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Markov chain Monte Carlo (MCMC) algorithms have revolutionized Bayesian practice. In
their simplest form (i.e., when parameters are updated one at a time) they are, however, often

slow to converge when applied to high-dimensional statistical models. A remedy for this
problem is to block the parameters into groups, which are then updated simultaneously using
either a Gibbs or Metropolis-Hastings step. In this paper we construct several (partially and

fully blocked) MCMC algorithms for minimizing the autocorrelation in MCMC samples
arising from important classes of longitudinal data models. We exploit an identity used by
Chib (1995) in the context of Bayes factor computation to show how the parameters in a
general linear mixed model may be updated in a single block, improving convergence and

producing essentially independent draws from the posterior of the parameters of interest. We
also investigate the value of blocking in non-Gaussian mixed models, as well as in a class of
binary response data longitudinal models. We illustrate the approaches in detail with three

real-data examples.

Keywords: Blocking, correlated binary data, convergence acceleration, Gibbs sampler, Met-
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1. Introduction

Consider the Gaussian linear mixed model (Laird and
Ware, 1982),

yi � Xib� Wibi � ei

bi �Nq�0;D�
where the yi are vectors of length ni containing the obser-
vations on the ith unit, and the ei are error vectors of the
same length independently distributed as Nni�0; r2Ini�,
i � 1; . . . ; k. In this mixed model, Xi is an ni � p design
matrix of covariates and b is a corresponding p � 1 vector
of ®xed e�ects. In addition, Wi is a ni � q design matrix
(q typically less than p), and bi is a q� 1 vector of sub-
ject-speci®c random e�ects. The bi model the sub-
ject-speci®c means, and enable the model to capture
marginal dependence among the observations on the ith

unit. The hierarchical speci®cation of this model is
completed by adding the prior distributions Dÿ1 �
W�mÿ10 R0; m0�, rÿ2 � G�m00=2; d00=2�, and b �Np�b0;B0�,
where W denotes the Wishart distribution and G denotes
the gamma distribution. In our parametrization, the
Wishart prior has mean R0 while the gamma prior has
mean m00=d00.

This model lends itself to a full Bayesian analysis by
Markov chain Monte Carlo (MCMC) methods. One of the
®rst such algorithms was proposed by Gelfand and Smith
(1990) which we summarize as follows:

Algorithm 1

1: Sample b from bjy; b; r2;D
2: Sample b from fbigjy; b; r2;D
3: Sample Dÿ1 from Dÿ1jy; b; b; r2

4: Sample r2 from r2jy; b; b;D
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5. Repeat Steps 1±4 using the most recent values of the
conditioning variables.
The Gaussian-linear structure of our model, combined with
the conditional conjugacy of our prior speci®cation, means
that all of these full conditional distributions are easily
available in closed form (as normal, normal, Wishart, and
inverse gamma, respectively). This Gibbs sampling scheme
has been implemented by several authors in longitudinal
modeling applications; see for example Lange et al. (1992),
Carlin (1996), and Carlin and Louis (1996, Sec 8.1).
It is now recognized, however, that Algorithm 1, while

relatively easy to implement, can su�er from slow conver-
gence if the parameters are highly correlated a posteriori, or
if the information in the likelihood and prior is insu�cient
to completely determine the model parameters. In fact, the
latter situation arises automatically in model (1) if the
priors on both variance components (D and r2) are overly
vague, since the data can inform about them only corpo-
rately, not independently. Gelfand, Sahu and Carlin (1995,
1996) suggested hierarchical centering of the random ef-
fects in such models to reduce serial correlations, later
extending the idea to generalized (non-Gaussian) linear
mixed models. These authors show the idea to work well
when the variance at the second stage �D� dominates that
at the ®rst �r2�, the usual case in hierarchical modeling.
Vines, Gilks and Wild (1996) and Gilks and Roberts (1996)
instead recommend a ``sweeping'' reparametrization, to
break serial correlations by reducing the dimension of the
model space (analogous to the usual frequentist practice of
adding identi®ability constraints to ANOVA models).
Gelfand and Sahu (1999) build on the de®nition of Dawid
(1979) to discuss Bayesian identi®ability more formally,
and go on to endorse ``recentering on the ¯y,'' i.e., im-
posing identi®ability constraints numerically at the end of
each MCMC iteration, as a simpler but equivalent alter-
native to sweeping. Such recentering algorithms have long
been in use in MCMC analyses of models employing
pairwise di�erence priors, which are identi®ed only up to
an additive constant and commonly used in spatial ana-
lyses; see Besag et al. (1995).

The purpose of this paper is to develop new approaches
to the MCMC simulation of longitudinal models that
provide signi®cant improvements over Algorithm 1 and its
re®nements mentioned above. These approaches rely on the
use of blocking, i.e. updating the parameters in groups, as
the means to reduce the serial correlation in the simulation
output. The idea of blocking has strong intuitive appeal and
theoretical support (Liu, 1994; Liu, Wong, and Kong,
1994), though Roberts and Sahu (1997, Sec. 2.4) give two
examples showing blocking is not guaranteed to improve the
convergence rate of a sampler (such situations appear rare
relative to those in which blocking does lead to improve-
ment). In particular, we show that more coarse blocking of
model (1) is possible and that, in fact, the parameters of the
model may be updated in a single block, greatly improving

convergence and producing essentially independent draws
from the posterior distribution of interest.

Note that our strategy is to expend slightly more analytic
and coding e�ort to obtain a sampler which will produce
less highly autocorrelated draws, hence shorter runtimes.
Some authors (e.g. Damien et al., 1998) have recommended
precisely the opposite strategy, namely augmenting the
(univariate) sampling order with certain carefully-chosen
auxiliary variables, obtaining an algorithm which is easier
to state and code but takes longer to converge. While both
approaches have their merits, we view ours as more
promising for implementation in generalist software for
solving the broad class of models we consider; our code
may be more di�cult to write, but once written, will be
faster and easier to use for many di�erent problems.

Section 2 lays out our approach for linear Gaussian
mixed models, the kind most commonly occurring in lon-
gitudinal data analysis. An extension to non-Gaussian (e.g.
Student's t) error distributions and hierarchically centered
model formulations is also described. Section 3 examines
the value of blocking in the case of discrete longitudinal
data. In Section 4 we provide three numerical examples
which illustrate the bene®t of our blocking schemes and
include comparisons with results obtained from the BUGS
software package (Spiegelhalter et al., 1995). Finally, Sec-
tion 5 discusses our ®ndings and o�ers directions for future
research in this area.

2. Blocking for Gaussian mixed models

We begin our investigation into the value of blocking in
longitudinal models by considering the distribution of yi

marginalized over the random e�ects. Due to the condi-
tional Gaussian structure we have that

yijb; r2;D �Nni�Xib; Vi�
where Vi � r2I � WiDW 0

i . This implies that the posterior
distribution of b conditioned on r2 and D (but not on fbig)
is (Lindley and Smith, 1972)

bjy; r2;D �Np�b̂;B�
where

b̂ � B B0b0 � rÿ2
Xn

i�1
X 0i V ÿ1i yi

 !
and

B � B0 � rÿ2
Xn

i�1
X 0i V ÿ1i Xi

 !ÿ1
:

As a consequence we immediately note that it is possible to
sample the ®xed e�ects b and the random e�ects fbig in
one block, but retain the essential Gibbs structure, as
follows:
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Algorithm 2

1. Sample b and b from b; fbigjy; r2;D by sampling
(a) b from bjy; r2;D
(b) b from fbigjy; b; r2;D

2. Sample Dÿ1 from Dÿ1jy; b; b; r2

3. Sample r2 from r2jy; b; b;D
4. Repeat Steps 1±3 using the most recent values of the

conditioning variables.
Except for the change in the sampling of b, this scheme is
identical to that in Algorithm 1. This minor re®nement is
practically quite important, however, and improves the
behavior of the MCMC output. Besides, it requires no
hierarchical centering because b is sampled without con-
ditioning on the random e�ects and the entire sampling is
still from tractable distributions (albeit with a bit more
matrix algebra).

While Algorithm 2 is an improvement on Algorithm 1, it
does not address the correlation between Dÿ1 and b that
can lead to slow mixing for the unique elements of Dÿ1

(there is usually no mixing problem for r2). To deal with
this problem we suggest an approach that allows one to
sample all parameters in one block from the joint posterior
distribution. That this is possible has not been recognized
in the literature before. The idea is to use the following
decomposition of the posterior distribution

p�r2;Dÿ1; b; fbigjy� � p�r2;Dÿ1jy�
p�bjy; r2;D�p�fbigjy; b; r2;D�

where the last two densities are the same as in Algorithm 2
but the ®rst density is not in closed form but can be up-
dated by the Metropolis-Hastings algorithm (see for ex-
ample Hastings, 1970, or Chib and Greenberg, 1995). By
de®nition,

p�r2;Dÿ1jy� / p�r2;Dÿ1�f �yjr2;D�
where

f �yjr2;D� �
Z

f �yjb; r2;D�p�b�db

/ jXjÿ1=2 exp �y ÿ Xb0�0Xÿ1�y ÿ Xb0�
� 	

;

y � �y01; . . . ; y0n�0;X � �X 01; . . . ;X 0n�0;X � �XBÿ10 X 0 � V � and
V � diag�V1; . . . ; Vn�. One way to evaluate this density is to
recognize that f �yjr2;D� is the normalizing constant of
p�bjy; r2;D�. A similar idea is used by Chib (1995) in his
approach to ®nd the marginal likelihood of the model.
Hence, we may write f �yjr2;D� as a ratio of three terms

f �yjr2;D� � p�b��f �yjb�; r2;D�
p�b�jy; r2;D� �2�

� /p�b�jb0;B0�
Qn

i�1 /ni
�yijXib

�; Vi�
/p�b�jb̂;B�

�3�

where b� is any point (preferably a high density point such
as the posterior mean from Algorithm 2) and /p�tjl;R) is

density of the p-variate normal distribution with mean
vector l and covariance matrix R. Each term in this ex-
pression is easy to evaluate. This leads to the following
single block algorithm for sampling the posterior density of
the Gaussian hierarchical model.

Algorithm 3
Setup:

� Run Algorithm 2 for G = 500 iterations (say) and let
b� � Gÿ1

PG
g�1 b�g�. Also let l � Gÿ1

PG
g�1 h�g� and

R � Gÿ1
PG

g�1�h�g� ÿ l��h�g� ÿ l�0, where h � �r2;w�, and

w � vech�Dÿ1� denotes the unique elements of Dÿ1.

Start of algorithm:

1. Sample h; b and b from �h; b; bjy� by sampling
(a) h from p�hjy� using the Metropolis-Hastings algo-

rithm with proposal density given by q�h� �
fMVT �hjl; s2R; m�; where fMVT is the multivariate-t density
with m degrees of freedom, and s2 and m are tuning parame-
ters. Given the current value hc, ®rst draw ht from q�h� and
move to the point ht with probability given by

a�hc; ht� � min 1;
f �yjr2t;Dt�p�r2t;Dt�q�r2c;Dc�
f �yjr2c;Dc�p�r2c;Dc�q�r2t;Dt�

� �
:

(b) Sample b from Np�b̂;B� where b̂ � B�B0b0�
rÿ2

Pn
i�1 X 0i V ÿ1i yi� and B � �B0 � rÿ2

Pn
i�1 X 0i V ÿ1i Xi�ÿ1:

(c) Sample bi independently from Nq�b̂i;Ci� where
b̂i � Ci�rÿ2W 0

i �yi ÿ Xib�� and Ci � �Dÿ1 � rÿ2W 0
i Wi�.

2. Repeat Step 1 using the most recent values of the
conditioning variables.

Turning to extensions of our approach, we ®rst note that
the above approach can be extended to several symmetric
but nonnormal error distributions using the idea of normal
scale mixtures (Andrews and Mallows, 1974). Several such
alternative error densities are available in this way; see e.g.
Carlin and Louis (1996, p.210). For example, to obtain
errors that are Student's t with m degrees of freedom, we
simply replace the N�0; r2� speci®cations for the eij with
the two-part speci®cation

eijjkij �N�0; kÿ1ij r2�; kij � G�m=2; m=2�: �4�
Thus conditional on k � fkijg; f �yijb; b; r2;D; k� still
emerges as normal, hence so does the marginal density
f �yijb; r2;D; k�. Further, the full conditional distributions
of the kij are gamma, so implementation of Algorithm 2
above is straightforward. Regarding Algorithm 3, the
approach of equation (2) now produces a closed form for
f �yjr2;D; k� but the high dimension of k likely renders
infeasible a single multivariate Metropolis-Hastings up-
date for �r2;w�; k�. Instead, we might use the multivariate
t M-H update proposed above for �r2;wjk�, and univar-
iate M-H updates for the �kijjr2;D� ± say, Hastings in-
dependence chains based on Gamma proposals centered
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at one, roughly the center of the mixing distribution in
(4).

As a ®nal extension, we observe that hierarchically
centered Gaussian structures of the kind advocated by
Gelfand et al. (1995) are easily handled within our frame-
work. For example, in the case of two-stage models this
centering takes the form

yi � Xibi � ei

bi �Np�Aib;D�;
with similar prior structure as above. Analysis proceeds in
much the same way as described above; we omit the details.

3. Longitudinal binary probit models

In this section we consider various blocking schemes for
the class of probit longitudinal binary random e�ects
models. A Bayesian analysis of these models using a ver-
sion of Algorithm 1 is provided by Albert and Chib (1996),
and by Zeger and Karim (1991) under the logit link.
Consider a sequence of binary measurements

Yi � �yi1; . . . ; yini�0; yit 2 f0; 1g on the ith unit taken at ni

speci®c time points. Let the probability of obtaining a
positive response on the ith unit at occasion
t�1 � i � n; 1 � t � ni� be given by the function

Pr�yit � 1jbi� � U�x0itb� w0itbi�; �5�
where U is the standard normal cdf, x0it and w0it are the tth
rows of Xi and Wi, respectively, and bi as before is Nq�0;D�.
For this model, the likelihood contribution f �yijb;D� is
given byZ Yni

t�1
�U�x0itb� w0itbi��yit �1ÿ U�x0itb� w0itbi��1ÿyit

( )
/q�bij0;D� dbi

�6�

which is expensive to evaluate when bi is multi-dimen-
sional. One way to deal with this problem is via a latent
variables approach (Albert and Chib, 1993, 1996; Carlin
and Polson, 1992). Let zit denote independent latent vari-
ables such that

zitjbi �N�x0itb� w0itbi; 1�; 1 � t � ni; 1 � i � n;

and let the observed response yit be given by

yit � 1 if zit > 0
0 if zit � 0

�
:

Then, it can be seen that the yit satisfy model (5). With the
introduction of the latent data, the probit model is similar
to the Gaussian model above and the posterior distribution
of the parameters �b;D�may be sampled in parallel fashion.
Let Z � �Z1; . . . ; Zn� and Zi � �zi1; . . . ; zini� then a MCMC
scheme analogous to Algorithm 1 is de®ned as follows:

Algorithm 4

1. Sample b from bjZ; b;D
2. Sample b from fbigjZ; b;D
3. Sample Dÿ1 from Dÿ1jb
4. Sample fzitg from zitjyit; b; b;D
5. Repeat Steps 1±4 using the most recent values of the

conditioning variables.
The ®rst three conditional distributions follow the same
form as those given above. The last is given by a sequence
of independent truncated normal distributions, namely
TN�0;1��x0itb� w0itbi; 1� if yit � 1, or TN�ÿ1;0�
�x0itb� w0itbi; 1� if yit � 0. Albert and Chib (1996) provide
further details.

The ®rst re®nement to this algorithm is based on mar-
ginalizing the distribution of Zi over the random e�ects bi.
Then,

Zi �Nni�Xib; Vi�

where now Vi � Ini � WiDW 0
i and the model becomes a

special case of the multivariate probit model analyzed by
Chib and Greenberg (1998). The resulting algorithm is
similar to Algorithm 4 except that b is sampled from
bjZ;D, and Zi from the multivariate normal distribution
Nni�Xib; Vi� truncated to the region implied by the vector yi.
We follow Chib and Greenberg (1998) and sample this
truncated multivariate normal vector from a sequence of
(full conditional) univariate truncated normal distribu-
tions. Thus, in this case, integrating out the random e�ects
does not lead to a reduction in the number of blocks in the
sampling (relative to Algorithm 4). Nonetheless, margin-
alization over the bi can be expected to improve the sam-
pling of the ®xed e�ects for the reasons outlined above. We
summarize this algorithm as follows:

Algorithm 5

1. Sample b and fZig from �b; fZigjy;D� by sampling
(a) b from bjy; Z;D
(b) fZig from Zijyi; b;D

2. Sample b from fbigjy; Z; b;D
3. Sample Dÿ1 from Dÿ1jb
4. Repeat Steps 1±3 using the most recent values of the

conditioning variables.
We can re®ne this algorithm by sampling Dÿ1 from the
distribution p�Dÿ1jy; Z� by employing the same technique
that was used in connection with Algorithm 3. The re-
sulting algorithm, Algorithm 6, is then based on the con-
ditional distributions �Dÿ1jy; Z�; �bjy; Z;D�; �Zijyi; b;D�, and
�bjy; Z; b;D�. The details are similar to those above and are
suppressed.

A more interesting re®nement of Algorithm 5 (which we
refer to as Algorithm 7) works with just the single distri-
bution �b;Djy�. In this case b and D are sampled by mar-
ginalizing over b and Z. We are now down to just one block
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in the sampling. The main problem in implementing this
algorithm is that the density �b;Djy� requires the compu-
tation of the likelihood contribution in (6). One way to
compute this contribution is by a method that is called the
Geweke-Keane-Hajivassiliou method in the econometrics
literature [see Chib and Greenberg (1998)]. From the latent
variable representation, f �yijb;D� can be written asZ

Bini

� � �
Z

Bi1

/ni
�ZijXib; Vi� dZi; �7�

where Bit is the interval �0;1� if yit � 1, and the interval
�ÿ1; 0� if yit � 0. Let Vi � LL0 and make a change of
variable from Zi to ei, where L is the lower triangular
Choleski factorisation and Zi � Xib� Lei. Then

f �yijb;R� �
Z d�ini

c�ini

� � �
Z d�i1

c�i1

/J �tj0; I� dt; �8�

where

c�it �
cit ÿ x0itbÿ

Ptÿ1
k�1 ltkeik

ltt
;

d�it �
dit ÿ x0itbÿ

Ptÿ1
k�1 ltkeik

ltt
;

and �cit; dit� denotes the lower and upper endpoints of
Bit�j � ni�. Now compute the quantity

pi �
Yni

t�1
U�d�it� ÿ U�c�it�
ÿ �

where the end-points are based on eik drawn from a N�0; 1�
distribution truncated to the interval �c�ik ; d�ik�. The quantity
pi is computed afresh for a new sequence of end-points and
the calculations are repeated a large number of times. The
average of the resulting pi is the Monte Carlo estimate of
f �yijb;R�.

With the likelihood function computed in this manner,
the actual updating of b and w � vech�Dÿ1� is then
through a Metropolis step with a proposal density that is
found from a preliminary set-up run similar to that in
Algorithm 3. This procedure is computationally demand-
ing because the likelihood contribution must be computed
for each new value of b and D. Nonetheless, in terms of
blocking, this is the best that one can do in this context.
Algorithm 7 thus provides a benchmark for judging the
value of integrating out random e�ects and latent variables
in non-linear longitudinal models.

4. Numerical Illustrations

4.1. Longitudinal continuous observations

We illustrate the basic algorithmic approach of Section 2
using continuous longitudinal data from a clinical trial
comparing the e�ectiveness of two antiretroviral drugs

(didanosine, ddI, and zalcitabine, ddC) in 467 persons with
advanced HIV infection. The response variable yij for pa-
tient i at time j is the patient's CD4 count, a seriological
measure of immune system health and prognostic factor
for AIDS-related illness and mortality. These data were
originally presented and analyzed by Abrams et al. (1994),
and subsequently subjected to Bayesian reanalysis by
Goldman et al. (1996), Carlin (1996), and Carlin and Louis
(1996, Sec. 8.1.2). The dataset records patient CD4 counts
at study entry and again at 2, 6, 12, and 18 months after
entry, though a great many of these observations are
missing for many patients (the sample sizes at the ®ve time
points for the two drug groups are (230, 182, 153, 102, 22)
and (236, 186, 157, 123, 14), for the ddI and ddC groups,
respectively).

Following the aforementioned work, we seek to ®t model
(1) where the jth row of patient i's design matrix Wi takes
the form

wij � �1; tij; �tij ÿ 2���;

where tij 2 f0; 2; 6; 12; 18g and z� � max�z; 0�. Thus the
three columns of Wi correspond to individual-level inter-
cept, slope, and possible change in slope after the two
month visit (by which time the drugs are expected to pro-
duce a detectable bene®t). We further account for the e�ect
of two covariates by including them in the ®xed e�ect de-
sign matrix Xi. These covariates are di, a binary variable
indicating whether patient i received ddI (di � 1) or ddC
(di � 0) and ai, a binary variable telling whether the patient
was diagnosed as having AIDS at baseline �ai � 1� or not
�ai � 0�. Thus we set

Xi � �WijdiWijaiWi�;
so that p � 3q � 9.

Boxplots of the individual CD4 counts for the two drug
groups (not shown) indicate a high degree of skewness to-
ward high CD4 values. This, combined with the count na-
ture of the data, suggests a square root transformation for
each group. We complete our model speci®cation with
minimally informative priors, taking care to ensure that
they do not lead to improper posterior distributions for the
variance components r2 and D. Following previous work,
we set m0 � 24 and R0 � Diag�22; �:25�2; �:25�2�, which
should preserve identi®ability while still allowing the ran-
dom e�ects a reasonable amount of freedom. For the prior
on rÿ2, we take a G�1; 100�, so that rÿ2 has both mean and
standard deviation equal to �1=10�2. This speci®cation im-
plies a relatively high error variance, which we expect for our
relatively noisy data. Finally, for the prior on b we set

b0 � �10; 0; 0; 0; 0; 0;ÿ3; 0; 0�; and

B0 � Diag�22; 12; 12; �:1�2; 12; 12; 12; 12; 12�;
a prior biased strongly away from 0 only for the baseline
intercept, b1, and the intercept adjustment for a positive
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AIDS diagnosis, b7. This prior also forces the drug group
intercept (i.e., the e�ect at baseline) b4 to be very small,
since patients were assigned to drug group at random.

Running our various MCMC algorithms for these data
and model for 5000 iterations each produces the correla-
tion summaries in Table 1. The table shows the lag 1
sample autocorrelations for Algorithms 1±3 above, where
the results for Algorithm 1 are computed using the BUGS
(Spiegelhalter et al., 1995) programming language. We note
that in Algorithm 1 the correlations are rather high for D,
r2, and most elements of b. Fully multivariate hierarchical
centering (as recommended for this dataset by Gelfand
et al., 1995) is not possible within the current version of
BUGS, though the language does support some simpler,
univariate centering forms.

Algorithm 2 provides a dramatic reduction in the serial
correlation of the components of b. E�ectively, we are now
sampling iid draws for this parameter. Algorithm 3 shows
further improvement in the autocorrelations for r2 and the
components of D.

While lag 1 autocorrelations are a good predictor of
MCMC algorithm performance, they of course do not tell
the whole story. To summarize the autocorrelations at all
lags and their overall rate of decay, Table 2 gives the au-
tocorrelation time j � 1� 2

P1
k�1 q�k� for each parameter

in Table 1, where q�k� is the autocorrelation at lag k for the
parameter of interest. We estimated j using the sample
autocorrelations estimated from the MCMC chain, cutting
o� the summation when these dropped below 0.1 in mag-
nitude. The j values can in turn be used to de®ne e�ective
sample sizes (Kass et al., 1998, p. 99) as the MCMC sample
size, G, divided by j. Thus j can be interpreted as the
relative increase in run length necessitated by the Markov
dependence.

The autocorrelation times in Table 2 reveal an essentially
similar pattern to that for the lag 1 autocorrelation in
Table 1. Algorithm 1 has substantial autocorrelation times
for almost all parameters. Algorithms 2±3 o�er dramatic
improvements as mentioned above, with both producing
near perfect output for b and Algorithm 3 emerging as the
most e�cient for D.

4.2. Longitudinal binary observations, single random e�ect

Our numerical illustration for this model considers a subset
of data from the Six Cities study, a longitudinal study of
the health e�ects of air pollution (see e.g. Fitzmaurice and
Laird (1993) for the data and a likelihood-based analysis).
The data consist of repeated binary measurements yij of the
wheezing status (1 = yes, 0 = no) of child i at time
j; i � 1; . . . ; I ; : j � 1; . . . ; J , for each of I � 537 children
living in Stuebenville, Ohio at J � 4 timepoints. We are
given two predictor variables: aij, the age of child i in years
at measurement point j (7, 8, 9, or 10 years), and si, the
smoking status of child i's mother (1 = yes, 0 = no).
Following the Bayesian analysis of Chib and Greenberg
(1998), we adopt the conditional response model

Yij � Bernoulli�pij�
pij � Pr�Yij � 1� � gÿ1�lij�
lij � b0 � b1zij1 � b2zij2 � b3zij3 � bi;

�9�

where zijk � �xijk ÿ �x::k�; : k � 1; 2; 3; and xij1 � aij; xij2 � si,
and xij3 � aijsi, a smoking-age interaction term. The bi are
individual-speci®c random e�ects, initially given an ex-
changeable N�0;D� speci®cation, which allow for depen-
dence among the longitudinal responses for child i. We
adopt the probit link for g�:�, i.e.,

Table 1. Lag 1 sample autocorrelations for MCMC algorithms in

ddI/ddC data model

Parameter Algorithm 1 (BUGS) Algorithm 2 Algorithm 3

b1 0.798 )0.006 0.012

b2 0.194 )0.002 )0.011
b3 0.207 )0.001 )0.014
b4 0.204 0.013 )0.005
b5 0.436 0.009 )0.012
b6 0.408 0.004 )0.020
b7 0.811 )0.008 0.006
b8 0.134 )0.020 )0.006
b9 0.154 )0.008 )0.010
r2 0.530 0.549 0.500
D11 0.388 0.283 0.654

D21 0.942 0.932 0.790
D22 0.891 0.934 0.795

D31 0.934 0.924 0.791
D32 0.967 0.951 0.799
D33 0.918 0.945 0.787

Table 2. Autocorrelation times j � 1� 2
P1

k�1 q�k�, where q�k� is
the autocorrelation at lag k for the parameter of interest, for
MCMC algorithms in the ddI/ddC data model

Parameter Algorithm 1 (BUGS) Algorithm 2 Algorithm 3

b1 20.42 1.00 1.00
b2 1.59 1.00 1.00
b3 1.41 1.00 1.00

b4 1.67 1.00 1.00
b5 3.27 1.00 1.00
b6 2.52 1.00 1.00
b7 20.36 1.00 1.00

b8 1.27 1.00 1.00
b9 1.31 1.00 1.00
r2 4.32 4.23 4.81

D11 3.88 3.57 4.26
D21 60.13 28.11 10.87
D22 40.55 27.20 11.53

D31 55.33 26.40 9.20
D32 53.05 30.05 11.55

D33 42.46 28.64 8.71
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g�pij� � probit�pij� � Uÿ1�pij�;
so that sampling for the latent data may proceed as de-
scribed in Section 3 above.

This time we used runs of G � 10 000 iterations from
each algorithm, after placing ¯at priors on the bk and a
vague G�:001; :001� prior on Dÿ1. Table 3 gives the lag 1
sample correlation summaries, while Table 4 does the same
for lag 5. Here, ``BUGS 0'' is a BUGS run using the un-
centered covariates (the xijk), while ``BUGS 1'' uses the
centered covariates (the zijk). The correlations are margin-
ally smaller under the centered BUGS parametrization, but
not much; the sample autocorrelations for D and b0 persist
almost to lag 30. This is also re¯ected in the rather high
autocorrelation times for these two parameters shown in
Table 5.

The results for Algorithms 5, 6, and 7 are also shown in
Table 3, 4, and 5. Algorithm 7 performs the best, as ex-
pected, though the bene®t it o�ers is much more apparent
at lag 5 than at lag 1. Given its longer runtimes, perhaps
Algorithm 5 is actually preferable in this case. We also note
that the improvements o�ered by our blocked algorithms
over BUGS 1 are not as dramatic as in the previous ex-
ample. The reason for this is that BUGS is actually up-
dating a smaller (marginalized, or ``collapsed'') parameter
space, namely �b;D; b� instead of �b;D; b; Z�. That is, de-
spite the probit structure, BUGS collapses over the missing
data and uses adaptive rejection sampling (Gilks and Wild,
1992), rather than conjugacy, to draw the necessary sam-
ples. In this way BUGS can handle the logit or comple-
mentary log-log link as easily as the probit, changes which
destroy the conjugate structure for the missing data for-
mulation. However, the sampling in BUGS is much more
complicated, and requires the adaptive tuning provided by
the software to be feasible. Also, if the response variable

had more than two categories (ordinal response, rather
than binary), the problem could not be handled by the
current version of BUGS at all.

4.3. Longitudinal binary observations, multiple
random e�ects

Our ®nal numerical illustration is taken from the Univer-
sity of Michigan's Panel Survey of Income Dynamics, a
sample of 520 households observed over the period 1976±
1982. Here the response yij is the labor force participation
decision for woman i at survey point j, where all women
surveyed were between the ages of 25 and 62. The two
predictor variables are xij1, the woman's education in
number of grades completed, and xij2, total family income
excluding the woman's earnings in thousands of dollars. As
in the previous subsection we adopt the longitudinal probit
model (9), but now using two random e�ects, namely

lij � b0 � b1zij1 � b2zij2 � bi1 � bi2zij2;

where again zijk � �xijk ÿ �x::k�; : k � 1; 2; and we include
family-speci®c random intercepts bi1 and income slopes bi2,
respectively.

Table 3. Lag 1 sample autocorrelations, algorithms for the Six Cities data model

Parameter BUGS 0 BUGS 1 Algorithm 5 Algorithm 6 Algorithm 7

b0 0.873 0.807 0.663 0.529 0.533
b1 0.573 0.385 0.741 0.731 0.531

b2 0.827 0.722 0.450 0.356 0.473
b3 0.530 0.486 0.683 0.767 0.541
D 0.882 0.857 0.879 0.811 0.796

Table 4. Lag 5 sample autocorrelations, algorithms for the Six Cities data model

Parameter BUGS 0 BUGS 1 Algorithm 5 Algorithm 6 Algorithm 7

b0 0.570 0.448 0.445 0.357 0.134
b1 0.006 )0.006 0.118 0.219 0.041

b2 0.370 0.189 0.118 0.082 0.115
b3 0.079 0.015 0.032 0.215 0.039
D 0.632 0.567 0.660 0.559 0.507

Table 5. Autocorrelation times j, algorithms for the Six Cities

data model

Parameter BUGS 0 BUGS 1 Algorithm 5 Algorithm 7

b0 19.81 16.02 12.63 5.02

b1 3.18 2.21 5.56 4.87
b2 9.43 5.59 3.56 5.10
b3 3.40 2.38 5.21 5.12

D 21.55 15.39 18.49 6.30
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Placing a bivariate N2�0;D� mixing distribution on the bi

vectors, we run 5000 iterations of our Section 3 algorithms,
displaying the autocorrelation results for b and D at lags 1,
5, and 10 in Tables 6, 7, and 8, respectively. As expected,
Algorithm 4 performs very poorly, with cripplingly high
autocorrelations even at lag 10. Algorithm 5 o�ers sub-
stantial improvement, especially for b, but even here the
autocorrelation is still quite apparent at lag 10. Our fully
blocked Algorithm 7 appears to o�er little further im-
provement at lag 1, but by lag 5 the improvement for b is
noticeable; by lag 10, so is the improvement for D, and the
b samples are e�ectively uncorrelated. We speculate that as
the dimension of the random e�ects increases, the advan-
tage of Algorithm 7 would become even more apparent.

5. Discussion

In this paper we have described several reduced (partially
and fully blocked) MCMC algorithms for minimizing the

autocorrelation in MCMC samples arising from the im-
portant classes of longitudinal continuous and binary data
models. Our approaches have been shown to o�er con-
siderable advantages over existing methods, including the
form of Gibbs sampler used by the leading generalist
Bayesian software package (BUGS), while still being rela-
tively straightforward to code. In the continuous case, the
fully blocked Algorithm 3 can be recommended, since it is
easy to use and performed well in our head-to-head com-
parison. In the binary case, however, the partially blocked
Algorithm 5 may be best overall, in terms of both case of
use and quality of the output. In our two data examples of
this type, the further reduced Algorithm 7 improved au-
tocorrelation performance, but not in relation to the cod-
ing and execution time expended. Still, this algorithm acts
as a benchmark for the kind of improvement that is pos-
sible in binary data models when when one works with the
likelihood function directly. In both the continuous and
binary settings, however, one common conclusion is that
the ®xed e�ects should be simulated only after the random
e�ects are marginalized out.

Another possibility to improving the convergence of the
matrix D might be a group move of the form suggested by
Liu and Sabatti (1998). These authors' simulated sintering
approach is reminiscent of simulated tempering (Geyer and
Thompson, 1995), but instead of varying a user-selected
``temperature'' parameter (the ``coldest'' of which corre-
sponds to the true posterior), it involves varying the ac-
curacy used in describing the underlying problem. Our
work on blocking for longitudinal models is closely related
to similar work for state space models. Carter and Kohn
(1994, 1996) showed how blocking can considerably im-
prove convergence in linear Gaussian state space model
settings over the univariate updating algorithm of Carlin,
Polson and Sto�er (1992). More recently, Kim, Shephard
and Chib (1998) provide a detailed analysis of the value of
blocking in non-linear state space models of stochastic
volatility. In the context of general state space models,
Shephard and Pitt (1997) discuss the use of random block
sizes for sampling state vectors via the Metropolis algo-
rithm while Knorr-Held (1998) provides an alternative
implementation of the Metropolis step. Finally, the ad-
vantages of blocking are also demonstrated by Chib (1996)
for hidden Markov (or Markov mixture) models.

In future work we hope to extend our methods to other
longitudinal data models, including generalized linear and
nonlinear response models, such as pharmacokinetic
models.
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Table 6. Lag 1 sample autocorrelations, algorithms for the labor

force participation data model

Parameter Algorithm 4 Algorithm 5 Algorithm 7

b0 0.971 0.384 0.490

b1 0.974 0.429 0.491
b2 0.993 0.519 0.494
D11 0.928 0.930 0.925

D12 0.890 0.886 0.892
D22 0.812 0.806 0.791

Table 7. Lag 5 sample autocorrelations, algorithms for the labor
force participation data model

Parameter Algorithm 4 Algorithm 5 Algorithm 7

b0 0.860 0.155 0.046

b1 0.873 0.192 0.055
b2 0.965 0.254 0.071
D11 0.808 0.765 0.751

D12 0.725 0.641 0.656
D22 0.663 0.542 0.529

Table 8. Lag 10 sample autocorrelations, algorithms for the labor

force participation data model

Parameter Algorithm 4 Algorithm 5 Algorithm 7

b0 0.738 0.099 0.002

b1 0.760 0.135 0.002
b2 0.934 0.169 0.009
D11 0.693 0.631 0.604

D12 0.584 0.491 0.473
D22 0.560 0.447 0.395
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