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Abstract—Clock synchronization represents a crucial element in
the operation of wireless sensor networks (WSNs). For any gen-
eral time synchronization protocol involving a two-way message
exchange mechanism, e.g., timing synch protocol for sensor net-
works (TPSN) [see S. Ganeriwal, R. Kumar, and M. B. Srivas-
tava, “Timing Synch Protocol for Sensor Networks,” in Proceed-
ings of the First International Conference on Embedded Network
Sensor Systems,” 2003, pp. 138–149], the maximum likelihood es-
timate (MLE) for clock offset under the exponential delay model
was derived in [D. R. Jeske, “On the Maximum Likelihood Estima-
tion of Clock Offset,” IEEE TRANSACTIONS ON COMMUNICATIONS,
vol. 53, no. 1, pp. 53–54, January 2005] assuming no clock skew
between the nodes. Since all practical clocks are running at dif-
ferent rates with respect to each other, the skew correction be-
comes important for achieving long term synchronization since it
results in the reduction of the number of message exchanges and
hence minimization of power consumption. In this paper, the joint
MLE of clock offset and skew under the exponential delay model
for a two way timing message exchange mechanism and the cor-
responding algorithms for finding these estimates are presented.
Since any time synchronization protocol involves real time mes-
sage exchanges between the sensor nodes, ML estimates for other
synchronization protocols can be derived by employing a similar
procedure. In addition, due to the computational complexity of
the MLE, a simple, computationally efficient and easy to imple-
ment algorithm is presented as an alternative to the ML estimator
which particularly suits the low power demanding regime of wire-
less sensor networks.

Index Terms—Clock synchronization, maximum likelihood esti-
mation (MLE), wireless sensor network (WSN).

I. INTRODUCTION

RECENT technological advances have made it possible to
design miniature devices (sensors) capable of performing

onboard sensing, computing and communication tasks. A WSN
consists of a large number of such tiny devices, called nodes,
that are connected in an ad hoc manner without assuming
any centralized infrastructure [3]. Today WSNs are increas-
ingly gaining importance due to their applicability in various
fields such as military surveillance, environmental monitoring,
traffic monitoring and control, acoustic and seismic detection,
industrial processes monitoring, etc. Since the WSN nodes
are deployed in an ad hoc fashion and mostly left without
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any maintenance and battery replacement for their lifetimes,
they are usually cheap and hence unreliable. Therefore, all the
design aspects of a sensor network concentrate on minimizing
energy utilization [4]–[6].

The operation of a WSN requires all its nodes be synchro-
nized to a common time scale. Clock synchronization is im-
portant since it enables all the nodes to assume efficient duty
cycling operation, i.e., coordinated sleep and wake up modes,
which hugely boosts the lifetimes of the nodes due to the min-
imal power consumption during the sleep mode. Time synchro-
nization is also important for object/phenomenon localization
and tracking because different sensors recording the position
and time of the object/phenomenon must be synchronized for
reliable estimation. The benefits associated with deploying time
division multiple access (TDMA) scheme can also be gained in
a synchronized network. Clock synchronization is also impor-
tant for data fusion so that the voice, video or environmental
data from different sensors can be integrated and processed in
a meaningful way [6]. Finally, many security protocols require
the WSN nodes to timestamp their messages.

There are a few methods through which the accuracy of the
nodes’ clocks can be improved, e.g., using GPS to synchronize
the hardware clocks to a global reference, using precise clock
boards for the nodes, etc. But these solutions prove to be fairly
expensive or inappropriate when the nodes have to be low-cost
and energy efficient. In addition, the sensor nodes may be left
unattended for a long period of time, e.g., on the ocean floor
or in deep space. Also, the conventional network synchroniza-
tion protocols can not be employed due to the WSN constraints
mentioned above [7]. Hence, there is a need for time synchro-
nization protocols specifically designed to the characteristics of
WSNs to make them operate under a common time scale.

Time synchronization in WSNs requires designing a protocol
in which the nodes exchange messages with each other to ad-
just their clocks to a common reference. At the same time, it is
highly desirable to extract information about their relative fre-
quency, called clock skew, from the same set of message ex-
change, because imperfections in quartz crystals and environ-
mental conditions cause different nodes to run at different fre-
quencies. Clock skew adjustment guarantees not only a more
accurately synchronized network, but also helps in maintaining
this synchronization for a longer period. Hence, it significantly
reduces the resynchronization period, i.e., the time interval after
which the clock difference among the nodes exceeds some set
limits and the network has to resynchronize itself, resulting in
tremendous reduction in communication overheads and corre-
sponding energy savings for the whole network.
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Fig. 1. Model for two way timing message exchange involving N such pairs.

II. RELATED WORK

In the Internet, the network time protocol (NTP) [10] is used
to provide distributed synchronization including adjusting the
frequency of each node’s oscillator. NTP synchronizes com-
puter clocks in a hierarchical way by using primary and sec-
ondary time servers but it is not suited for WSNs because it does
not take into account the energy consumption and bandwidth
constraints. In addition, it is designed for continuous operation
in the background at low rates.

To deal efficiently with the specific requirements associated
with the long-term operation of WSNs, quite a few synchro-
nization protocols have been designed in the past few years.
Reference broadcast synchronization (RBS) [11] is a pioneering
work based on the post-facto receiver–receiver synchronization.
In RBS, a reference broadcast message is sent by a node to two
or more neighboring nodes which record their own local clocks
at the reception of broadcasted message. After collecting a few
readings, the nodes exchange their observations and a linear re-
gression approach is used to estimate their relative clock offset
and skew. Timing synch protocol for sensor networks (TPSN)
[1] is a conventional sender-receiver protocol which assumes
two operational stages: the level discovery phase followed by
the synchronization phase. During the level discovery phase,
WSN is organized in the form of a spanning tree, and the global
synchronization is achieved by enabling each node to get syn-
chronized with its parent (the node located in the adjacent upper
level) by means of a message exchange mechanism depicted in
Fig. 1 through adjusting only its clock offset. Timing synchro-
nization protocol for high latency acoustic networks (TSHL)
[13] combines both of these approaches in two stages. The first
stage is similar to RBS while the second stage is similar to
TPSN, and it is particularly suitable for networks involving high
message delays, e.g., underwater acoustic networks. Flooding
time synchronization protocol (FTSP) [12] also combines the
two approaches in the sense that the beacon node sends its times-
tamps within the reference broadcast messages.

All of the above mentioned protocols have their own bene-
fits and limitations. Choosing a protocol which corrects only
the clock offset (such as TPSN [1]) results in more utilization
of power since synchronization has to be done frequently at reg-
ular intervals to prevent the clock skew drift the two clocks too
far apart. For example, re-synchronization must be performed
after every few minutes in TPSN for applications using Berkeley
motes1 . On the other hand, an assumption of simultaneous re-

1http://webs.cs.berkeley.edu/tos/

ception of reference broadcasts is necessary in protocols which
correct both the clock offset and skew (such as RBS [11] and
FTSP [12]), which is not only a simplification of the correct
model but also not applicable in some cases, e.g., in underwater
acoustic sensor networks [13]. As argued in [14] and motivated
in detail in [13], TPSN could represent a very efficient synchro-
nization protocol if the clock skew information can also be ex-
tracted from the same message exchange mechanism without
any additional communication overheads. This is exactly the
target of this paper.

In 2002, [8] presented a detailed analysis of clock offset esti-
mation assuming a symmetric exponential delay model. It was
implicitly argued that for a known fixed delay and exponen-
tial delay parameter , the MLE of clock offset does not
exist because the likelihood function does not possess a unique
maximum with respect to . However, in 2005, it was proved
by [2] that for unknown, irrespective of being known or
unknown, the MLE of does exist and coincides with a previ-
ously proposed estimator in [9]. In 2006, the Cramér–Rao lower
bound (CRLB) for this estimator was derived by [14]. However,
the problem of jointly estimating the clock offset and clock
skew (with known or unknown) in the exponential delay
case remained open and posed quite a serious challenge.

In this paper, the MLEs of both clock offset and skew are
derived for the exponential delay model and the corresponding
algorithms for finding those estimates are presented in detail.
It should be noticed that this methodology can be employed to
any time synchronization protocol involving a two way mes-
sage exchange mechanism between two nodes. Estimation of
clock skew is very important for the reasons described in the
previous section, and finding the MLE is desirable due to its
optimal properties in the presence of a large number of observa-
tions (i.e., unbiasedness, asymptotic efficiency and consistency)
[20]. In addition, a novel algorithm is proposed to estimate the
required parameters which significantly reduces the computa-
tional load on the nodes. The price paid is some degradation in
the performance of the estimator.

The rest of this paper is organized as follows. The model for
the TPSN protocol assuming exponential delays is explained
in Section III. Section IV presents the Maximum Likelihood
Estimates of the clock offset, skew and fixed delay (where
unknown). Section V proposes a novel simplified algorithm
requiring much less computational complexity than the MLE.
Computer simulations for assessing the relative performance of
the proposed estimator are presented in Section VI. Section VII
presents a comparison of the computational complexity of each
algorithm. Finally, Section VII concludes the paper.

III. PAIRWISE SYNCHRONIZATION PROTOCOL

The timing message exchange mechanism between two nodes
presenting both clock offset and skew is depicted in Fig. 1.
Node A sends the synchronization message to Node B with the
its current timestamp (although it is not required, times-
tamping in the MAC layer increases the accuracy, as suggested
by [1]). Node B records its current time at the reception
of this message, then completes the second round of this mes-
sage exchange mechanism by sending at time a synchro-
nization message to Node A containing and . Node
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A timestamps the reception time of the message sent by Node
B as (see Fig. 1). Hence, at the end of synchronization
cycle of exchanging such rounds, Node A has a set of times-
tamps . Note that is
considered to be the reference time, and hence every reading

is actually the difference between the
recorded time and . Therefore, this model can be repre-
sented as

(1)

(2)

where and are the clock offset and skew, respectively, of
Node B with respect to Node A, stands for the fixed portion
of delay in the transmission of message from one node to
another, e.g., the sum of transmission time, propagation delay,
reception time, etc., and and are variable portions of
delay assumed to be independent and identically distributed
random variables from an exponential distribution with the
same mean . Modeling of network delays in WSN seems
to be a challenging task [17]. Several probability distribution
function (pdf) models for random queuing delays have been
proposed so far, the most widely used of which are exponential,
Gamma, and log-normal distributions [15], [16], [18]. Amongst
them, the exponential distribution fits quite well several appli-
cations [19]. Also, a single-server M/M/1 queue can fittingly
represent the cumulative link delay for point-to-point Hypo-
thetical Reference Connection, where the random delays are
independently modeled as exponential random variables [8].
In addition, [9] experimentally demonstrated the superiority
of the Minimum Link Delay (MnLD) algorithm among the
various algorithms proposed by [8], which was mathematically
proved by [2] assuming exponential delays, thus confirming
that the exponential delay assumption matches really well with
the experimental observations.

IV. MAXIMUM LIKELIHOOD ESTIMATION

From (1) and (2), the general form of the likelihood function
is given by

(3)

where the indicator function is defined as

Note that the is always positive since it represents the delay
(fixed), while is also always positive because it has been

realistically assumed that none of the clocks is either standing
still or running backward . An ideal value
of means that the clock is running at the standard rate.
Also, notice that when , the MLE of clock offset was
derived by [2] and takes the form

(4)

From here onwards, without losing any generaliza-
tion, we will assume that is known. This is because
even if is unknown, due to the form of the reduced
likelihood function as shown in [2], the
MLE remains the same. When , in
maximizing the likelihood for this model over the set

,
four different cases will be considered:

Case I: known, known;
Case II: unknown, known;
Case III: known, unknown;
Case IV: unknown, unknown.

An important remark needs to be mentioned here. A prelim-
inary examination of Cases I and II (i.e., when is known)
is necessary because it gives insight into the shape of the sup-
port region over which the likelihood function is nonzero. As
it is the case with exponential models, the MLEs for the loca-
tion parameters will be found by taking effectively into account
the boundary conditions. For the first two cases, the support of
the likelihood region is a 2-D region and it is relatively easier to
find the parameters on the boundary maximizing the likelihood
function. Finding the MLEs for Cases III and IV (i.e., when
is unknown) requires the visualization of the likelihood func-
tion support region in 3-D and getting a somewhat primitive
knowledge of the 2-D support region for the likelihood function
in Cases I and II greatly helps in preparing our intuition and
solving the more complex 3-D optimization problem. There-
fore, we next proceed with a stepwise approach by considering
these four cases separately one-by-one.

A. Case I: Known, Known

Without losing any generalization, the likelihood function in
this case can be obtained by making in (3). From the
form of the likelihood function, we can see that it is nonzero
only over a certain support region defined by the limits of the
indicator function . Since is fixed and known, the set of
constraints in (3), namely and

(5)

(6)

can be equivalently put in the form

(7)

Fig. 2 shows various upper-bounds (5) and (6) of the likeli-
hood support region in the plane , and the solid line is
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Fig. 2. Nonzero likelihood region shown as the solid line.

the region over which the likelihood function has to be maxi-
mized. It is evident from the figure that for a known fixed ,
the likelihood function depends on the unknown only and is
maximized by taking as small as possible. This is because
the factor in (3) is always negative. There-
fore, the smallest value of over the solid line, as shown in
Fig. 2, is the MLE , which coincides with one of the curves

. Let de-
note the index of the curve on which the MLE is achieved. Thus,
from (7), and

The index , which gives the set of timestamps
required for finding the MLE, is the one which gives the min-
imum possible over the allowable region. Since is known,
we can find , and hence the corresponding , by Algorithm 1.

Algorithm 1: Finding for known, known

1: Find , for ;
2: ;
3: ;

Algorithm 1 utilizes the fact that the solid line cuts all the
curves but the likelihood function
is zero beyond its intersection with the first curve, which is the
maximum of these intersections and therefore gives the MLE.
Note that in doing so, a total number of values need to be
compared. To simplify the exposition, in what follows we will
use the terminology the curves ,
instead of the curves .

B. Case II: Unknown, Known

The likelihood function in this case is similar to Case I, but
with one major difference: the fixed delay is unknown. The
shaded region in Fig. 3 is the subset of over which the like-

Fig. 3. Support region of the likelihood function shown as the shaded area. Also
shown to the left in this figure is the sign of the term 2NT � (T �

T ) for each j = 1; . . . ; N .

lihood function is nonzero. It can be described in terms of the
following constraints:

(8)

(9)

This likelihood function in (3) is maximized by making its
argument

(10)

as small as possible. Although Fig. 3 shows only the support
region and not the likelihood function itself, can be linked to
this figure by rewriting it in the form

and noting that for any is the sum of the ordinates
of all points on the curves ,
and , intercepting the vertical
line , minus times (which is the intersection
of with either or

as proved in Lemma 1 below).
Utilizing the fact that depends on two parameters, and

, we will now derive the MLE with the help of the following
four lemmas.

Lemma 1: The MLE lies on either
or , i.e., on the boundary of

the support region.
Proof: See the Appendix.

Lemma 2: The MLE lies either on the uppermost vertex
formed by the intersection of the curves

and (shown as point A in
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Fig. 4. Zoomed in version of the support region of the likelihood function.

Fig. 4) or on one of the vertices formed by the intersection of
the curves (shown as points B,
C, etc., in Fig. 4).

Proof: The MLE is either

where the represent the indexes of
and , respectively, inter-

secting at the maximum (which is the uppermost vertex
shown as point A in Fig. 4), or

For proof, see the Appendix.

Algorithm 2: Finding and for unknown, known

1: Find ;
;

and .
2: ;
3: if then
4: ; ;
5: else
6: ;

LABEL:
7: Find ;

.
8:
9: if then

10: ;

11: else
12: ;
13: goto LABEL;
14: end if
15: end if

Lemma 3: To the left of the point where
and

intersect (i.e., point A shown in Fig. 4), the boundary
of the support region is formed by the curves

in such a way that as
increases, a curve forms the new

boundary of the support region after intersecting the curve
if and only if .

Proof: See the Appendix.
Lemma 4: The MLE , whether (23) and (24) or (28)

and (29), is unique.
Proof: See Appendix.

It should be noted that under the most likely scenario, when
Node B is sending its timestamps to Node A after short de-
lays, MLE will be given by (23) and (24), but in the usually
unlikely scenario of Node B waiting a long period of time be-
fore sending one of its timestamps to Node A, (28) and (29) can
be the MLE only if . Note that
in this case, in addition to previous intersections,
more intersections have to be compared for each satisfying

. The whole procedure for finding
this MLE is summarized in Algorithm 2. This algorithm pro-
ceeds in precisely the same steps as described above.

Now that we have obtained some insight into this problem
for known, we next proceed with the situation when is
unknown.

C. Case III: Known, Unknown

The likelihood function in this case is the same as (3), where
is fixed and known. The region over which the likelihood func-
tion is nonzero is given by indicator function in (3) and
shown in Fig. 5. This 3-D support region is dramatically more
complex than what we observed in the first two cases. It is also
evident from (3) that is the same as in previous cases and the
likelihood function can again be maximized by minimizing .
Since is always negative and is given,
can be minimized by taking as small as possible. To find this
minimum , we take a horizontal slice from this 3-D support
region at the constant . This gives an aerial view of the 2-D re-
gion shown in Fig. 6 highlighting the relation between versus

for the known . Therefore, in accordance with (3), we can
express the support of the likelihood function in the form of the
following constraints:

(11)

(12)

These constraints can be viewed as being a monotonically
decreasing function of due to the positivity of
and , and the shaded region is the one which satisfies
these constraints.
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Fig. 5. d as a function of � and � .

Fig. 6. � as a function of � for constant d.

Lemma 5: Of all the intersections of
with , only two points satisfy the con-
straints (11) and (12) in a way that they represent the starting
and ending points of the support region and the point with min-
imum is the one with maximum .

Proof: See the Appendix.
We can minimize by taking the intersection of

and
at minimum possible , which gives the MLE

as

where the indexes are the ones whose intersection gives the
minimum allowed . Algorithm 3 presents in detail the steps
that are required for finding this MLE.

Algorithm 3 first finds all the intersections and chooses
two candidate points and such that

and .
These are the starting and ending points of the nonzero likeli-
hood region as proved in Lemma 5 above and the point with
minimum (which corresponds to the one with maximum

) is chosen.

Algorithm 3: Finding and for known, unknown

1: Find
;

and
2: and

;
3:

and ;
4: ;
5: ;

D. Case IV: Unknown, Unknown

In this case, all of and are unknown and have to
be jointly estimated. The likelihood function in this case is the
same as in (3) but is unknown. The region where the likelihood
function is nonzero can be expressed in the form of the following
constraints:

(13)

(14)

Within the constraint are mono-
tonically decreasing functions of and , and

are monotonically increasing functions of
and as shown in Fig. 5. It is clear from the same figure
that the nonzero likelihood region is similar in shape to a dome
if we look at it standing on plane. Lemma 1 asserts that
the MLE should lie somewhere on the ceiling of this
dome. The lines on plane, on which the intersections
of the surfaces lie are given by

(15)

or equivalently

(16)

Note that putting (the case when there is no clock
skew) in (15) and taking the minimum results in the MLE
in (4) derived by [2]. Although is a function of both and

, it can be written as a function of either only or only
by utilizing this linear relationship between these two parame-
ters. Fig. 7 shows the imaginary 2-D region where is drawn
as a function of only and Fig. 8 shows the imaginary 2-D
region where is drawn as a function of only. Note that
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Fig. 7. d as a function of � only.

these are actually 3-D plots, but the points on the bottom two
axes are replaced with

and in Figs. 7
and 8, respectively.

Over the line (15), is given by

(17)

Note that putting and taking the results in MLE
given by [2]. And over the line (16), is given by

(18)

A closer look at (18) reveals that its RHS goes to or
respectively at according to the negative
or positive sign of the numerator. But the constraint au-
tomatically restricts the nonzero likelihood region well before
even the first discontinuity of this kind as shown in Fig. 8.

1) Estimating and : Consider the set of curves given
in (17) and plotted in Fig. 7. Since the signs of and

are always opposite, of these curves
have positive numerator in the term involving and negative
constant term, while the remaining have negative
numerator in the term involving and positive constant term.
Based on this observation, (17) can be written in the form of
two sets of inequalities such that for one set
and for the other as shown in Fig. 7. Then
the current scenario assumes quite a similar form to the set of
constraints (8) and (9). Therefore, initially a total of

intersections (denoted
by in Algorithm 4) are to be compared. Lemmas 1, 2,
3, and 4 are then similarly true for these sets of inequalities
and the MLEs can be derived by following a similar procedure.
Let us denote

as

Fig. 8. d as a function of � only.

and
as

. Then if is positive,
the MLE is the intersection of this curve with the one
discussed above, i.e.,

and

(19)

Otherwise, if is
negative, then the MLE is the intersection of the curves

and
(denoting the intersections of the curves in (17)

as , and satisfy the constraints
(13) and (14)), where

Hence, here the MLE is

and

(20)
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Algorithm 4 Finding and for unknown,
unknown

1: ;
LABEL:

2: Find

3:
4: if then
5:

;
6: else
7: if then
8:

;
9: else

10: Remove curve;
11: ;
12: goto LABEL;
13: end if
14: end if

The complete procedure for finding the MLE is described in
Algorithm 4. Although a modified Algorithm 2 can be used in
this case, we present this alternative algorithm for the sake of
completion. It starts from the curve for which is
minimum, i.e., and then compares its intersections
with other curves. It keeps on replacing this curve with the one
giving the next minimum within the constraints until
the MLE is found according to the procedure described before.

2) Estimating : A simpler and easier to implement method
is estimating by noting that for every as a function of
(and hence the one minimizing ), there is a corresponding
according to (15). Therefore, the MLE is

(21)

(22)

depending on whether is given by (19) or (20). The reason for
not following the same procedure as in finding by using (16)
is that the problem becomes computationally complex. First,
the likelihood function assumes quite a complicated form after
plugging (16) and (18) into (3). Second, the intersection of
the curves in (16) has to be found by solving quadratic equations
with large coefficients. To be exact, is the solution of

where the indexes are the ones minimizing . It has two
solutions and the solution which gives

is accepted to satisfy the constraints set by in (3). Hence,
(21) or (22) should be chosen to estimate on the grounds
of lesser computational complexity. It should be noted that
will be the same in both approaches when we estimate it jointly
with and whether by expressing it in terms of only
or in terms of only. Algorithm 4 also includes the step for
estimating .

V. PROPOSED ALGORITHM

Although a little complex, the MLE can be implemented in
a WSN to achieve clock synchronization. However, simpler al-
gorithms, even with the sacrifice of some performance degrada-
tion, are more suited to the WSN requirements. In this section,
we present an easier to implement algorithm which requires
less number of computations at the expense of increased mean
square error (MSE). The intuition behind the idea is that (1) and
(2) can be rewritten as

Notice that since and are all positive, the points
will always be above the line

and the points will always be below the
line . Hence, a good estimate of and can
be formed by fitting a line between the observations such that

are above the fitted line and
are below it. The strategy we have devised for a good

estimate is to join the two points and , where corre-
sponds to and corresponds
to . Representing their in-
dexes by and , respectively, we have

and

i.e., and correspond to the first two order statistics of the
data set . The line formed by
joining those two points is shown in Fig. 9 along with the true
curve. Hence, the estimate can be expressed as
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Fig. 9. Estimated fit with the original curve.

Algorithm 5 Fitting the line to estimate and

1: ;
2: ;
3:

; ;
4: if or
5:

;
6:

;
;

7: end if

When and fall very close to each other, it may happen
that the fitted line exits from its boundaries and a part of it be-
comes either greater than some or less than some . In
that case, we propose to join the minimum point with one
of the boundary points depending on
which of them has the shortest distance from the initial fitted
line. This algorithm is extremely simple since it just involves
finding the first two order statistics from a set of observa-
tions and checking the boundary conditions for the two extreme
points. If the fitted line violates the boundary condition, the es-
timator is again formed by the same simple formula but with
a point having different time index. Since this point is on the
boundary, the procedure does not have to be repeated and there
are no loops involved as before. The whole procedure for finding
these estimates is described in Algorithm 5.

Some additional advantages of using Algorithm 5 are that
can also be estimated by the intercept of the fitted line and
importantly, does not need to be known.

VI. SIMULATION RESULTS

We have simulated the performance of the MLE for fixed delay
, clock offset , exponential delay parameter

and for two different clock skews and
. The reason of choosing different clock skews is

Fig. 10. Comparison of the proposed algorithm with case IV.

Fig. 11. Comparison of the proposed algorithm with case IV for Gamma dis-
tributed random delays.

to show a comparison of these algorithms on the performance
for various actual parameters. We compare the performance of
our proposed algorithm with the most general (and similar) case
when have to be jointly estimated. Fig. 10 plots the
meansquare errorof both clock skewestimators for
and against the number of message exchanges. It
is clear from Fig. 10 that although the MLE performs better than
the proposed algorithm, it can still be adopted with the sacrifice
of some performance in the scenarios where energy conservation
is the main issue of concern. Hence, in the light of the accuracy
energy tradeoff for attaining such a gain in performance by
deploying MLE, we assert that the proposed algorithm is very
suitable for WSNs. Moreover, there is not any significant dif-
ference between the mean square error of the MLE and that of
the proposed algorithm for different set of actual parameters and
hence it is suited to different types of sensor nodes used today.

To check the robustness of our proposed algorithm against
possible model mismatches, we have plotted the performance
of the MLE in the most general Case IV and our proposed algo-
rithm in Fig. 11 when the actual random delays come from the
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TABLE I
COMPUTATIONAL COMPLEXITY OF EACH ALGORITHM

widely used Gamma distribution instead of the exponential dis-
tribution. Fig. 11 shows the mean square error of both of these
algorithms against the number of observations when the random
delays were simulated as Gamma random variables with shape
parameter 2 and scale parameter 1. It is interesting to observe
that the difference between their performance still remains on
the same scale as in Fig. 10. Therefore, the proposed algorithm
is not only computationally simple and easy to implement but
also robust to different environments.

VII. COMPUTATIONAL COMPLEXITY COMPARISON

Table I presents the number of operations required for all
the algorithms. Note that these numbers have been calculated
by considering the necessary simplifications (e.g., storing the
output of an operation if it is to be used later). In addition, the
operation count for Algorithm 2 and Algorithm 4 is given as-
suming no jumps. When their respective conditional statements
become true, the code will jump around in the loop and the op-
eration count will be multiplied by the number of jumps. More-
over, it must be kept in mind that the division is the most com-
plex algorithm to implement in a DSP and the number of divi-
sion operations must be given the highest weight while choosing
between different algorithms. Finally, the operation count of
our proposed algorithm is given for the worst case scenario, the
probability of which is very low. For usual operation, its com-
plexity will only be additions, multiplications
and 1 division.

For a comparison, observe that even for a small number of
observations, e.g., 10, Algorithm 4 requires 916 additions, 205
multiplications and 200 divisions. On the other hand, the pro-
posed algorithm requires only 61 additions, 20 multiplications
and 2 divisions for 10 observations in the worst case. As the
number of observations increases, the difference between
their operation counts increases significantly while the differ-
ence between their MSE decreases, making it a more viable op-
tion for large . However, it must be remembered that in the
light of the results by Pottie and Kaiser [21], who have reported
that the energy required to transmit 1 bit over 100 meters (3
Joules) is equivalent to the energy required to execute 3 million
instructions, employing the MLE to achieve clock synchroniza-
tion in a WSN is still a practical option.

VIII. CONCLUSION AND FUTURE WORK

The maximum likelihood estimators of both the clock offset
and skew for any general time synchronization protocol in-
volving a two way message exchange mechanism are derived
assuming exponential delays. The complete algorithms used

for finding these MLEs are also presented. In addition, due to
the complexity of the MLEs, a simple algorithm is proposed
which takes much lesser number of computations at the cost
of some degradation in quality. For future, we plan to extend
this methodology to analyze other time synchronization pro-
tocols for both single hop and multihop cases. Also, finding
the Cramér–Rao lower bounds (CRLBs) for the clock offset
and skew estimators derived here represents an important open
research problem. However, it must be noted that the CRLB
in this case can not be derived by the same procedure as in
[14]. The reason is that and

in Case II intersecting at optimal
(and similar curves in other cases) do not correspond

to and respectively. In addition,
all the order statistics from an exponential distribution, except
the first, do not have exponential distribution. Additionally,
exploring the effects of violation of i.i.d. assumption for the
random delays, missing data points due to communication
losses, or quantization errors are interesting open problems.

APPENDIX

Lemma 1: The MLE lies on either
or , i.e., on the boundary of

the support region.
Proof: This can be proved by contradiction. Let us assume

that the does not lie on the boundary, but somewhere else in-
side the support region. Then for some minimizing can be
further decreased by increasing to the top of the allowable re-
gion (which coincides with one of the above mentioned curves)
for the same , hence a contradiction.

Lemma 2: The MLE lies either on the uppermost vertex
formed by the intersection of the curves

and (shown as point A in
Fig. 4) or on one of the vertices formed by the intersection of
the curves (shown as points B,
C, etc., in Fig. 4).

Proof: It is straightforward to notice from (10) that when
, for all can be minimized by making

as large as possible, which is the intersection of the curves
and .

Hence, the MLE is

(23)

and

(24)

where the represent the indexes of
and , respectively, inter-

secting at the maximum (which is the uppermost vertex
shown as point A in Fig. 4). Note that in order to find this MLE,
a total number of intersections have to be compared.

When , for some , the problem becomes a little
involved. From Lemma 1, we know that lies somewhere on the
boundary of the support region. Notice further that according to
(10) in order to minimize it is necessary to select as large as
possible and as small as possible.
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Suppose that lies on and let
corresponding to the maximum

(i.e., point A in Fig. 4), then from (10) can be written as

(25)

Since the term is always
negative, can be minimized by taking as small as pos-
sible on . Hence, and in
this general case are equal to or less than the MLE given
by (23) and (24), respectively (i.e., either on point A shown
in Fig. 4 or to the left of it). An alternative justification for
the fact that and are equal to or less than the MLE
given by (23) and (24), respectively, is to assume by con-
tradiction that lies on , with

, which does not cor-
respond to the maximum (i.e., not on the curve passing
through point A in Fig. 4). According to (25), is minimized
by choosing as small as possible. Taking into account the
continuity of with respect to and , one can show that
is monotonically decreasing as long as is decreased until it
reaches the value corresponding to the point A.

Now suppose that lies on and
let corresponding to the
maximum (i.e., point A in Fig. 4), then can be written as

(26)

From (26), it is clear that can be minimized by taking the
largest possible if is positive and
by taking the smallest possible if
is negative as depicted by Fig. 4. Hence, for

MLE is again given by (23) and (24). And for

MLE is given by the intersection of the curves
and (denoting the intersections of the curves

and as , and
satisfy the constraints (8) and (9)), where

(27)

Basically, the indexes in (27) identify the first vertex of
the support region located to the left of the vertex A for which
a change of sign occurs in . In
Fig. 4, this vertex is represented by the point B, and the MLE

in this case is given by

(28)

and

(29)

Lemma 3: To the left of the point where
and

intersect (i.e., point A shown in Fig. 4), the boundary
of the support region is formed by the curves

in such a way that as
increases, a curve forms the new

boundary of the support region after intersecting the curve
if and only if .

Proof: The curve starts as the most
negative for small and ends up as the largest positive asymp-
totically approaching as increases. Similarly, the curve

starts as the least negative for small and
ends up as the smallest positive asymptotically approaching
as increases. All the curves ,
are arranged in descending order for small and in ascending
order for large and they intersect each other somewhere
around the true value of . Since the slope of each curve

is , the slope of the
curve with index is lesser than the slope of the curve with
index if . Therefore, as increases, a curve can form
the new boundary of the support region by intersecting another
curve only if its index is lower than the previous one.

Lemma 4: The MLE , whether (23) and (24) or (28)
and (29), is unique.

Proof: Note that the likelihood function is continuous on
the boundary of the support region because different curves in-
tersect each other on the vertices due to which there will be no
jumps in and subsequently in the likelihood function. Now
considering the fact that for

, let
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Then it must also be true that
, i.e., for and

, i.e., for . Fig. 3 shows the sign of
the term for each .
There will always be just one change, if any, in the sign of this
term from positive to negative. Therefore, can be minimized
by making as large as possible on
and as small as possible on the curve (or on

if there is no such ) as shown in Fig. 3.
This fact, combined with Lemma 3, proves that the intersec-

tion of the curves forming the MLE is always unique.
Lemma 5: Of all the intersections of

with , only two points satisfy the con-
straints (11) and (12) in a way that they represent the starting
and ending points of the support region and the point with min-
imum is the one with maximum .

Proof: Consider the curves with
as a function of in order to avoid con-

fusion between the actual unknown parameter and the vari-
able with respect to which the above functions are drawn. Now
utilizing (1) and (2), we can write

It is clear that when
. Therefore, a support region does exist

where the constraints (11) and (12) are satisfied. Now the slopes
and y-intercepts of the straight lines are

and
respectively, and the slopes and y-intercepts of the straight lines

are and
respectively. The y-intercepts can

attain any value depending on the random delays and the
sign and magnitude of , but there is a set pattern in the slopes
of these lines. According to the model (see Fig. 1), it is always
true that

This is because
. Due to the alternating slopes, the lines

and for every intersect
each other on at least one point. According to the order of the
slopes, both to the left and right of , the support region
ends after the first intersection. Therefore, there are exactly two
points, and , which define the starting and
ending point of the support region. In addition, the point corre-
sponding to minimum is the one with maximum since all
the straight lines always have negative slopes.
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