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Abstract

We study a variant of the well known Maxwell model for viscoelastic fluids, namely we consider the Maxwell
fluid with viscosity and relaxation time depending on the pressure. Such a model is relevant for example
in modelling behaviour of some polymers and geomaterials. Although it is experimentally known that the
material moduli of some viscoelastic fluids can depend on the pressure, most of the studies concerning the
motion of viscoelastic fluids do not take such effects into account despite their possible practical significance
in technological applications. Using a generalized Maxwell model with pressure dependent material moduli
we solve a simple boundary value problem and we demonstrate interesting non-classical features exhibited
by the model.
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1. Introduction

The Maxwell fluid model was originally developed by Maxwell [1] to describe the elastic and viscous
response of air. Nowadays, it is however, frequently used to model the response of various viscoelastic
fluids ranging from polymers—see for example Ferry [2]—to the Earth’s mantle—see for example Cathles
[3]. In the present paper, we study an important generalization of the original model due to Maxwell,
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namely we consider a model with pressure dependent material moduli. While the model with a pressure
dependent material moduli has important technological ramifications, little is known about the qualitative
or quantitative features related to the model. In fact, there is no careful analytical study with regard to
mathematical questions concerning existence and uniqueness of solutions for such fluids. Even within the
context of solutions to initial-boundary value problems, there is no systematic study when all the material
moduli are pressure dependent. Given the possible usefulness of this model, it is surprising that there are
no such studies and the analysis carried out here addresses this lacuna.

Bridgman [4] in his pioneering experiments in high pressure physics reported (for many organic fluids) a
significant dependence of the viscosity on the pressure and articulated the need for the dependence of the
material moduli on the pressure. Models of fluids with pressure dependent viscosity are nowadays frequently
used to describe the behaviour of fluids in many applications, for example in lubrication theory, see Neale
[5] and Gwynllyw et al. [6]. Extending to viscoelastic fluids, we can ask whether the material moduli
of viscoelastic fluid models also exhibit dependence on pressure, and what effects can be described if we
use pressure dependent material moduli. Viscoelastic material moduli depending on the pressure has been
reported for polymers, see for example Singh and Nolle [7], McKinney and Belcher [8] and the literature
stemming from these papers, as well as for geomaterials, see for example Weertman et al. [9], Ivins et al. [10]
and Sahaphol and Miura [11].

The question on pressure dependent viscosity and/or relaxation time is especially interesting, for example,
with respect to applications in geophysics, since the material of the Earth’s mantle is subject to a wide range
of pressures. If we consider a material stratified due to the influence of the gravitational force, then because of
pressure dependent material moduli, we would be dealing with a body with material moduli depending on the
vertical coordinate. A similar situation occurs in geophysical applications and usually it is assumed that the
body (in this case the Earth’s mantle) is composed of a number of layers of materials with constant material
moduli—a paradigm introduced in papers by McConnel [12, 13]. The approach based on material moduli
dependence on the pressure and consequently (in the case of a stratified material) on the vertical coordinate
provides an alternative approach to the problem. In such an approach, the material moduli continuously vary
with the depth, in contrast to McConnel [13]. Although geophysicists and polymer engineers are aware of the
possibility of pressure dependent material moduli, this dependence is invariably ignored in studies concerning
the dynamics of these materials. If we take into account that geologists often try to refine their models for
the viscosity by considering advanced non-Newtonian models, for example a power-law type viscosity—see
for example Weertman et al. [9], Wu and Wang [14]—one wonders why important physical phenomenon such
as material moduli depending on pressure is not considered.

In the present paper we would like to explore potential benefits of models based on the assumption
that the material moduli are pressure dependent. We consider a simple boundary value problem for an
incompressible Maxwell fluid with the relaxation time and/or viscosity depending on the pressure to illustrate
the consequences of the material moduli depending upon the pressure. The constitutive model therefore has
the following structure:

T = −πI + S, (1.1a)

S + λ(π)
▽

S = 2µ(π)D, (1.1b)
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where T denotes the Cauchy stress tensor, π is the pressure2.

µ(π) = µ0 (1 + βπ) , (1.2a)

µ(π) = µ0e
βπ, (1.2b)

λ(π) = λ0 (1 + γπ) , (1.2c)

λ(π) = λ0e
γπ, (1.2d)

where λ0, µ0, β and γ are given constants. Viscosity in the form (1.2a) and (1.2b) is used in studies dealing
with viscous fluids with pressure dependent viscosity, see for example Hron et al. [17] and Srinivasan and
Rajagopal [18]; models (1.2c) and (1.2d) are counterparts of (1.2a) and (1.2b) with respect to modulus λ.
From the theoretical point of view, all the models that are considered fit into the thermodynamical framework
developed by Rajagopal and Srinivasa [19] (see also Rajagopal and Srinivasa [15]).

The boundary value problem we are going to solve using the model (1.1) is a classical one; it is a
variant of the second Stokes’ problem introduced by Stokes [20]. The fluid is confined between two parallel
plates, the bottom (top) plate is at rest and the top (bottom) plate is moving with time-periodic velocity
V = V cos(ωt)ex̂. The pressure on the bottom plate is fixed to π0 and a specific body force—the gravitational
force—is acting on the fluid, the gravitational acceleration is denoted as g. (See Figure 1.) We call the
problem a variant of the second Stokes’ problem, since Stokes [20] considered the problem in a half-space
above an oscillating plate and without the presence of the gravitational force. A setting identical to ours was
previously studied by Srinivasan and Rajagopal [18] in their paper concerning viscous fluids with pressure
dependent viscosities.

There is a further need for the careful assessment of the model by considering initial-boundary value
problems that have technological relevance and also those that can be used to correlate the model with
experiments. From the point of geophysical applications another simple problem that is worth studying
using the model (1.1) is a variant of problem introduced by Haskell [21] (response of a fluid on the removal
of load), and isostatic adjustment in incompressible, nonrotating and self-gravitating spherical planet, a
problem introduced by Love [22]—see also discussion in Wolf [23].

eŷ

ex̂h

y

x

−geŷ

V cos (ωt) ex̂

Figure 1: Problem geometry.

2In this paper, we shall refer to the Lagrange multiplier π as pressure. For the model (1.1), the Lagrange multiplier is not
the same as the mean normal stress, and if one defines the mechanical pressure as being the mean normal stress, then π is not
the mechanical pressure. For further discussion see Rajagopal and Srinivasa [15], Rajagopal [16].
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2. Governing equations

We now turn our attention to solving the boundary value problem. Equations governing the motion of
the material are

ρ
dv

dt
= div T + ρb, (2.1a)

div v = 0, (2.1b)

where v denotes the velocity, ρ is the density, b = −geŷ is the specific body force and T is given by
constitutive model (1.1). No-slip boundary conditions on the top and bottom plate read—for the oscillating
top plate—v|y=0 = 0 and v|y=h = V cos(ωt)ex̂, and vice versa for the oscillating bottom plate3. Since we are
dealing with a simple geometry, the system (2.1) can be greatly simplified under the assumption of parallel
flow.

2.1. Governing equations for parallel flow

Let us assume that the velocity field and the pressure field have the form v = vx̂(y, t)ex̂, π = π(y)
respectively, and let us suppose that S = S(y, t). It follows that [∇v]v = 0, [∇S]v = 0 and

L =

[

0 ∂vx̂

∂y

0 0

]

, D =
1

2

[

0 ∂vx̂

∂y
∂vx̂

∂y
0

]

,
▽

S =

[

∂S
x̂x̂

∂t
− 2∂vx̂

∂y
Sx̂ŷ

∂S
x̂ŷ

∂t
− ∂vx̂

∂y
Sŷŷ

∂S
x̂ŷ

∂t
− ∂vx̂

∂y
Sŷŷ

∂S
ŷŷ

∂t

]

.

The balance of linear momentum (2.1a) reduces to

ρ
∂vx̂

∂t
=

∂Sx̂ŷ

∂y
, (2.2a)

0 = −∂π

∂y
+

∂Sŷŷ

∂y
− ρg, (2.2b)

and (1.1b) reduces to

Sx̂x̂ + λ(π)
∂Sx̂x̂

∂t
− 2λ(π)

∂vx̂

∂y
Sx̂ŷ = 0, (2.2c)

Sx̂ŷ + λ(π)
∂Sx̂ŷ

∂t
− λ(π)

∂vx̂

∂y
Sŷŷ = µ(π)

∂vx̂

∂y
, (2.2d)

Sŷŷ + λ(π)
∂Sŷŷ

∂t
= 0. (2.2e)

Obviously, if we are interested in a time-periodic solution, we need to fix Sŷŷ = 0. If Sŷŷ = 0, we can then
solve (2.2b) to get a formula for the pressure

π = −ρgy + π0. (2.3)

3For the sake of brevity we will, however, describe a solution procedure only for the top plate oscillating, and we will only
report the results for the case when the bottom plate is oscillating.
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Finally, the system reduces to

ρ
∂vx̂

∂t
=

∂Sx̂ŷ

∂y
, (2.4a)

Sx̂x̂ + λ(π)
∂Sx̂x̂

∂t
− 2λ(π)

∂vx̂

∂y
Sx̂ŷ = 0, (2.4b)

Sx̂ŷ + λ(π)
∂Sx̂ŷ

∂t
= µ(π)

∂vx̂

∂y
, (2.4c)

where λ(π) and µ(π) are, by virtue of (2.3), known functions of y. Equations (2.4a) and (2.4c) are linear
equations for vx̂ and Sx̂ŷ and these equations can be solved independently on (2.4b). The system has to be
completed by supplying boundary conditions, in our case (oscillating top plate) the boundary conditions for
the velocity read

vx̂
∣

∣

y=h
= V cos (ωt) , vx̂

∣

∣

y=0
= 0. (2.5)

2.2. Dimensionless governing equations for parallel flow

Let us develop a dimensionless version of the governing equations (2.4) before we proceed to solving the
problem. Let h be the characteristic length and V the characteristic velocity, then system (2.4) reads

∂vx̂⋆

∂t⋆
=

1

Re

∂S⋆
x̂ŷ

∂y⋆
, (2.6a)

S⋆
x̂x̂ + Weλ⋆(π⋆)

(

∂S⋆
x̂x̂

∂t⋆
− 2

∂vx̂⋆

∂y⋆
S⋆

x̂ŷ

)

= 0, (2.6b)

S⋆
x̂ŷ + Weλ⋆(π⋆)

∂S⋆
x̂ŷ

∂t⋆
= µ⋆(π⋆)

∂vx̂⋆

∂y⋆
, (2.6c)

where Re = ρV h

µ0

is the Reynolds number (the ratio of inertial forces to viscous forces), We = λ0V
h

is the

Weissenberg number (the ratio of the relaxation time of the material and a characteristic time scale), and

the star denotes dimensionless variables vx̂⋆
= vx̂

V
, S⋆

x̂x̂ =
hS

x̂x̂

µ0V
, S⋆

x̂ŷ =
hS

x̂ŷ

µ0V
, y⋆ = y

h
, t⋆ = V t

h
. Functions λ⋆(π⋆)

and µ⋆(π⋆) are given by formulae

µ⋆(π⋆) = (1 + β⋆π⋆) , (2.7a)

µ⋆(π⋆) = eβ⋆π⋆

, (2.7b)

λ⋆(π⋆) = (1 + γ⋆π⋆) , (2.7c)

λ⋆(π⋆) = eγ⋆π⋆

. (2.7d)

where β⋆ = βπ0, γ⋆ = γπ0 and
π⋆ = −Πy⋆ + 1, (2.8)

where Π = hρg

π0

is a dimensionless version of (2.3). Clearly, the dimensionless version of boundary condi-
tions (2.5) reads

vx̂⋆
∣

∣

∣

y⋆=0
= 0, vx̂⋆

∣

∣

∣

y⋆=1
= cos (ω⋆t⋆) . (2.9)

Hereafter, we will use only dimensionless variables and we will therefore omit the star denoting the dimen-
sionless variables. Furthermore, in what follows we will freely vary all the dimensionless parameters that are
present in the equations. The parameter values and their mutual relationship do not necessarily correspond
to a realistic setting; the main aim of the present study is to illustrate the trends that correspond to particular
variations of the parameters.
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3. Solution to the governing equations

Due to the linearity of the governing equations and the nature of the boundary conditions (2.5), we seek
a solution of the form

vx̂ (y, t) = ṽx̂(y)eiωt, Sx̂ŷ (y, t) = S̃x̂ŷ (y)eiωt, (3.1)

where ṽx̂(y) is a complex function, solution to (2.6) is then the real part of ṽx̂(y)eiωt and S̃x̂ŷ (y)eiωt respectively.
Substituting (3.1) to (2.6) leads to system

iωṽx̂ =
1

Re

dS̃x̂ŷ

dy
, (3.2a)

(1 + iωWeλ(π)) S̃x̂ŷ = µ(π)
dṽx̂

dy
, (3.2b)

that can be reduced to a single ordinary differential equation for the velocity component ṽx̂,

iωṽx̂ =
1

Re

d

dy

(

µ(π)

1 + iωWeλ(π)

dṽx̂

dy

)

, (3.3)

that has to be solved subject to boundary conditions

ℜ
(

ṽx̂eiωt
)
∣

∣

y=0
= 0, ℜ

(

ṽx̂eiωt
)
∣

∣

y=1
= cos(ωt), (3.4)

where ℜ denotes the real part of the corresponding expression. The boundary conditions must be satisfied
for all t. Equation (3.3) with boundary conditions (3.4) can be rewritten as a system of ordinary differential
equations for the real and imaginary part of ṽx̂. Let ṽx̂

Re and ṽx̂
Im denote the real and imaginary part of ṽx̂,

then (3.3) reads as follows

−ωReṽx̂
Im =

d

dy

[

µ(π)

1 + (ωWeλ(π))2

dṽx̂
Re

dy
+

µ(π)ωWeλ(π)

1 + (ωWeλ(π))2

dṽx̂
Im

dy

]

, (3.5a)

ωReṽx̂
Re =

d

dy

[

− µ(π)ωWeλ(π)

1 + (ωWeλ(π))2
dṽx̂

Re

dy
+

µ(π)

1 + (ωWeλ(π))2
dṽx̂

Im

dy

]

, (3.5b)

Using (3.1), the required velocity is given by

vx̂
Re = ṽx̂

Re cos(ωt) − ṽx̂
Im sin(ωt), (3.6)

and the boundary conditions (3.4) reduce to

ṽx̂
Re

∣

∣

y=0
= 0, ṽx̂

Re

∣

∣

y=1
= 1, ṽx̂

Im

∣

∣

y=0
= 0, ṽx̂

Im

∣

∣

y=1
= 0. (3.7)

In addition, the vorticity only has a component is the z-direction whose value is given by

(rotv)ẑ = −dvx̂
Re

dy
= −dṽx̂

Re

dy
cos(ωt) +

dṽx̂
Im

dy
sin(ωt). (3.8)

3.1. Analytical solution to the governing equations

Let us now solve (3.3) subject to boundary conditions (3.7). Although we will not be able to get a
closed analytical formulae for the solution, we can, in most cases, give analytical formulae wherein certain
integration constants have to be found numerically.
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3.1.1. Case λ(π) = λ0, µ(π) = µ0

In the classical case (3.3) reduces to

iωṽx̂ =
1

Re

1

1 + iωWe

d2ṽx̂

dy2
, (3.9)

and the solution reads

ṽx̂(y) = C1e
i
1

2 By + C2e
−i

1

2 By, (3.10)

where B =
√

ωRe (1 + iωWe), and C1 and C2 are arbitrary complex constants. In this case it is in principle
possible to apply the boundary conditions (3.7) and obtain values of C1 and C2 as combinations of elementary
functions of parameters Re, We and ω. (A solution to the classical second Stokes’ problem in the infinite
domain was given by Fetecau and Fetecau [24].) Also, note that in this case the velocity field is not influenced
by the gravitational force; however, the gravitational force affects the pressure field. In the cases that follow,
the gravitational force affects both velocity and pressure fields.

3.1.2. Case λ(π) = λ0 (1 + γπ), µ(π) = µ0

If λ(π) is given by (2.7c), then using (2.8) we can substitute for the pressure and get the relaxation time
λ(π) as a function of y, λ(y) = 1+ γ− γΠy . Denoting ŷ = 1+ iωWeλ(π), and using ŷ as a new independent
variable, ṽx̂(y) = v̂x̂(ŷ), we see that (3.3) can be rewritten as

ŷ
d2v̂x̂

dŷ2 − dv̂x̂

dŷ
+ i

Re

ω (WeγΠ)2 ŷ2v̂x̂ = 0. (3.11)

This equation is of form x2y′′ + axy′ + (bxn + c) y = 0, b 6= 0, n 6= 0, for which the solution (see Polyanin

and Zaitsev [25]) has the form y = x
1−a

2

(

C1Jν

(

2
n

√
bx

n

2

)

+ C2Yν

(

2
n

√
bx

n

2

))

, where ν = 1
n

√

(1 − a)2 − 4c,

C1 and C2 are arbitrary constants, and Jν (z) and Yν (z) denote Bessel functions of the first and second kind.
Solution to (3.11) therefore reads

ṽx̂(y) = ŷ

(

C1J 2

3

(

2

3
i
1

2 Bŷ
3

2

)

+ C2Y 2

3

(

2

3
i
1

2 Bŷ
3

2

))

, (3.12)

where B = 1
WeγΠ

√

Re
ω

, ŷ = 1+iωWe (1 + γ − γΠy) , and C1 and C2 are arbitrary complex constants that can

be fixed by applying the boundary conditions (3.4). Since there is no general formula for splitting a Bessel
function of a general complex argument into its imaginary and real parts (see for example Watson [26]),
the system of linear algebraic equations arising from the application of the boundary conditions contains
factors—the Bessel functions evaluated at y = 0 and y = 1—that must be found numerically. An algorithm
for numerical computation of Bessel functions of the complex argument is discussed for example by Amos
[27]. Formula (3.12) is worth of considering in the case when it is necessary to have a kind of analytical
expression for the solution. If one however needs only a numerical solution, it is simpler to directly solve the
system (3.5), see Section 3.2. We will face the same situation in the remaining cases.

3.1.3. Case λ(π) = λ0, µ(π) = µ0 (1 + βπ)

If µ(π) is given by (2.7a), then using (2.8) we can substitute for the pressure and get the viscosity µ(π)

as a function of y, µ(y) = 1 + β − βΠy. Denoting ŷ = (1 + β − βΠy)
1

2 , and using ŷ as a new independent
variable, ṽx̂(y) = v̂x̂(ŷ), we see that (3.3) can be rewritten as

ŷ2d2v̂x̂

dŷ2 + ŷ
dv̂x̂

dŷ
− 4iωRe (1 + iωWe)

(βΠ)2
ŷ2v̂x̂ = 0. (3.13)
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This equation is again of form x2y′′ + axy′ + (bxn + c) y = 0, b 6= 0, n 6= 0. Solution to (3.13) therefore reads

ṽx̂(y) = ŷ
(

C1J0

(

i
3

2 Bŷ
)

+ C2Y0

(

i
3

2 Bŷ
))

, (3.14)

where B = 2
βΠ

√

ωRe (1 + iωWe) , ŷ = (1 + β − βΠy)
1

2 , and C1 and C2 are arbitrary complex constants that

can be fixed by applying the boundary conditions (3.4).

3.1.4. Case λ(π) = λ0e
γπ, µ(π) = µ0

If λ(π) is given by (2.7d), then using (2.8) we can substitute for the pressure and get the relaxation time
λ(π) as a function of y, λ(y) = eγ(1−Πy). Denoting ŷ = iωWe eγ(1−Πy), and using ŷ as a new independent
variable, ṽx̂(y) = v̂x̂(ŷ), we see that (3.3) can be rewritten as

ŷ2 (1 + ŷ)
d2v̂x̂

dŷ2 − ŷ2dv̂x̂

dŷ
− iB (1 + ŷ) v̂x̂ = 0, (3.15)

where B = Re
ω(WeγΠ)

. Equation (3.15) to the best of our knowledge, does not have an analytical solution. It
is however possible to find a solution in terms of power series, but it would bring an additional complication
to those discussed in Section 3.1.2, and we will therefore not give a solution in terms of power series.

3.1.5. Case λ(π) = λ0, µ(π) = µ0e
βπ

If µ(π) is given by (2.7b), then using (2.8) we can substitute for the pressure and get the viscosity µ(π)

as a function of y, µ(π) = eβ−βΠy. Denoting ŷ = (µ(π))−
1

2 = e−
1

2
(β−βΠy), and using ŷ as a new independent

variable, ṽx̂(y) = v̂x̂(ŷ), we see that (3.3) can be rewritten as

ŷ2d2v̂x̂

dŷ2 − ŷ
dv̂x̂

dŷ
− 4iωRe (1 + iωWe)

(βΠ)2 ŷ2v̂x̂ = 0. (3.16)

This equation is again of form x2y′′ + axy′ + (bxn + c) y = 0, b 6= 0, n 6= 0. Solution to (3.16) therefore reads

ṽx̂(y) = ŷ
(

C1J1

(

i
3

2 Bŷ
)

+ C2Y1

(

i
3

2 Bŷ
))

, (3.17)

where B = 2
βΠ

√

ωRe (1 + iωWe), ŷ = e−
1

2
(β−βΠy), and C1 and C2 are arbitrary complex constants that can

be fixed by applying the boundary conditions (3.4).

3.2. Numerical solution

For the sake of convenience, we shall denote µ(π)

1+(ωWeλ(π))2
by A and µ(π)ωWeλ(π)

1+(ωWeλ(π))2
by B, and the terms in

the square brackets of the right hand side of (3.5a) and (3.5b) by F and G respectively. Then, (3.5) can be
re-written as a system of four first-order ordinary differential equations as follows

dF
dy

= −ωReṽx̂
Im, (3.18a)

dG
dy

= ωReṽx̂
Re, (3.18b)

dṽx̂
Re

dy
=

AF − BG
A2 + B2

, (3.18c)

dṽx̂
Im

dy
=

AG + BF
A2 + B2

. (3.18d)
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The system of ordinary differential equations (3.18) along with the boundary conditions (3.7) was solved
using the solver bvp4c in MATLAB, for various cases of µ(π), λ(π).

Plots of the solutions for various parameter values are given in Figures 2–14. Parameter values were
chosen to demonstrate trends induced by their change and do not necessarily correspond to parameter values
encountered in real situations. Figures 2–11 display solution for oscillating top plate, while Figures 12–14
display the solution when the bottom plate is oscillating.

Let us now consider the case when the top plate is oscillating. Snapshots of velocity profiles for various
models are shown in Figure 2. Models (1.2a), (1.2c) and (1.2d), for given parameter values, lead to very
similar velocity profiles, see Figures 2a, 2c–2e. Model (1.2b), however, for the given parameter values, shows
a substantial departure from the classical model (constant viscosity and constant relaxation time), compare
Figure 2a and Figure 2b. The difference between the velocity profiles is clearly visible in Figure 3a where
we compare, at a particular time instant, the classical model and model (1.2c) for various values of γ. It is
obvious that model (1.2c) allows the oscillations induced by the top plate to propagate up to the bottom
plate. This holds for the other non-classical models as well, see Figure 3b and Figure 4, but model (1.2b)
leads to strongest oscillations near the bottom plate. Moreover, model (1.2b) leads to the creation of layers
where the velocity rapidly changes its direction with respect to the vertical coordinate.

The fact that (1.2b) leads to the propagation of oscillations up to the bottom plate is also well documented
by plots of vorticity given in Figures 7, 8, 9 and Figure 11. (The vorticity has, in the case of parallel flow, only

one nonzero component, rotv = −∂vx̂

∂y
eẑ.) Heavily oscillating layers are generated in the fluid (1.2b) especially

for high Weissenberg number (We), Reynolds number (Re) and, of course, γ; see Figure 5 and Figure 6 for
the comparison of velocity profiles, and Figure 10 and Figure 11 for the comparison of vorticities. Obviously,
with sufficiently large We, Re and γ, the model leads to a motion where the vorticity is concentrated near
the bottom plate, although it is the top plate that forces the material to move, see Figure 11c.

Similar effects can be observed in the case where the bottom plate is oscillating and the top plate is at
rest, see Figures 12–14. Model (1.2b) again leads to the creation of highly oscillating layers near the bottom
plate. On the other hand, model (1.2d) with increasing β, leads to nearly vanishing velocity gradient near
the bottom plate and steep velocity gradient near the top plate, see Figure 14a; one can say that the material
develops a boundary layer close to the boundary opposite to the boundary inducing the motion (compare
cases β = 0 and β = 8)!

4. Conclusion

We have studied the time dependent flow of a generalized Maxwell model that can be used to describe
viscoelastic materials in which the material moduli depend on the pressure. Such models are relevant in
modelling behaviour of polymers and geomaterials. Using the generalized model we have solved a simple
boundary value problem—a variant of the well known Stokes’ problem for the flow induced by an oscillating
plate. The solutions were found numerically, and for some particular cases we have also derived analytical
expressions for the solution. We have shown that the pressure dependent material moduli reduce to material
moduli that are continuously dependent on the vertical coordinate, and that the non-constant material
moduli, compared to the classical Maxwell model, have substantial impact on the dynamical behaviour of
the fluid. The departures from the behaviour predicted by the classical model are the most distinctive for
the model with constant viscosity and relaxation time depending exponentially on the pressure. If the latter
model is used instead of the classical one for the case when the top plate is oscillating, then the oscillations
induced by the moving top plate can propagate up to the bottom plate, and the vorticity can reach its
maximum near the bottom plate; these effects however cannot be captured by the classical Maxwell model.

Although the fact that material moduli for viscoelastic fluids can depend on the pressure is known, it
is rarely used in dynamical considerations, even if one expects that the arising pressure to be significantly
different at different parts of the body. The present paper provides a simple illustration of the effects that
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Figure 2: Velocity profiles for various cases of relaxation time (λ) and viscosity (µ) depending on pressure
at different times, Re = 100, We = 0.1, ω = 1, Π = 1.
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Figure 3: Velocity profiles at ωt = π
2

for various γ values when the relaxation time (λ) depends on pressure
exponentially and linearly. Viscosity (µ) is kept constant in both cases with Re = 100, We = 0.1, ω = 1,
Π = 1.
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Figure 4: Velocity profiles at ωt = π
2

for various β values when the viscosity (µ) depends on pressure
exponentially and linearly. Relaxation time (λ) is kept constant in both cases with Re = 100, We = 0.1,
ω = 1, Π = 1.
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Figure 5: Velocity profiles at ωt = π
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for various We values for the classical case as well as when the relaxation
time (λ) depends on pressure exponentially. Viscosity (µ) is kept constant in all cases with Re = 100, ω = 1,
Π = 1.
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Figure 6: Velocity profiles at ωt = π
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for various We values for the classical case as well as when the relaxation
time (λ) depends on pressure exponentially. Viscosity (µ) is kept constant in all cases with Re = 1, ω = 1,
Π = 1.
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Figure 7: Snapshots of vorticity profiles for various cases of relaxation time (λ) and viscosity (µ) depending
on pressure, Re = 100, We = 0.1, ω = 1, Π = 1.
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Figure 8: Vorticity profiles at ωt = π
2

for various γ values when the relaxation time (λ) depends on pressure
exponentially and linearly. Viscosity (µ) is kept constant in both cases with Re = 100, We = 0.1, ω = 1,
Π = 1.
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Figure 9: Vorticity profiles at ωt = π
2

for various β values when the viscosity (µ) depends on pressure
exponentially and linearly. Relaxation time (λ) is kept constant in both cases with Re = 100, We = 0.1,
ω = 1, Π = 1.
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Figure 10: Vorticity profiles at ωt = π
2

for various We values for the classical case as well as when the
relaxation time (λ) depends on pressure exponentially. Viscosity (µ) is kept constant in all cases with
Re = 1, ω = 1, Π = 1.
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Figure 11: Vorticity profiles at ωt = π
2

for various We values for the classical case as well as when the
relaxation time (λ) depends on pressure exponentially. Viscosity (µ) is kept constant in all cases with
Re = 100, ω = 1, Π = 1.
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with γ = 6 and µ constant
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sure with β = 6 and λ constant
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Figure 12: Snapshots of velocity profiles for various cases of relaxation time (λ) and viscosity (µ) depending
on pressure, with bottom plate oscillating and for Re = 100, We = 0.1, ω = 1, Π = 1.
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Figure 13: Velocity profiles at ωt = π
2

for various γ values when the relaxation time (λ) depends on pressure
exponentially and linearly, when the bottom plate is oscillating. Viscosity (µ) is kept constant in both cases
with Re = 100, We = 0.1, ω = 1, Π = 1.
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Figure 14: Velocity profiles at ωt = π
2

for various β values when the viscosity (µ) depends on pressure
exponentially and linearly, when the bottom plate is oscillating. Relaxation time (λ) is kept constant in both
cases with Re = 100, We = 0.1, ω = 1, Π = 1.

can be expected if the fact that the material moduli depend on pressure is taken into account in studying
the motion of viscoelastic fluids.
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