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Let E be a Banach space that is complemented in its
bidual by a projection P: i£** —> E. It is shown that E has
the Radon Nikodym property if and only if for every Radon
probability measure λ on the unit ball K of E** such that

ω* — I x**dλ e E for every weak* Borel subset A of K, the

projection P is 2-Lusin measurable and for every %* in E*
the map #*P satisfies the barycentric formula for λ on K.

J. J. Uhl Jr. asked the following question: Let E be a Banach
space which is complemented in its bidual by a projection P: £7** —> i£
which is weak* to norm universally Lusin measurable. Does E have
the Radom-Nikodym property?

In [4] we showed that if E is the dual of a Banach space Y
and if P is the natural projection from E** — Y*** to Y* — E then
the above condition is necessary and sufficient for E to have the
Radon-Nikodym property.

In [4] we also showed that for any Banach space E, if P is weak*
to weak Baire-1 function then E has the Radon-Nikodym property.

Recently G. Edgar showed using an idea of Talagrand and
Weizsacker that the projection

is weak* to weak universally-Lusin measurable. This shows that
UhΓs question does not have a positive answer in general, however
if one examines the results of [4] he can see that if P is Baire-1,
it is universally Lusin-measurable and for every #* in E* the map
#*P satisfies the barycentric formula. It turns out that a Banach
space E has the Radon-Nikodym property if and only if for every
Radon probability measure λ on the unit ball K of !£** such that

α>* — I x**dxeE for every α>*-Borel subset A of K the projection
JA

P is λ-Lusin measurable and for every #* in E* the map x*P satisfies
the barycentric formula for λ on K.

Let us fix some terminology and conventions. All topological
spaces in this paper will be completely regular. The set of all Radon
probability measures on a topological space (X, τ) will be denoted
by Mi(X, τ).

DEFINITION 1. Let (X, r j and (Γ, τ2) be two topological spaces
and let
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454 ELIAS SAAB

f:X >Y and μe

the map / is said μ-Lusin measurable if for every compact set K in
X and for every ε > 0 there is a compact set KεczK such that
μ(K\Kε) < ε and the restriction f\K& of / to Kε is continuous.

If / is μ-Lusin measurable, the image of μ denoted by f(μ) and
defined by f{μ){A) = μ{f~\A)) for every Borel subset A of (Γ, τ2)
belongs to M$.(Y,τ2).

DEFINITION 2. Let E be a Banach space and let (T, Σ, λ) be a
probability space. A function /: T -> E, is Bochner integrable if
there exists a sequence (/J of simple functions such that

( i ) lim,, ||/(ί) - fn(t) || = 0 for λ-almost all t e T and

(ii) l i m j | |Λt)-Λ(t)l |dλ = 0.
JT

If / is Bochner integrable we denote by

Bochner — I fdx = lim I fndx
JA n JA

for every A in Σ.

DEFINITION 3. A Banach space E is said to have the Radon-
Nikodym property if for every probability space (T, Σ, λ) and every
vector measure m: Σ —> E such that ||m(A)|| ^ λ(A) for every A in
Σ, there exists f:T~>E Bochner integrable such that

m(A) = Bochner — I fdx for
JA

every A in J .

For more about the Radon-Nikodym property see [1].

If (X, τ) is a topological space, Σ the Borel subset of (X, τ) and
λ 6 ilί |(J, τ) and f:X-+(E9\\ ||) which is λ-Lusin measurable and
bounded then / is Bochner integrable.

If C is a w*-compact convex subset of the dual E* of a Banach
space E and /: (X, τ) -> (C, σ(S*, £?)) then / is said to be w*-integra-
ble with respect to λ e M+(X, τ) if

( i ) For every xeE the map t->a?(/(ί)) is λ-integrable.

(ii) For every AeΣ there exists a^eC such that x(x%) =

\ x(f(t))dX for every xeE. The element a?J will be denoted by

= ω*-[
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Let μ G M+(C, σ(E*9 E)) it is easy to see that the identity map
/: (C, σ(E*9 E)) -> (C, σ(E*, E)) is μ weak*-integrable. An affine func-
tion h: (C, σ(E*9 E)) —> R which is μ-Lusin measurable is said to
satisfy the barycentric formula for μ on G if for every w*-Borel
subset A of C

h(w*~ \ Idμ) = \ h Idμ .

If λ 6 M^X, τ) we denote by supp λ the support of λ.

LEMMA 4. Let (X, τ) be a topological space and xeM+(X, τ).
Let C be a w*-compact convex subset of the dual E* of a Banach
space E and f and φ

f, φ: (X, τ) > (C, σ(E\ E))

two X-Lusίn measurable maps such that for every Borel subset A in
(X, τ),

ω* — \ fdx = α>* — I φdx .
JA JA

Then f = φ X-almost everywhere.

Proof. Let if be a compact set in (X, τ) such that φ \ K and
/ 1 K are continuous from {K, τ) -> (C, σ(E*, E)) then we claim that
f=Φ λ-almost everywhere on K. Let μ = X \ K, it is enough to
show that

if not there exists £0€suppμ such that φ(t0) Φ f(t0). Let xeE such
that x(φ(tQ) — /(ί0)) = 1, the scalar map t —> ψ(t) = a?(̂ (ί) — /(*)) is con-
tinuous on if, therefore there exists a neighborhood V of £0 in ^
such that

teV—>ψ(t) ^ — .

Observe that t0 e suppμ =>μ(V) > 0 and hence

( ψ(t)dX = \ ψ(t)dμ ^ ^-μ(V) > 0

on the other hand we have α>* — I fdx = ω* — \ ^dλ which in turn
JF JF

implies that \ x(f(t))dx = I xφ(t)dX there fore \ ψ(t)dX = 0 a con-
JF JF JF

tradiction that finishes the proof of the claim. To finish the proof
choose for every n ^ 1 a compact if% such that
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( i ) f\Kn and φ\Kn are both continuous on Kn.
(ii) X(X\Kn)^l/n.
(iii) Kn = HnU Nn where / \Hn = ψ\Hn and X(Nn) = 0

Let K=\J~=1Hn, M=X\[Jϊ=1K% and M=\Jϊ=1Nn then X ^
where λ(ikf U N) = 0 and / = 0 on iL

From now on, I? will be a Banach space complemented in its
second dual 1?** by a projection P: i?** — > E and £Γ will denote the
closed unit Ball of £7**.

THEOREM 5. The Banach space E has the Radon-Nikodym
property if and only if for every Xe M+(K, σ(E**, E*)) such that

ω* — I x**dxe E for every w*-Borel subset A of K, the projection

P is weak* to norm X-Lusin measurable and for every x* in E* the
map x*P satisfies the barycentric formula for X on K.

Proof. Let xeM^(Kf σ(E**, E*)) such that

m(A) = α>* — \ x**d\ belongs

to E for every α)*-Borel subset A of K. It is easy to see that

||m(A)|| ^ X(A) for every

&)*-Borel subset A of K and therefore m is a er-additive unvalued
vector measure. If E has the Radon-Nikodym property one can find

f:K >(E,\\ ||)

λ-Bochner integrable such that for every w*-Borel subset A of K we
have

m(A) = Bochner - ( fdx = ω* - ί x**dx .
)A J A

Apply Lemma 4 to conclude that f(x**) = x** λ-almost everywhere
and use the fact that / is λ-Lusin measurable from K-+(E,\\ ||)
to write iΓ = U~=i Kn[J N where (Kn) is a sequence of disjoint norm
compact subset of E and X(N) = 0. This shows that the identity

I:(K,σ(E**,E*)) > (K, \\ ||)

is λ-Lusin measurable and therefore P is λ-Lusin measurable. Let
x* in E*, we have to show that

x*p(ω* - [ cc**dλ) - \ x*P(x**)dX .

To this end observe that
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x*p(ω* - \ a;**ίίλ) = x*(a>* - \ x**d\J = x*(m(A))

= x*(± m(Kn n A)) = Σ x*(m(K. f] A))

= Σ ( χ*(χ**)dx = Σ ί χ*P(x**)dx
n=l JKnptA n=l JKnΓ\A

Conversely, let λ be in M+(K, σ(E**, E*)) such that for every weak*
Borel subset A of K we have

m{A) = a)* - ( x**dxeE .

Let α;*e£ r*, then

a?*(m(A)) = s*P(m(A)) = ( x*P(x**)dX - ί α?*(aj**)dλ .
J A J ^

Therefore ω* — I ZeZλ = α>* — I PdX where / is the identity map on
JA JA

K. Now apply Lemma 4 to deduce that K can be written

where each Kn is w*-compact on which I = P and λ(iV) — 0. This
implies that for every n ̂  1, ίΓΛ is norm compact and is contained
in E and hence I: (K, σ(JSr**, E*)) -> (if, || ||) is λ-Lusin measurable.
To prove now that E has the Radon-Nikodym property, let Σ be
σ-algebra of all Lebesgue measurable subsets of [0, 1] and let μ be
the Lebesgues measure on [0, 1]. Consider a vector measure m:
Σ-^E such that \\m(A)\\ ^ μ(A) for every AeΣ. By [5], there
exists a map /: [0, 1] —• K such that

( i ) For every ω*-Borel subset B of K, f~\B) belongs to Σ.
(ii) The image measure f{μ) belongs to M\(K, σ(E**, E*)).
(iii) For every AeΣ

m(A) = ω* - ( fdμ.
JA

It follows easily that for any w*-Borel subset B of K

ft)* - [ x**df(μ)eE .
JA

Therefore I:(K, σ(E**f E*))-+(K, \\ ||) is /(μ)-Lusin measurable by
what we did above. Consequently K can be written K = Jjϊ=i KnΌ N
where f(μ)(N) = μ(f~\N)) = 0 and iΓw is norm compact subset of
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#**. It follows that If: [0, 1] -> (K, || ||) is ^-almost separably
valued. Also note that if 0 is an open set in (K, || ||) then f"\0) e Σ.
This shows that the map

/ = If: [0,1]-* C M ||)

is μ-Lusin measurable and therefore Bochner integrable and hence

m(A) = α>* - ( fdμ = Bochner - \ fdμ
JA JA

for every AeΣ. This shows that / takes its values μ-almost every-
where in E, therefore E has the Radon-Nikodym property.

The proof of the above theorem implies the following corollary.

COROLLARY 6. For any Banach space E the following two con-
ditions are equivalent:

( i ) The space E the Radon-Nikodym property.

(ii) For every X e MΪ(K, σ(E**, E*)) such that ω* - ί x**dxeE
JA

for every w*-Borel subset A of K, the identity

(K,σ(E**,E*))-+(K,\\ ||)

is X-Lusin measurable.
If E is completed in E** by a projection P: E** —> E then (i)

and (ii) are equivalent to

(iii) For every X e Mϊ(K, σ(E**, E*)) such that ω* - \ x**dxeE
JA

for every Q)*-Borel subset A of K, the projection P is X-Lusin
measurable and for every x*eE*, the map x*P satisfies the bary-
centric formula for X on K.

COROLLARY 7 [4]. // E is complemented in E** by a weak* to
weak BaireΛ projection P, then E has the Radon-Nikodym property.

Proof. If P is Baire-1, it is λ-Lusin-measurable for any λe
M\(K, σ(β**, E*)) and for every a^e.E'*, the map x*P is Baire-1
and therefore satisfies the barycentric formula for X on K.

In [4] it was shown that if P: (E**, σ(E**, E*)) -> (E, σ{E*f E))
is Baire-1, then E is a weakly compactly generated Banach space.
Using this fact we can now give the following:

Example of a Banach space having the Radon-Nikodym property
and complemented in its bidual by a nonweak* to weak BaireΛ
projection.

Let R be the Banach space constructed by Rosenthal in [2], this



PROJECTIONS IN BANACH SPACES 459

space bas the following properties:
(1) It is a dual space, therefore it is complemented in i?**.
(2) It is a closed subspace of a weakly compactly generated

Banach space, therefore it has the Radon-Nikodym property [3].
(3) It is not weakly compactly generated so P: R**-* R is not

Baire-1.
For more examples related to this paper see [4].
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