circles within § that touch two or more
points on the boundary T' and that these touch points will not be part of the perforation

T'p if we restrict our attention to Q\ [Ueer, V(e)].

For each edge e of I'p, we consider the V-edges £(e) of VD(Q2) that make up the
boundary of cell V(e) and that are bisectors between e and segments or vertices of I'q.
(So, £(e) does not include those V-edges that bisect e from other edges of I'p.) Associated
with each V-edge 7o € £(e), there is a line subsegment uv’ or a vertex w of I'q. Let W(e)
be the set of all such subsegments and vertices. Add the endpoints of e to set W(e) (if
they are not already in W(e)).

Now, compute the Voronoi diagram, VD(W(e)), of W(e), treating the connected
components of W(e) as V-sources. This can be done in time O(|W(e)|log|W(e)|) by
Yap’s algorithm [Ya]. We claim that we can obtain from V D(W(e)) the portion of the
skeleton S that lies within V(e) and extends into the flap Fe.

Let p be a point on the skeleton S(Q,T'p), and let ¢; and g2 be two distinct dp-
closest points of I'g from p. Then, ¢; and ¢, are both visible from p, according to our
notion of visibility on P. If p lies in the base sheet and p € V(e), then ¢; and g2 must
either be vertices in the set W (e) or lie on segments of W (e) (since pg; must intersect the
boundary of V(e) at some point of a V-edge from set £(e)). Thus, p must be on a V-edge
of VD(W(e)). Conversely, if p lies on a V-edge of VD(W(e)) and p € V(e), then p must
lie on the skeleton S.

14



Figure 5.3. Propagating the Voronoi diagram through edge e.

If p is on the flap F, then again ¢; and ¢; must lie on elements of W(e), since pg;
must intersect e (by definition of visibility between p and ¢;) and so must also intersect
an element of £(e). This proves that SN F, is a subset of the diagram V. D(W(e)). To
prove the converse, consider cutting the diagram VD(W(e)) along the segment e. The
portion that we cut off is a tree, 7, since no elements of W(e) can lie in the halfplane (not
containing V(e)) defined by the line through edge e and hence there can be no cycles of
V D(W (e)) in that halfplane. We claim that if we think of 7 as embedded in the sheet F.,
then 7 = & N F,. Simply note that if p is a point on 7, then there must be two points
¢1 and ¢z on distinct elements of W(e) such that p is equidistant from ¢; and ¢, and the

segments pg; must intersect e. This shows that p € S, so we are done.
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By doing the above construction for each e of I'p, we can construct the skeleton &
within each cell V(e) and on each flap F.. The total construction time is O(nlogn), since

the sum of the sizes of W (e) is linear (by the linearity of the size of the Voronoi diagram
VD(Q)). 1

Note that the complications involved in attaching flaps and propagating the skeleton
through perforations can be avoided if the perforations all lie on the boundary of the convex
hull of Q. Note also that it should be possible to build § in a single pass, rather than by
cutting and pasting Voronoi diagrams together as we have done. Recently, Seidel [Se] has
adapted Fortune’s sweepline algorithm [Fo] to the case of constrained Voronoi diagrams,
suggesting that a similar technique should work here; however, it is still important in
Seidel’s algorithm to maintain a distinction among many Riemann sheets.

In the general case of arbitrary I'p note that we can potentially simplify the problem
slightly by doing the following preprocessing: Pull each component of I'p “taut” within 2,
replacing each by its shortest path within €2. (Shortest paths can be computed efficiently by
the algorithm of [GH].) Let I'p be the new sections of boundary, and let ' be the resulting
new region. (Note that Q' C €2.) Refer to Figure 5.4, where the set Q\ Q' is shown shaded.
The interior of ' may have many components; we solve the skeleton problem within each
component separately, since the max flow problem can be decomposed into a set of separate
problems, one problem per component. Within a component of int(Q'), the components
of I, are concave chains.

Having addressed the problem of constructing skeletons, we return attention now to
the use of the skeleton for solving the flow problem. In the special case that I', and I'y are
each single edges of £, the skeleton will be a simple path, and the min cut will be a line
segment (connecting B and T') that crosses the skeleton S at a point p whose dp-distance
to I'g is minimized. (In fact, the cut v* will be orthogonal to § at p.) Since each skeletal
edge is either a line segment or a parabolic arc, it is easy to find the min cut in O(n) time

by searching the skeletal edges.

Lemma 5.4 Assume that Q is a simple polygon without holes and that T's and I'; each
consist of a single (open) edge in the boundary I'. Then the min cut ~* consists of a single

line segment joining B and T, and ¥* can be computed in time O(nlogn).
Constructing the Flow Field
In the special case of single source and single sink, the skeleton is a simple directed path
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Figure 5.4. Pulling I'p taut.

which crosses the boundary I' only at the source and sink edges I'y and ;. The skeleton
gives us a means of transforming the continuous flow problem in a polygon into a trivial
network flow problem. Capacities can be assigned in the obvious way: a skeletal edges’s
capacity is simply twice the minimum distance from a point along the skeletal edge to the
set I'y. There is a unique path through the skeleton from source leaf to sink leaf, and
the minimum capacity along it is the value of the max flow problem. One can actually
construct a flow field ¢* of maximum value based on the path from source to sink. The

result is the following.

Theorem 5.5  Given a simple polygonal region without holes, and given a source and
a sink edge, one can find a min cut v* and a max flow field o* in time O(n) once the
skeleton of the region is computed (which can be done in time O(nlogn)). Furthermore,
within the same time bounds, one can find an optimal field o* which is plecewise constant

over a polygonal subdivision of linear size.

Proof:  Lemmas 5.3 and 5.4 addressed the issues of building the skeleton and finding
a min cut within the claimed time bounds. We show how to convert an optimal flow on

the capacitated skeleton & into an optimal flow field through . One simple approach

17



is to take the flow field whose streamlines are defined by the set of paths of a particle
at distance z from the skeleton S, for each z < % p*. It is not hard to see that this
feld can be stored in a linear-size data structure and is conservative, since it can be
written o(p) = (9f(p)/dy, —0f(p)/9z), for p € with f(p) < +p* (and o(p) = (0,0) for
f(p) > :p*), where f(p) is the Euclidean distance from p to §. However, we give below
a simple construction which yields a field which is piecewise constant over a polygonal

subdivision. Refer to Figure 5.5.

Along skeletal edges a of S that are straight line segments, we simply build a rectan-
gular region, centered along a, whose width is u*. Within the region, we assign o* to be

unit vectors parallel to a, oriented with the direction from source to sink.

A parabolic arc a = Uitz of S is a bisector between some vertex v and some edge e of
Q. If a includes the midpoint, m, of the segment 70T (where v is the projection of v onto
the line containing e), then we split arc a in two at point m. We can therefore concentrate
on the case illustrated in Figure 5.5. Basically, we construct two rectangular “pipes”, each
of width p*, centered on the tangent lines at either end of the arc. Where the two “pipes”
meet we form a junction, which will be a bisector between the center lines of the two
“pipes”. Thus, when we assign ¢* to be unit vectors parallel to the center lines within
each region, we get a conservative flow field. The fact that this construction is possible
follows from the fact that the two pipes can fit inside the path of a maximum-radius circle
that moves from u; to us along arc a. The fact that the construction “fits together”
in a conservative way from one arc to the next is a consequence of the smoothness of
the skeleton. The construction builds only a constant-size polygonal subdivision for each

skeletal edge, and hence we get the claimed space complexity. 1

Note the close similarity between the simple max flow problem considered here and the
motion planning problem of moving a disk through a simple polygonal region. The length
of the min cut corresponds to the maximum diameter disk that can be moved through the
polygon, entering at the source edge, and leaving at the sink edge (assuming that there are
additional Riemann sheets attached at the source and sink edges). Use of the skeleton to
compute flows relates to the familiar “retraction method” of motion planning. An optimal
flow field can be specified by the streamlines that one would obtain by tracing the paths
of each point of the disk during its motion through the polygon (assuming that we do not

turn the disk during its motion).
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Figure 5.5. Constructing a flow field from a skeleton.

Many Sources and Many Sinks

Another interesting flow problem for simple polygonal domains is that in which there
are multiple sources and multiple sinks; in other words, T', and/or I'y consist of several
connected components. Let us assume for now that no two connected components of T’ s

(resp., I't) lie in consecutive order about the boundary ' = I'. In particular, this will
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imply that the number of sources equals the number of sinks. This assumption will be
lifted when we address the more general problem (in which there are holes in ) in the

next section.

O
SR

Figure 5.6. A min cut for many sources and sinks.

It is no longer the case that 4* must be connected; v* may consist of several disjoint
line segments, as in Figure 5.6 (where an example is shown with 3 source edges and 3
sink edges). It is not obvious how one could find a min cut by applying a shortest path
algorithm.

We see in the figure that the optimal cut S* (the shaded region) consists of two
connected components, and v* consists of four paths (line segments). In general, 5* will
be fully describable by a partitioning of the sources into classes each bordering a connected
component of S*. Given such a partitioning, then, we can define a set of shortest path
problems (according to the 0/1/co weighted region distance [GMMN,Mi2]) which will find
a min cut consistent with the partition. But among the exponentially many possible
partitions, how does one pick the partition whose cut length will be minimum?

We look at the problem in another way. Consider the skeleton S(2,T'p) of the perfo-
rated simple polygon (I'p = I', UTy). To each skeletal edge a, assign a capacity equal to

twice the minimum distance from a point on a to the set I'y,. Then, by placing source/sink
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nodes accordingly at the leaves of S, we get a network flow problem on a capacitated
forest of size O(n) with many sources and sinks. Any cut in the network flow problem
corresponds to a cut in the continuous flow problem on 2, and, furthermore, any min cut
v* for the continuous problem corresponds to some cut in the network flow problem (since
the capacity of skeletal edges corresponds to the length of a locally optimal path in the
0/1/00 weighted region problem). Thus, in order to solve the continuous flow problem,
we are faced with solving a network flow problem on a forest. Such flow problems can be

solved by a straightforward method in time O(n), as we now see.

Lemma 5.6 Given a forest with n nodes, capacitated edges, and with many sources and

sinks at the leaves, a maximum flow can be computed in time O(n).

Proof:  Let c(u,v) be the capacity of edge (u,v). Any leaf which is not a source or
a sink can be deleted, along with the unique edge joining it to the forest. If u is a
source (sink) adjacent to a node u' of degree two (which is adjacent to node v # u), then
we can replace edges (u,u') and (u',v) with a single new edge (u,v) whose capacity is
min{c(u,u'), c(u',v)}. If u; and u, are both sources (sinks) adjacent to a non-leaf node
v, then we can merge u; and u, into a single source (sink) node u, placing a capacity on
edge (u,v) equal to c¢(u1,v) + c(ug,v). Finally, if u; is a source adjacent to v and us is a
sink adjacent to v, then we can route an amount ¢ = min{c(u;,v), ¢(us, v)} of flow from
u1 to v to uy, and then decrease by = the capacities of (u3,v) and (ug,v), allowing one
of the two edges to be deleted. The result of applying these operations to a forest will be
to reduce the problem to the trivial one in which every connected component is either a
single node or a single edge. Thus, it is easy to see that this process solves the original

maximum flow problem and can be done in linear time. 1

Once the flow problem is solved on the skeletal network, a construction similar to that
in the proof of Theorem 5.5 shows that an optimal piecewise-constant flow field can be
constructed in time and space O(n). Since S can now have nodes with degree greater than
two, we must modify the construction slightly at such nodes of S. We omit the details here
since a more general version of flow construction will be given in Section 7. This yields

the following.

Theorem 5.7  If there are many sources and sinks in alternating order on the boundary
of a uniformly-capacitated simple polygon 2, the max flow problem can be solved in time

O(n), once the skeleton has been computed, which takes time O(nlogn). Furthermore,
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o* can be constructed to be piecewise-constant (consisting only of unit vectors and zero

vectors) over a polygonal subdivision of size O(n).

6. Simple Polygons with Holes

Assume now that the domain § is a simple polygon with A holes, and that the capacity is
uniform (¢ = 1). We begin by assuming that I'; and I'; are single source and sink edges
that lie in the same connected component of I'; we assume that they belong to ' (other
cases are handled similarly). Then the set I'co N T, consists of two connected components,

T (“top”) and B (“bottom”). Refer to Figure 6.1.

Figure 6.1. A min cut for a simple polygon with holes.

Theorem 6.1 The min cut problem for a multiply connected polyhedral region §2 with
T, and T, each consisting of a single (open) edge of 's can be stated as the following

0/1/00 weighted region shortest path problem:

Min Cut Problem: Find a shortest weighted path from any point s € B to any point
t € T, where weights are assigned as follows: Q° gets weight oo; 'y gets weight 0; and T's,
Ty, and int(Q) get weight 1. The (weighted) length of the shortest path is the value of the
minimum cut, and v* is given by the restriction of the path to int(Q2)UT's Ul

22



Proof: By Lemma 5.1, the min cut set $* will consist of a single connected component,
possibly with holes. Let 0,,5* be the component of 5* which is the boundary of the
unbounded component of R? \ S* (i.e., 0,,5* is the outer boundary of S$*). Since I', C
00 5™, there must exist a point s € B and a point ¢ € T such that s,t € 0,,5*. Points
s and t split the outer boundary 0.,5* into two pieces; let P be the piece that does not
include I'y. P will be a path from s to t. Now, the length of v* = 9(S* U Q¢)\ Ty, is
precisely the length of the portion of the path P that does not coincide with I',,. The
0/1/00 weighted region shortest path problem minimizes this path length, since it treats

travel along 'y, as “free”. 1

Corollary 6.2 The min cut for the problem stated in Theorem 6.1 can be computed in

time and space O(n?).

Proof:  This follows from the algorithms of [GMMN,Mi2] which basically build a “critical
graph” which is guaranteed to contain an optimal path. Actually, these algorithms yield
potentially better (output-sensitive) bounds that can be written in terms of the size of the

visibility graph of 2. §

We will see in Section 7 that a slight improvement in the bounds given above are
possible. In the case that I'y and I'y are single edges that lie on different connected
components of I, we can solve the min cut problem in time O(n?) by solving a constant
number of shortest path and shortest enclosing cycle problems in 0/1/c0 weighted regions,
but we omit the discussion here since the method does not generalize to many sources and

sinks, a case which will be addressed at the end of this section.
A Lower Bound

We now give a lower bound to the complexity of computing max flows in uniformly capac-
itated simple polygons with h holes. The min cut problem, as we have seen, is a shortest

path problem among 0/1 /0o weighted regions with h zero-weighted regions (the boundaries
of the holes).

Theorem 6.3  The min cut problem has a lower bound of Q(n + hlog h) (to produce a
min cut path v*).

Proof:  We use a simple reduction from sorting. Given integers %1, ...,%4, we construct
a 0/1/00 weighted region problem by building tiny square holes with zero-weighted bound-

aries centered on the points (¢;,0), and placing a start point to the left of the smallest ; j
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and a goal point to the right of the largest i;. (Clearly the construction takes time O(h).)
Then, any algorithm which must output the shortest path from start to goal, will visit the

squares in sorted order. 1

To show a lower bound on constructing max flow fields, we will show that we can use
any optimal field o to sort h integers in time O(k). Note that there may be uncountably
many possible optimal flow fields. We make only the following assumption about the
representation of o*: we assume that it is stored in a way such that the value of o* at any
vertex of € can be obtained in constant time; that is, we assume that every vertex of (2 is
labelled with the value of o* there. (Actually, the value of o at a vertex may be zero since
the vertex lies on the boundary I'. Technically, then, we want to associate with a vertex

the value of o* in some arbitrarily small neighborhood of the vertex.)

Theorem 6.4 If Q is a uniformly capacitated simple polygon with h holes, a lower
bound on computing a representation of a maximum flow field o is Q(n + hlog h). (This

assumes that the representation of o allows constant-time evaluations at vertices of §1.)

Proof:  For integers i1,...,i5, let 45 (resp., i) be the smallest (resp., largest) integer.
Map the points 7, onto the parabola defined by the function y(z) = (z — (is—1))* (let the
resulting points be p;). Let r = i; — i, + 1, and place a point O at location (1s — 1, —r?).
Draw a ray from O through each p;, and define a set of holes, H;, which are the segments
of these rays between p; and the boundary of a large rectangle R'. (R' has sides parallel
to the coordinate axes, and it should be at least large enough to enclose O and all of the
p;’s.) Enclose this construction in a slightly larger rectangle, R. Let the bottom edge of
R be a source edge, and let the top edge be a sink edge. Let Q be the rectangle R with
holes Hj, and let ¢ = 1. See Figure 6.2.

In this max flow problem we see that the min cut 4* visits the holes H; in the sorted
order of the ¢;’s. Furthermore, from simply knowing the values of o*(p;) for each j, we can
read off the sorted order in O(h) time: the vector o*(p;) must be a unit vector whose slope
equals that of the ray from O through pj/, where j' is the index of the integer 2+ which
immediately precedes ¢; in the sorted order of the integers. Thus, we can walk through

the sorted order by making h inquiries on o* at vertices of 2. 1
Many Sources and Many Sinks

What happens when there are many sources and sinks? As in the case without holes, it is

not obvious how to find the min cut, since there are many possible topologies of cut sets.

24



Ty

Figure 6.2. Lower bound construction.

There is no single shortest path problem whose solution yields a min cut.

Our approach will be to map the geometric problem into a corresponding network
flow problem on a planar graph. We consider first the case in which all sources and sinks
lie in the same connected component of I'. (The case in which sources and sinks lie on
different connected components of I' will be addressed in the next subsection.) Without

loss of generality, we can assume that I',,T'; C I',.

A first attempt to solve the problem might be to define a network based on the
generalized Voronoi diagram V D({2) of the region £ with holes, assigning a capacity to a
Voronoi edge according to minimum separation between the objects defining the edge. It
is not hard to see that this network does not work in general. The problem is that the min

cut will not necessarily correspond to a path (or set of paths and cycles) in the Delaunay
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diagram.

Instead, we define a new kind of skeleton for a perforated polygon with holes. The
basic idea is to compute the skeleton using the metric which assigns a weight of zero to
holes (so that we are charged only for motion within ). First, we make the following
simplification: assume that the sources and sinks lie in alternating order about the outer
boundary T'eo. This is without loss of generality, since, if two connected components of
T, lie adjacent on I's (with no sink between them), then we can consider the (connected)
portion of I, that separates them to be a “hole” that lies very close to the outer boundary

of 2, and connect the two sources into one component. See Figure 6.3.

new source

Figure 6.3. Joining adjacent sources yields alternating pattern.

We now define more formally the modified skeleton of a perforated polygon P(£2,T'p)
with a set M of holes. We define visibility between two points of P(2,T'p) exactly as
we did before in the case without holes. We define a distance function d’(p, ¢) as follows.
Construct a graph whose nodes correspond to p, ¢, and the holes . Connect two nodes by
an edge if and only if there exists a pair of points, one on each of the two objects defining
the nodes, which are visible to one another. Define the length of the resulting edge as the
minimum Euclidean distance between all such pairs of visible points. Now define d’(p, ¢)
to be the length of the shortest path in this graph from node p to node ¢ (dp(p,q) = oo
if no path exists). Another way to view this definition is to think of the holes as having
weight 0, and then applying the 0/1 weighted region distance. The graph we just defined

26



is closely related to the critical graph used in [GMMN,Mi2] for the 0/1 weighted region

problem.
We define the modified skeleton S'(2,I'p) of P(2,T'p) (with respect to holes H) as the
locus of points p € P that are equidistant (according to d’) from two or more connected

components of I'g = I's \ I'p. Figure 6.4 shows an example of a skeleton.

-
S e e ot s o o

Figure 6.4. Modified skeleton of a perforated polygon with holes.

Lemma 6.5 The modified skeleton §'(Q2,T'p) of a perforated polygon (with holes) of
size n is an embedding of a forest whose edges consist of a union of O(n) straight line

segments, parabolic arcs, and hyperbolic arcs.

Proof:  The structure of the edges of S'(Q,I'p) follows from elementary analytic ge-
ometry: we get line segment bisectors between two edges, parabolic bisectors between a
vertex and an edge, and hyperbolic arcs between two vertices (from different holes). See
[Ya] for similar proofs. The fact that S’(Q,T'p) has no cycles follows from the fact that

the connected components of I'g all lie on the outer boundary I'eo. 1

Remark: We can think of the modified skeleton in terms of the following “grass fire”

analogy. Imagine that the holes (or their boundaries) have been doused with an extremely
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fAammable fluid such that as soon as any point of a hole’s boundary is ignited, the entire
hole instantly is engulfed in flames. Now, start a grass fire on the portion I'g of the
outer boundary of the perforated polygon. Whenever the flame reaches a hole, it spreads
throughout it instantly. Those points of P where walls of flame collide define the modified

skeleton.

In the next section, we will show how to compute the modified skeleton S "of a
perforated polygon with holes using a “continuous Dijkstra” algorithm, which can be
interpreted as a continuous version of the uppermost path algorithm for max flow in planar
graphs [FF].

We can associate capacities with the arcs of 8’ in the obvious way: the capacity of
arc e is equal to twice the minimum d-distance from e to the components of I'g defining
the arc. We place source and sink nodes at the leaves of §' according to the original flow
problem. Thus, we are again left with the task of solving a max flow problem on a forest

which has many sources and sinks at the leaves.

Theorem 6.6 The max flow problem in Q (with holes) with many sources and sinks on
the outer boundary can be formulated as a max flow problem in the (capacitated) modified

skeleton S', which can be solved in time O(n) once §' is known.

Proof: Since it is easy to see that any cut in the network flow problem on the skeleton
corresponds to a cut in the continuous flow problem on 2, the main thing to argue is that
any min cut v* for the continuous problem must correspond to some cut in the capacitated
forest given by the skeleton. This follows from the fact that if p lies on edge a of the skeleton
S' and is the cause of a bottleneck along a, then there are two points ¢; and g, on different
components of I'g which are equidistant (according to d’) from p and such that the djp-
optimal path from g; to p to g2 is a dp-optimal path between the two components of I'q
containing ¢, and g,. Basically, the modified skeleton captures the relevant set of shortest
paths according to the 0/1/0o weighted region problem obtained when putting weight 0
on holes.

Applying Lemma 5.6, we get the claimed time bound for solving the network flow
problem. The min cut for the geometric flow problem can be constructed readily from
the min cut found in the solution to the network flow problem on §’. A max flow field
o can be constructed from the network solution by a method similar to that described in
Section 5 for the case of a simple polygon without holes. (More will be said on the issue

of construction in Section 7.) |
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The More General Problem

A more difficult problem is the general case in which there are many sources and/or sinks on
many different components of I'. We know of no way to generalize the above discussion to
include this case, as it seems to be difficult to define an appropriate capacitated “skeleton”
that captures the geometric flow problem. Instead, we present a straightforward method
of converting a geometric flow problem into a network flow problem on a planar graph.
(The method also applies, of course, to the various simpler cases we have described so far;
however, it is much less efficient in such cases than the methods we have already described.)

First, associate 0/1/co weights with regions in the plane: (1). Q° gets weight +oo;
(2). int(Q), T's, and T'; get weight 1; (3). Ty, gets weight 0. Now construct the critical
graph within region 2 (see [GMMN]).

The critical graph of a polygonal region joins a pair of visible vertices p and ¢ if and
only if there is a line orthogonal to pg supporting the obstacle at p and also supporting
the obstacle at g. The critical graph joins a vertex p to a point p’ on line segment g7 if
and only if p’ is the foot of the perpendicular dropped from p onto the line containing g7
and p is visible from p'. In general, the critical graph may not be planar.) It is shown in
[GMMN] that any path which is shortest, or locally shortest, (according to the weighted
region metric) must lie on the critical graph. Thus, the set v* must be a set of disjoint
(simple) paths and (simple) cycles in the critical graph.

Let C be the set of (closed) cells in the arrangement A defined by the line segments of
I" together with those that make up the critical graph. We define a planar graph ¢ whose
nodes correspond to cells C' € C, and whose edges join nodes that correspond to cells that
share a common face (of dimension one). Thus, G is the planar dual of the arrangement
A defined by the critical graph line segments. Associate with each edge of G a capacity
equal to the length of the face shared by the corresponding cells. We now augment G by
adding a node corresponding to each edge e of I'y and T'y, and connecting each such node
to the (unique) node corresponding to the cell C € C which has e as a face. Refer to
Figure 6.5. These newly added nodes serve as sources and sinks in G according to whether
they correspond to source or sink edges in the original problem. The end result is that we
have a planar graph G which has many source and sink nodes. The size of G is simply the
number of cells in 4. Since the critical graph has worst-case size O(n?), G has at most
O(n*) nodes and edges. (Unfortunately, it is not hard to construct examples which achieve

this worst-case bound.)
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Figure 6.5. Constructing the planar graph G.

Theorem 6.7 The solution to the general max flow problem in a uniformly capacitated

polyhedral region in two dimensions, with arbitrary sources and sinks, can be obtained by

solving the max flow problem in the graph G defined above.

Proof: A cut in the max flow problem on graph § corresponds to a set ¥ of nodes
which contains all source nodes while not containing any sink node. Consider the set £
of all edges of G that join nodes of £ to nodes in X°. Each edge e € £ corresponds to a
one-dimensional face in 4. We claim that the set of all such segments defines v for a valid

cut S in the geometric flow problem. This is an immediate consequence of the fact that G
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was defined as the planar dual of the critical graph arrangement. Thus, a valid cut in the
graph problem corresponds to a valid cut in the geometric problem.

Furthermore, for each locally optimal cut in the geometric problem, there is a corre-
sponding cut in the graph problem (since all locally optimal paths and cycles are present
within the critical graph). Thus, when we solve the graph problem, we obtain a minimum
cut in the graph problem which corresponds to a minimum cut in the geometric problem,
and the cut v* is readily constructed from the data in the solution to the graph problem.
Constructing an optimal flow field for the geometric problem once an optimal solution to
the graph problem is known is straightforward, since the graph solution gives us for each

cell of A exactly how much flow is to enter and leave each face of the cell. I

Corollary 6.8  The general max flow problem in a uniformly capacitated polyhedral

region in two dimensions can be solved in time O(n®logn).

Proof: Simply apply the algorithm of [ST] to the network flow problem described

above. 1

7. Continuous Uppermost Path Algorithm

In this section we establish a direct correspondance between the continuous Dijkstra
methodology of searching for shortest paths and a continuous version of the uppermost
path algorithm for maximum flow in a planar graph [FF).

The uppermost path algorithm applies to a capacitated planar network in which the
source and sink nodes are both on the outer face. The idea is simply to select the “up-
permost” path from source to sink, push as much flow as possible through it, delete the
resulting saturated edges, and repeat the process. In this way, augmenting paths are
selected according to an ordering from the “top” of the graph to the “bottom”. The
uppermost path algorithm can be implemented to run in time O(nlogn) [IS].

For the case of shortest paths among obstacles in the plane, [RS] have given an O(nh+
nlogn) algorithm, where & is the number of obstacles. Their algorithm actually computes
for a single source point a Shortest Path Map (SPM), which is a planar subdivision linear
in size that gives shortest path information from the source to every other point in the
plane. This is an improvement over the O(n?) algorithms of [AAGHI,We| in the case
h << 'n. We can achieve similar bounds for the problem of maximum flows in a uniformly
weighted polygonal region with % holes. The idea is to apply continuous Dijkstra (which

takes on the form of a “continuous uppermost path” algorithm for this problem).
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The idea behind continuous Dijkstra is to propagate a wavefront from a V-source (or
more generally, a set of V-sources, B), maintaining a structure which describes the shortest
path map (or more generally, the generalized Voronoi diagram) for all points whose distance
from the source is less than the current event distance (see [Mil]). Events occur at those
discrete times when the combinatorial structure of the wavefront changes.

Our goal is to compute the modified skeleton S' for a perforated polygon with holes
for the case in which I'p C T'eo. We will be abusing notation by equating I'q = I's \Tp
with the set of connected components of I'g. Let us restate this problem in a slightly

different setting:

Problem: Given a simple polygon  with a set of holes H, and given a set of open edges
I'p on the outer boundary T's of 2, compute the Voronoi diagram of the set of V-sources
given by g = ' \ I'p with respect to the distance function dq which puts a weight of 0

on holes and requires paths to stay within {2.

Although the problem is not stated to include the effects of attaching flaps, a solution
to the above problem can be used to construct the modified skeleton for a perforated
polygon with holes by techniques similar to those outlined in Section 5.

We call the Voronoi diagram requested in the problem above the “weighted Voronoi
diagram” (WVD), since it can be defined alternatively as follows. For each hole H € H, let
da(H,Tq) be the distance from H to the set I'g, where distance is measured according to
the weighted region metric which assigns a weight of 0 to holes. For connected components
vo € To, d(vg,T'q) = 0. Now, the Voronoi diagram requested in the problem defined
above is precisely the same as the problem of computing the weighted Voronoi diagram
(WVD) of the set I'q U H, where weights are assigned by the function do(-,Tg) (and
weights are additive): subdivide the region {2 into cells C(a) corresponding to objects
a € I'g UH such that, if p lies in the cell C(B), then § € I'q UH is the object minimizing
do(a,Tg) + da(p, a).

Actually, we will be constructing a refinement of WVD in which each cell C(«) is
further subdivided according to the vertices and open segments that define each object
a € T'g UH. We will still refer to the subdivision as the WVD, and note that it still has
size O(n).

The continuous Dijkstra method to compute WVD will need to determine the effect
of propagating wavefronts from the V-sources I'g throughout {2, treating the holes as zero-

weight regions. This means that as soon as a hole is hit by a wavefront, its entire boundary
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instantaneously becomes a new V-source to continue propagation. Our algorithm keeps
track of what happens each time the wavefront hits a new hole. We use a “merge curve”
between the set of V-sources I'g and the unhit holes to keep track of what hole will be
hit next. The merge curve is simply the locus of points which are equidistant between set
I'o and the set of unhit holes. It is important in telling us when the next collision will
occur with a hole. Our algorithm maintains the (weighted) Voronoi diagram (WVD) of
O, the set of objects that have already been hit by the wavefront, and the (usual) Voronoi

diagram of R, the set of objects remaining to be hit. We outline our algorithm as follows.

Continuous Dijkstra Algorithm

0). [Initialization] Compute the (usual) Voronoi diagram, VD, of V-sources I'g within
Q. Initialize O = T'g, R = H, and WVD(O)=VD. Compute the usual (outside) Voronoi
diagrams, Vor(H ), of each hole H € H. Also compute the Voronoi diagram of the set H,
and initialize Vor(R) to be this diagram.

1). [Find merge curve] Compute the merge curve set M between WVD(O) and
Vor(R). Associate with each arc of M an event distance equal to the minimum distance
between the portions of the two objects that the arc bisects and an event segment joining
the closest points on the two objects. Enqueue all of the arcs of M with their event

distances and event segments in a priority queue, EVENT-QUEUE.

2). [Main Loop] If EVENT-QUEUE is empty, then STOP; otherwise, pop the
EVENT-QUEUE. Let H be the next Lols 15 be hit. Add H to O, label H with its
distance from I'q (= d(u) + |uv]), and delete H from R.

3). Update WVD(O), Vor(R), and M. Go to 2).

We now give some more details to explain the above algorithm.

0). In time O(nlogn) we compute the (usual) Voronoi diagram, VD, of V-sources I'g
within {2, ignoring the extension of the diagram into the flaps, and ignoring the holes in Q.
Do this by the techniques of Section 5, beginning with the usual Voronoi diagram of the
interior of €2, and then removing the edges I'p. In total time O(nlogn) (and space O(n))
we compute the usual (outside) Voronoi diagrams, Vor(H), of each hole H € H. (Use,
for example, the algorithm of [Ya].) These diagrams consider each vertex and (open) edge
of each hole H to be V-sources, and they give a subdivision of H¢ for each H. We also

compute the Voronoi diagram of the set H, and initialize Vor(R) to be this diagram.
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1). We define the merge curve set M between WVD(O) and Vor(R) to be the locus

of points which are equidistant between set I'q and set R.
Lemma 7.1 Computing M can be done in time O(nlogn).

Proof: Find the closest pair of objects (vertices and line segments) between set R =H
and set @ = I'g. (This can be done in time O(nlog n).) Use the midpoint of the segment
joining the closest pair as a “starter” to build (in time O(| M 1)) a merge curve (cycle) M.
(This is done by the standard Shamos-Hoey scan [SH].) If all of the holes lie within the
region bounded by Mj, then we are done. (Keeping track of what is in or out of the cycle
is easy to do as we construct the merge curves, since we are traversing a path in the planar
diagram Vor(H).) Otherwise, we find another starter between the remaining (unenclosed)
holes and set O, and trace out another merge curve M». This continues until all holes are

surrounded by some merge curve. The resulting set of curves is M. |

Lemma 7.2 The set M will consist of line segments, parabolic arcs, and hyperbolic

arcs.

Proof: Each arc is a portion of the bisector between a vertex/edge of I'q and a ver-
tex/edge of some hole. (Hyperbolic arcs will not be present in the original merge curves,
but will appear later when some of the holes have been hit and therefore labelled with
their distances from I'g.) 1

We can therefore associate with each arc a distance from I'g at which the wavefront
will first hit the corresponding element (vertex or edge) of some unhit hole.

2). If the EVENT-QUEUE is empty, then we are done, since all holes have been incor-
porated into WVD. Otherwise, in the spirit of Dijkstra’s algorithm, we pop the EVENT-
QUEUE to determine which hole is to be “permanently labelled” next. Let M € M be
the merge curve containing the event arc and let the corresponding event segment be v,
where v € H and H is the next hole to be hit by the wavefront. (Point u € O belongs
either to I'g or to some hole which has already been hit.) We add H to O, label H with
the appropriate distance from I'g (= do(u,I'g) + |a0]), and delete H from K.

3). Using the event point v € H as a “starter”, we can update the diagram WVD(0O)
by a Shamos-Hoey scan through the current WVD diagram and the (external) Voronoi
diagram of the hole H. (This is done in time linear in the number of changes to the
diagram.) Updating Vor(R) (in order to remove H) is straightforward in time O(n). Now,

we update the merge curve set M:
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Lemma 7.3 If H had been the only hole surrounded by M, then no further updating is
necessary, since any other merge curves still accurately reflect when the next collision will

be with holes that they surround.

Proof: If p is a point on some other merge curve that surrounds holes that have not
yet been hit, then we claim that p will not be affected by the recent change in the WVD
due to hitting H: If the new shortest path to p were to use H, this would imply that the

path would have to cross M, which is impossible. 1

If other unhit holes had also been surrounded by M, we can obtain a new merge curve,
M, to replace M which surrounds the set H,; of all of the holes that M did, except for H:
Look at one of the other holes, H', surrounded by M which is adjacent to H in Vor(R).
We can begin our construction of M’ at any point along the bisector between H and H’,
and then proceed by a Shamos-Hoey scan to trace out the locus of all points p such that
da(p,T'q) —da(H,Tq) = d(p, H';). (Note that M is not, in general, the bisector between
I'g and R, but it is the bisector between the current position of the wavefront and the set
R of unhit holes.)

Initialization takes time O(nlogn), and at each of h iterations we have performed a
linear amount of work; thus, we get the claimed complexity of O(nh + nlogn) (and linear

space).

Theorem 7.4 We can solve the Voronoi diagram Problem stated above in time O(nh+
nlogn) and space O(n). Then, within these same time and space bounds, we can compute

the modified skeleton of a perforated polygon with holes.

Corollary 7.5 The min cut and max flow problems for a region Q with h holes, and for

all sources and sinks on the outer boundary, can be solved in time O(nh + nlogn).

Note the close analogy between the continuous process described above and the op-
eration of the uppermost path algorithm in a planar network. Consider the case in which
['p consists of two (open) edges (a source edge and a sink edge), so that we can compare
the geometric problem with the network flow problem with one source and one sink on the
outer face. Then, we can run the continuous Dijkstra algorithm, starting with V-source
T (the “top” boundary chain of I'g), and stopping when we first hit the bottom B. The
events in the algorithm correspond to instants when an edge becomes saturated in the
application of the uppermost path algorithm to the planar network flow problem. At an

event, a hole is hit by the wavefront, and we must examine the capacity of the “augmenting
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path” that exists between the current position of the wavefront and the next hole to be hit.
The capacity of the augmenting path is simply the distance from where the wavefront is
now to where it will be at the next collision with a hole. The set of all wavefronts between
collisions make up the streamlines defining the augmenting path. This step corresponds to
finding the uppermost path from source to sink in the planar network. Basically, we are

“flling” the region Q with streamlines, from top T to bottom B, until we can fill no more.

The continuous Dijkstra algorithm provides a means of constructing the (weighted)
Voronoi diagram (WVD) that one gets by considering I'q to be the V-sources in the
weighted region problem that assigns a weight of 0 to the holes (and weight 1 to :nt(2)UTp
and weight co to °). From the WVD we can get the modified skeleton (which will be
the Voronoi boundary between different components of I'g), and then apply the methods
of the preceding section to compute the value, u* = |v*|, of the max flow. We now show

that the WVD also gives us a direct method to find an optimal flow field.

Given the WVD, we can obtain an optimal flow field o* as follows. For each p €
such that f(p) := da(p,Tq) < 3|7*| and such that there is a unique shortest path from
Ty to p, let 01(p) = 8f(p)/dy and oa(p) = —0f(p)/0=. Assign o(p) = 0 if f(p) > 3]7"|-
(We exercise some care here, since the gradient of f does not exist everywhere; 1t may not
exist along the boundaries of cells in the WVD, but these have only measure zero.) Strang
refers to f as a stream function. The basic idea is that the level sets of the scalar field
f will serve as the streamlines of our flow. These streamlines are precisely the set of all

positions of the wavefront during the propagation in continuous Dijkstra.

We claim that the above definition of ¢ works as an optimal flow field. First, note that
o is indeed divergence-free (901 /dz + Bo2/dy = 0). Next, note that along any shortest
path from p to T'g, the field is, by definition, orthogonal to the path. In particular, this
is true along the min cut (y*); hence, the value of the flow is optimal. Since the size of
the WVD is linear, this suffices to prove a linear space bound on a representation of an
optimal flow o*. It also proves that one can construct an optimal flow within the time

complexity of building the WVD.

Note, however, that the vector field defined above is not piecewise-constant, and
the boundaries of the WVD are not necessarily line segments. In fact, the streamlines
corresponding to the field defined above consists of arcs of circles (centered at vertices)
and straight line segments (parallel to edges of 2), and the boundaries of cells of the WVD

consist of straight line segments and parabolic and hyperbolic arcs. It is possible, however,
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to “straighten out” the streamlines in a systematic way by applying constructions similar =

to those given in the proof of Theorem 5.5 within each cell of the WVD, and thereby we
obtain again the result that there is a piecewise-constant optimal flow field defined on a
polygonal subdivision of size O(n). Note also that some of the streamlines form closed
loops, which do not contribute to the net flow from source to sink. These loops correspond
to “homogeneous solutions” which can be subtracted without affecting the optimality of &.

In conclusion, we have in fact given a constructive proof of the following theorem:

Theorem 7.3  For a maximum flow problem with capacity function ¢ = 1, there exists
an optimal piecewise-constant flow field o* with |c*| € {0,1} and such that the region in

which |0*| =1 is a polyhedral region with O(n) vertices.

8. Flow Through Weighted Regions

We can generalize our results to the case in which c is piecewise-constant over a polygonal
subdivision. The higher the value of ¢, the greater the magnitude of the flow vector that is
permitted in the region. We allow ¢ to be 0 or co. We can think of the weight assigned to
a region as a measure of the permeability of the region. Another interpretation might be
that ¢ models a third dimension; for example, ¢ might measure the depth of a streambed.

We concentrate here on the case in which there is a single source edge I', and a single
sink edge T'y, both on the outer boundary I'.. More general cases can be handled by
methods similar to those outlined earlier for the uniformly capacitated case. (In particular,
the algorithm of [MP] can compute Voronoi diagrams among weighted regions, and can
thus be used to compute skeletons similar to those defined in the uniformly capacitated
case.)

The min cut problem is to find a path v from B to T which minimizes the weighted
Euclidean length, fvc ds. This problem has been solved in polynomial time O(n7L) to
yvield an e-optimal path [MP]. (Here, L is the precision of the problem instance, including
the number of bits in €.) Note that since the min cut problem is solved only to within e-
optimality, so will our max flow problem. In particular, the path produced by the algorithm
of [MP] can be as much as (1 + €) times the length of the true shortest path from B to
T. Thus, if 4 = |y,| is the length of the path produced, we will not be able to push an
amount of flow u through the domain; we will have to be satisfied with trying to get only
/(1 + €) through it.
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Figure 8.1. A min cut in a weighted polygonal domain.

We can characterize the local behavior of min cuts and streamlines of max flows. The
min cut 4* obeys Snell’s Law of Refraction every time it passes through the interior of an
edge of the subdivision [MP]. The streamlines of a conservative flow field must obey the
following law as they pass through an edge: acos8 = o' cos§', where o and o' are values
of ¢ on either side of some boundary edge of the subdivision, and 6 and ¢' are the angles of
“incidence” and “refraction” that the streamlines make with respect to the normal to the
boundary edge. See Figure 8.2. We can interpret this law as an “orthogonal” version of
Snell’s Law, and can see that it follows also from the fact that streamlines are orthogonal
to min cuts.

In order to construct an e-optimal flow field o*, we can proceed as follows. First, when
running the algorithm of [MP], we actually end up finding a tree of O(n?®) polygonal paths
(one per event) from B (which is taken to be the “source” in the shortest path algorithm) to
vertices and “event points” of the subdivision, each path having at most O(n?) bend points
at edges or vertices of the original subdivision of Q. We also end up with a subdivision
(Shortest Path Map) of  which gives for each point p €  the “root” of p in an e-shortest
path from B to p. The root is either the last vertex or the last “critical edge” (see [MP])

in the path from B to p; we concentrate here on the case of a vertex root. The set of all
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Figure 8.2. Streamlines through weighted regions.

points p with a common root r is a “cell” C, and C is partitioned by the set P of event
paths which pass through r. We could define o as (8f(p)/dy, —8f(p)/dz), for points p € C
with f(p) < |7¢l/(1 + ¢€), where the function f(p) measures the (weighted) distance from r
to p plus the (weighted) distance from B to r (i.e., f(p) is the (weighted) distance from B
to p). However, in order to get a piecewise-constant field over a polygonal subdivision, we
can apply a technique similar to that given in the construction for Theorem 5.5. Basically,
we build a field within C' whose vectors o are defined in terms of the gradient of f(p)
(exactly as above) for those points p along paths of the discrete set P. Then, in order to
extend the definition of o into the regions of C' that lie between consecutive paths of P, we
simply follow the streamlines of the field that are implied by the values of ¢ on P, crossing
into regions of different ¢ values according to the local optimality criterion for streamlines
described above (and depicted in Figure 8.2). Where the streamlines corresponding to
two consecutive paths of P meet one another inside cell C, we get a polygonal boundary
(an “elbow” in the “pipe” of parallel streamlines). Thus, we end up with a refinement of
the cell C' according to these new polygonal boundaries and the set of paths P. Within
each region of this new subdivision, we define the field to be at maximum magnitude and
parallel to the streamlines in that region. In this way, we can obtain a representation

of an e-optimal flow which is piecewise-constant over a polygonal subdivision within the
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same time and space bounds that the algorithm of [MP] requires to solve the shortest path
problem. (We note the close similarity between this method of using the shortest path
tree to construct max flows, and that of Hassin [Ha], who showed a similar construction
for the case of max flow in (s,t)-planar graphs.) While this shows a polynomial bound, it

clearly leaves open the question of finding a simple and practical algorithm.

10. Conclusion

We have addressed the problem of computing min cuts and max flows in the continuum
from the point of view of algorithmic complexity. Several other extensions and open
questions are suggested by our research.

1). Our results can be applied to get an algorithm for maximum integer flows in which
one wishes to route the maximum number of wires from source edges to sink edges, with
the restriction that no two wires can lie closer than a unit distance from each other. In
the simple case of a single source and single sink, all we have to do is round down (to the
nearest integer) the lengths of the edges in the critical graph (used in solving 0/1/co path
problems) before computing a min cut. Construction of a flow field then gives an optimal
routing for the wires.

2). We could consider allowing point sources inside Q. Another generalization would
be to allow the capacity function ¢ to also depend on the direction of flow at a point. A
generalization of possible relevance to pipe routing applications would be to restrict the
streamlines of the flow to have a bounded radius of curvature.

3). Consider the problem in which one wants to minimize the area of © for which
o # 0. We then get the min-area max flow problem. (Strang [St] refers to these as “optimal
design” problems.) Another criterion might be to find a max flow field that minimizes the
length of the longest streamline.

4). Given a triangulated simple polygon {!, can we find the min cut in linear time?

5). Can one achieve an o(n?) algorithm for finding max flows in a simple polygon with
holes? At the time of this writing, our best algorithm for the general case is O(nh+nlogn)
(the same bound that is known for the shortest path problem obstacles [RS)).

6). For the general form of the flow problem in which there are many sources and
sinks on different holes, we suspect that there is a more efficient solution than the naive
one given here.

7). Can an arbitrary shortest path problem among 0/1 weighted regions be mapped

into a max flow problem (at a cost of at most O(nlogn))? A similar question arises for
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arbitrarily weighted regions.

8). What connection is there between shortest paths in 0/1 weighted regions and
shortest paths in 1/0c0 weighted regions? Are these problems equally hard?

9). How does one generalize the flow problem to higher dimensions? Min cuts in
three dimensions correspond to minimum area surfaces spanned by a closed Jordan curve
(Plateau’s problem). Such problems are hard to solve in general. It may be possible to
solve the special case in three dimensions for orthohedral spaces under the restriction that
the flow field be parallel to one of the coordinate axes at all times.

10). An interesting variation on the max flow.problem is the one that restricts the
orientations of o. For instance, we may be interested in routing wires which must every-
where be parallel to either the z- or the y-axis (or, more generally, constrained to be from
among a given set of orientations). Our results can be extended to yield quadratic-time
algorithms for these cases by using the L., metric in place of the Euclidean metric. We
expect that the results of [Mi3] or of [CKV] yield an O(nlog®n) or O(nlogn) algorithm
for this case (and more generally, for any set of fixed orientations).

Finally, our research suggests that further investigations should be conducted into the

mapping between discrete graph algorithms and their continuous analogues in geometry.
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