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Absrruct- An ( n, k, d) linear code over F  = GF( q) is said to be 
ntcrximunt dktunce separable (MDS) if d = n - k  + 1. It is shown that an 
(II, k, FI - k  + 1) generalized Reed-Solomon code such that 2 I k  5 n - 
1 ((I - 1)/2] (k + 3 if q is even) can be extended by one digit while 

preserving the MDS property if and only if the resulting extended code is 
also a generalized Reed-Solomon code. It follows that a generalized 
Reed-Solomon code with k  in the above range can be uniqueb extended 
to a maximal MDS code of length q + 1, and that generalized 
Reed-Solomon codes of length y  + 1 and dimension 2 < k I 1 q/2] + 2 
(X ;t 3 if q is even) do not have MDS extensions. Hence, in cases where 
the (q + 1, k  ) MDS code is essentially unique, (n, k) MDS codes with 
n > q + 1 do not exist. 

I. INTRODUCTION 

L ET q  be  a  positive power of a  prime. An (n, k, d) 
code C over the finite field F  = GF(q) is called 

maximum distance separable (MDS) if d  = n  - k + 1. 
Since for every linear code we have d  I n  - k + 1  (the 
Singleton bound  [9, p. 331)  MDS codes are optimal in the 
sense that they achieve the maximum possible m inimum 
distance for given length and  dimension. MDS codes and  
their properties are treated in [9, ch. 111, which also pre- 
sents the important connection of MDS codes to certain 
constructions in finite geometries. In particular, it is known 
that for k > 1  the length of MDS codes of dimension k 
over F  is upper-bounded by a  maximum m(q, k). For 
k 2  q, it is readily verified that m(q, k) = k + 1, but 
finding the exact value of m(q, k) for 2  I k < q  is a  
well-known open  problem. The  widely bel ieved conjecture 
is that m( q, k) = q  + 1  in the aforementioned range of k, 
except for the cases k = 3  and  k = q  - 1  with q  even, in 
which case m( q, k) = q  + 2. This conjecture has already 
been  proved for some values of q  and  k, for example, for 
k = 2  (trivial), or 3  < k I 5  (Segre [lo], [ll], Casse [l]), or 
q  I 11  (Maneri and  Silverman [7], [S], Jurick [6]), or q  > 
(4k - 9)2 (Thas [12]). O ther important contributions to the 
determination of m(q, k) and  to the characterization of 
maximal MDS codes (in geometric terms) are the papers of 
Casse and  G lynn [2], [3], and  Thas [13], [14]. Extensive 
bibliographies can be  found in [5] and  [9]. 
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Reed-Solomon codes [9, ch. lo] are probably the best- 
known family of MDS codes. These codes are a  special 
case of a  larger family of MDS codes, referred to as 
general ized Reed-Solomon (GRS) codes [9, ch. 10, sec. 81. 
C is called a  GRS code if it has a  generator matrix 
G  = [gji] with entries of the form 

Here, (pi, (Ye; * ., (Y, are distinct elements of F; ui, u2,. . . , u,, 
are nonzero (not necessarily distinct) elements of F. We  
define 0’ = 1. The  elements ‘pi, (Y*; . ., (Y, will be  referred 
to as the column generators of G  (or C), while the elements 
01, Q,’ * *, u, will be  referred to as the column mu ltipliers. G  
will be  called the canonical generator matrix of C. Clearly, 
GRS codes as defined before exist for any length n  _< q. 
GRS codes can be  extended, while preserving the 
MDS property by appending to G  an  extra column of 
the form (0,O; . ., u)‘, with u  #  0  [9, ch. 11, sec. 51. Using 
an  abuse of notation, we shall say that the extra column 
has column generator cc and  column mu ltiplier u. The  
resulting code is called a  general ized doubly extended 
Reed-Solomon (GDRS) code. The  reason for using the 
adjective “doubly extended” is the following: basic 
Reed-Solomon codes are defined as having nonzero ele- 
ments of F  as column generators (usually the generators 
are successive powers of a  field element whose order is the 
codelength, so that the code is cyclic. This is not required 
for GRS codes). An extended code is obtained by using 
zero as a  column generator, while a  doubly extended code 
is obtained by using the column generator co. In this 
paper, we shall refer to all of these generalizations of the 
Reed-Solomon construction as GDRS codes. When  neces- 
sary, we shall distinguish between proper GDRS codes 
(i.e., those that use cc as a  column generator) and  GRS 
codes (those that do  not). GDRS codes exist for any length 
n<q+l. 

In this paper, we prove that for 2  5  k I [q/2] + 2  
(except for k = 3  when q  is even) GDRS codes of length 
q  + 1  cannot be  further extended while preserving the 
MDS property. Our results imply that for 2  I k I [q/2] 
+ 2, if a  unique (q + 1, k) MDS code exists over F, then 
m  (q, k) = q  + 1  and, by a  duality argument, also m  (q, q  
+ 2  - k) = q  + 1. Here, uniqueness is defined up  to the 
following equivalence relation: two codes C, and  C, over F  
are said to be  equiualent if a  permutation 7~ on  { 1,2,. . +, n} 
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and n nonzero constants ul, a2,. . . , a,, E F exist such that This definition is extended to p = 00 by defining 

c2 = {(V,(l) U2%(2) ... %&(n))l(W2 ... cn> E Cl}. Uk(OO) = (0,o; * *,l)‘. 
Clearly, the construction of a GDRS code of length q + 1 The canonical generator matrix G of C is 
over F is unique up to this equivalence. For odd q, almost 
all known MDS codes of length q + 1 are GDRS. A recent 

G = [u~u(al) u~u~(cY~) .-a u,u”(a,)]. 

example, due to Casse and Glynn, and presented by The following theorem presents the main result of this 
Hirschfeld in [4], shows a (10,5) MDS code over GF(9) paper. 
which is not GDRS. This example disproves the previously 
believed conjecture that MDS codes of length q + 1 over 
GF(q) (odd q) are GDRS. 

The result on GDRS codes of length q + 1 will be 
obtained as a corollary of a more general statement, pre- 
sented as Theorem 1 of Section II. We prove that a GDRS 
code of length n and dimension k such that 2 I k I n 
- I( q - 1)/2] can be extended by one digit, while pre- 
serving the MDS property, if and only if the resulting code 
is also GDRS. It follows that an (n, k) GDRS code over 
GF(q), with 2 5 k s n - I( q - 1)/21, can be uniquefy 
extended to an MDS code of length q + 1, which is GDRS 
and which cannot be extended further. Theorem 1 and its 
corollaries are presented in Section II, where we also show 
that the limitation of the range of k is necessary and tight 
in some cases. The proof of the theorem is presented in 
Section III, along with some preliminary lemmas. 

The results of this paper are similar in flavor to the 
results of Thas in [12], once the language gap between our 
algebraic coding-theoretic approach and his geometric ap- 
proach is closed. The results of [12] cover a much smaller 
range of values of k and n for a given odd q, namely, 
2 I k < n - (q - (& + 5)/4). In that range, however, 
the results of [12] are very strong. He proves that every 
MDS code with k in the foregoing range is GDRS and can 
be uniquely extended to a maximal GDRS code of length 
q + 1. Hence, in fact, the m(q, k) = q + 1 conjecture is 
proved for 2 I k < (fi + 9)/4, with q odd.’ For the sake 
of comparison, the results of [12] are presented in Section 
II, translated to the language of algebraic coding theory. 

II. STATEMENTOF MAINRESULTS 

Let C be an (n, k, n - k + 1) GDRS code over F = 
GF(q). Denote by OL the vector of column generators of C, 
and by v the vector of column multipliers of C, that is 

a = (a,, c$?’ *. > a,), 
and 

v = (u,, 02,. . .> u,,) 
where the (Y;, 1 I i I n, are distinct elements of F U { CQ} 
and the v, are nonzero elements of F. Then, we denote C 
by GDRS (n, k, OL, v). Let k be any positive integer and let 
p be an element of F. We denote by uk(p) the column 
vector 

Theorem 1: Let C be a GDRS (n, k, (Y, v) code over 
F = GF (q) such that 2 I k I n - I( q - 1)/2] ; let G be 
the canonical generator matrix of C; and let g be a 
k-dimensional column vector over F. Then the extension of 
C generated by the matrix2 [Gig] is MDS if and only if 
either 

1) g = u . uk(p), where u E F - {0}, /3 E F u {co}, 
and p is not a column generator of C, or 

2) q is even, k = 3, and g = u . (O,l, O)T for some 
u E F - (0). 

It follows from Theorem 1 that the condition n 2 k 
+ lb - WI . 1s sufficient to ensure that every MDS 
extension of an (n, k) GDRS code must also be GDRS 
(except for k = 3 with q even, when another well-char- 
acterized extension is possible [9,p. 3251). It remains an 
open problem to determine, in general, whether the forego- 
ing sufficient condition is also a necessary one. However, 
this can be proved in some cases. For k = 3 and q 2 7, 
with q f 1 (mod4), MDS codes of length I( q + 5)/2j 
exist which are maximal in the sense that they do not have 
MDS extensions (hence they are not GDRS) and which are 
extensions of GDRS codes of length n = [(q + 3)/2]. 
Noticing that for this value of n and for k = 3 we have 
n = k - 1 + /(q - 1)/21, we conclude that the condition 
of Theorem 1 is necessary in these cases. The construction 
of the maximal codes mentioned earlier is shown in [5, ch. 
91, in the language of finite geometries. In that language, 
the columns of the generator matrix of an (n, k) MDS 
code over GF (q) form an n-arc in the finite projective 
geometry PG (k - 1, q). An n-arc that cannot be extended 
to an (n + 1)-arc is called complete. An n-arc of length 
n = m( q, k) is an oual. The columns of the generator 
matrix of a GDRS code of dimension k over GF (q) are 
points on a normal rational curve in PG (k - 1, q) (a conic 
if k = 3). Another good source for a wealth of geometric 
results on n-arcs, mostly for the case k = 3 (plane projec- 
tive geometries), is [5]. 

The main result of Theorem 1 can be expressed in 
geometric terms as follows. 

Theorem 1’: For k 2 2, and k f 3 if q is even, an n-arc 
in PG (k - 1, q) not contained in a normal rational curve 
has at most k - 1 + [(q - 1)/21 points in common with 
a normal rational curve. 

u”(p) = (1, p, p2; * .) pk-I)? For k = 3 (q odd), the result of Theorem 1’ is well-known 
([5, p. 215, Corollary 1 of Lemma 9.4.21). When n = q + 1, 

‘Using recent results b Thas [15], it is possible to slightly extend the 
range of k to 2 2 k < 4 q /4 + 39/16. The improvement being marginal, 2[ A/B] denotes the concatenation of a matrix A with a matrix (or 
we shall still refer to the results of [12], which are more explicit. column vector) B. 



SEROUSSI AND ROTH: REED-SOLOMON CODES 351 

all the elements of F  U {cc} are column generators of C. 
This leads to the following corollaries of Theorem 1. 

Corollary I: Let C = GDRS (q + 1, k, (Y, v) over F  = 
GF  (q), with 2  < k I 1q/2] + 2, and  k #  3  if q  is even. 
Then,  no  extension of C is MDS. 

Proof: Substitute n  = q  + 1  in Theorem 1  and  note 
that, since all the elements of F  u {co} are column genera-  
tors of the code, condition 1) of the theorem cannot be  
satisfied, while condition 2) does not apply. Q .E.D. 

Corollary 2: Let C = GDRS (n, k, (Y, v) over F  = 

Theorem 2  (Thus [12]): Assume q  is odd. Then  every 
(n, k) MDS code over GF(q), such that k + q  - (fi -i- 
5)/4 < n  I q  + 1, can be  uniquely extended to a  maximal 
(q + 1, k) MDS code, which is GDRS. 

As in the remark following Corollary 2, the result in [12] 
is slightly stronger and  refers to the generator matrices 
rather than to the codes. 

GF  (q), with 2  < k I n  - [(q - 1)/2], and  k #  3  if q  is 
even. Then  C can be  uniquely extended to a  maximal MDS 
code of length q  + 1, which is GDRS. 

Corollary 5  (Thas [12]): Every (n, k) MDS code over 
GF(q), such that q  is odd  and  k + q  - (& + 5)/4 < n  
~q+l, isaGDRScode. 

Notice that Corollary 5  implies, in particular, that for 
odd  q  and  k < (& + 9)/4 there is a  unique (q + 1, k) 
MDS code over GF(q). 

Proof: By Theorem 1, the only possible MDS exten- 
sions of a  GDRS (n, k, (Y, v) code with 2  I k I n  
- [(q - 1)/2], and  k #  3  when q  is even, are also GDRS. 
Since the extended codes also satisfy the hypotheses of 
Theorem 1, the extension process can continue until we 
reach the maximal GDRS code of length q  + 1  over GF  (q), 
which is unique and, by Corollary 1, does not have any 
MDS extension. Q .E.D. 

In fact, Theorem 1  implies the following slightly stronger 

Theorem 3  (Thas [12]): If q  is odd, k 2  2, and  (4k - 
9)2 < q, then m(q, k) = q  + 1. 

III. PROOFS 

We start with a  series of lemmas that will be  used in the 
proof of Theorem 1. 

Lemma 1: Let y and  (I, (Ye,. . . , (Ye be  elements of F, 
and  let M  be  the (k + 1) x (k + 1) matrix over F  defined 
by 

uniqueness result: under  the conditions of Corollary 2, any 
generator matrix G  of C can be  uniquely extended to the 
generator matrix G’ of a  (q + 1, k) GDRS code. Matrix 
uniqueness here is up  to permutation of columns and  
mu ltiplication of columns by scalars. Notice that, in gen-  
eral, it is possible for a  generator matrix G  to be  extended 
in two different ways to unequivalent matrices G’ and  G”, 
with G’ and  G” generat ing equivalent (or even identical) 
codes. 

‘0  1  1  . 
0  a1 a2 . 

1 
‘k 

M= 
0  k-2 

a1 
k-2 . 

a2 
k-2 

’ ak 

1 ak-l 
k-l . 

1 a2 

Y 4 
k 

a2 . 

h-1 
ah 

k 
‘k 

Corollary 3: Let C = GDRS (2”’ f 1,3, (Y, v) over F  = 
GF(2”‘). Then  the only possible MDS extension of C is 
obtained by appending to G  a  column of the form 
(0, u,O)‘, u  #  0. 

Proof: Substitute n  = q  + 1  in Theorem 1. The  claim 
of the corollary is then equivalent to condition 2) of the 
theorem. Q .E.D. 

Corollary 4: Let 2  I k I 1q/2] + 2  and  k + 3  if q  is 

Let A, be  the k x k Vandermonde matrix at the upper  
right corner of M . Then,  the determinant of M  is given by 

det M  = y - 2  [ 1  a, (-l)kdetAk. 
j=l 

Proof: Consider the Vandermonde matrix 

even. If the (q + 1, k) MDS code is unique, then m(q, k) 
= q  + 1, and  m(q, q  + 2  - k) = q  + 1. 

1  1  1  . . . 1  
X a1 a2 ... &k 

. . 

B(x) = 
. . . 
. . . (1) 

Proof: Assume C is a  (q + 2, k) MDS code over 
GF(q). If the (q + 1, k) MDS code is unique, then it must 
be  GDRS, and  C is its extension. Since 2  I k I [q/2] + 
2, this contradicts Corollary 1. Also, since the dual of a  
(q + 2, q  + 2  - k) MDS code is a  (q + 2, k) code [9, p. 
3181, nonexistence of a  (q + 2, k) code implies nonex-  
istenceofa(q+2,q+2-k)code. Q .E.D. 

Using the language and  methods of finite geometries, 

Xk-l k-l 
a1 

k-1 
a2 

k-l . . . ak 

where x is a  variable. Computing the determinant of B(x) 
by the Vandermonde determinant formula [9,p. 1161  and  
also by cofactors of the first column, we obtain 

Thas [12] extended previous results by Segre [lo] and  
proved the m(q, k) = q  + 1  conjecture for q  odd  and  
k < (fi + 9)/4. The  following is a  restatement of the 
ma in results of [12], translated to the language of algebraic 
coding theory. 

k 

det B(x) = I-H .- 
,j= 1 

aJ 
x det A, = i m ,.(-x)‘, (2) I] 

r=O 

where m , is the m inor corresponding to the element x’ in 
the first column of B(x). From the definition of M , it 
follows that 

det M  = (ym, - mkpI)(-l)k, (3) 
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and, by (2) we have 
m k = det A,, (4 

m k-l = 
i 1 

i a, det A,. (5) 
j=l 

Finally, the claim of the lemma follows by substituting (4) 
and (5) in (3). Q.E.D. 

Lemma 2: Let F = GF(q), q > 3, and let S be a subset 
of r distinct elements of F such that I( q - 1)/2] + 2 < r 
< q. Let b E F - (0) and let k be an integer such that 
2 < k < r - [(q - 1)/2]. Then, for any subset T= 
{ a1, a2,’ ’ ‘, a&2 } of S, of cardinality k - 2, two elements 
(Ye ~ i and (Ye exist in S such that the vector 

w = u”( al) + b.Uk( Co) 
’ lies in the linear span (over F) of the vectors 

d(a,); . .) Uk(cxk). 

Proof We want to prove that there exist two elements 
ak-13 ah in S, and k - 1 coefficients c2, c3,. . . , ck in F 
such that 

w = i: CiUk(a;). (6) 
i=2 

Equation (6) implies that the vector b . uk(oo) is in the 
linear span of ~~(a,),. . ., z8(ak). Since uk(cc) is linearly 
independent of any k - 1 such vectors, we conclude that 
all the (Y,, 1 I i I k, should be distinct. In particular, we 
will require that cyk-i f (Ye and that both ak-i and (Ye be 
distinct from any of (pi,. . . , akP2. Consider the matrix 

w= [WUk(a2) *‘* Uk(ak)]. (7) 
It can be readily seen that W differs from a Vandermonde 
matrix only by the addition of b to the entry a[-’ in the 
lower left corner. Hence the determinant of W is given by 

fi(a;--ai) + (-l)k-‘b detA,_, 
;=2 1 

= (-l)‘-‘[ fi(a, - a,) + b]detAkP,, (8) 
i=2 

where Akpl is a (k - 1) X (k - 1) Vandermonde matrix 
with entries a.. = (~‘.-‘,l < i, j I k - 1. Since (Ye;. ., (Ye 
are all distinc;: the $itors uk,( (Ye), . . . , u k( (Ye) are linearly 
independent. Hence to prove the lemma, it suffices to find 
(yk-i and (Ye such that det W = 0. Clearly, det A,_, # 0. 
Thus we require 

Replace both ak-i and (Ye in (9) by a variable X. Then (9) 
becomes the quadratic equation 

[~~~~-~i)](a,-X)2+b=Ol (10) 

‘For k = 3, define the product to be 1. 

Equation (10) has at most two roots in F, which will be 
denoted pi and &. If q is even, then /?i = &. Choose 
ah-i such that 

and 

ak-l # a;> l<i<k-2, (11) 
ak-l ’ bj> j = 1,2, (12) 

ffk-1 E s. (13) 
These constraints leave at least r - k elements (r - k + 1 
if q is even) of S to choose akP1 from. For a given choice 
Of ak-], (9) is satisfied if we choose 

(Yk = a1 + 

[Ebl - %;]@I - ak-l) ’ (14) 

Denote the right side of (14) by f( (Ye _ 1) where the function 
f is defined on the set F - {al}. It can be readily verified 
that f is one-to-one and onto the set F - {al}. Therefore, 
ak + a1, and for ak-i satisfying (12) we must have (Ye f 
(Ye- 1 (otherwise, (Ye- 1 would be a root of (lo), contradict- 
ing (12)). Consider the (at least) r - k values (Ye = f(akel) 
obtained by substituting values of akPl which satisfy 
(11))(13). We claim that at least one of these values of LY~ 
satisfies 

and 
ak =+ ff,, 2<i<k-2, (15) 

Lyk E s. (16) 
The claim follows from the fact that exactly q - r + (k - 
3) elements of F violate either (15) or (16). By the hypothe- 
ses of the lemma, we have k 2 r - I( q - 1)/2], which 
implies that r - k > q - r + (k - 3). Hence at least one 
(Ye satisfies both (15) and (16). Clearly, the pair tik-i, (Ye 
chosen so that akel satisfies (ll)-(13) and (Ye satisfies 
(14) and (15) fulfills the requirements of the lemma. 

Q.E.D. 

Let G be the canonical generator matrix of a 
GDRS (n, k, (Y, U) code over F = GF (q). We say that a 
column uiuk(ai) is singular if (Y, = cc and regular other- 
wise. The following lemma is a direct consequence of 
Lemma 2. 

Lemma 3: Let G be the canonical generator matrix of a 
GDRS (11, k, ct, v) code over F, where 2 < k c n 
- [(q - 1)/2], and let g E Fk be a column vector such 
that g Z b . uk(co) for any b E F, and g can be expressed 
as a linear combination of k - 1 columns of G. Then g 
can be expressed as a linear combination of k - 1 regular 
columns of G. 

Proof: Trivially, the lemma is true if all the columns 
of G are regular or if the original linear combination of 
columns of G giving g involves only regular columns. 
Hence we assume that 

k-2 

g = C algi + aoogm, 
i=l 

(17) 
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where g,; . ., gk-2 are regular columns of G , g, is the 
singular column of G , a,; . ., akp2, a, are scalars from F, 
and  ace #  0. Since g  is not a  scalar mu ltiple of uk(co), we 
must have a,” #  0  for some 1  I i, I k - 2, say i, = 1  
(this also implies that k > 2). Let r = n  - 1, S be  the set 
of generators of the regular columns of G , and  let T  be  the 
set of generators of the columns g,, . . . , g,-,. Then,  by 
Lemma 2, the vector a,g, + aoagm can be  written as a  
linear combination of the columns g,, . . *, g,-, and  two 
additional regular columns g,-,, g, of G . Substituting for 
a1g1 + amgm in (17), we obtain g  as a  linear combination 
of k - 1  regular columns of G . Q .E.D. 

The  following lemma presents a  well-known property of 
MDS codes, a  proof of which can be  found in [9, ch. 111. 

Lemma 4: An (n, k, d) code C is MDS if and  only if 
every k columns of a  generator matrix G  of C are linearly 
independent.  

We  can now prove Theorem 1. 

Proof of Theorem 1: The  “if” part corresponds to the 
construction of GDRS codes, which are well-known to be  
MDS, and  to the exceptional case when k = 3  and  q  is 
even, which is analyzed in [9, ch. 111. Hence we concentrate 
on  the proof of the “only if” part. We  shall first prove it 
for proper GDRS codes. The  proof for GRS codes will 
follow in a  straightforward way. 

Let C be  a  proper GDRS(n, k, CL, v) code, with canoni- 
cal generator matrix G , and  such that 2  I k 2  n  
--dJo; g  ;)$I. We  shall prove that for every column 

, either 

1) 

2) 

3) 

g  = u  . u  k( p), where U, /3 E F, u  f 0, and  /3 is not a  
column generator of G , or 
k = 3, q  is even, and  g  = (0, U, O)r for some u  #  0, 
or 
g  can be  expressed as a  linear combination of k - 1  
columns of G , in which case, by Lemma 4, [Gig] does 
not generate an  MDS code. 

The  proof will proceed by induction on  k. The  theorem is 
clearly true for k = 2, since every nonzero g  E F  2  is equal  
to u  . u2( p) for some /I E F  U {cc}, and, if /3 is a  column 
generator of G , then g  is a  scalar mu ltiple of a  column of 
G . The  proof for k = 2  serves as the induction basis for the 
case where q  is odd. When  q  is even, the case k = 3  brings 
the exceptional condition 2) above and  will be  treated 
separately. This will leave k = 4  as the basis for the 
induction. For the sake of continuity in the proof, we shall 
proceed now with the induction step, and  we shall deal 
with the cases k = 3  and  k = 4  (q even) later on. Thus we 
assume the validity of the theorem for some k 2  2  when q  
is odd, and  for some k 2  4  when q  is even, and  we prove it 
for k + 1. Let Gk+l be  the generator matrix of a  
GDRS (n, k + 1, (Y, v) code, where k + 1  I n  
- I( q  - 1)/2], and  let G , be  the generator matrix of a  
GDRS (n, k, OL, v) code. We  assume, without loss of gener-  
ality, that (Y, = co. Notice that G , consists of the first k 
rows of Gk+l except in the singular column where unuk( cc) 
replaces the first k entries (zeros) of u,~~+l(cc). Let g  E 
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Fk+ ’ be  a  column vector, and  let gk E Fk be  the vector 
obtained by deleting the last coordinate of g. Thus we can 
write 

g= g”, [ 1  Y 
y E F. 08) 

We now consider three cases, which cover all possible 
values of gk. 

Case 1. gk = b  * uk(oo) for some b  E F. If b  = 0, then 
g  = y . u*+‘(oc), and, trivally, g  can be  written as a  linear 
combination of k columns of Gk+i. Therefore, we assume 
b  #  0, and  hence 

g= be  [O...O 1  E]~, 09) 
where e  = y/b. According to Lemma 1, g  is in the linear 
span of the k distinct vectors u~+‘((Y~~,); . ., ~~+‘(a,~) if 
and  only if E = Cf=la,,. Let a;,,. . ., 01i,~, be  k - 2  distinct 
regular column generators of Gkil. If q  is even, we require 
that they do  not add  up  to E (it can be  readily verified that 
such a  choice is always possible). Define 

k-2 

fi=c- CCY,,. (20) 
1=l 

We claim that there exist two distinct regular column 
generators 01i, ~I and  ajh of Gk+l, which are not in the set 
taj,“. ‘1  Ly/,-, } and  which satisfy LY~,~, + (Y,~ = p. Hence 
E = Ck=i(~,,, and  g  is a  linear combination of k columns of 
G  k + i satisfying condition 3). To  prove the claim, note that 
the elements of F  can be  arranged in [(q + 1)/2] pair- 
wise disjointed unordered pairs Q j = {a,, b,}(l I 
i 5  l(4 + 1)/21), such that a, + b, = fi. When  q  is odd, 
there is exactly one  such pair in which a, = b,; when q  is 
even, a, #  b, for all i, since we required p  f 0  in this case. 
Now, since k + 1  < n  - [(q - 1)/2], we have (n - 1) - 
(k - 2) > I( q  + 1)/2]. By a  simple counting argument, 
it follows that at least one  of the pairs Q , will consist of 
two distinct regular column generators of Gk+l, different 
from L~I,; . ., a,,-,. 

Case 2: gk #  b. uk(m) for any b  E F, and  gk can be  
expressed as a  linear combination of k - 1  columns of G ,. 
Since the conditions of Lemma 3  are satisfied, we may 
assume that the linear combination does not include the 
singular column of G ,. Therefore, g  can be  expressed as a  
linear combination of the k - 1  columns which give gk in 
G , (extended to length k + l), plus a  suitable scalar 
mu ltiple of uk+l(m), h  c osen so that the value y is ob- 
tained in the (k + 1)st entry. 

Case 3: gk #  b  . uk(cc) for any b  E F, and  g” cannot 
be  expressed as a  linear combination of k - 1  columns of 
G ,. Hence gk can be  appended to G ,, while preserving the 
MDS property. By the induction hypothesis, gk = v . 
uk( X), where u  #  0  and  X is not a  column generator of G , 
(and hence also not of G ,,,). Let b  = y/u - hk. Then,  
g  = u  . [&~‘(x> + b  . uk+l (co)]. If b  = 0, we have g  = u  
. uk+ ’ X ( >> and  condition 1) in the claim of the theorem is 
satisfied. Assume b  f 0. Then,  using Lemma 2  with r = n, 
s = {A, (x2,“‘, (Y,~}, we obtain that g  can be  expressed as 
a  linear combination of k columns of Gk+r. This completes 
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the proof of Theorem 1 for proper GDRS codes, condi- ACKNOWLEDGMENT 
tional on the proofs of the cases k = 3 and k = 4 with q 
even. We are grateful to the anonymous referees for their 

Consider now the case k = 3 with q even. Trying to thorough review of the paper and for their useful sugges- 
apply the induction step from k = 2 to k = 3 will fail for tions. In particular, the geometric formulation of our main 
vectors belonging to Case 1, with 6 = 0, that is when result, Theorem l’, is due to one of the referees. 
g = b . (0, LO)‘. In this case, we will not be able to satisfy 
p # 0 in (20), as required in the proof. Indeed, as it is 
known [9, ch. 111, such a column g can be appended to the 
canonical generator matrix of a GDRS (n, 3, OL, u) code 
over GF(2”‘), while preserving the MDS property. This 
corresponds to condition 2) in the claim of Theorem 1 
(“if” part). The “only if” part follows from the fact that 
the proof of Theorem 1, as presented, fails only in the 
mentioned case, being correct in all other cases. 
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