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On McCoy modules

Jian Cui and Jianlong Chen

Abstract. Extending the notion of McCoy rings, we introduce the class
of McCoy modules. Over a given ring R, it contains the class of Ar-

mendariz modules (over R). Some properties of this class of modules
are established, and equivalent conditions for McCoy modules are given.
Moreover, we study the relationship between a module and its polynomial

module. Several known results relating to McCoy rings can be obtained
as corollaries of our results.

1. Introduction

All rings are associative with identity, and modules are unitary right mod-
ules. R[x] denotes the polynomial ring over the ring R and M [x] denotes the
polynomial module over the module M . For any subset X of the module M ,
rR(X) stands for the right annihilator of X in R.

McCoy proved in 1942 [15] that if two polynomials annihilate each other
over a commutative ring, then each polynomial has a nonzero annihilator in
the base ring. Rege and Chhawchharia [18] and Nielsen [16] independently
introduced the notion of a McCoy ring. A ring R is right McCoy if the equation
f(x)g(x) = 0 with f(x) ∈ R[x] and g(x) ∈ R[x]\{0}, implies that there exists
a nonzero r ∈ R such that f(x)r = 0; left McCoy rings are defined similarly. A
ring R is called McCoy if it is both right and left McCoy. The class of McCoy
rings contains the class of Armendariz rings (These rings are defined through
the condition ‘whenever polynomials f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈

R[x] satisfy f(x)g(x) = 0, then aibj = 0 for every i and j ’. See [18] for
basic results on Armendariz rings). It is well-known that reduced rings (that
is, rings without nonzero nilpotent elements) are Armendariz and therefore
McCoy. Some properties of McCoy rings have been studied in [4], [9], [13], [16],
[18], [19], [20] etc.

In this paper, we introduce the notion of a McCoy module. It is showed
that semi-commutative modules over reduced rings, Bezout modules over right
duo rings and projective modules over right McCoy rings are McCoy; if RR is
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uniform (and R is finitely cogenerated), then the class of McCoy R-modules
is closed under direct sums (direct products); suppose that there exists the
classical right quotient ring Q of a ring R and MQ is a module, then MR is
McCoy if and only if MQ is McCoy; a module MR is McCoy if and only if
its polynomial module M [x]R[x] is McCoy. We also provide an application of
McCoy modules, and prove that if MR is McCoy, then M is a zip R-module
if and only if M [x] is a zip R[x]-module. Consequently, several known results
relating to McCoy rings can be obtained as corollaries of our results.

2. McCoy modules

According to Buhphang and Rege [3], a module MR is Armendariz if when-

ever m(x) =
∑s

i=0 mix
i ∈ M [x] and g(x) =

∑t
j=0 bjx

j ∈ R[x] satisfy m(x)g(x)
= 0, then mibj = 0 for every i and j. The ring R is Armendariz if and only if
the module RR is Armendariz. Similarly, we define the following:

Definition 2.1. Let M be a module over a ring R and M [x] be the corre-
sponding polynomial module over R[x]. MR is called McCoy if m(x)g(x) = 0,
where m(x) =

∑p
i=0 mix

i ∈ M [x] and g(x) =
∑q

j=0 bjx
j ∈ R[x]\{0}, implies

that there exists a nonzero element r ∈ R such that m(x)r = 0.

Remark 2.2. (1) A ring R is right McCoy if and only if the module RR is
McCoy;

(2) MR is McCoy if and only if, for all m(x) ∈ M [x], rR[x](m(x)) ̸= 0 implies
that rR[x](m(x))

∩
R ̸= 0.

All Armendariz modules are obviously McCoy modules; the falsity of the
converse was noted in [18, Remark 4.3] where it was pointed out that there
exist commutative (and therefore McCoy) rings which are not Armendariz.
See also [13, Theorem 2] and [11, Example 3] for a class of non-commutative
examples. All torsion free modules over commutative domains are McCoy;
modules over division rings are obviously McCoy. Several other examples will
follow from our results later.

Proposition 2.3. (1) Every submodule of a McCoy module is McCoy. In
particular, if I is a right ideal of a right McCoy ring R, then IR is a McCoy
module;

(2) M is a McCoy module if and only if every finitely generated submodule
of M is McCoy;

(3) For any index set Γ, if Mi is a McCoy Ri-module for each i ∈ Γ, then∏
i∈Γ Mi is a McCoy

∏
i∈Γ Ri-module;

(4) Let I be any nonzero ideal of a ring R. Then (R/I)R is a McCoy module.

Proof. (1)-(3) are obvious. (4) For each f(x) ∈ (R/I)[x], take any nonzero

r ∈ I (⊆ R). Then f(x)r ∈ I[x], i.e., f(x)r = 0. □
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In [3], Buhphang and Rege called a module MR is semi-commutative if
ma = 0 for m ∈ M and a ∈ R, then mRa = 0. We can infer that semi-
commutative modules need not be McCoy from Section 3 of [16]. But we have
the following:

Proposition 2.4. Let R be a reduced ring. Then a semi-commutative module
MR is McCoy.

Proof. Suppose that m(x) = m0+m1x+ · · ·+mpx
p ∈ M [x], g(x) = b0+b1x+

· · · + bqx
q ∈ R[x]\{0} satisfy m(x)g(x) = 0. We may assume that b0 ̸= 0 (If

not, set g(x) = g′(x)xk with a minimal k such that bk ̸= 0 since g(x) ̸= 0, we
have m(x)g′(x) = 0). This implies the following system of equations:

(0) m0b0 = 0,
(1) m0b1 +m1b0 = 0,
(2) m0b2 +m1b1 +m2b0 = 0,

· · ·
(p+ q) mpbq = 0.

Since MR is semi-commutative, we have m0b1b0 = 0 from Eq. (0). Multiplying
Eq. (1) on the right by b0 yields m1b

2
0 = 0, . . . , multiplying Eq. (k) on the

right by bk0 yields mkb
k+1
0 = 0 because mlb

l+1
0 = 0 for l = 1, . . . , k − 1. Since

R is reduced, b0 ̸= 0 implies bk0 ̸= 0 for each k. Consequently, we obtain

m(x)bp+1
0 = 0. □

The following example shows that the converse of Proposition 2.4 is not true.

Example 2.5. Let R = Z2⟨a, b⟩ be the free associative algebra (with 1) over
Z2 (the ring of integers modulo 2) generated by two indeterminates a, b. Let
I = ⟨a2⟩ be the ideal of R generated by a2. We take M = R/I. Clearly, R is
a reduced ring. By Proposition 2.3(4), MR is a McCoy module. However, MR

is not semi-commutative. In fact: aa = 0 for a ∈ M and a ∈ R, but aba /∈ I,
that is, aba ̸= 0.

A ring is said to be right duo if all its right ideals are two-sided ideals.

Proposition 2.6. Every cyclic module over a right duo ring is McCoy.

Proof. In view of [4, Theorem 8.2], right duo rings are right McCoy. The result
follows using Proposition 2.3(4). □

We do not know whether the converse of Proposition 2.6 holds. Thus we
have the following:

Question 1. Is R a right duo ring in case every cyclic module over R is McCoy?

Recall that a module is called a Bezout module if each of its finitely generated
submodules is cyclic.

Proposition 2.7. Bezout modules over right duo rings are McCoy.
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Proof. Let R be a right duo ring. By Proposition 2.6, every cyclic R-module
is McCoy. Hence Bezout R-modules are McCoy by Proposition 2.3(2). □

In the situation of the preceding proposition, the condition “the ring is right
duo” is not superfluous and the converse is not true generally.

Example 2.8. (1) The condition that the ring R is right duo is not superfluous.
Let D be a division ring, and R = Mn(D) be an n× n matrix ring over D for
n ≥ 2. Note that the ring R is not right duo and RR is a semisimple module.
Every submodule of RR being a direct summand, RR is a Bezout module. But
RR is not McCoy by [4, Proposition 10.2] or [20, Theorem 2.1].

(2) The converse is not true since there are commutative domains which are
not Bezout, for example the ring Z[x] of polynomials over the integers.

The classes of Armendariz modules and semi-commutative modules are clo-
sed under direct products as well as direct sums; this was noted by Buhphang
and Rege in [3]. We ask:

Question 2. Under what conditions is the class of McCoy modules (over a
given ring) closed under direct products and direct sums?

Next we record several results in the context of this question.
A module is called uniform if any two nonzero submodules have a nonzero

intersection (see [6]). A module MR is said to be finitely cogenerated if for
every set {Ai|i ∈ I} of submodules Ai of M with

∩
i∈I Ai = 0 there is a finite

subset {Ai|i ∈ I0} (i.e., I0 ⊂ I and I0 is finite) with
∩

i∈I0
Ai = 0 (see [2]).

Proposition 2.9. Let {Mi}i∈Λ be a family of McCoy R-modules for an index
set Λ. Then we have:

(1) If RR is uniform, then a direct sum M =
⨿

i∈Λ Mi is McCoy;
(2) If Λ is an infinite set, RR is uniform and finitely cogenerated, then a

direct product M =
∏

i∈Λ Mi is McCoy.

Proof. We will use the same symbols in the proofs of (1) and (2). Let m(x) =∑p
k=0(mik)i∈Λx

k ∈ M [x], g(x) ∈ R[x]\{0} satisfy m(x)g(x) = 0. Let mi(x) =∑p
k=0 mikx

k ∈ Mi[x]. Since Mi is McCoy and mi(x)g(x) = 0, there exists a
nonzero ri ∈ R such that mi(x)ri = 0.

To prove (1), note that the set Λ′ = {i ∈ Λ | mi(x) ̸= 0} is a finite set. Put
U =

∩
i∈Λ′ riR. Since RR is uniform, we have U ̸= 0. Take any r ∈ U\{0},

then mi(x)r = 0 for each i, whence m(x)r = 0. Thus, M =
⨿

i∈Λ Mi is McCoy.
To show (2), RR is uniform implies that

∩
i∈Λ0

riR ̸= 0 for any finite subset
Λ0 ⊂ Λ, and since RR is finitely cogenerated, it follows that U =

∩
i∈Λ riR ̸= 0.

Similar to the proof of (1), we are done. □

Proposition 2.10. Let M be a McCoy R-module. Then a direct sum of copies
of M is McCoy.
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Proof. For an index set I, let M (I) be a direct sum of copies of M . By Propo-
sition 2.3(2), we can assume I to be finite. We prove the result in three steps.

Step 1. We show that M (2) is McCoy. Let m(x) =
∑p

k=0 (mik)i∈{0,1}x
k ∈

M (2)[x] and g(x) ∈ R[x]\{0} satisfy m(x)g(x) = 0. Let mi(x) =
∑p

k=0 mikx
k ∈

M [x], where i = 0, 1. Write u = 2p + q, where q is the degree of g(x). Let
m′(x) = m0(x) + m1(x)x

u; then m′(x)g(x) = 0. Since MR is McCoy, there
exists a nonzero r ∈ R such that m′(x)r = 0, that is mikr = 0 for all i and k.
Therefore m(x)r = 0.

Step 2. Write m = 2n for any n ≥ 1. By Step 1, M (m), the direct sum of
m copies of M , is McCoy.

Step 3. For every natural number k the module M (k) is a submodule of
M (2n) for some n, and so the result holds for M (k) by Proposition 2.3(1). □
Corollary 2.11. Projective modules over right McCoy rings are McCoy.

Proof. It is well-known that every projective module is a direct summand of a
free module. Let R be a right McCoy ring. Then R(I) is a McCoy R-module for
every indexing set I by Proposition 2.10. So the result follows from Proposition
2.3(1). □

In what follows Rn denotes (for a positive integer n) the following subring
of the ring of all matrices over R:

Rn =




a a12 . . . a1n
0 a . . . a2n
...

...
. . .

...
0 0 . . . a

 : a, aij ∈ R

 ;

we also consider the following subgroup of the additive group of all formal
matrices over M, namely,

Mn =




m m12 . . . m1n

0 m . . . m2n

...
...

. . .
...

0 0 . . . m

 : m,mij ∈ M

 .

Then Mn is an Rn-module under the usual matrix addition operation and the
following scalar product operation. For W = (wij) ∈ Mn and A = (aij) ∈ Rn,
WA = (mij) with mij =

∑n
k=1 wikakj for i, j = 1, 2, . . . , n.

We have the following result:

Proposition 2.12. M is a McCoy R-module if and only if Mn is a McCoy
Rn-module.

Proof. The proof is similar to that of [13, Theorem 2].
“⇒”. Every α(x) ∈ Mn[x] (resp., β(x) ∈ Rn[x]) can be written as the form

of a matrix. Write αij(x) = [α(x)]i,j (resp., βij(x) = [β(x)]i,j) the (i, j)-entry
of α(x) (resp., β(x)). Let Eij denote matrix units.
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Suppose that α(x)β(x) = 0, where α(x) ∈ Mn[x] and β(x) ∈ Rn[x]\{0}. We
show that there exists a nonzero A ∈ Rn such that α(x)A = 0. Now we proceed
with the following cases.

Case 1. If α11(x) ̸= 0, β11(x) ̸= 0, then α11(x)β11(x) = 0, where α11(x) =
[α(x)]1,1, β11(x) = [β(x)]1,1. Since MR is McCoy, there exists r ∈ R\{0} such
that α11(x)r = 0. Put A = rE1n, then α(x)A = 0.

Case 2. If α11(x) ̸= 0, β11(x) = 0, then there exists a nonzero entry
βkl(x) such that all entries of the matrix to the left of and below it vanish
since β(x) ̸= 0. So α11(x)βkl(x) = 0. Hence there exists r ∈ R\{0} such that
α11(x)r = 0. Write A = rE1n, then α(x)A = 0.

Case 3. If α11(x) = 0, then for any r ∈ R\{0}, α(x)A = 0 with A = rE1n.
This completes the proof of this implication.
“⇐”. Assume that m(x)g(x) = 0, where m(x) ∈ M [x], g(x) ∈ R[x]\{0}.

Let α(x) = m(x)In, β(x) = g(x)In, where In is the n×n identity matrix. Then
α(x) ∈ Mn[x], β(x) ∈ Rn[x]\{0} and α(x)β(x) = 0. Since Mn is a McCoy Rn-
module, there exists a nonzero A ∈ Rn such that α(x)A = 0. Obviously, there
exists r ∈ R\{0} such that m(x)r = 0. Therefore, MR is McCoy. □
Corollary 2.13 ([13, Theorem 2]). A ring R is McCoy if and only if the ring
Rn is McCoy.

For a commutative domain R and a module MR, the torsion submodule of
MR is defined by T (M) = {x ∈ M |rR(x) ̸= 0}. We have the following result.

Proposition 2.14. Let D be a commutative domain and M be a D-module.
The module MD is McCoy if and only if its torsion submodule T (M) is McCoy.

Proof. Let m(x) =
∑p

i=0 mix
i ∈ M [x], g(x) =

∑q
j=0 djx

j ∈ D[x]\{0} satisfy

m(x)g(x) = 0. We have the system of equations m0d0 = 0, m0d1 + m1d0 =
0, m0d2 + m1d1 + m2d0 = 0, . . ., mpdq = 0. We may assume d0 ̸= 0 since
g(x) ̸= 0. Now multiplyingm0d1+m1d0 = 0 by d0 on the right yieldsm1d

2
0 = 0,

thus d20 annihilates both m0 and m1; similarly, m0d2 +m1d1 +m2d0 = 0 and
multiplying on the right by d20 yields m2d

3
0 = 0. Continuing this process, we

have mid
i+1
0 = 0 for i = 3, . . . , p. So mi ∈ T (M), i.e., m(x) ∈ T (M)[x]. Since

T (M) is McCoy as a D-module, we conclude that there exists a nonzero d ∈ D
such that mid = 0 for all i. Hence, m(x)d = 0. The other implication is
trivial. □
Proposition 2.15. Let R be a commutative principal ideal ring. Then every
R-module is McCoy. In particular, every Z-module is McCoy.

Proof. By Proposition 2.3(2) we can assume M to be finitely generated. Since
R is a commutative principal ideal ring, it is arithmetical (i.e., is a ring in which
every finitely generated ideal is locally principal). By [3, Proposition 3.8], MR

is Armendariz, and thus is McCoy. □
A module MR is called reduced if for any m ∈ M and a ∈ R, ma = 0 implies

mR ∩Ma = 0; and reduced modules are Armendariz by [12, Lemma 1.5].
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Remark 2.16. It is shown in [17, Theorem 2.16] that over strongly regular
rings (i.e., over rings satisfying ‘for every a ∈ R, there exists b ∈ R such that
a = ba2’) all modules are reduced. It follows that over such rings all modules
are Armendariz and are therefore McCoy.

A classical right quotient ring for R is a ring Q which contains R as a
subring in such a way that every regular element (i.e., non-zero-divisor) of R is
invertible in Q and Q = {aµ−1 : a, µ ∈ R, µ regular}. The free algebra L⟨x, y⟩
in two indeterminates over a field L is a well-known example of a domain which
does not have a classical right quotient ring.

Theorem 2.17. Suppose that there exists the classical right quotient ring Q
of a ring R and M is a Q-module. Then MR is McCoy if and only if MQ is
McCoy.

Proof. Suppose that MR is a McCoy module. Let m(x) =
∑p

i=0 mix
i ∈ M [x]

and g(x) =
∑q

j=0 bjx
j ∈ Q[x]\{0} with m(x)g(x) = 0. Since Q is the classical

right quotient ring of R, by [14, Proposition 2.1.16], we may assume that bj =
b′jµ

−1 with b′j ∈ R and some regular element µ ∈ R. Write g′(x) =
∑q

j=0 b
′
jx

j .

Then g′(x) ∈ R[x]\{0} and 0 = m(x)g(x) =
∑p

i=0

∑q
j=0 mib

′
jx

i+jµ−1 =

m(x)g′(x)µ−1. So we have m(x)g′(x) = 0. Since MR is McCoy, there exists
r ∈ R\{0} (⊆ Q\{0}) such that m(x)r = 0.

Conversely, let n(x) =
∑p

i=0 nix
i ∈ M [x] and h(x) =

∑q
j=0 cjx

j ∈ R[x]\{0}
(⊆ Q[x]\{0}) satisfy n(x)h(x) = 0. Since MQ is McCoy, there exists a nonzero
element d ∈ Q such that nid = 0 for i = 0, 1, . . . , p. Because Q is the classical
right quotient ring of R, we have d = aµ−1 for some nonzero a ∈ R and regular
element µ. Then nia = nidµ = 0. Therefore MR is a McCoy module. □

3. Polynomial modules

In this section, we study the relations between an R-module M and the
polynomial module M [x] over M . Moreover, we will give an application of
McCoy modules.

Let M be an R-module. If S is a multiplicatively closed subset of central
regular elements of R, then S−1M has an S−1R-module structure. M is called
S-torsion free if whenever m is a nonzero element of M and s is an element of
S, we have ms ̸= 0.

Lemma 3.1. Let M be S-torsion free. Then the R-module M is McCoy if and
only if the S−1R-module S−1M is McCoy.

Proof. Suppose that MR is a McCoy module. Let m′(x) =
∑p

i=0
mi

s xi ∈
S−1M [x] and g′(x) =

∑q
j=0

bj
t x

j ∈ S−1R[x]\{0} satisfy m′(x)g′(x) = 0. It is

easily deduced (using M is S-torsion free) that m(x)g(x) = 0, where m(x) =∑p
i=0 mix

i ∈ M [x], g(x) =
∑q

j=0 bjx
j ∈ R[x]\{0}. Since M is McCoy, there

exists a nonzero element r ∈ R such that m(x)r = 0, yielding m′(x)r = 0;
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clearly, r is a nonzero element of S−1R as well. Hence S−1M is McCoy as an
S−1R-module.

Conversely, let n(x) =
∑p

i=0 nix
i ∈ M [x], h(x) =

∑q
j=0 cjx

j ∈ R[x]\{0}.
Suppose that n(x)h(x) = 0. Since S−1M is McCoy, there exists r

t ∈ S−1R\{0}
such that n(x) rt = 0. It follows that n(x)r = 0. Thus MR is McCoy. □

We use R[x;x−1] to denote the Laurent polynomial ring over R. For a mod-
ule MR, let M [x;x−1] = {

∑n
i=k mix

i : k, n ∈ Z, mi ∈ M}. As in Lee and Zhou
[12], M [x;x−1] is an R[x;x−1]-module under the obvious addition operation
and the following scalar product operation. For m(x) =

∑
i mix

i ∈ M [x;x−1]
and f(x) =

∑
j ajx

j ∈ R[x;x−1], then m(x)f(x) =
∑

k(
∑

i+j=k miaj)x
k.

Theorem 3.2. For an R-module M , the following statements are equivalent:
(1) M is a McCoy R-module;
(2) M [x] is a McCoy R[x]-module;
(3) M [x;x−1] is a McCoy R[x;x−1]-module.

Proof. (1)⇒(2) Suppose that M is a McCoy module. Let n(y) ∈ M [x][y]
and h(y) ∈ R[x][y]\{0} with n(y)h(y) = 0. Write n(y) = n0(x) + n1(x)y +
· · · + np(x)y

p and h(y) = h0(x) + h1(x)y + · · · + hq(x)y
q, where ni(x) =∑pi

k=0 nikx
k ∈ M [x] and hj(x) =

∑qj
l=0 cjlx

l ∈ R[x]. As in the proof of
[1, Theorem 2], we let u =

∑p
i=0 deg(ni(x)) +

∑q
j=0 deg(hj(x)), where the

degree of ni(x) is as polynomial in M [x], the degree of hj(x) is as polyno-
mial in R[x] and the degree of the zero polynomial is taken to be zero. Then
n(xu) =

∑p
i=0 ni(x)x

ui ∈ M [x], h(xu) =
∑q

j=0 hj(x)x
uj ∈ R[x], and the

set of coefficients of ni(x)’s (resp., hj(x)’s) equals the set of coefficients of
n(xu) (resp., h(xu)). Since n(y)h(y) = 0, x commutes with the elements
of R, n(xu)h(xu) = 0. By hypothesis, there exists r ∈ R\{0} such that
n(xu)r = 0. Thus n(y)r = 0.

(2)⇒(1) Assume that M [x] is McCoy, and let m(x) =
∑p

i=0 mix
i ∈ M [x],

g(x) =
∑q

j=0 bjx
j ∈ R[x]\{0} satisfym(x)g(x) = 0. Setm(y) =

∑p
i=0 miy

i and

g(y) =
∑q

j=0 bjy
j . Then m(y) ∈ M [x][y], g(y) ∈ R[x][y]\{0} and m(y)g(y) =

0. Since M [x]R[x] is McCoy, there exists a nonzero g′(x) ∈ R[x] such that
m(y)g′(x) = 0. Let c be a nonzero coefficient of g′(x). Then m(y)c = 0.
Clearly, m(x)c = 0. So MR is a McCoy module.

(2)⇔(3) Let S = {1, x, x2, . . .}. Then S is a multiplicatively closed subset of
central regular elements of R[x]. Since M [x;x−1] = S−1M [x] and R[x;x−1] =
S−1R[x], by Lemma 3.1, we are done. □

Remark 3.3. From the results of Section 3 of [4], we can obtain that the module
M [[x]]R[[x]] may not be McCoy even ifMR is a McCoy module, where the defini-

tion of the moduleM [[x]]R[[x]] is similar to that of the moduleM [x;x−1]R[x;x−1].

We write Mn(R) for the n × n matrix ring over R. For a module MR and
A = (aij) ∈ Mn(R), let MA = {(maij) : m ∈ M}. For n ≥ 2, let V =
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i=1 Ei(i+1) where {Eij : 1 ≤ i, j ≤ n} are the matrix units, and set Vn(R) =

RIn+RV +· · ·+RV n−1 and Vn(M) = MIn+MV +· · ·+MV n−1. Then Vn(R) is
a ring and Vn(M) becomes a right module over Vn(R) under usual addition and
multiplication of matrices. There is a ring isomorphism θ : Vn(R) → R[x]/(xn)
given by θ(r0In + r1V + · · ·+ rn−1V

n−1) = r0 + r1x+ · · ·+ rn−1x
n−1 + (xn),

and an Abelian group isomorphism ϕ : Vn(M) → M [x]/(M [x](xn)) given by
ϕ(m0In +m1V + · · ·+mn−1V

n−1) = m0 +m1x+ · · ·+mn−1x
n−1 +M [x](xn)

such that ϕ(WA) = ϕ(W )θ(A) for all W ∈ Vn(M) and A ∈ Vn(R).

Proposition 3.4. M is a McCoy R-module if and only if M [x]/M [x](xn) is
a McCoy R[x]/R[x](xn)-module for any integer n ≥ 2.

Proof. By the remark above, it suffices to show that MR is McCoy if and only
if Vn(M)Vn(R) is McCoy.

“⇒”. Suppose that W (x)A(x) = 0 where W (x) =
∑p

i=0 Wix
i ∈ Vn(M)[x]

and A(x) =
∑q

j=0 Ajx
j ∈ Vn(R)[x]\{0}. Write Wi = mi0In + mi1V + · · · +

mi(n−1)V
n−1 and Aj = aj0In + aj1V + · · · + aj(n−1)V

n−1 for 0 ≤ i ≤ p and
0 ≤ j ≤ q. It follows from W (x)A(x) = 0 that [m0(x)In + m1(x)V + · · · +
mn−1(x)V

n−1][a0(x)In + a1(x)V + · · · + an−1(x)V
n−1] = 0, where mk(x) =

m0k +m1kx+ · · ·+mpkx
p ∈ M [x] and al(x) = a0l + a1lx+ · · ·+ aqlx

q ∈ R[x]
for 0 ≤ k, l ≤ n − 1, and hence

∑
k+l=t mk(x)al(x) = 0 for t = 0, 1, . . . , n − 1.

In particular, we have

m0(x)al0(x) = 0

with a minimal l0 such that al0(x) ̸= 0 (Such a l0 exists since A(x) ̸= 0).
Since MR is McCoy, there exists a nonzero r ∈ R such that m0(x)r = 0. Let
A = rE1n. Then A ∈ Vn(R)\{0} and W (x)A = 0. So Vn(M)Vn(R) is McCoy.

“⇐”. The proof of this implication is similar to that of in the “if” part of
Proposition 2.12. □

Corollary 3.5 ([20, Theorem 2.3]). For a ring R, the following statements are
equivalent:

(1) R is a right McCoy ring;
(2) R[x] is a right McCoy ring;
(3) R[x;x−1] is a right McCoy ring;
(4) R[x]/(xn) is a right McCoy ring.

The following definition is due to Zhang and Chen [22]. A module MR is a
zip module if for any subset X of M , rR(X) = 0 implies rR(Y ) = 0 for some
finite subset Y of X. By [5, Proposition 1] and [10, Example 10], (in general)
the class of McCoy modules neither contains nor is contained in the class of zip
modules. Even if RR is a zip module, R[x]R[x] need not be zip by [5, Example
2] (Some notable results on zip rings have appeared in [7], [8], [21], etc).

Theorem 3.6. Let M be a McCoy R-module. Then M is a zip R-module if
and only if M [x] is a zip R[x]-module.
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Proof. Suppose that M [x] is zip. Let Y ⊆ M with rR(Y ) = 0. If f(x) =
a0 + a1x + · · · + anx

n ∈ rR[x](Y ), then mf(x) = 0 for any m ∈ Y. Thus
mai = 0, and so ai ∈ rR(Y ) = 0, i = 1, 2, . . . , n. Therefore f(x) = 0, i.e.,
rR[x](Y ) = 0. Since M [x] is zip, there exists a finite subset Y0 ⊆ Y such that
rR[x](Y0) = 0. Hence, rR(Y0) = rR[x](Y0)

∩
R = 0.

Conversely, suppose that M is zip. Let X ⊆ M [x] with rR[x](X) = 0.
Now let Y be the set of all coefficients of elements in X. Then Y ⊆ M . If
a ∈ rR(Y ), then wa = 0 for each w ∈ Y. Thus m(x)a = 0 for any m(x) ∈ X,
and so a ∈ rR[x](X) = 0. That is rR(Y ) = 0. Since M is zip, there exists a finite
subset Y0 = {w1, w2, . . . , wt} ⊆ Y such that rR(Y0) = 0. For each wi ∈ Y0 and
i = 1, 2, . . . , t, let mwi(x) ∈ X be such that some coefficient of mwi(x) is wi. Let
X0 = {mw1(x),mw2(x), . . . ,mwt(x)} ⊆ X and Y1 be the set of all coefficients of

elements in X0, where mwi(x) =
∑pwi

l=0 awilx
l. Then Y0 ⊆ Y1 and so rR(Y1) ⊆

rR(Y0) = 0. If f(x) =
∑n

j=0 bjx
j ∈ rR[x](X0)\{0}, then mwi(x)f(x) = 0 for

i = 1, 2, . . . , t. Write u =
∑t

k=1 pwk
+n, and n(x) =

∑t
i=1 mwi(x)x

ui (∈ M [x]),
we have n(x)f(x) = 0. Since MR is McCoy, there exists r ∈ R\{0} such that
n(x)r = 0, that is awilr = 0 for each wi and l. So r ∈ rR(Y1) = 0. This is a
contradiction. Therefore f(x) = 0, that is, rR[x](X0) = 0. □

Corollary 3.7. Let R be a right McCoy ring. Then R is right zip if and only
if R[x] is right zip.

Corollary 3.8 ([22, Theorem 2.2]). Let M be an Armendariz R-module. Then
M is a zip R-module if and only if M [x] is a zip R[x]-module.

Corollary 3.9 ([10, Theorem 11]). Let R be an Armendariz ring. Then R is
right zip if and only if R[x] is right zip.
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