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Abstract 

We study the off equilibrium dynamics of a mean field disordered systems which can 
be interpreted both as a long range interaction spin glass and as a particle in a random 
potential. The statics of this problem is well known and exhibits a low temperature 
spin glass phase with continuous replica symmetry breaking. We study the equations 
of off equilibrium dynamics with analytical and numerical methods. In the spin glass 
phase, we find that the usual equilibrium dynamics (observed when the observation 
time is much smaller than the waiting time) coexists with an aging regime. In this 
aging regime, we propose a solution implying a hierarchy of crossovers between the 
observation time and the waiting time. 

1. Introduction 

A lot of efforts have been devoted in the last fifteen years to the study of 

equilibrium static and dynamic properties of spin glasses [ 1-3 ]. Comparatively, 

the off equilibrium dynamical effects have received less attention. The recent 

years have seen a renewal of interest for this OED. One reason is experimental. 

While it is clear that many experimental observations are inherently dynamical 

effects, the status of the off equilibrium dynamical effects have turned recently 

from that of an annoying perturbance to that of a very powerful probe. 

Some of the most interesting recent experimental findings in spin glasses, 

like the slow relaxation of the thermoremanent magnetization, aging, and 
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memory effects during temperature cycling experiments, are inherently out 

of  equilibrium phenomena [4-7]. Several phenomenological models of these 

effects have already been proposed, based on ideas of droplets [8,9] or phase 

space traps with a broad distribution of trapping times [ 10 ]. The second origin 

of this upsurge of interest comes from the theoretical side. Prompted by the 

experimental observations, it has been realized recently that some microscopic 

analytical approach to these problems is possible, and that the off equilibrium 

nature of the dynamics might even cure some old problems of the dynamical 

approach. The first works on spin glass dynamics, following the idea that 

the use of a dynamical generating functional could be an alternative to the 

introduction of replicas [11], focused on the ED [12,13]. Early attempts to 

model some aspects of  the OED along these same lines have concentrated on 

the mean field theory of spin glasses close to the critical temperature, taking 

into account explicitely the changes in external parameters like temperature 

or magnetic field [14,15]. More recently, it has been observed that these 

effects can be studied without any reference to time variation of the external 

parameters, but by keeping into account the existence of an initial time for 

the dynamics (corresponding to the quench into the spin glass phase in the 

experiments), and the existence of a finite waiting time [ 16-20]. 

In this paper we study the off equilibrium dynamics (OED) through a micro- 

scopic approach along the lines above. We consider the problem of an oriented 

D dimensional manifold embedded in a D + N  dimensional space, in presence 

of a random potential. This is a very interesting and general problem [21] 

which is connected to interface pinning by impurities , directed polymers in 

disordered media, vortex pinning in high temperature superconductors [22,23], 

and also, after various mappings, to growth phenomena [24] or turbulence 

[25]. We shall work in the limit of an infinite dimensional embedding space 

(N --, ~ ) .  This limit has two major advantages. It allows for the derivation of 

exact integrodifferential equations for the correlation and response functions. 

Also in this limit the static properties have been studied in details using the 

replica method, and it has been shown that a full hierarchical replica symmetry 

breaking (r.s.b.) is needed in order to describe the system [26]. 

Our work has two aspects. One is an analytic study of the OED equations 

at large times, which shows a possible family of solutions related to the static 

(r.s.b.) solution. The other one is the numerical solution of these equations. 

This numerical solution is in fact limited to the D -- 0 version of the general 

random manifold problem. This is nothing but the "toy model" of a single 

particle in N dimensions, submitted to a potential which is the sum of a 

quadratic well and a Brownian process [27-30,20]. In the large N limit, this 

model can be interpreted as a long range spin glass model, and we shall show 

that many interesting aspects of  the dynamics are kept by this toy model, as is 

true for the statics [26,29]. A brief account of our work has appeared recently 

[311. 
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The equilibrium Langevin dynamics (ED) of the manifolds in the large 

N limit has been worked out by Kinzelbach and Horner in two interesting 

recent papers [32,33], following the general strategy used by Sompolinsky and 

Zippelius [ 12,13 ] in spin glasses. We shall basically reconsider their approach, 

using the OED corresponding to a finite waiting time, in the spirit of the 

recent work by Cugliandolo and Kurchan on the spherical spin glass with p- 

spin interactions [17]. Technically the difference is that in the off-equilibrium 

dynamics the dynamical evolution starts at a time to = 0. Therefore the corre- 

lation function C(t ,  t') and the response function r(t, t') depend explicitely on 

both t and t'. In the equilibrium dynamics the time to is sent to - ~ ,  and the 

correlation and response become functions of the differences between t and t': 

C e q ( t  - t t )  and req ( t  - t ' ) .  

As we shall see there are many formal similarities between these two dynam- 

ics, together with formal similarities with the static r.s.b, solution. However 

one should keep in mind that the physical contents of these two approaches 

are actually quite different. In ED, Ceq and req satisfy coupled equations which 

depend explicitely on an anomaly of the response occuring on infinite time 

scales. One must assume the existence of a regularization of these diverging 

times by considering for instance a system with a finite number of degrees of 

freedom. The "dynamical" equations on diverging time scales turn out to be 

identical to the static (r.s.b.) equations of the replica method. It is important 

to notice that this "dynamics" on diverging time scales is not really a dynam- 

ical solution (for instance it is invariant under arbitrary reparametrizations of 

time). In our opinion this equilibrium "dynamics", considered on diverging 

time scales, rather gives an "intuitive" and appealing description of the strange 

algebra of the replica method [34]. 

In contrast, in OED, C(t ,  t') and r( t , t ' )  obey causal equations which have 

a unique solution (for instance, for t > t', OC( t , t ' ) /O t  depends only on C 

and r evaluated at times smaller than t.) [17]. One can work directly with 

an infinite system, and there is no need to introduce diverging time scales. 

An important point is that the introduction of  a finite waiting time provides 

a natural regularization: as we shall see, the roles of the diverging time scales 

are then played by some functions (e.g. powers) of the waiting time. 

It is not easy to get some analytical information on the correlation and 

response in OED. However, as they obey causal equations, one can solve them 

numerically in a rather straightforward way. Our work is based on a detailed 

numerical solution of  these OED equations of the toy model. We shall divide 

our results into two groups. One which refers to the asymptotic regime (t - t' 

finite), the other refers to the non-asymptotic regime. 

In the asymptotic regime, we shall present hereafter numerical evidence that: 

(1) There exists a limiting response function ras (z) = l imt~-~  r(tw + r, tw); 

(2) This function is the same as that derived in ED [32], with a certain 

condition of criticality of the anomalous response coming from diverging time 
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scales; (3) Similar results hold for the correlation. In particular, the values of  

Cas(0) and Cas(Z ~ oc) agree with the results for the statics from the full 

r.s.b, solution; (4) The energy E(z )  also converges to its static r.s.b, value at 

large z. 

These results on the asymptotic behaviour provide an independent confir- 

mation of both the static r.s.b, approach, as well as the usual equilibrium 

dynamics on finite time scales. In order to understand the origin of these 

results, and simultaneously to study the aging effects, one needs a careful study 

of  the correlation and response for finite waiting times. Here we shall point 

out a few effects: ( 1 ) The very fact that one recovers the static r.s.b, results in 

the spin glass phase implies that there must be aging effects (in the sense that, 

at an arbitrary large time t, some perturbation of  the system at times t' < t has 

a relevant effect, even when t - t' is very large). These aging effects are also 

seen in our numerical studies on the (short) time scales we can achieve. (2) 

It is possible to find a family of  approximate solutions of  dynamical equations 

at large times. These solutions are technically related to the solutions of  the 

dynamics on diverging time scales found in [3 3], but the role of  the "diverging 

time scales" is now played by some functions of the waiting times (like for 
u 

instance t w ). 

In the next section we introduce the model and write down the dynamical 

equations in the large N limit. In Section 3 we review the static results obtained 

with the replica method. Section 4 presents an analytic study of  the asymptotic 

regime, which is compared to the numerical integration of the equations 

in Section 5. Section 6 deals with the aging regime. Some perspectives are 

summarized in Section7. 

2. The model 

The manifold is decribed by a N component field ~b~(x), where a E 1 .... N. 

The energy is: 

/ ~ = 1 ~ = 1  

N ) 
+ 5 = ,  u + f a x  v(x,O(x)) , (1) 

where V is a gaussian random potential, the correlations of which are taken 

a s :  

V(x ,  qJ)V(x',q~') = - N O ( x - x ' ) f  ( ( q ~ q ~ ' ) 2 )  , (2) 

with: 

f (b) - (O + b) 1-y 
2(1 - y )  (3) 
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We assume a Langevin dynamics: 

aq~(x,t) OH 

at o (~ (x , t )  
+ q~(x,t),  (4) 

where q is a white noise with (q~(x,t)q,~,(x',t')) = 2 T f , ~ , 6 ( x - x ' ) 6 ( t -  

t'). This dynamics can be studied by usual field theoretical techniques [12] 

which are reviewed, in the present context, in [32]. We present an alternative 

derivation of the equations, based on the cavity method [1], in the appendix. 

For the OED, we find that, in the large N limit, the correlation: 

1 
C(x , t ; x ' , t ' )  = (-K ~-~ (9~(x , t )~(x ' , t ' ) )  

ot 

(5) 

and the response: 

1 O ~ ( x , t )  
r (x , t ;x ' , t ' )  = ( ~  y~  Orl~(x,,t,)) (6/ 

ot 

satisfy the following equations: For t > t': 

Or(x, t;x', t') 

Ot 
= (Ax - l t ) r (x , t ;x ' , t ' )  

t 

+ fds m(t , s ; x )  ( r (x , t ;x ' , t ' )  - r (x , s ;x ' , t ' ) )  

0 

(7) 

OC(x , t ;x ' , t ' )  

Ot 

t t 

= (Ax - ~ ) C ( x , t ; x ' , t ' )  + 2fds w(t,s;x) r(x , t ' ;x ' , s )  

0 

t 

+ fds m(t , s ; x )  (C(x , t ; x ' , t ' )  - C(x , s ;x ' , t ' ) )  , (8) 

0 

and: 

1 d C ( x ,  t; x' ,  t) 

2 dt 

t 

= ( A x - l t ) C ( x , t ; x ' , t )  + 2fds w ( t , s ; x )  r (x , t ' ;x ' , s )  

0 

t 

+ f ds m(t , s ; x )  ( C ( x , t ; x ' , t ) - C ( x , s ; x ' , t )  + T .  

0 

(9) 

In these equations, we have used the following notations: 
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w ( t , t ' ; x )  = f ' ( b ( t , t ' ; x ) ) ,  m ( t , t ' , x )  = 4 f " ( b ( t , t ' ; x ) ) r ( x , t ; x , t ' )  , 

b ( t , t ' ; x )  = C ( x , t ; x , t )  + C ( x , t ' ; x , t ' )  - 2 C ( x , t ; x , t ' )  . (10) 

This set of  equation is causal. The boundary conditions on r are r ( x ,  t, x ' ,  t -  ) = 

( x -  x' ). Given an initial condition C (x, 0, x', 0), it has a unique solution. 

In the following we shall concentrate on the toy model, D = 0, where 

the space dependence in these equations is dropped. We note that in this 

limit the model, described by the simple Hamiltonian H = ( 1 / 2 ) / ~  052 + 

V(05,,...,05N), admits another interesting interpretation as a spin-glass. The 

components 05a c a n  be thought as soft spins in a quadratic well, interacting via 

the random potential V. In particular, in its spherical version, i.e. taking the 

constraint ~z ~ q 52 = 1, it is possible to choose the values of 0 and y such as 

to obtain the spherical p-spin model considered in [35,1 7]. 

3. Static replica solution 

We briefly review here the results of the static r.s.b, approach for the toy- 

model (D -- 0), concentrating on quantities that we will study in dynamics. 

We keep to the case of "long range" disorder correlation y < 1 where the 

replica symmetry breaking is of  the full continuous kind. The equilibrium 

statistical mechanics of the model has been studied in [26,29] for the special 

case 0 = 0. In dynamics a non-zero 0 is needed to regularize the correlations 

of the potential at short distance. The results of [26,29] generalize as follows. 

At high temperature the system is ergodic and replica symmetric, and the 

equilibrium is characterized by the correlations 

1 T 1 2T 
- -  ( ~)Gibbs = q /2 - ~  ]l N 052 = - - +  (0 + - - ) %  

ot 

1 1 2 T .  r 
-~E(05a} iGibbs  = q = #" (0 + --7-)- , (11) 

c~ 

where by angular brackets we have denoted the thermal average and by an 

overline the disorder average. The energy is given by 

E = ~-q + [ f ( 0 ) - f ( 2 ( ~ -  q) ) ] .  (12) 

At a critical temperature To, 

/* - 0  + (13) Tc = -~ - ~  , 

there is a phase transition and replica symmetry is broken. The thermodynamics 

of the system is fully specified by ~ = -~ ~ (05a 2) and by a function q(u),  



54 S. Franz, M. Mdzard / Physica A 210 (1994) 48-72 

u E [0, 1 ]. Standard arguments from the mean field theory of spin glasses [ 1 ], 

imply breaking of ergodicity and the existence of many pure states, whose 

correlations are characterized by a non-trivial P(q) defined as the overlap 

distribution for two copies of the system with identical realization of the 

random potential V: 

1 N du(q)  
P(q) = (-~ y~ d(~ ,~  - q))Gibbs : dq 

o~=1 

(14) 

where u (q) is the inverse function of q (u). The order parameter function q (u) 

is: [qo, 
0 1 V / ~  2/(7-1) 

m -- - -  , b/0 ( b/ ( R1, 
q(u) q + 2  2 1 + 7  

ql ,  Ul < b/ < I ,  

(15) 

where 

q0---- ~ 1 ( f l ~ )  - 1 / ( i + y )  

u0 = T(1 + 7) (/z) (I-y)/CI+y) (27) -1/(l+~) 

ui = ~ 2 ~ ( 1  + y)(O + 2 ( q - q l ) )  (7-1)/2, 

4 1 + 7 - 0/2 
- -  27 \ ~ /  

(16) 

and ~ - qi is the solution of the equation 

T ) ( l+y)/2 
q - q l  - ( 0 + 2 ( q - q 1 )  • (17) 

From the knowledge of ~ and q (u) all the physical quantities at equilibrium 

can be calculated, for example the energy is: 

E = ~ q +  [ f ( O ) -  

1 

f du f(2(cl-q(u)))].  
0 

(18) 

The results presented here for the q(u) have also been obtained in [33] in the 

ED approach with Sompolinsky ansatz, which, as we have already remarked, 

reproduces the algebra of the r.s.b, approach. 
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4. Analytic study of the asymptotic regime 

55 

The scope of  this section is to study the behaviour of  the solution of  the 

dynamical Eqs. (7), (8), (9) in the "asymptotic" limit. This limit is defined 

as t = tw + z, t '  = tw, with tw ~ oc while z is kept fixed. For the sake of  

the simplicity of  the presentation, we shall present the whole analysis in the 

case D = 0. The generalization of  the analytic results to higher dimensional 

problems is straightforward. We rewrite here, just for graphical transparency, 

the dynamical equations (7), (8), (9) for D = 0, 

t 

Or( t , t ' )  - - I z r ( t , t ' )  + f ds m ( t , s ) ( r ( t , t ' ) - r ( s , t ' ) )  
Ot ' 

o 

t '  

OC(t,t')ot - - t l C ( t , t ' )  + 2 f ds wU, s) r ( t ' , s )  

o 

t 

+ fd s  mU, s) ( C ( t , t ' )  - C ( s , t ' ) )  , 

o 

t 

1 d C ( t , t )  _ I~C(t , t )  + 2fds  wU, s) r ( t , s )  
2 dt  

o 

t 

+ / d s  m ( t , s )  ( C ( t , t ) - C ( s , t ) )  + T ,  (19) 

0 

with 

w ( t , t ' )  = f ' ( b ( t , t ' ) ) ,  m ( t , t ' )  = 4 f " ( b ( t , t ' ) ) r ( t , t ' )  , 

b ( t , t ' )  = C ( t , t )  + C ( t ' , t ' )  - 2 C ( t , t ' )  . (20) 

For future reference we also give the formula for the energy: 

t 

E ( t )  = 2 C ( t , t )  - 2 f f ' ( b ( t , s ) ) r ( t , s ) .  (21) 

o 

Let us make the reasonable assumption, supported by the numerical inte- 

gration below, of  the existence of  an asymptotic regime for t, t' ~ cc keeping 

z = t -  t' finite. Namely we will suppose the existence of  the two limiting 

functions 

ras(Z) = lira r(t '  + z , t ' ) ,  (22) 
lt.--~OO 

Cas(Z) = lim C( t '  + z , t ' ) .  (23) 
t'---~oe 
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Taking the limit of  the dynamical Eqs. (19) in the asymptotic regime, we 

get the non-causal equations 

T 

dbas f dr = (-/z + Mas + -M)bas(r) - dr'  

0 

dras 

dz 

m a s ( r -  r ') bas(r') + 2T  

-- f dr' [mas (r + r') - mas(r') ] bas(r') 

0 

+ 4  [Was(r + r') -Was(r')]ras(r'), 

( - f l  + M a s  + - M ) r a s ( r )  f dr' ( r  r ' )  r a s ( r ' )  , = --  m a s  - 

0 

(J J )  1 T+l 
~ _  -~ ds mas(S) bas(S) + 2 ds Was(S) ras(S) 

0 0 

Cas(O) = - -  

(24) 

(26) 

The functions mas and Was are defined in a way similar to m and w in (20), 

but using the asymptotic correlation and response. 

The term M, which we will call "anomaly" in the following, is the term which 

couples the asymptotic time regime (r = t - t' finite) to the non-asymptotic 

ones. The Eqs. (25) are identical to those which appear in the ED studied by 

Kinzelbach and Homer  [33]. The only difference lies in the interpretation of 

the anomaly: In ED it is supposed to be due to the response of the system 

to some perturbations taking place on infinite time scales. This is not easy 

to define, since the regularization of these diverging time scales by using a 

finite volume system in principle invalidates the derivation of the dynamical 

Eqs. (25). The definition (26) of the anomaly in OED is very clear. 

Let us now briefly quote the following results from the study of ED in [33]: 

One may search a solution of the asymptotic Eqs. (25) which satisfies the 

fluctuation-dissipation-theorem (f.d.t.): 

O 1 0  
Tras(r) = -  Cas(r) = ~ -~bas ( r ) .  (27) 

t 

M = ds m ( t , s )  - Mas. 

0 

o o  

- fdr mas(r), (25) 
0 

where for convenience we have written the equation for the correlation in 

terms of bas (r) = 2 [ Cas (0) - Cas (r) ] instead of Cas (r) and we have denoted 
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Assuming the f.d.t., the asymptotic equations simplify to: 

dbasdz = 2 T  - bas(Z) (Iz - - M -  Mas) - f ds mas(Z - s )bas(S)  (28) 

0 

The condition for the existence of  a monotonous solution b (t) to this equation 

is that 

2T 
b a s ( ~ )  -- - -  < b m  , (29) 

I z -  M 

where bm is the point where the function of  b: T / b -  f ' ( b ) / T  is minimal. 

There are two regimes: at temperatures above the critical temperature Tc 

which equals the value (13) computed within the static approach, there exists 

a solution when the anomaly M is zero. This solution agrees with the static 

replica symmetric results ( 11 ): 

2T 
b a s ( ~ )  - - 2 ( ~ -  q)  , Cas(O) = q .  (30) 

At low temperatures, T < Tc, there is no solution satisfying the f.d.t, relation 

if M = 0. For such a solution to exist one needs a non zero anomaly: M < 

l ~ -  2 T / b m  < 0. The special choice (named "postulate of  marginal stability" in 

[33] ) of the anomaly: 

M = l z -  2 T / b m  (31) 

leads to an asymptotic correlation bas(OC) = bm, which is equal to the static 

result: 2 (q -q1)  computed within the static approach with r.s.b. (17). Similarly, 

one gets Cas ( O ) = q. 

We can summarize this discussion about the asymptotic dynamics in the 

low temperature phase as follows: In view of the static analysis, and its 

interpretation in terms of  ergodicity breaking, it is reasonable to assume the 

existence of an asymptotic regime, obeying the f.d.t., and such that the two 

following static correlations are recovered: Cas (0)  = ~, Cas ( oc ) = ql. However 

for such a regime to exist one needs a non-zero value of the anomaly. In the 

next section we present some numerical results which confirm the validity of  

these assumptions, in Section 6 we study the implications of the existence of 

an anomaly in terms of  aging. 

5. Numerical study of the asymptotic regime 

While the set of  assumptions which have been put forward at the end of  the 

previous section look very reasonable, they still deserve a confirmation. (In fact 

some models have been found, such as the spherical spin glass with p (_> 3) 
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spin interactions, where even the values of the critical temperatures found in 

the static and dynamic approaches are different [36,17,35]. It is believed that 

this effect is related to the fact that the replica symmetry breaking is first order 

in these models.) If these assumptions are correct, it means that the system 

of causal first order Eqs. (7, 8) contains the static solution with full replica 

symmetry breaking, which is in itself an interesting observation. 

In this section we present a numerical study of the dynamical Eqs. (19). 

Our aim is to study the low temperature phase of the model comparing the 

result of  the integration with the static solution and the asymptotics of  the 

previous section. The values of  the parameters appearing in the Hamiltonian 

have been chosen equal to y = 1/2, /2 = 1/8, 0 = 5. With this choice the 

critical temperature is Tc = 0.658, and for T <_ Tc the static correlations take 

the value ~ = 21.5. 

The discretization of (19) was chosen to be the simple one induced by the 

discretization of the Langevin equation (4) with the Ito convention. We have 

solved the discrete equations with time steps 4h, 2h, and h, and extrapolated 

the correlation and response to h = 0 by a second degree polynomial, h was 

chosen in such a way that this extrapolation does not differ too much from the 

linear extrapolation of  the data at 2h and h. In this way with h = 0.3 we where 

able to reach times of the order of 1000. We also performed the integration of 

the equation for longer times for some particular value of h, as we will specify 

in the following. In most of the simulation the initial condition C (0, 0) = 21.5 

was taken. We have checked that the dynamics in the asymptotic region does 

not depend on this choice. 

We have integrated the system (19) for T = 0.5 and T = 0.2. A run 

was also performed at T = 3 > T~. With this last run we checked that in 

the high temperature phase the OED simply corresponds to the relaxation 

into the unique equilibrium state described by the r.s. statics. Coherently we 

find that C(t,t)  tends exponentially to its r.s. value [lrs = 32.8, and the 

energy to Ers = 0.368. In the low temperature phase the situation changes. 

The asymptotic extrapolation for C(t,  t) and E (t) become incompatible with 

the r.s. values. As a first approximation, the behaviour of the equal time 

correlations C(t, t) is compatible with a power law approach to its asymptotic 

value (with an exponent, deduced from the behaviour of dC (t, t)/dt, equal to 

-0 .73 + 0.05) [31 ]. When one uses this power law fit in order to extrapolate 

C(t, t) to infinite t, it yields the result 21.4+0.1 which is in agreement with the 

r.s.b, prediction 21.5. For lower temperatures this procedure is less precise, and 

there are clearly corrections to the simple power law behaviour of dC (t, t)/dt. 
Better estimates for the asymptote are obtained fitting the time derivatives of 

C(t, t) and E(t) with functions depending on three parameters: 

a3 
f l ( t )  =alt-a2(1 + T ) ,  
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Fig. 1. (a) An estimate of the large time limit , C~, of the autocorrelation C(t,t), from the 
numerical solution of the dynamical equations with a grid size h = 1.2. The derivative dC (t, t)/dt 
has been fitted to a power law with logarithmic corrections (see text). For each time t, Coo is 
approximated by C (t, t) plus the integral of the fit of the derivative. The plot gives this estimation, 
versus the time t. The analytical result from r.s.b., Coo = 21.5, is compatible with the result, when 
one takes into account the effects due to the finite value of h (see (b)) and to the uncertainties 
of the fit. 
(b) The difference between C(t, t) computed with a grid size h = 1.2 and that computed with 
h = 0.8, plotted versus time in a Log-Log plot. This difference seems to extrapolate to zero at 
large times (with a power law behaviour). 

f 2 ( t )  = al t  -a2 ( log ( t ) )  a3 (1 -- a2 + ~ ) .  (32) 

In the t ime  window we reach, these two fits give comparab le  errors, but  

also comparab le  es t imates  for the a sympto te  (after  integrat ion o f  the fits). 

For  instance we show in Fig. l a an es t imate  o f  the large t ime l imit  , C a ,  

o f  the autocorre la t ion  C(t ,  t),  f rom the numerical  solution o f  the dynamica l  

equat ions  with a grid size h = 1.2. The  der ivat ive  d C ( t ,  t ) / d t  has been fitted 

to the funct ion j~. For  each t ime t, C ~  is app rox ima ted  by C(t ,  t) plus the 

integral o f  the fit o f  the derivat ive.  The  plot gives C(t ,  t) + ft ~ f2 (t ' )  dt '  versus 

the t ime  t. Fig. lb  shows that  the effect o f  the in terpolat ion at h = 0 become  

small at large t ime. Altogether  this p rocedure  gives Co~ -~ 21.49, with an error, 

due to the fit, the extrapolat ions,  which we es t imate  subjectively to 4-0.05. 

This  is quite compat ib le  with the analytical  result f rom r.s.b., C a  = ~ = 21.5. 

In Fig. 2 we give the analogous plots for the energy. The  correct ion due to the 

finite grid size do not vanish  at long t imes and  must  be incorporated.  We get 

as a final result: E ~  = - 1 . 3 6 6  + 0.02, in very good agreement  with the r.s.b. 

computa t ion :  E ~  = -1 .3660 .  Similar  results can be found at a t empera tu re  

T = 0.2. P robab ly  the best evidence for the convergence o f  C ( t , t )  to ~ is 

ob ta ined  considering the quant i ty  

A ( t )  = ~(1 - r ( t , O ) )  - C ( t , t )  (33) 

and  observing, that  r( t ,O) ,  the response at t ime t to a change in the field at 



60 S. Franz, M. M~zard / Physica A 210 (1994) 48-72 

-1.33115 . . . .  , . . . . . . . . . . . . . .  0 .015 

~1.3311 

0.01 

0.00 5 

' ' ' ' [ ' ' r r l , , , , i , , , r  

f l  

(~) (b} 
-1 .33105 , , ,  I . . . .  I . . . .  I . . . .  , , ,  I , , , ,  ; , , , ,  I , , , , 

0 1000 2 0 0 0  3 0 0 0  4.000 0 1000 2 0 0 0  3 0 0 0  4.000 

Fig. 2. (a) An estimate of the large time limit , E ~ ,  of the energy E( t ) ,  from the numerical 

solution of the dynamical equations with a grid size h = 1.2. The procedure is the same as that 

followed for the estimate of C ( t , t )  in Fig. 1. The analytic result from r.s.b., E ~  = -1.3660, is 

compatible with this data when one takes into account the effect of the extrapolation to h = 0 

(see (b), and the text). 

(b)The difference between E( t )  computed with a grid size h = 1.2 and that computed with 

h = 0.8, plotted versus time. This difference is well approximated by a power law fit with an 

asymptote equal to 0.0116. 

10 ̧  

A ( t ) ~  

B ( t )  . . . .  

i i i k i i i i L 

100 1000 

Fig. 3. The quantities A(t )  (continuous line) and B(t )  (dotted line) defined in the text in a 

Log-Log scale. A (t) is better approximated by a power law then B (t). A pure power law fit on 

the last 300 points over a total of 890 gives A(t)  = 0.04 + 14.8 t --57 with a relative error on the 

whole interval of the order AA/A ~ 10 -6 and B(t)  = 0.29 + 35.1 t -57 with A B / B  ~ 10 -5. 

t ime zero, should tend to zero at large time. So if  C(t ,  t) converges to ~, A ( t )  

must go to 0 at large times. In Fig. 3, A ( t ) ,  as well as B ( t )  = ~ - C ( t , t )  are 

plotted on a log-log scale for T = 0 . 2 .  A pure power law fit gives: 

A ( w )  = 0.04, B ( ~ )  = 0.3, (34) 

the quality of  this two parameter  fit on A is comparable  with the ones we had 

on C with logarithmic or power law corrections. 

Let us now turn to the study o f  the asymptot ic  functions bas and ras. In Fig. 
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Fig. 4. In (a), the response r(tw + z, tw) versus z. From top to bottom, tw = 432,504, 576,648. 

Also shown (bottom curve) is the power law extrapolation of these curves to tw ~ oo, together 

with the prediction for ras ( r )  from the asymptotic dynamics (these last two curves are nearly 

undistinguishable). 

In (b), similar curves for the corrrelation b (tw + r, tw). From top to bottom, tw = 432, 504, 576, 

648, the extrapolation and the expected result from the asymptotic dynamics. 

4a we plot for T -- 0.5 the response r (tw + z, tw) versus r for various values 

of the waiting time tw. We also give the result ras (r) of a 3 parameter power 

law extrapolation of these data at tw = oo. The same is done in Fig. 4b for the 

correlation b(tw + r, tw) = C(t~ + r,t~ + r) + C( t~ , t~)  - 2 C ( t w  + r, t w). 

According to the statics, the correlation should go to l im~oo bas(r) = 2 ( ~ -  

ql ) = 6.068. It is possible to see directly that the data is compatible with this 

asymptota, with a power law approach. However, in view of the relatively short 

times r accessible here (keeping r <<  t~), we prefer to use a different approach 

which is the comparison to an analytic study of the asymptotic equations. In 

Fig. 4 the limiting functions obtained from a power law interpolation are 

compared to those obtained from the numerical integration of the asymptotic 

Eqs. (25) with the anomaly set to its "marginal" value (31). The agreement 

is very good. This confirms that the asymptotic dynamics coincides with the 

ED on finite timescales, and agrees with the static r.s.b, results. 

6. The non-asymptotic regime: aging 

We now turn to the non-asymptotic times. From the previous sections we 

know that there exists a non-zero "anomaly". This means that the decay of 

the response r( t ,s)  at large t -  s is slow. More precisely, it implies that the 

integrated response at a large time t, f o r ( t , t -  r)dr,  receives some finite 

contributions from time differences r which diverge when t goes to infinity. 

We define such a situation as a situation of aging. This definition is compatible 

with the ones used so far. It basically means that even at large times the physics 

of the system depends on its previous history. Besides the usual asymptotic 

regime t --, oo, t' ~ ~ ,  t - t' finite, there exist other "crossover regimes", in 

which the limit t, t' ---, oo is taken in a different way. The asymptotic regime 
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cannot  be decoupled f rom these other  regimes. 

We now propose a solution o f  the dynamical  equations,  giving the correct  

result for the anomaly,  in the non-asymptot ic  regime. Basically we propose 

a reformulat ion of  the Sompolinsky Ansatz [13,33] in the context  of  OED. 

The main difference is that here we do not impose temporal  homogeini ty  in 

the equations ab initio. The diverging t ime scales of  Sompolinsky's  approach,  

needed for the system to cross the diverging barriers, are here substi tuted by 

some funct ion of  the waiting t ime tw, which provides a natural  cut-off  for the 

theory. A simple version of  this scenario, including one single crossover domain  

(corresponding to a single step of  r.s.b.), had been found by Cugliandolo and 

Kurchan  in the spherical p-spin model  [17]. Recently they have also proposed 

a similar scenario for  the OED of  the Sherrington Kirpatr ick model  close to 

its critical tempera ture  [37]. Let us perform the limit t, t' ~ co by dividing 

the octant  t' <_ t into non-overlapping crossover domains.  A crossover domain  

Du is defined, using an increasing funct ion hu(t),  as the set of  t imes t ,t '  

which are both  large, but  keeping the ratio hu (t ') /hu (t)  = exp ( -  z) fixed, with 

z C]0, co[. 2 Suppose that in the crossover domain  Du one has: 

b( t , t ' )  = bu(Z) r( t , t ' )  - d ln[hu(t ')  l ~u(r) (35) 
' d t '  " 

Then the contr ibut ion to the anomaly  f~ ds m (t, s) f rom all the times s such 

that s and t are in Du is finite and equal to 

f dz 4 f "  (bu (z)) iu (z) 

0 

(36) 

which is independent  on the funct ion hu. 

In a simple problem like for instance the high tempera ture  phase, there should 

exist a single crossover domain,  the asymptot ic  one defined by h (t) = e t. In 

a glass phase, we can have a relatively simple scenario in which there exists, 

beside the asymptot ic  domain,  another  one defined by some other  function 

h(t) .  Such a case (with h( t )  = t) has been found recently [17]. But one 

can also have some systems with many  crossover domains.  The condit ion we 

impose is that  they do not  overlap. We can index them by a parameter  u such 

that, i f  w < u < v and the points ( t , t ' )  belong to Du, then hv( t ' ) /hv ( t )  = 0 

and hw(t ' ) /hw (t) = 1. A possible choice leading to such a behaviour  would 

be for instance hu (t) = exp(tU). With this choice the points (t, t') belong to 

Du when t' = t - t(1-u)z/u. 

2 The index u of the domains should at first be taken as a discrete variable, in a procedure 
analogous to that of statics in which one considers first a finite number of r.s.b, and then passes to 
the continuum limit. This is familiar to the reader both from the static r.s.b, approach and from 
the ED, and it will be not repeted here. We just mention that u will turn out to be a continuous 
variable in the interval [0,1 ]. 
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The alert reader will have recognised in this scenario a hierarchical stucture 

which is reminiscent of  the ultrametricity assumption underlying both the 

statics and the equilibrium dynamics [38]. We have here a hierarchy of time 

crossovers. Considering three times t" < t' < t, one sees that, if (t, t ') belongs 

to the crossover domain Du and (t' ,t") belongs to 79v, then (t,t") belongs to 

~)inf(u,v) ,  which is an ultrametric inequality, and obviously implies ultrametric 

relations for the corresponding correlation functions. 

The dynamical equations can be solved within this scenario because one 

can forget the time derivatives in the dynamical equations. The existence of 

an asymptotic regime in which lim~--.oo OCas(Z)/Oz = 0, implies that in the 

crossover regimes OC(t, t ' ) /Ot '  ~ 0 while Or(t,t ')/Ot' tends to zero more 

rapidly then r(t, t'). The 1.h.s. of (19) can be neglected in this situation and 

the problem becomes invariant under the family of transformations 

C(t, t') ~ C(h (t), h (t') ) 

dh ( t' 
r(t , t ' )  - ----~)r(h(t) ,h(t ' )  ) (37) 

dr' 

for any monotonically increasing function of time h (t). Any non-trivial solution 

will break this invariance, consequently from a given solution we can generate 

a whole "orbit" of  equivalent ones just reparametrizing the time. As we have 

already remarked, the solution of (19) is unique at any finite times t, t'. 

The appearence of this invariance seems somewhat artificial; among all these 

possible solutions, only one can be the asymptote of the finite time dynamics. 

At this stage it is an open problem what is the choice which will be picked up 

by the dynamics. 

The ambiguity due to the time reparametrization invariance of the asymp- 

totic equations reflects in the fact that the equations for bu and ?u are indepen- 
dent of the choice of all the arbitrary functions hu (t). In fact these equations 

are identical to those derived in ED on diverging time scales; this set of  equa- 

tions has been shown [33] to possess solutions satisfying the "quasi f.d.t." 

relation: 

udbu 
= 2Tt:u (r).  (38) 

Denoting bu + = bu (0) and b u = bu (c~) one has for adjacent domains indexed 

by u < u', bu + = b~. Within the OED, we find that the dynamical correlations 

are related to the static order parameter function q(u) by the formula 

b u = 2 ( ~ -  q(u)) .  (39) 

With these ingredients we reproduce the algebra of the static replica solution, 

which gives the value (31 ) for the anomaly. In each domain, apart from the 

asymptotic one, the variation with r of  the functions bu (z) is infinitesimal, 

and q (u) becomes the continuous function given by (15 ). 
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As we stressed before, this solution can be understood as a reinterpretation 

of the ED solution, and of the static r.s.b, solution. With respect to the ED so- 

lution, the main advantage is that the diverging time scales have been replaced 

basically by some powers of the waiting time. Unfortunately it does not solve 

the second problem of ED, namely the invariance through reparametrizations 

of time which implies that one looses all the physical (crossover) time scales. 

We stress that this is only a problem of the family of solutions that we have 

introduced. This problem is not intrinsic to the OED itself. On the contrary, in 

the real OED problem there is a unique solution to the dynamical equations. 

This solution might go asymptotically to one of the solutions we have pre- 

sented here (choosing dynamically a set of functions hu(t)), or it might even 

converge to some other asymptote. So far we have not been able to answer this 

problem analytically. So we shall now propose some numerical checks which 

proceed through the numerical solution of the dynamical equations. 

The numerical test of this family of solutions might seem hopeless insofar 

as they depend on an arbitrary set of functions hu(t) which allow for a 

reparametrization of time. We shall call such a set a choice of gauge. In order 

to decide whether the asymptotic solution belongs to our family, we propose 

to use criteria which are gauge independent. One possibility is to use some 

integrated quantities like the "dynamical moments" introduced in [17]: 

t 

Ck(t) -- k f ds Tr( t , s )C( t , s )  k-l, (40) 
, I  

0 

Within our scenario of hierarchical crossover domains, these moments should 

have a large time limit given by: 

lim Ck(t) = ~k _ f dqp(q)qk. (41) 
J 

Another possibility consists in the introduction of the function: 

U(t,t ')  = Tr(t , t ' )  (42) 
OC(t, t ' ) /Ot" 

In the crossover regime, where the f.d.t, relation holds, U takes the value 

U(t,t ')  - 1 at large times, while, in the crossover domain it gives us a 

measure of the violation of f.d.t.. We shall call this function the fluctuation 

dissipation (f.d.) ratio. The gauge invariant prediction of the hierarchical 

crossover domains scenario is that, if one plots the f.d. ratio U as a function 

of the time t along the lines of fixed correlation C, its value at large times is 

equal to u(q), the inverse of the order parameter function. Let us make this 

statement more precise: we first observe that for fixed (and large enough) t, 

C(t, t') is a monotonously increasing function of t'. This allows to define the 

function t' (q, t) as the time t' such that C (t, t') = q. The prediction is that: 
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q 

Ud(q) -- lim U( t , t ' ( q , t )  ) = u(q) = / d q '  P(q ' )  , (43) 
t--+ OG J 

0 

which is the inverse of  the order parameter function defined in (15). We 

have been able to obtain the following general results on the f.d ratio. It is 

easy to show that C(t,O) = r(t, 0)C(0 ,  0). Under the reasonable assumption 

limt__.~r(t,O) = 0, one gets that limt__,~ C(t,O) = 0, and it is easy to deduce 

that l i m t ~  U(t , t '  = 0) = 0. We have seen numerically, but we have not 

been able to prove, that for large enough t, U (t, t') is an increasing function of  

t'. Together with the f.d.t, result in the asymptotic regime limt~o~ U(t, t) = 1, 

this shows that U tends to a probability at large times. 

We have tried to use the simple dicretization algorithm described in the 

previous section to study these aging effects (with the same values of  h). 

Although we shall see that the times we have reached do not allow to draw 

definitive conclusion on the crossover regimes, we think it is worth to present 

some of the data, in order to see what happens on relatively short times, 

and to give an idea of the type of  computing effort which will be needed in 

order to solve this problem. The values of  the parameters are 7 = 0.5, 0 = 

5.,p = 0.125, T = 0.5, C(0 ,0 )  = 0. We have checked that the errors due to 

the discretisation and interpolation procedures are negligible on the scales of  

the figures. 

We first present some confirmation of  the existence of  the aging effect. In 

Fig. 5 we plot the "thermoremanent magnetization" which we define as: 

tw 

A4(~,tw) = / ds r(tw + ~,s). (44) 
,I 

0 

The plot shows A4(~,tw) versus ~ for fixed values of  the waiting time tw, 

on logarithmic scales. On these time scales, one clearly sees an aging effect 

which is qualitatively similar to the one observed in experiments [4-7] and 

numerical simulations [39,18,19] in spin glasses. The effect is confirmed in 

Fig. 6 which plots the normalised correlation C(tw + 3, tw) /C(tw,  tw) versus 

z, at fixed tw. We have observed that the curves do not scale very well as 

functions of  Z/tw. 

We have tried to test the hierarchical solution by some studies of  gauge 

invariant quantities. We first study the dynamical moments (40). The first 

moment Ca satisfies a kind of  Ward identity (related to the translational 

invariance of  the distribution of  the random potential): 

r(t, 0) = 1 - -~C[ (t) (45) 

(a simple proof consists in showing that the two sides of  this equality satisfy the 

same first order differential equation in time, with the same initial condition). 
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Fig. 5. T h e  t h e r m o r e m a n e n t  m a g n e t i z a t i o n  A4 (z, tw) d e f i n e d  in  ( 4 4 )  v e r s u s  r for  f i x e d  v a l u e s  

o f  the  w a i t i n g  t i m e  tw, on  l o g a r i t h m i c  scales .  F r o m  b o t t o m  to top,  tw =38.4, 76.8, 153.6, 307.2, 
614.4. 

Fig. 6. T h e  n o r r n a l i s e d  c o r r e l a t i o n  C (tw 4- z, tw ) / C (tw, tw ) versus z, for  f i x e d  v a l u e s  o f  the  w a i t i n g  

t i m e  tw. F r o m  b o t t o m  to top,  tw =38.4, 76.8, 153.6, 307.2, 614.4. 

As r(t, 0) should vanish at large times, this implies that l i m t ~  Ci (t) = T/p = 
21- f dqP(q)q. Numerically we have checked that the Ward identity (45) is 

satisfied with a precision of 10 -5, and that the behaviour of r(t, 0) is consistent 

with a decay to zero. We have computed numerically the first five moments 

Ck (t), k = 1,..., 5. In Fig. 7 we plot the third moment versus time. Within the 

hierarchical scenario one would expect that its large time limit should be given 

by the third moment of the static P(q) as in (41), which is equal to 9011 in 

our case. The inset of Fig. 7 shows that the relative difference of C3 (t) with this 

value decays approximately as a power law. However at t ~ 800 the relative 

difference is still of  order 10 per cent. Fig. 8 shows the fifth moment and its 

approach to the static value 5.76 × 10 6. We consider this data as compatible 

with the hierarchical scenario but not really conclusive. As explained above, 

a more detailed analysis of  the data consists in studying the f.d. ratio (42) 

and to test the prediction (43). In Fig. 9 we plot C(t, t ' ) /C(t , t )  versus the 

time t, along lines in the t',t plane such that U(t,t') is constant, equal to 

u0. According to the hierarchical scenario, this quantity should go at large t 

to q(uo)/~l defined in (15). On this time scale, we do not see evidence for 

such a convergence. To summarize, we consider the results on the moments as 

encouraging, but the detailed analysis on the f.d. ratio shows that simulations 

on much longer time scales are needed in order to decide on the correctness 

of the hierarchical solution. 
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Fig. 7. The third dynamical moment  C3(t), defined in (40) versus t. The inset is a log-log plot 

of the relative difference between the moment  at t ime t and the prediction from the scenario of 

hierarchical crossovers concerning its large time behaviour: (9011 - C 3  ( t ) ) /9011 versus t. 

Fig. 8. The same plot as in Fig. 7, for the fifth dynamical moment  versus time, and its convergence 

to the theoretical result 5.76 × 106. 
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Fig. 9. The function C(t, t ' ) /C( t ,  t) versus the time t, along lines in the t, t '  plane such that the 

f.d. ratio U(t, t') is constant, equal to u 0. From bottom to top, u0 = 0.1,.2 ..... .9. If  the scenario 

of hierarchical crossovers would hold, at infinite t the curves with u0 < 0.375 should extrapolate 

to 0.744, the ones with u0 > 0.411 should extrapolate to .859. There is no such indication on this 

time scale. 

7. Conclusions 

In this paper we have studied the off  equilibrium dynamics of  a disordered 

model which represents on one hand a limiting case of a manifold in a random 

environment, on the other hand a spin glass with long range interactions. 

The choice of  this model has several motivations. Its static solution at low 

temperatures implies a full continuous r.s.b., as for instance in the SK model; 
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this r.s.b, solution is known in all details. On the other hand, we can write 

a closed set of coupled dynamical equations between the correlation and 

response. Because of  this, we have been able to generalize the analytic solution 

of [17] in the aging regime of the spherical p-spin model to a full r.s.b, case 

and to compare to a numerical integration of the equations. Simultaneously to 

our work, Cugiandolo and Kurchan have also extended their analytic solution 

to the SK model close to Tc [37]. 

Our analysis is consistent with the existence of two regimes at large times 

in the low temperature phase: an asymptotic regime where time homogeneity 

and fluctuation dissipation relations hold, and an aging regime where both 

these properties are violated. These regimes are similar to the ones observed in 

experiments and simulations. We have found convincing numerical evidence 

that the asymptotic regime agrees with the static r.s.b, results and with the 

ED results. The correlations are those characteristic of a system reaching 

equilibrium inside one single valley. We have shown that these facts imply the 

existence of a non-trivial aging regime. 

We have proposed a family of solutions of the dynamics at large time in 

this aging regime, based on a hierarchy of crossover domains. This solutions 

solve the problem of the diverging time scales which had to be introduced in 

ED. On the other hand several problems are left open. We have not been able 

to show that the dynamics converges to one of  these solutions, and afortiori 
we do not know which of them is picked up. This choice might well depend 

on the choice of the Langevin dynamics and of  the type of initial conditions 

which are used. We have found that the f.d. ratio tends to a probability law at 

large times. Longer simulations are needed to decide whether this probability 

law is identical to the static u(q), as implied by the hierarchical scenario. 

At the present stage, we believe that it is crucial to carry out this numerical 

study. The physical interpretation of the dynamical probability is also a very 

important open question. 

It would be interesting to generalize this approach to systems driven by an 

external force (charge density waves, vortex lattices,...), and to study more 

subtle effects like those of temperature cycling. We would also like to point out 

that this route of OED seems to be a promising one towards a rigorous study 

of  spin glasses. One should first obtain a rigorous derivation of the dynamical 

equations, and then understand the large time behaviour of these equations. 

This is certainly not easy, but it is a well defined mathematical problem and 

our work suggests that these coupled dynamical equations contain in some 

sense the full r.s.b, solution. A first step towards a rigorous derivation of the 

dynamical equations has been taken recently for the SK model [40]. 
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Appendix A 

In this appendix we sketch the derivation of  the mean field dynamical 

Eqs. (19) for the toy-model by the cavity method [1]. This method provides 

the same results as the functional derivation of  [32]. We include a brief 

description here because it is maybe more explicit on the physical content of  

the derivation. Apart from unessential complications, the derivation could be 

done similarly for the more general Eqs. (7,8,9) for finite D. The method 

involves an induction over the number dimensions N of the space in which 

the particle lives, together with a large N limit. We pass from a N dimensional 

system described by ql = {q$1 .... , ~N} to a N +  1 dimensional one described by ql, 

plus a new component q$0. In the derivation we follow a procedure analogous to 

that which has been used e.g. to study the statics and the equilibrium dynamics 

of the SK model. We will make crucial use of  two hypotheses that mutatis 

mutandis habe been put forward in that case. Namely, the applicability of  the 

linear response theory fort the Langevin equation (LRT),  and the fact that 

the responses J~b~ ( t ) / jq l  ~ (s) can be considered small (in a suitable sense) for 

a # ft. A justification of  these in the case of  equilibrium dynamics is given 

in [ 1 ]. For OED, we just assume these two facts. It will be interesting to see 

if similar assumptions are contained in the functional approach, or whether 

these facts can be derived. 

Consider the Langevin equation for the toy-model: 

dq$~ (t) OH(fJ(t))  
- + ~ ( t ) ,  

dt O~a 

(q,( t)q~(s))  = 2 T J ~ J ( t  - s). (A.1) 

If an infinitesimal perturbation J H ( ~ )  is added to H, the perturbed process 

qi*(t) can be expressed in terms of the unperturbed one qt(t) by the linear 

response relation: 

t 

(J~(t) = ~ ( t )  - f ds o~IZ(O(s))  J(9~(t) 

o 0 ~  ~ p  (s)" 
(A.2) 

Let us now introduce the new component, and denote by VN(~) and 

VN+I(qSO,¢) the random potentials for the N and N + 1 components sys- 
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tems respectively. In making this step, the Hamiltonian H = #q~2/2 + VN ((~) 
will undergo the variation 

5H(4)o,0) = lt4)~/2 + 5V (¢o, (~), 

(JV(4)O,O) = VN+I (4)0,~) -- VN(O) .  ( h . 3 )  

The 4)~ and 4)~ in (A.2) have to be identified with the a-th component  of the 

position of the particle respectively in presence and in absence of 4)o. 

To study the statistical properties of ~ V we can expand in series the corre- 

lations of the potential of the N + 1 components system 

VN+I (4)0,~)VN+I (~//0, I/g) 

= - ( N + l ) f (  [ ( q ~ - q t ) 2 +  ( 4 ) ° - ~ 0 ) 2 ] ) ( N +  1) ' (A.4) 

and retain only the terms of the series which do not tend to zero when N --, oc. 

In this way we find: 

~JV(4)o,~)tJV(q/o, i/¢) = - [ f ( ( O -  I/t)Z/N) ( ~ -  qt)2 f '  ((~ - qt)Z/N) 
t N 

+ (4)0- ~'o)2f '((q ~ - q t )2 /N)}  • (A.5) 

These formulas can be obtained expanding formally Vlv+l (4)0, qt) in powers of 

4)0 up to the second order. In this way, denoting b = ( 0 -  ~ )2/N, one easily 

shows that aV(4)0,~) can be written as 

gV(4)o,~) = A(qt) + B(q l )~  + D(qt)q~ (A.6) 

where A, B and D are gaussian random functions with zero averages and 

correlations: 

A(tk)A(~) = - [ f ( b )  - bf ' (b)] ,  

A(gp)D(¥) = - i f ( b ) ,  

B(¢J)D(q~) = O(1/N), 

A(~)B(qt)  = O(1/N), 

B ( ~ ) B ( ~ )  = 2 f ' ( b ) ,  

D((J)D(qt) = O(1/N). 

We can now write the Langevin equation for the zeroth component  ¢0 

dqSo (t) 
- /X4)o-B(~*(t))  -2D( t~*( t ) )~ ( t )  + qo(t). 

dt 

Using the LRT we find 

t 
f OB(¢(t))  ~¢~(t) B(dp*(t)) = B ( ¢ ( t ) ) -  ds Z 

0 ~/~ 

x~-~-~p0 [A(q i ( s ) )+  B((J(s) )qSo(s) + D(~(s)  )qS~ (s)] 

(A.7) 
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t 

D(q)*(t)) = D(q~(t)) - /  ds y~  
OD(q~(t) ) 

o ~ O~b~ 6tlp(s) 

x~-~#0 [A(~(s) )  +B(~(s))C)o(S) +D(~p(s))d~(s)]. (A.8) 

At this point we use the hypothesis that 8¢)~(t)/Srl~(S) is small for ~ ~ ft. 

More precisely we suppose that as in the SK model 1/N 2 ~ p  8dp~ (t)/~rlp (s) 

and analogous sums will tend to zero in the large N limit. One deduces that 

(A.8) reads in this limit: 

l 

B(¢)*(t) ) = B(~(t )  ) - / ds 4 f "  (b(t,s) )r(t,s)C~ (s), 

0 

t 

D(¢* (t) ) = D(¢(t )  ) - / d s  2 f"  (b(t,s) )r(t,s), (A.9) 

0 

where b(t,s) = (¢(t) - ¢(s) )2 /N  and r(t,s) = ( I / N ) ~ , ~  ((~¢Oa (t) /~qa (s) ). 

Denoting m(t ,s)  = 4 f " (b ( t , s ) ) r ( t , s )  and making use of Eq. (A.9) the 

Langevin equation (A.7) is rewritten as 

t 

dq~o (t) f dt - -#Oo(t) -B(gp(t))  + ds m(t,s)[qSo(t) - q~o(S)] + qo(t). 

0 

(A.10) 

(In deriving (A.10) we have dropped a term proportional to D(~(t))~o(t)  

which is negligible because of the vanishing correlations (A.7) of D at large 

N.) The term B((~(t)) is a random field with zero mean and correlations 

B(~( t ) )B (~ ( t ) )  = 2 f ' (b ( t , s ) )  -- w( t , s ) .  Therefore Eq. (A.10) is the usual 

Langevin equation on one single component, with a condition of selfconsis- 

tence, from which the dynamical equations are easily derived. We just notice 

that this derivation shows a property of self averageness of the response, 

namely the fact that the response function of each component is identical: 

r(t,s) = (~Oo(t)/~qo(S)). 
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