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Abstract

We formulate the MFG limit for N interacting agents with a common noise as a
single quasi-linear deterministic infinite-dimensional partial differential second order
backward equation. We prove that any its (regular enough) solution provides an
1/N -Nash-equilibrium profile for the initial N -player game. We use the method of
stochastic characteristics to provide the link with the basic models of MFG with a
major player. We develop two auxiliary theories of independent interest: sensitivity
and regularity analysis for McKean-Vlasov SPDEs and the 1/N -convergence rate
for the propagation of chaos property of interacting diffusions.
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1 Introduction

We shall denote by Msign(Rn) the space of signed Borel measures on Rn of finite total
variation, byM(Rn) its cone of positive measures, byMsign

λ (Rn),Mλ(R
n) their subsets

of total variation norm not exceeding λ, by P(Rn) the set of probability measures. We
shall use the standard notation (φ, µ) =

∫
φ(x)µ(dx) for the pairing of functions and

measures. By E we denote the expectation.
Let us consider N agents, whose positions are governed by the system of SDEs

dX i
t = b(t,X i

t , µ
N
t , u

i
t) dt+ σind(X

i
t)dB

i
t + σcom(X i

t)dWt, (1)

where all X i
t belong to R, Wt, B

1
t , · · · , BN

t are independent one-dimensional standard
Brownian motions, Wt, referred to as the common noise, and all Bj

t , referred to as the
idiosyncratic or individual noises, the subscripts ’com’ and ’ind’ referred to the objects
related to the common or to the individual noises. The parameters uit ∈ U ⊂ Rm are
controls available to the players, trying to minimize their payoffs

V i
[t,T ](x) = E

[∫ T

t

J(s,X i
s, µ

N
s , u

i
s) ds+ VT (X i

T , µ
N
T )

]
, (2)
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depending on the action of other players, with the given functions J and VT . The coeffi-
cient b(t, x, µ, u) is a function of t ∈ R, x ∈ R, u ∈ U and a measure µ ∈ Msign(R), and
µNt in (1) is

µNt =
1

N

N∑
i=1

δXi
t
.

In general, the function b needs to be defined only for µ from the set of probability
measures P(Rn). However, to use smoothness with respect to µ it is convenient (though
not necessary) to have this function defined on a larger space. In the usual examples, b
depend on µ via a finite set of moments of type

Fj(µ) =

∫
F̃j(x1, · · · , xk)µ(dx1) · · ·µ(dxk), (3)

with some bounded measurable symmetric functions F̃j.
For simplicity, we shall assume b to be linear in u, that is,

b(t, x, µ, u) = b1(t, x, µ) + b2(t, x, µ)u, (4)

though other weaker assumptions are possible.

Remark 1. 1) For this paper we shall stick to a smooth dependence of b on µ. However,
more singular dependencies are also of interest, for instance, the dependence on µ via
its quantile, see [1]. This case will be discussed in our subsequent publication based on
the theory of SDEs with coefficients depending on quantiles developed in [2]. 2) In an
attempt to present our main result in the most clear way, we make several simplifying
assumptions, primarily that all objects are one dimensional and that σind does not depend
on µ and u, which can be relaxed causing the increase of technicalities. 3) We consider
the simplest common noise Wt. It would be natural to extend the theory to the space-time
white noise W (dxdt) or even to a more general noise expressed in terms of functional
semimartingales F (x, t) analyzed in [3].

It is known (see e.g. [4]) that, for fixed common functions uit(X
i
t) = ut(X

i
t), and under

appropriate regularity assumptions on b, σind, σcom the system (1) is well-posed and the
corresponding empirical measures µNt converge, as N → ∞, to the unique solution µt of
the nonlinear SPDE of the McKean-Vlasov type

d(φ, µt) = (L[t, µt, ut]φ, µt) dt+ (σcom(.)∇φ, µt) dWt, (5)

which is written here in the weak form meaning that it should hold for all φ ∈ C2(R),
and where ∇ is the derivative with respect to the space variable x and

L[t, µt, ut]φ(x) =
1

2
(σ2

ind + σ2
com)(x)

∂2φ

∂x2
+ b(t, x, µt, ut(x))

∂φ

∂x
. (6)

Let us mention directly that in our approach it is more convenient to work with the
Stratonovich differentials. Namely, by the usual rule Y ◦ dX = Y dX + 1

2
dY dX, equation

(5) rewrites in the Stratonovich form as

d(φ, µt) = (LSt[t, µt, ut]φ, µt) dt+ (σcom(.)∇φ, µt) ◦ dWt, (7)
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with

LSt[t, µt, ut]φ(x) =
1

2
σ2
ind(x)

∂2φ

∂x2
+ [b(t, x, µt, ut(x))− 1

2
σcomσ

′
com(x)]

∂φ

∂x
. (8)

With some abuse of notation, we shall often identify measures with their densities
(whenever they exist) with respect to Lebesgue measures, thus writing the strong form of
equation (5) as

dµt = L′[t, µt, ut]µt dt−∇(σcom(.)µt) dWt, (9)

with

L′[t, µ, ut]µ =
1

2

∂2

∂x2

[
(σ2

ind + σ2
com)µ)

]
− ∂

∂x
[b(t, x, µ, ut)µ]. (10)

This identification does not cause ambiguity, because under non-degeneracy of σ2
ind+σ2

com

that we shall always assume, any solution µt[µ0] to (5) has a density with respect to
Lebesgue measure at any t > 0, even if µ0 does not.

Recall now that the optimal control problem facing each player, say X1
t , is to minimize

cost (2). Now the crucial difference with the games without common noise starts to reveal
itself. For games without noise, one expects to get a deterministic curve µt in the limit of
large N , so that in the limit, each player should solve a usual optimization problem for a
diffusion in R. Here the limit is stochastic, and thus even in the limit the optimization
problem faced by each player is an optimization with respect to an infinite-dimensional,
in fact measure-valued, process.

In fact, for fixed N , if all players, apart from the first one, are using the same control
ucom(t, x, µ), the optimal payoff for the first player is found from the HJB equation for
the diffusion governed by (1), that is, the HJB equation (where we denote X1 by x),

∂V

∂t
(t, x, µ) + inf

u

[
b(t, x, µt, u)

∂V

∂x
+ J(t, x, µt, u)

]
+

1

2
(σ2

ind + σ2
com)(x)

∂2V

∂x2

+
∑
j 6=1

b(t, xj, µt, ucom(t, xj, µ))
∂V

∂xj
+

1

2
(σ2

ind + σ2
com)(xj)

∂2V

∂x2
j

+
∑
j 6=1

σcom(x)σcom(xj)
∂2V

∂x1∂xj
+
∑

1<i<j

σcom(xi)σcom(xj)
∂2V

∂xi∂xj
= 0. (11)

As will be shown, in the limit when (δx1 + · · · + δxN )/N converge to the process µt,
this equation turns into the limiting HJB equation

∂V

∂t
(t, x, µ) + inf

u

[
b(t, x, µ, u)

∂V

∂x
+ J(t, x, µ, u)

]
+

1

2
(σ2

ind + σ2
com)(x)

∂2V

∂x2

+ΛlimV (t, x, µ) +

∫
σcom(x)σcom(y)

∂2

∂x∂y

δV (t, x, µ)

δµ(y)
µ(dy) = 0, (12)

where the operator Λlim is calculated in (31) with ucom as the control.
If J is convex, the infimum here is achieved on the single point

ûind(t, x, µ) = argminu

[
b(t, x, µt, u)

∂V

∂x
+ J(t, x, µt, u)

]
= −

(
∂J

∂u

)−1(
b2(t, x, µt)

∂V

∂x

)
,

(13)
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where

(
∂J

∂u

)−1

is the inverse function to the function
∂J

∂u
.

Now the difference with the usual MFG is fully seen. Instead of a pair of coupled
forward-backward equations we have now one single infinite-dimensional equation (12).
Namely, for any curve ucom(t, x, µ) (defining Λlim in (31) and thus in (12)), we should
solve equation (12) with a given terminal condition leading to the optimal control (13).
The key MFG consistency requirement is now given by the equation

ûind(t, x, µ) = ucom(t, x, µ). (14)

This can be interpreted as having a limiting game of two players, a tagged player and
a measure-valued player, for which we are looking for a symmetric Nash equilbrium.

Equivalently, the MFG consistency (14) can be encoded into a single quasi-linear
deterministic infinite-dimensional partial differential second order backward equation on
the function V (t, x, µ), which we present now in full substituting Λlim from (31) and (14)
in (12):

∂V

∂t
(t, x, µ) +

[
b(t, x, µ, u)

∂V

∂x
+ J(t, x, µ, u)

]∣∣∣∣
u(t,x,µ)=−(∂J/∂u)−1(b2(t,x,µ) ∂V

∂x
)

+
1

2
(σ2

ind + σ2
com)(x)

∂2V

∂x2
+

1

2

∫
R2

σcom(y)σcom(z)
∂2

∂y∂z

δ2V (t, x, µ)

δµ(y)δµ(z)
µ(dy)µ(dz)

+

∫ ([
b(t, x, µ, u(t, x, µ))|u(t,x,µ)=−( ∂J

∂u
)−1(b2(t,x,µ) ∂V

∂z
)∇+

1

2
(σ2

ind + σ2
com)(x)∇2

]
·δV (t, x, µ)

δµ(.)

)
(y)µ(dy) +

∫
σcom(x)σcom(y)

∂2

∂x∂y

δV (t, x, µ)

δµ(y)
µ(dy) = 0, (15)

with a given terminal condition

V (t, x, µ)|t=T = VT (x, µ), µt|t=0 = µ0. (16)

If

J(t, x, µ, u) =
1

2
u2, b2(t, x, µ) = 1,

then (15) simplifies to

∂V

∂t
(t, x, µ) +

[
b

(
t, x, µ,−∂V

∂x

)
∂V

∂x
+

1

2

(
∂V

∂x

)2
]

+
1

2
(σ2

ind + σ2
com)(x)

∂2V

∂x2
+

1

2

∫
R2

σcom(y)σcom(z)
∂2

∂y∂z

δ2V (t, x, µ)

δµ(y)δµ(z)
µ(dy)µ(dz)

+

∫ ([
b(t, x, µ,−∇V (t, x, µ))∇+

1

2
(σ2

ind + σ2
com)(x)∇2

]
δV (t, x, µ)

δµ(.)

)
(y)µ(dy)

+

∫
σcom(x)σcom(y)

∂2

∂x∂y

δV (t, x, µ)

δµ(y)
µ(dy) = 0. (17)

The MFG methodology suggests that for large N the optimal behavior of players
arises from the control û given by (13) with V solving (15), or equivalently, satisfying the
consistency condition (14) (see MFG3) below).
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To justify this claim one is confronted essentially with the 3 problems:
MFG1): Prove well-posedness of (or at least the existence of the solution to) the

problem (15) or (14);
MFG2): Analyze the Nash equilibria of the N -player game given by (1), (2) and prove

that these equilibria (or at least their subsequence) converge, as N →∞, to a solution of
the problem (15) or (14); assess the convergence rates;

This is a very difficult problem and only partial results subject to strong hypotheses
have so far been obtained (see e.g. [5–7]).

MFG3): Show that a solution to the problem (15) or (14) provides a profile of sym-
metric strategies ût(x), which is an ε-Nash equilibrium of the N -player game given by
(1), (2) and the initial distribution of players µ0, with ε(N)→ 0 as N →∞; estimate the
error-term ε(N).

Questions MFG2), MFG3) are of course two facets of the same problem on how well
the solutions to the limiting problem ((5),(12),(13),(16)) approximate a finite player game,
but the methods of dealing with these problems can be rather different.

To link with the usual MFG, let us notice that for the case without common noise
given by (1) with σcom = 0, equation (17), say, turns to

∂V

∂t
(t, x, µ) +

[
b

(
t, x, µ,−∂V

∂x

)
∂V

∂x
+

1

2

(
∂V

∂x

)2
]

+
1

2
σ2
ind(x)

∂2V

∂x2

+

∫ ([
b(t, x, µ,−∇V (t, x, µ))∇+

1

2
σ2
ind(.)∇2

]
δV (t, x, µ)

δµ(.)

)
(y)µ(dy) = 0, (18)

giving a single-equation approach to usual MFG. In fact, solving this equation for a
function V (t, x, µ) is equivalent to solving first the deterministic (forward) equation (9)
with σcom = 0 and then the backward equation

∂V

∂t
(t, x, µt) +

[
b

(
t, x, µt,−

∂V

∂x

)
∂V

∂x
+

1

2

(
∂V

∂x

)2
]

+
1

2
σ2
ind(x)

∂2V

∂x2
= 0

for a function V (t, x).
In a more abstract form the link between the forward-backward formulation and the

single backward formulation is as follows. If (xt, µt) is a controlled Markov process (not
necessarily measure-valued), optimal payoff is defined via the corresponding HJB on a
function V (t, x, µ) of three arguments (corresponds to our general common noise case).
If the evolution of the coordinate µt is deterministic and does not depend on x and its
control, one can (alternatively and equivalently) first solve this deterministic equation
on µ (usual forward part of the basic MFG) and then substitute it in the basic HJB
to get the equation on V (t, x), the function of two arguments only, with µt included in
the time dependence (usual backward part of the basic MFG). Thus obtained forward-
backward system is then usually solved by the fixed point argument, see e.g. [8, 9]. This
decomposition into forward-backward system is not available in general.

In this paper we are going to concentrate exclusively on question MFG3), aiming
at proving the error-estimate of order ε(N) ∼ 1/N . Our approach will be based on
interpreting (by means of Ito’s formula) the common noise as a kind of binary interaction
of agents (in addition to the usual mean-field interaction of the standard situation without
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common noise) and then reducing the problem to the sensitivity analysis for McKean-
Vlasov SPDE.

The question MFG1) can be approached via the methods of papers [10,11], which will
be addressed in another publication. Some existence can be also derived from [12], which
has however a slightly different formulation than the present one.

Our paper is organized as follows. Next section provides a short literature review.
Section 3 provides our main results and their proofs. Sections 4-6 are devoted to the
regularity and sensitivity analysis of the solutions to the McKean-Vlasov SPDEs and the
related properties of the corresponding measure-valued Markov processes.

2 Brief literature review

Mean-field games present a quickly developing area of the game theory. It was initiated
by Lasry-Lions [13] and Huang-Malhame-Caines [8,14,15], see [16–21] for recent surveys,
as well as [22–24] and references therein.

New trends concern the theory of mean-field games with a major player, see [9], the
numeric analysis, see [25, 26], and the games with a discrete state space, see [27] and
references therein.

Even more recent development deals with mean-field games with common noise, which
are only starting to be analyzed. Of course, common noise can be considered as a kind of
neutral major player, but the usual setting for the latter [9] introduces the corresponding
noise into the coefficients of the SDEs of the minor players, rather than adding additional
common stochastic differential. One of the ideas (and results) of our contribution is to
use the method of stochastic characteristics to link these two models.

Some simple concrete models of mean-field game types with common noise applied
to modeling inter bank loans are analyzed in detail in [28]. A model of common noise
with constant coefficients is discussed in [29]. Seemingly first serious contributions to
the general theory of mean-field games with common noise and related theory of Master
Equation (ME) are the papers [12] and [30], which includes well-posedness for the mean-
field limiting evolution under certain assumptions (see e.g. [5–7, 31]). However, [12] and
[30] work mostly with controlled SDEs, and our approach is rather different, being based
on McKean-Vlasov SPDEs. The references on the literature on McKean-Vlasov equation
are given in the Sections devoted to this equations.

3 Our strategy and results

Let us introduce the following conditions:
(C1) Functions σind(x), σcom(x) ∈ C3(R) for all x ∈ R are positive and never ap-

proaching zero;
(C2) Function b(t, x, µ, u(t, x, µ)) is continuous and bounded on [0, T ]×R×Msign

1 (R)×
U , b(t, ., µ, u(t, ., µ)) ∈ C2(R), and

∂b

∂x
(t, x, ., u(t, x, .)) ∈ C1(Msign

1 (R))

with bounds uniform with respect to all variables;
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(C3) The first and second order variational derivatives of b(t, x, µ, u) with respect to
µ are well defined, bounded and

b(t, x, ., u(t, x, .)) ∈ (C2,1×1 ∩ C1,2)(Msign
1 (R)).

Our main result is the following.

Theorem 3.1. Let the functions b, σcom, σind satisfy Conditions (C1)–(C3), and let func-
tion V (t, x, µ) be a solution to problem (15),(16). Assume J(t, x, µ, u(t, x, µ)) and V (t, x, µ)
belong to the space (C2,1×1 ∩ C1,2)(Msign

1 (R)) as functions of µ, and belong to the space
C2(R) as functions of x and their derivatives with respect to x belong to the space
C1,1(Msign

1 (R)). Then the profile of symmetric strategies ût(x, µ) given by (13) is an
ε-Nash equilibrium of the N-player game given by (1), (2), with ε(N) ∼ 1/N as N →∞.

The proof of Theorem 3.1 will be given at the end of this Section. It is based on the
results on the McKean-Vlasov (SPDEs) equation developed in the Sections 4-6.

Remark 2. The assumptions can be weaken in many ways, but some regularity of the
control synthesis u (like being Lipschitz in x, µ) is definitely needed for the rather subtle
estimate 1/N .

Additionally, in preparation to this result, we obtain two other results of independent
interest, not linked with any optimization problem, namely the regularity and sensitiv-
ity for McKean-Vlasov SPDE, Theorems 4.2 and 5.1, and the 1/N -rates of convergence
for interacting diffusions to the limiting measure-valued diffusion, Theorem 3.2 (often in-
terpreted as the ’propagation of chaos’ property). Notice that the convergence itself is
a known result (see e.g. [32] or [4]). The well-posedness of the McKean-Vlasov SPDE
was shown in [4] in the class of L2-functions, and for measures in [32], though under an
additional monotonicity assumption.

Let us fix some basic notations for the function spaces. For a topological space X,
C(X) denotes the Banach space of continuous functions equipped with the sup-norm
‖.‖. The topology on measures will be always the weak one. If X = Rd, then Ck(X)
denotes the Banach space of functions with all derivatives up to order k belonging to
C(X), L1(X) denotes the space of integrable functions, L∞(X) the space of bounded
measurable functions with the essential supremum as a norm, H1

1 (X) the Sobolev space
of integrable functions such that its generalized derivative is also integrable. If X is not
indicated explicitly in this notations we mean X = R.

Let Ck×k(R2d) denote the space of functions f on R2d such that the partial derivatives

∂α+βf

∂xα∂yβ
with multi-index α, β such that |α| ≤ k, |β| ≤ k,

belong to C(R2d).

Remark 3. The space Ck×k(R2d) looks a bit exotic. However, it is very natural for the
study of the second order derivatives of nonlinear measure-valued flows. The spaces of this
kind also play an important role in the analysis of stochastic flows in H. Kunita [3], though
Kunita’s spaces are slightly more general as they allow for a linear growth of functions.
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Recall that for a functional F (µ) on Msign(Rd), the variational derivative is defined
as

δF

δµ(x)
[µ] =

d

dh
|h=0F (µ+ hδx).

Derivatives of higher order are defined accordingly. For instance, if F = Fj is given by
(3), then

δF

δµ(x)
= k

∫
F̃j(x, x2, · · · , xk)µ(dx2) · · ·µ(dxk),

δ2F

δµ(x)δµ(y)
= k(k − 1)

∫
F̃j(x, y, x3, · · · , xk)µ(dx3) · · ·µ(dxk).

Let Ck(Msign
λ (Rd)) denote the space of functionals such that the kth order variational

derivatives are well defined and represent continuous functions. It is a Banach space with
the norm

‖F‖Ck(Msign
λ (Rd)) =

k∑
j=0

sup
x1,··· ,xj ,µ∈Msign

λ (Rd)

∣∣∣∣ δjF

δµ(x1) · · · δµ(xj)

∣∣∣∣ .
Let Ck,l(Msign

λ (Rd)) denote the subspace of Ck(Msign
λ (Rd)) such that all derivatives up

to order k have continuous bounded derivatives up to order l as functions of their spatial
variables. It is a Banach space with the norm

‖F‖Ck,l(Msign
λ (Rd)) =

k∑
j=0

sup
µ∈Msign

λ (Rd)

∥∥∥∥ δjF

δµ(.) · · · δµ(.)
[µ]

∥∥∥∥
Cl(Rdj)

.

Finally, let C2,k×k(Msign
λ (Rd)) be the space of functionals with the norm

‖F‖C2,k×k(Msign
λ (Rd)) = sup

µ∈Msign
λ (Rd)

∥∥∥∥ δ2F

δµ(.)δµ(.)

∥∥∥∥
Ck×k(R2d)

.

These Banach spaces are natural objects for studying sensitivity for nonlinear measure-
valued evolutions. As we are interested mostly in probability measures, we shall usually
tacitly assume λ = 1 for these spaces.

As the derivatives of measures are not always measures (say, the derivative of δx is
δ′x), to study the derivatives of the nonlinear evolutions one needs the spaces dual to the
spaces of smooth functions. Namely, for a generalized function (distribution) ξ on Rd we
say that it belongs to the space [Ck(Rd)]′ if the norm

‖ξ‖[Ck(Rd)]′ = sup
φ:‖φ‖

Ck(Rd)
≤1

|(ξ, φ)|

is finite. For instance,
‖δ(k)

x ‖[Ck(Rd)]′ = 1.

We shall use these norms mostly for generalized functions that are given by locally inte-
grable functions. In this case the [C(Rd)]′-norm coincides with the L1 norm. To see why
these spaces are handy, let us observe that if we take a spatial derivative of a heat kernel,
then its L1-norm is of order t−1/2 for small t, but its [C ′(Rd)]′-norm is uniformly bounded.

Let us explain our strategy for proving Theorem 3.1.
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For any N and a fixed common strategy ut(x, µ), solutions to the system of SDEs (1)
on t ∈ [0, T ] define a backward propagator (also referred in the literature as a flow or as a
two-parameter semigroup) U s,t

N = U s,t
N [u(.)], 0 ≤ s ≤ t ≤ T , of linear contractions on the

space Csym(RN) of symmetric functions via the formula

(U s,t
N f)(x1, · · · , xN) = Ef(X1, · · · , XN)s,t(x1, · · · , xN), (19)

where (X1, · · · , XN)s,t(x1, · · · , xN) is the solution to (1) at time t with the initial condition

(X1, · · · , XN)s,s(x1, · · · , xN) = (x1, · · · , xN)

at time s. The corresponding dual forward propagator V t,s
N = (U s,t

N )′ is defined by the
equation

(f, V t,s
N µ) = (U s,t

N f, µ). (20)

It acts on the probability measures on RN , so that if µ is the initial distribution of
(X1, · · · , XN) at time s, then V t,s

N µ is the distribution of (X1, · · · , XN) at time t.
By the standard inclusion

(x1, · · · , xN)→ 1

N
(δx1 + · · ·+ δXN ) (21)

the set RN is mapped to the set PN(R) of normalized sums of N Dirac’s measures, so
that U s,t

N , V t,s
N can be considered as propagators in C(PN(R)) and P(PN(R)) respectively.

On the other hand, for a fixed function ut(x, µ), the solution of SPDE (5) specifies
a stochastic process, a diffusion, on the space of probability measures P(R) defining the
backward propagator U s,t = U s,t[u(.)] on C(P(R)):

(U s,tf)(µ) = Ef(µs,t(µ)), (22)

where µs,t(µ) is the solution to (5) at time t with a given initial condition µ at time s ≤ t.
From the convergence of the empirical measures µNt , mentioned above, it follows that

U s,t
N tend U s,t, as N → ∞. The following result provides the rates for the weak conver-

gence.

Theorem 3.2. Let the functions b, σcom, σind satisfy Conditions (C1)–(C3). Then, for
any µ ∈ PN(R) and F ∈ (C2,1×1 ∩ C1,2)(Msign

1 (R))

‖(U s,t − U s,t
N )F (µ)‖C(Msign

1 (R)) ≤
C(T )

N

(
‖F‖C2,1×1(Msign

1 (R)) + ‖F‖C1,2(Msign
1 (R))

)
(23)

for 0 ≤ s ≤ t ≤ T .

Proof. Let us return to our initial equation (1). By the standard assumption of the
Lipschitz continuity of all coefficients, equation (1) is well-posed in RN and specifies a
Feller diffusion and the corresponding backward and forward propagators UN , VN given
by (19), (20). We are interested in the limit of this diffusion as N →∞.

Applying Ito’s formula we obtain the generator of the diffusion specified by (1):

ANf(x1, · · · , xN) =
N∑
j=1

Bi
µf +

∑
i<j

σcom(xi)σcom(xj)
∂2f

∂xi∂xj
, (24)
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where µ = (δx1 + · · ·+ δxN )/N and

Bµg(x) = b(t, x, µ, u(t, x, µ))
∂g

∂x
+

1

2
(σ2

com(x) + σ2
ind(x))

∂2g

∂x2
, (25)

with Bi
µ denoting the action of Bµ on the ith coordinate of f .

Here and everywhere by a time-dependent generator, say AN above, of a non-homo-
geneous Markov process we mean a time-dependent family of operators such that for f
from some invariant dense subspace of bounded continuous functions the equation

d

ds
U s,t
N f = −ANU s,t

N f

holds for s ≤ t. In the case of the N -particle diffusion, the invariant subspace can be
usually taken to be the space of twice differentiable functions (which are invariant if σ and
b are twice and once differentiable respectively). In the case of the limiting measure-valued
process the invariant domains will be given by the subspaces C2,k×k(Msign).

The first term in (24) can be considered as describing a diffusion arising from the sys-
tem of particles with a mean-field interaction and the second term as giving an additional
binary interaction (though not of a standard potential type that can be easily included
in the mean-field interaction).

By the standard inclusion (21), the process specified by (24) can be equivalently con-
sidered as a measure-valued process defined on the set of linear combinations PN(R) of
the Dirac atomic measures. On the level of propagators this correspondence arises from
the identification of symmetric functions f on XN with the functionals F = Ff on PN(R)
via the equation

f(x1, · · · , xN) = Ff [(δx1 + · · ·+ δxN )/N ].

To recalculate the generator (24) in terms of functionals F on measures we use the fol-
lowing simple formulas for differentiation of functionals on measures (proofs can be found
e.g. in [33]): for µ = h(δx1 + · · ·+ δxN ) with h = 1/N

∂

∂xj
F (µ) = h

∂

∂xj

δF (µ)

δµ(xj)
, (26)

∂2

∂x2
j

F (µ) = h
∂2

∂x2
j

δF (µ)

δµ(xj)
+ h2 ∂2

∂y∂z

δ2F (µ)

δµ(y)δµ(z)

∣∣∣∣
y=z=xj

, (27)

∂2

∂xi∂xj
F (µ) = h2 ∂2

∂xi∂xj

δ2F (µ)

δµ(xi)δµ(xj)
, i 6= j. (28)

Applying these formulas in conjunction with the obvious identity

h2
∑

i<j:i,j∈{1,...,N}

φ(xi, xj) =
1

2

∫ ∫
φ(z1, z2)µ(dz1)µ(dz2)− h

2

∫
φ(z, z)µ(dz), (29)

leads to the following expression of AN in terms of F (µ) (for details and more general
calculations see [33]):

ANF (µ) = ΛlimF (µ) +
1

N
ΛcorrF (µ), (30)
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with

ΛlimF (µ) =

∫
R

(
Bµ

δF

δµ(.)

)
(y)µ(dy)

+
1

2

∫
R2

σcom(y)σcom(z)
∂2

∂y∂z

δ2F

δµ(y)δµ(z)
µ(dy)µ(dz),

(31)

ΛcorrF (µ) =
1

2

∫
R

σ2
ind(x)

∂2

∂y∂z

δ2F (µ)

δµ(y)δµ(z)

∣∣∣∣
y=z=x

µ(dx). (32)

Thus we have an explicit expression for the limit of AN as N → ∞ and for the
correction term, which are well defined for functional F from the spaces C1,2(Msign) ∩
C2,1×1(Msign).

It is straightforward to check by Ito’s formula that the operator Λlim generates the
measure-valued process defined by the solution of equation (1). Hence we have the conver-
gence of the generators of N -particle approximations to the generator of the process given
by (1) on the space C1,2(Msign) ∩C2,1×1(Msign) with the uniform rate of convergence of
order 1/N .

But according to Theorem 6.1 (see below), the propagator of the process generated
by (1) acts by bounded operators on this subspace. Hence Theorem 3.2 follows from the
standard representation of the difference of two propagators in terms of the difference of
their generators:

U t,r
N − U

t,r =

∫ r

t

U t,s
N (AN − Λlim)sU

s,rds. (33)

This result belongs to the statistical mechanics of interacting diffusions (see a detail
discussion and bibliography in [33]), so that its significance goes beyond any links with
games or control theory.

This result is not sufficient for us, as we have to allow one of the agent to be-
have differently from the others. To tackle this case we shall considered the corre-
sponding problem with a tagged agent. Namely, consider the Markov process on pairs
(X1,N

t , µNt )[uind(.), ucom(.)], where uind and ucom are some U -valued functions uindt (x, µ),
ucomt (x, µ), (X1,N

t , · · · , XN,N
t ) solves (1) under the assumptions that the first agent uses

the control uindt (X1,N
t , µNt ) and all other agents i 6= 1 use the control ucomt (X i,N

t , µNt ), and
µNt = 1

N

∑N
i=1 δXi,N

t
.

Remark 4. The coordinates (X1,N
t , µNt ) of our pair process are not independent. Quite

opposite, X1,N
t is the position of the first δ-function in µNt . However, we are aiming at the

limit N →∞ where the influence of X1,N
t on µNt becomes negligible, and we do not want

it to be lost at the limit. Alternatively, to avoid this dependence, one can consider (as
some authors do), instead of our µNt , the measures that do not take X1,N

t into account,
that is µ̃Nt = 1

N

∑N
i=2 δXi,N

t
, but this would neither change the results, nor simplifies the

notations.

Let us now define the corresponding tagged propagators U s,t
N,tag = U s,t

N,tag[u
ind(.), ucom(.)]

and U s,t
tag = U s,t

tag[u
ind(.), ucom(.)]:

(U s,t
N,tagF )(x, µ) = EF (X1,N

t , µNt )[uind(.), ucom(.)](x, µ), (34)

11



where µ = 1
N

∑N
j=1 δxj is the position of the process at time s and where x = x1;

(U s,t
tagF )(x, µ) = EF (X1

t , µt)[u
ind(.), ucom(.)](x, µ), (35)

where the process (X1
t , µt)[u

ind(.), ucom(.)](x, µ) with the initial data x, µ at time s is the
solution to the system of stochastic equations

dX1
t = b(t,X1

t , µt, u
ind
t (X1

t , µt)) + σind(X
1
t )dB1

t + σcom(X1
t )dWt, (36)

d(φ, µt) = (L[t, µt, u
com
t (., µt)]φ, µt) dt+ (σcom(.)∇φ, µt) dWt (37)

(the second equation is actually independent of the first one).
The following is the basic convergence result for the tagged processes.

Theorem 3.3. Under the assumptions of Theorem 3.2 (with both ucomt , uindt satisfying
these assumptions), let F (x, µ), x ∈ R, belongs to the space (C2,1×1 ∩C1,2)(Msign

1 (R)) as
a function of µ, F ∈ C2(R) as a function of x and ∂F

∂x
(x, .) ∈ C1,1(Msign

1 (R)). Then, for
any µ ∈ PN(R)

‖(U s,t
tag − U

s,t
N,tag)F‖C(R×Msign

1 (R))

≤ C(T )

N

(
sup
x
‖F (x, .)‖C2,1×1(Msign

1 (R)) + sup
x
‖F (x, .)‖C1,2(Msign

1 (R))

+ sup
µ
‖F (., µ)‖C2(R) + sup

x
‖∂F
∂x

(x, .)‖C1,1(Msign
1 (R))

)
. (38)

Proof. The well-posedness of the process on pairs (x, µ) solving equations (36) and (37)
is straightforward once the well-poesdness of the process solving (37) is proved, because
equation (37) does not depend on x, and once it is solved, equation (36) is just a usual
Ito’s equation. Straightforward extension of the above calculations for the generator of
the process solving (37) show that the process solving (36) - (37) is generated by the
operator

ΛlimF (x, µ) + Λ̃LimF (x, µ),

where Λlim is given by (31) and acts on the variable µ,

Λ̃limF (x, µ) = b(t, x, µ, uindt (x, µ))
∂F

∂x
+

1

2
(σ2

ind + σ2
com)(x)

∂2F

∂x2

+

∫
σcom(x)σcom(y)

∂2

∂x∂y

δF

δµ(y)
µ(dy), (39)

and with the same correction term (32). Thus the proof of Theorem 3.3 is the same as
for Theorem 3.2.

Proof of Theorem 3.1. Let u1 be any adaptive control of the first player and V1

the corresponding payoff in the game of N players, where all other players are using
ucom(t, x, µ) arising from a solution to (15),(16). Then V1 ≥ V2, where V2 is obtained by
playing optimally, that is using control u2 arising from the solution to (11). By Theorem
3.3,

|V2 − V2,lim| ≤ C/N,
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where V2,lim is obtained by playing u2 in the limiting game specified by equations (36),
(37). But V2,lim ≥ V , where V is the optimal payoff for the first player in the limiting
game of two players, where the second, measure-valued, player uses ucom. Consequently,

V1 ≥ V2 ≥ V2,lim −
C

N
≥ V − C

N
,

completing the proof. �

4 On the regularity of McKean-Vlasov SPDEs

In this and the next sections we develop the sensitivity analysis for McKean-Vlasov
SPDEs, which, on the one hand side, represent an important ingredient in the proof
of our main result on mean-field games, but on the other hand, has an independent sig-
nificance for the theory of SPDEs. Notice that there is quite an extensive literature on
the properties of equation (40) with A = 0 (see e.g. [34], [35] and references therein), but
for A 6= 0 much less is known, so that even the regularity results from Theorem 4.2 below
seem to be new.

For a function v(t, x), t ≥ 0, x ∈ R, let us consider the stochastic equation

dv = Lt(v) dt+ Ωv ◦ dWt, (40)

where Wt is a one-dimensional Brownian motion,

Ωv(x) = A(x)
∂v

∂x
+B(x)v(x), (41)

Lt(v) =
1

2
σ2(x)

∂2v

∂x2
+ b(t, x, [v])

∂v

∂x
+ c(t, x, [v])v, (42)

with some functions A(x), B(x), σ(x) and the functions b, c depending in a smooth way
on the function (or a measure) v. To visualize this dependence, one can think of b, c
depending on v via a finite set of moments of type

Fj[v] =

∫
F̃j(x1, · · · , xk)v(x1) · · · v(xk) dx1 · · · dxk, (43)

with some bounded symmetric measurable functions F̃j.
In (40), ◦ denotes the Stratonovich differential. From the usual rule Y ◦dX = Y dX+

1
2
dY dX, one can rewrite (40) as an equation with Ito’s differential of the similar kind:

dv = Lt(v) dt+ Ωv dWt +
1

2
Ω2v dt, (44)

or explicitly

dv = Lt(v) dt+ Ωv dWt +
1

2

[
A2 ∂

2v

∂x2
+ A(2B + A′)

∂v

∂x
+ (AB′ +B2)v

]
dt. (45)

Our objective is to study the well-posedness of equation (40) and more importantly
its sensitivity with respect to initial conditions.
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Our main assumptions will be that

0 < σ1 ≤ σ(x) ≤ σ2, 0 < A1 ≤ A(x) ≤ A2, (46)

that σ ∈ C2(R), B ∈ C2(R), A ∈ C3(R) so that

sup
x

max(|σ′(x)|, |σ′′(x)|, |B(x)|, |B′(x)|, |B′′(x)|, |A′(x)|, |A′′(x)|, |A′′′(x)|) ≤ B1, (47)

and
max

(
‖b(t, ., [v])‖C1(R), ‖c(t, ., [v])‖C(R)

)
≤ b1, (48)

sup
t,y

sup
‖v‖M(R)≤λ

max

(∥∥∥∥δb(t, y, [v])

δv(.)

∥∥∥∥
C1(R)

,

∥∥∥∥δc(t, y, [v])

δv(.)

∥∥∥∥
C(R)

,

∥∥∥∥ δ

δv(.)

∂b(t, y, [v])

∂y

∥∥∥∥
C(R)

)
≤ C(λ),

(49)
with some constants σ1, σ2, A1, A2, B1, b1 and a function C(λ).

As above, we shall often omit the arguments of various functions. Moreover sometimes,
we shall write v(t, x) as vt(x) when stressing that certain operator acts on v as a function
of x for a given t.

Our basic approach will be the method of stochastic characteristics, see [3], [36], though
in its simplest form, available for one-dimensional noise. This method allows one to
turn equation (40) into a non-stochastic equation of the second order, but with random
coefficients. Namely, for A(x), B(x) ∈ C1(R), operator (41) generates a contraction group
etΩ in C(R), so that etΩv0(x) is the unique solution to the equation

∂v

∂t
= Ωv

with the initial condition v(0, x) = v0(x). Explicitly,

etΩv0(x) = v0(Y (t, x))G(t, x), t ∈ R, (50)

where Y (t, x) is the unique solution to the ODE Ẏ = −A(Y ) with the initial condition
Y (0, x) = x and

G(t, x) = exp{
∫ t

0

B(Y (s, x)) ds}.

In particular, G has the properties:

G(−t, x) = G−1(t, Y (−t, x)) = exp{
∫ −t

0

B(Y (s, x)) ds} = exp{−
∫ 0

−t
B(Y (s, x)) ds},

1

G

∂G

∂x
(t, x) =

∂ lnG

∂x
(t, x) =

∫ t

0

B′(Y (s, x))
∂Y

∂x
(s, x) ds.

Since the product-rule of calculus is valid for the Stratonovich differentials, making
the change of unknown function v to g = exp{−ΩWt}v rewrites (40) in terms of g as

ġt = L̃t[W ](gt) = exp{−ΩWt}Lt(exp{ΩWt}gt), (51)

with v̇ denoting the usual derivative of a function v in time t. Of course one can obtain
the same result using usual Ito’s formula and equation (44). Since the operators etΩ form

14



a bounded semigroup in L1(R), as well as in Ck(R) and Ck
∞(R) whenever A,B ∈ Ck(R),

equations (51) and (40) are equivalent in the strongest possible sense.
To have a more concrete version of (51) we calculate

∂

∂x
(exp{ΩWt}gt)(x) =

∂G

∂x
(Wt, x)gt(Y (Wt, x)) +G(Wt, x)

∂gt
∂Y

(Y (Wt, x))
∂Y

∂x
(Wt, x),

∂2

∂x2
(exp{ΩWt}gt)(x) =

∂2G

∂x2
(Wt, x)gt(Y (Wt, x)) + 2

∂G

∂x
(Wt, x)

∂gt
∂Y

(Y (Wt, x))
∂Y

∂x
(Wt, x)

+G(Wt, x)
∂gt
∂Y

(Y (Wt, x))
∂2Y

∂x2
(Wt, x) +G(Wt, x)

∂2gt
∂Y 2

(Y (Wt, x))

(
∂Y

∂x
(Wt, x)

)2

.

Hence,

L̃t[W ](gt)(x) =
1

2
σ̃2(x)

∂2gt
∂x2

+ b̃(t, x, [gt])
∂gt
∂x

+ c̃(t, x, [gt])gt, (52)

with

σ̃2(x) = σ2(Y (−Wt, x))

(
∂Y

∂z
(Wt, z)|z=Y (−Wt,x)

)2

, (53)

b̃(t, x, [g]) =

(
b(t, z, [exp{ΩWt}g])

∂Y

∂z
(Wt, z)

)
|z=Y (−Wt,x)

+

[
1

2
σ2(z)

(
∂2Y

∂z2
(Wt, z) + 2

∂ lnG

∂z
(Wt, z)

∂Y

∂z
(Wt, z)

)]
|z=Y (−Wt,x), (54)

c̃(t, x, [g]) =

(
c(t, z, [exp{ΩWt}g]) + b(t, z, [exp{ΩWt}g])

∂ lnG

∂z
(Wt, z)

)∣∣∣∣
z=Y (−Wt,x)

+

[
1

2
σ2(z)

(
1

G

∂2G

∂z2

)
(Wt, z)

]∣∣∣∣
z=Y (−Wt,x)

. (55)

The formulas above have straightforward extension to x from arbitrary dimension.
The simplification arising from working in one-dimension is as follows:

Y (t, x) = Φ−1(t+ Φ(x)),

where

Φ(y) =

∫ y

0

dz

A(z)
.

Hence, under (46), (47) it follows that

A1

A2

≤ ∂Y

∂x
(t, x) ≤ A2

A1

,

∣∣∣∣∂2Y

∂x2
(t, x)

∣∣∣∣ ≤ B1A2

A2
1

(
1 +

A2
2

A2
1

)
and ∣∣∣∣∂ lnG

∂x
(t, x)

∣∣∣∣ ≤ |t|B1
A2

A1

for all t, x and hence

σ1
A1

A2

≤ σ̃(x) ≤ σ2
A2

A1

, (56)

b̃(t, x, [g]) ≤ C(T )(1 + W̄T ), c̃(t, x, [g]) ≤ C(T )(1 + W̄t), (57)
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with some constants C(T ) and W̄T = maxt∈[0,T ] |Wt|.
Thus on any finite interval of time [0, T ] equation

ġt = L̃t[W ]gt (58)

is the usual nonlinear McKean-Vlasov diffusion equation with uniformly elliptic second
order part and bounded coefficients. For this equation both well-posedness and smooth
dependence on initial condition is known, see e.g. [33] and [37]. A new point for us is the
necessity to have bounds for the expectations of the various relevant objects. So we shall
briefly recall the argument used for the analysis of the sensitivity of equation (58) paying
attention to the latter issue.

Let us first make a precise statement about equation (58) independently on its link
with our initial SPDE. We shall need the following assumptions:

σ̃1 ≤ σ̃ ≤ σ̃2, σ̃′ ≤ σ̃2, (59)

max
(
‖b̃(t, ., [v])‖C1(R), ‖c̃(t, ., [v])‖C(R)

)
≤ b̃(1 + W̄T ) (60)

and either

sup
‖v‖L1

≤λ
max

∥∥∥∥∥δb̃(t, y, [v])

δv(.)

∥∥∥∥∥
C(R)

,

∥∥∥∥δc̃(t, y, [v])

δv(.)

∥∥∥∥
C(R)

,

∥∥∥∥∥ δ

δv(.)

∂b̃(t, y, [v])

∂y

∥∥∥∥∥
C(R)

≤ C̃(W̄T , λ)

(61)
or

sup
‖v‖C(R)≤λ

max

∥∥∥∥∥δb̃(t, y, [v])

δv(.)

∥∥∥∥∥
L1(R)

,

∥∥∥∥δc̃(t, y, [v])

δv(.)

∥∥∥∥
L1(R)

,

∥∥∥∥∥ δ

δv(.)

∂b̃(t, y, [v])

∂y

∥∥∥∥∥
L1(R)

≤ C̃(W̄T , λ)

(62)
for some constants σ̃1,2, b̃ and a function C̃ depending on W̄T = supt∈[0,T ] |Wt| and λ.

The idea is to rewrite the Cauchy problem for (58) with the initial condition g0 in the
mild form, that is as a fixed point equation

Φ[g] = g (63)

for the mapping

Φg 7→ Φt[g](x) =

∫
G(t, x, y)g0(y)dy

+

∫ t

0

∫
G(t− s, x, y)

[
b̃(s, y, [gs])

∂gs
∂y

(y) + c̃(s, y, [gs])gs(y)

]
dy ds, (64)

where G(t, x, y) is the Green function for the Cauchy problem of the equation

ġ =
1

2
σ̃2(x)

∂2g

∂x2
.

Using integration by parts Φ rewrites equivalently as

Φt[g](x) =

∫
G(t, x, y)g0(y)dy
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+

∫ t

0

ds

∫ [
G(t− s, x, y)c̃(s, y, [gs])−

∂

∂y
(G(t− s, x, y)b̃(s, y, [gs]))

]
gs(y) dy, (65)

from which it is seen that Φ maps bounded families of functions gt, t ∈ [0, T ], with a given
g0, to itself, where ’bounded’ can be understood either in sup-norm or in L1-norm.

The Green function G is random, i.e. it depends on W . However, by the standard
theory of the second order equations (see [38] and [39]), assuming (59), the function G
has the two-sided Gaussian bounds

C1√
2πt

exp{−(x− y)2

2tC3

} ≤ G(t, x, y) ≤ C2√
2πt

exp{−(x− y)2

2tC4

},

and the bound for the derivatives

max

(∣∣∣∣∂G(t, x, y)

∂x

∣∣∣∣ , ∣∣∣∣∂G(t, x, y)

∂y

∣∣∣∣)
≤ C5

∣∣∣∣ ∂∂x C2√
2πt

exp{−(x− y)2

2tC4

}
∣∣∣∣ ≤ C5C2

C4

√
t

|x− y|√
t
√

2πt
exp{−(x− y)2

2tC4

},

with constants C1 − C5 independent of the noise.
This allows one to infer the estimates

‖Φt[g
1]− Φt[g

2]‖L1 ≤
∫ t

0

ds
1√
t− s

‖g1
s − g2

s ]‖L1C̃(W̄T , sup
s∈[0,T ]

max(‖g1
s‖L1 , ‖g2

s‖L1)) (66)

in case of conditions (59), (60), (61) or

‖Φt[g
1]− Φt[g

2]‖C(R)

≤
∫ t

0

ds
1√
t− s

‖g1
s − g2

s ]‖C(R)C̃(W̄T , sup
s∈[0,T ]

max(‖g1
s‖C(R), ‖g2

s‖C(R)))
(67)

in case of conditions (59), (60), (62).
From these estimates one can infer the convergence of the iterates Φn(g0) in either sup-

norm or L1-norm and hence the existence of the unique solution gt ∈ L1 for any initial
g0 ∈ L1 (and even for any initial finite measure g0) or of the unique solution gt ∈ C(R)
for any initial g0 ∈ C(R) (and even for any initial bounded measurable g0), whenever one
can prove the uniform boundedness of the norms of all iterations.

Let us see how one can get an estimate for the norm of the iterations. From the
definition of Φ and the estimates of the Green function G we get

‖Φn
t ‖ ≤ C‖g0‖+ C

∫ t

0

(t− s)−1/2‖Φn−1
s ‖ds,

where C = C(T )(1+W̄T ) with C(T ) a non-random constant, and where ‖Φn
t ‖ is the norm

of the nth iteration of Φ applied initially on g0, and the norm is either in C(R) or in L1.
From this we deduce, by a straightforward induction, that

‖Φn
t ‖ ≤ C‖g0‖(1 +C

√
πI1/21(t) + · · ·+ (C

√
π)n−1I(n−1)/21(t) +Cn−1πn/2In/21(t)), (68)

were In/21(t) is the application of the fractional integral of order n/2 to the constant
function 1 (that equals one). And consequently we get for the limiting norm of the fixed
point the bound in terms of a Mittag-Leffler function and hence eventually in terms of
an exponent of Ct. Hence, since the expectation of exp{W̄T} is finite, we can deduce the
bound for the expectation of the fixed point yielding the following result.
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Theorem 4.1. (i) Under assumptions (59), (60), (61) any T > 0 for any g0 ∈ M(R)
there exists a unique solution gt of equation (40) on [0, T ] such that gt ∈ L1(R) for all
t > 0, positive whenever g0 is positive, and

‖gt‖L1 ≤ C1(T ) exp{C1(T )W̄T}‖g0‖M(R), E‖gt‖L1 ≤ C2(T )‖g0‖M(R) (69)

with constants C1,2(T ).
Moreover, if u0 ∈ H1

1 , then

‖gt‖H1
1
≤ C1(T ) exp{C1(T )W̄T}‖g0‖H1

1
, E‖gt‖H1

1
≤ C2(T )‖g0‖H1

1
. (70)

Finally, for any g0 ∈M(R), gt ∈ H1
1 a.s. for all t > 0 and, if the bounds on the r.h.s.

of (61) do not depend on W̄T , one has the estimate (uniform with respect to the noise)

‖gt‖H1
1
≤ C3(T )

1√
t
‖g0‖M(R). (71)

(ii) Under assumptions (59), (60), (62), for any g0 ∈ L∞(R) there exists a unique
solution gt of equation (40) on [0, T ] such that gt ∈ C(R) for all t > 0, and

‖gt‖C(R) ≤ C1(T ) exp{C1(T )W̄T}‖g0‖L∞ , E‖gt‖C(R) ≤ C2(T )‖g0‖L∞ (72)

with constants C1,2(T ).
Moreover, if g0 ∈ C1(R), then

‖gt‖C1(R) ≤ C1(T ) exp{C1(T )W̄T}‖g0‖C1(R), E‖gt‖C1(R) ≤ C2(T )‖g0‖C1(R). (73)

Finally, for any g0 ∈ L∞(R), gt ∈ C1(R) a.s. for all t > 0 and, if the bounds on the
r.h.s. of (62) do not depend on W̄T , one has the estimate

‖gt‖C1(R) ≤ C3(T )
1√
t
‖g0‖C(R). (74)

Proof. Let us talk about (i) only, as (ii) is fully analogous. The proof of the first statement
was already sketched above. The estimates for the norm in H1

1 are obtained from the
iterations in a fully analogous way leading to (70). Finally, we get from (63) the estimate

‖gt‖H1
1
≤ 1√

t
‖g0‖L1 +

∫ t

0

C(W̄T )
1√
t− s

‖gs‖H1
1
ds,

so that

sup
s∈(0,t]

(
√
s‖gs‖H1

1
) ≤ ‖g0‖L1 +

√
tC(W̄T )

∫ t

0

1√
t− s

√
s

sup
s∈(0,t]

(
√
s‖gs‖H1

1
) ds,

and thus

sup
s∈(0,t]

(
√
s‖gs‖H1

1
) ≤ ‖g0‖L1 +

√
tC(W̄T )

∫ 1

0

du√
1− u

√
u

sup
s∈(0,t]

(
√
s‖gs‖H1

1
).

If C(W̄T ) = C(T ) actually does not depend on W̄T we get for small enough t that

sup
s∈(0,t]

(
√
s‖gs‖H1

1
) ≤ ‖g0‖L1

1−
√
tC(T )

with a constant C implying (71). And in general we get a similar estimate a.s.
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Our basic objective is to study the sensitivity of the solution gt with respect to initial
data, that is

ξt(.;x)[g0] =
δgt

δg0(x)
=

d

dh
|h=0gt[g0 + hδx]. (75)

This can be done in general by analyzing the convergence of the successive approximations
to the solutions

ξnt (z;x)[g0] =
δΦn

t [g0](z)

δg0(x)
,

which satisfies the recursion

ξnt (z;x) = G(t, z, x) +

∫ t

0

ds

∫ [
G(t− s, z, y)c̃(s, y, [gs])

− ∂

∂y
(G(t− s, z, y)b̃(s, y, [gs]))

]∣∣∣∣
gs=Φn−1

s [g0]

ξn−1
s (y;x) dy

+

∫ t

0

ds

∫∫
δ

δgs(w)

[
G(t− s, z, y)c̃(s, y, [gs])

− ∂

∂y
(G(t−s, z, y)b̃(s, y, [gs]))

]∣∣∣∣
gs=Φn−1

s [g0]

ξn−1
s (w;x)gs(y) dy dw. (76)

Under the assumptions of Theorem 4.1, say (i), we get the recursive estimates for ξn in
the form

‖ξnt (.;x)‖Msign(R) ≤ C + C(T, W̄t, sup
t∈[0,T ]

‖gt‖L1)

∫ t

0

(t− s)−1/2‖ξn−1
s ‖Msign(R)ds,

and by linearity the same estimates for the increments ξn+1
t (.;x) − ξn−1

t (.;x) in terms of
the increments ξnt (.;x)− ξn−1

t (.;x) implying the convergence of the sequence ξn and hence
the existence of the derivative (75) almost surely.

To apply Theorem 4.1 to equation (40), we have to calculate the variational derivatives
of the type δF (exp{ΩWt}g)/δg in terms of the derivatives of F . To this end, let us first
find out, how the transformation etΩ acts on measures (rather than functions). For any
functions v ∈ L1, φ ∈ C(R) we have

(φ, v) =

∫
φ(x)eΩtv(x) dx =

∫
G(t, x)φ(x)v(Y (t, x))dx

=

∫
G(t, Y (−t, z))φ(Y (−t, z))v(z)

∂Y (−t, z)
∂z

dz,

from which the extension to measures v is directly seen. Thus, for any measure g, we get

(φ,
δ

δg(x)
etΩg) = (φ, etΩδx) = G(t, Y (−t, x))φ(Y (−t, x))

∂Y (−t, x)

∂x
,

so that
δ

δg(x)
etΩg = G(t, Y (−t, x))

∂Y (−t, x)

∂x
δY (−t,x).
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Consequently,

δ

δg(x)
F (exp{ΩWt}g) =

∫
δF (µ)

δµ(z)

∣∣∣∣
µ=exp{ΩWt}g

(eΩWtδx)(z) dz

=
δF (µ)

δµ(z)

∣∣∣∣z=Y (−Wt,x)

µ=exp{ΩWt}g
G(Wt, Y (−Wt, x))

∂Y (−Wt, x)

∂x
. (77)

Using this formula, equation (53) - (55), and the convergence of sequence (76), we
obtain the following result as a consequence of Theorem 4.1.

Theorem 4.2. Assume (46) – (49) hold and a T > 0 given. Then
(i) For any v0 ∈Msign(R) there exists a unique solution vt of equation (40) on [0, T ]

such that vt ∈ L1(R) for all t > 0, positive whenever v0 is positive, and

‖vt‖L1 ≤ C1(T ) exp{C1(T )W̄T}‖v0‖M(R), E‖vt‖L1 ≤ C2(T )‖v0‖M(R) (78)

with constants C1,2(T ).
(ii) If v0 ∈ H1

1 , then

‖vt‖H1
1
≤ C1(T ) exp{C1(T )W̄T}‖v0‖H1

1
, E‖gt‖H1

1
≤ C2(T )‖g0‖H1

1
. (79)

(iii) For any v0 ∈ M(R), vt ∈ H1
1 a.s. for all t > 0 and, if the bounds on the r.h.s.

of (61) do not depend on W̄T , one has the estimate

‖vt‖H1
1
≤ C3(T )

1√
t
‖v0‖M(R). (80)

(iv) The variational derivative ξt(.;x)[v0] = δvt
δv0(x)

of the solution vt with respect to
initial data exists a.s. as a measure of finite total variation.

5 Sensitivity for McKean-Vlasov SPDEs

We shall discuss in more detail the sensitivity of McKean-Vlasov SPDE (40) reducing our
attention to a more specific case of L having the form of a dual second order operator,
namely to the equation

dv = L′t,vv dt−∇(A(x)v) ◦ dWt, (81)

where

Lt,vφ =
1

2
σ2(x)

∂2φ

∂x2
+ b(t, x, [v])

∂φ

∂x
, (82)

and L′t,v, its dual, defined as

L′t,vu =
1

2

∂2

∂x2
(σ2(x)u(x))− ∂

∂x
(b(t, x, [v])u(x)). (83)

Equation (81) is a particular case of (40), so that the theory of the previous section
applies. Moreover, this equation naturally rewrites in the weak form as

d(φ, v) = (Lt,vφ, v) dt+ (Ωφ, v) ◦ dWt, (84)
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with Ωφ = A(x)∇φ.
Making in (81) the change of function to g = exp{−Ω′Wt}v, where Ω′ = −∇◦A(x) is

the dual to Ω, leads to the equation

ġ = exp{−Ω′Wt}L′t,exp{Ω′Wt}g exp{Ω′Wt}g dt, (85)

or in the weak form

d

dt
(φ, g) = (L̃t,exp{Ω′Wt}gφ, g) = (exp{ΩWt}Lt,exp{Ω′Wt}g exp{−ΩWt}φ, g). (86)

Notice now that the operator Ω = A(x)∇ coincides with (41) with vanishing B, and
hence the corresponding transformation etΩ given by (50) has G = 1 and hence the
estimates (57) does not contain W̄T . Moreover,

etΩ
′
v(z) = v(Y (−t, z))∂Y (−t, z)

∂z
, (87)

so that the estimate (57) for the operator Ω′ also does not contain W̄T . Consequently
Theorem 4.2 for equation (81) holds in its strongest form containing estimate (80). More-
over, general formulas (52)-(55) simplify essentially for B = 0, c = 0 allowing us to rewrite
L̃ from (86) as

L̃t,exp{Ω′Wt}gφ =
1

2
σ2(Y (Wt, x))

∂2φ

∂x2
+ b̃(t, x, [g])

∂φ

∂x
, (88)

where Y (t, x) solves the ODE Ẏ = −A(Y ) with the initial condition Y (0, x) = x and

b̃(t, x, [g]) =

(
b(t, z, [exp{Ω′Wt}g])

∂Y

∂z
(−Wt, z) +

1

2
σ2(z)

∂2Y

∂z2
(−Wt, z)

)∣∣∣∣
z=Y (Wt,x)

. (89)

Furthermore, as operator (88) is the generator of a diffusion, its solution cannot in-
crease the sup-norm, and hence the solution to equation (81) does not increase the L1-
norm (or, equivalently, the M(R)-norm).

To study sensitivity of equation (81), we can now apply the results of [33] and [37] to
equation (86). However, these results yield the existence of the derivatives with respect
to initial data for almost all Wt, and we are interested here in the expectation of all
bounds. Therefore, we sketch briefly the approach of [37] to see how the estimates for the
expectation arise.

Let us differentiate (88) to get the equation for the derivatives

ξt(.;x)[g0] =
δgt

δg0(x)
=

d

dh
|h=0gt[g0 + hδx].

the existence of these derivatives is already proved in Theorem 4.2.
Using (77) we get

(φ, ξ̇t(.;x)[g0]) = (L̃t,exp{Ω′Wt}gφ, ξt(.;x)[g0])

+

∫∫ (
δb(t, z, [exp{Ω′Wt}g])

δg(r)

∂Y (−Wt, z)

∂z

)∣∣∣∣
z=Y (Wt,y)

ξt(r;x)[g0]
∂φ

∂y
gt(y)dydr. (90)
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Thus the evolution of ξt, considered as measures, is dual to the evolution on functions
defined in the inverse time via the equation

φ̇s = −L̃s,exp{Ω′Wt}gφs

−
∫ (

δb(t, z, [exp{Ω′Wt}g])

δg(.)

∂Y (−Wt, z)

∂z

)∣∣∣∣
z=Y (Wt,y)

∂φs
∂y

gs(y) dy. (91)

This equation defines the backward propagator U s,t, s ≤ t, on C1(R), such that U s,tφ is
the solution to equation (91) with the terminal condition φ at time t, and U s,t = (V t,s)′,
where V t,s is the forward propagator yielding the solution to equation (90). To see that
U s,t is well defined as claimed, let us write (91) more explicitly. Namely, as follows from
(87) and (77),

δ

δg(x)
F (exp{Ω′Wt}g) =

δF (µ)

δµ(z)

∣∣∣∣
µ=exp{Ω′Wt}g,z=Y (Wt,x)

. (92)

Consequently, (91) rewrites as

φ̇s(p) = −L̃s,exp{Ω′Wt}gφs(p)

−
∫

δb(t, z, µ)

δµ(r)

∣∣∣∣r=Y (Wt,p)

µ=exp{Ω′Wt}gs

∂Y (−Wt, z)

∂z

∣∣∣∣
z=Y (Wt,p)

∂φs
∂y

gs(y) dy. (93)

From the form of L̃ it is seen that it generates a Feller semigroup in C(R) with an
invariant domain C1(R), and the second term of (93) is a bounded operator in C1(R),
due to the assumption (49) on the norm of δb(t, y, [v])/δv(.) in C1(R). Thus one can solve
(93) by the standard perturbation theory showing that

‖Us,tφ‖C1(R) ≤ C(T )‖φ‖C1(R)

with C(T ) depending only on the ‖g0‖M(R) and not on the noise implying that

E‖Us,tφ‖C1(R) ≤ C(T )‖φ‖C1(R).

Consequently the dual propagator V t,s defining the solution to ξ in equation (90) is a
bounded propagator in the dual space (C1(R))′, both a.s. and on average. Similarly,
assuming additional smoothness of coefficients we can claim that U s,t acts in C2(R).
Finally, by moving the derivative of φ in the second term of (93) to g via the integration
by parts and using (80) allows one to show that U s,t acts as a bounded semigroup in
C(R). Therefore, the estimates

‖Us,tφ‖Ck(R) ≤ C(T )‖φ‖Ck(R), E‖Us,tφ‖Ck(R) ≤ C(T )‖φ‖Ck(R) (94)

hold for k = 0, 1, 2 with constants C(T ) depending only on the ‖v0‖M(R). This implies
that the dual propagator V t,s, solving equation (90), is a bounded propagator in the dual
spaces (C(R))′, (C1(R))′ and (C2(R))′ with bounds independent of the noise. Taking
finally into account that

ξ0(., x) = δx ∈M(R),
∂

∂x
ξ0(., x) = δ′x ∈ (C1(R))′,

∂2

∂x2
ξ0(., x) ∈ (C2(R))′,

leads us to the following result.
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Theorem 5.1. Let T > 0 and

0 < σ1 ≤ σ(x) ≤ σ2, 0 < A1 ≤ A(x) ≤ A2, (95)

that σ ∈ C2(R), A ∈ C3(R) so that

sup
x

max(|σ′(x)|, |σ′′(x)|, |A′(x)|, |A′′(x)|, |A′′′(x)|) ≤ B1. (96)

Let
‖b(t, ., [v])‖C2(R) ≤ b1, (97)

sup
t,y

sup
‖v‖M(R)≤λ

max

(∥∥∥∥δb(t, y, [v])

δv(.)

∥∥∥∥
C2(R)

,

∥∥∥∥ δ

δv(.)

∂b(t, y, [v])

∂y

∥∥∥∥
C(R)

)
≤ C(λ), (98)

with some constants σ1, σ2, A1, A2, B1, b1 and a function C(λ). Then the following holds:
(i) For any v0 ∈Msign(R) there exists a unique solution vt of equation (40) on [0, T ]

such that vt ∈ L1(R) for all t > 0, positive whenever v0 is positive, and with the norm
not exceeding ‖v0‖M(R) for all realization of the noise W . Moreover, vt ∈ H1

1 for all t > 0
and the following estimates hold

‖vt‖H1
1
≤ C(T )‖v0‖H1

1
, E‖vt‖H1

1
≤ C(T )‖v0‖H1

1
, (99)

‖vt‖H1
1
≤ C(T )

1√
t
‖v0‖M(R), E‖vt‖H1

1
≤ C(T )

1√
t
‖v0‖M(R). (100)

(ii) The variational derivatives ξt(.;x)[v0] = δvt
δv0(x)

of the solution vt with respect to

initial data are well defined as elements of L1(R) for any x and t > 0, and their first and
second derivatives with respect to x are bounded elements of the dual spaces (C1(R))′ and
(C2(R))′ respectively, so that

‖ξ0(., x)‖L1 ≤ C(T ), ‖ ∂
∂x
ξ0(., x)‖(C1(R))′ ≤ C(T ), ‖ ∂

2

∂x2
ξ0(., x)‖(C2(R))′ ≤ C(T )

(101)
with constants C(T ) depending only on the norm ‖v0‖M(R) and independent of the noise.

We are also interested in the second derivatives of the solutions vt with respect to
initial data:

ηt(.;x1, x2) =
d

dh
|h=0ξt(.;x1)[v0 + hδx] =

∂2

∂h1∂h2

|h1=h2=0µt[v0 + h1δx1 + h2δx2 ]. (102)

For this η we get the following equation differentiating (90) with respect g0;

(φ, η̇t(.;x1, x2)) = (L̃t,exp{Ω′Wt}gφ, ηt(.;x1, x2))

+

∫∫ (
δb(t, z, [exp{Ω′Wt}g])

δg(r)

∂Y (−Wt, z)

∂z

)∣∣∣∣
z=Y (Wt,x)

ηt(r;x1, x2)
∂φ

∂y
gt(y)dydr

+

∫∫ (
δb(t, z, [exp{Ω′Wt}g])

δg(r)

∂Y (−Wt, z)

∂z

)∣∣∣∣
z=Y (Wt,x)

∂φ

∂y
ξ̃t(r, y;x1, x2)dydr (103)
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+

∫∫ (
δ2b(t, z, [exp{Ω′Wt}g])

δg(r1)δg(r2)

∂Y (−Wt, z)

∂z

)∣∣∣∣
z=Y (Wt,x)

∂φ

∂y
ξt(r2;x2)ξt(r1;x1)gt(y) dydr1dr2,

where ξ̃t(r, y;x1, x2) = [ξt(r;x2)ξt(y;x1) + ξt(y;x2)ξt(r;x1)].
The well-posedness of this equations and then the existence of the derivative (102)

follows as above. However, we need also the existence and bounds for the derivatives of
η with respect to x1, x2.

Theorem 5.2. Under assumption of Theorem 5.1 let b ∈ C2,1×1(Msign
1 (R)) as a function

of v with all bounds uniform in other variables. Then for any v0 ∈M1(R) the derivative
(102) is well defined for all t > 0, x and the following bounds hold

‖ ∂
α

∂xα1

∂β

∂xβ2
ηt(.;x1, x2)‖[C2(R)]′ ≤ C(T ) (104)

with α, β ≤ 1 and with some (random) constants C depending on the time horizon T , but
not on the noise W .

Proof. In the light of the properties of ξ from Theorem 5.1 it is straightforward to see,
differentiating equation (103) with respect to x1 and x2 that the assumptions made on b
is precisely the one needed to make all terms not containing η uniformly bounded (due
to the product structure of ξ entering the equation for η), so that they can be written by
the usual perturbation arguments.

6 On the domain of the Markov semigroups gener-

ated by the McKean-Vlasov SPDEs

Since equation (81) its solutions defines a Markov process, in fact a measure-valued dif-
fusion, the corresponding Markov propagator being given on the continuous functionals
of measures in the usual way:

U s,tF (v) = EF (vt(v, [W ])), (105)

where vt is the solution to (81) for t > s with given v = vs at time s.
We use the same letter U that was used for the propagators discussed in the proof

if Theorem 5.1 which should not cause any confusion, as U is used in the sense of (105)
everywhere, except in the intermediate discussion leading to Theorem 5.1.

The main conclusion we need from the sensitivity analysis developed above is the
invariance of the set of smooth functionals under this propagator, that is the following
fact:

Theorem 6.1. Under assumption of Theorem 5.2 the spaces of functionals C1,2(Msign
λ (R))

and its intersection with C2,1×1(Msign
λ (R)) are invariant under the action of the operators

(105), so that
‖U s,tF‖C1,2(Msign

λ (R)) ≤ C(T )‖F‖C1,2(Msign
λ (R)), (106)

‖U s,tF‖C2,1×1(Msign
λ (R)) ≤ C(T )

(
‖F‖C2,1×1(Msign

λ (R)) + ‖F‖C1,2(Msign
λ (R))

)
(107)

with a constant C(T ).
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Proof. It follows from Theorem 5.1 and the formula

(δU s,t(F ))(v)

δv(x)
= E

δF (vt)

δv(x)
= E

∫
R

δF (vt)

δvt(z)
ξt(z;x)[v] dz,

that

‖U s,tF‖C1,2(Msign
λ (R)) ≤ E

∥∥∥∥∫
R

δF (vt)

δvt(z)
ξt(z; .)[v] dz

∥∥∥∥
C2(R)

≤ E

∥∥∥∥δF (vt)

δvt(.)

∥∥∥∥
C2(R)

∥∥∥∥ ∂2

∂x2
ξt(.;x)[v]

∥∥∥∥
(C2(R))′

≤ C(T ).

It follows from Theorem 5.2 and the formula

(δ2U s,t(F ))(v)

δv(x)δv(y)
= E

δ2F (vt)

δv(x)δv(y)

= E

∫
R

δF (vt)

δvt(z)
ηt(z;x, y)[v0]dz + E

∫
R2

δ2F (vt)

δvt(z)δvt(w)
ξt(z;x)[v0]ξt(w; y)[v0] dzdw,

that

‖U s,tF‖C2,1×1(Msign
λ (R)) ≤ E

∥∥∥∥ δ2F (vt)

δv(.)δv(.)

∥∥∥∥
C1×1(R2)

≤
∥∥∥∥ ∂α∂xα1 ∂β

∂xβ2
ηt(.;x1, x2)

∥∥∥∥
[C2(R)]′

‖F‖C1,2(Msign
λ (R))

+

∥∥∥∥ ∂α∂xα ξt(.;x)[v]

∥∥∥∥
(C1(R))′

∥∥∥∥ ∂β∂yβ ξt(.; y)[v]

∥∥∥∥
(C1(R))′

∥∥∥∥ δ2F (vt)

δvt(.)δvt(.)

∥∥∥∥
C2,1×1(Msign

λ (R))

,

leading to (107).
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[14] Huang, M., Caines, P., Malhamé, R. (2007). Large-Population Cost-Coupled LQG
Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized
ε-Nash Equilibria. IEEE Trans. Automat. Control. 52(9):1560–1571.

[15] Huang, M. (2010) Large-population LQG games involving a major player: the Nash
certainty equivalence principle. SIAM J. Control Optim. 48:3318–3353.

[16] Bardi, M., Caines, P., Capuzzo Dolcetta, I. (2013). Preface: DGAA special issue on
mean field games. Dyn. Games Appl. 3(4):443–445.

[17] Bensoussan, A., Frehse, J., Yam, Ph. (2013). Mean field games and mean field type
control theory. Springer Briefs in Mathematics. NY: Springer.

26
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