Pacific Journal of Mathematics

ON MEASURABLE PROJECTIONS IN BANACH SPACES Elias SaAb

ON MEASURABLE PROJECTIONS IN BANACH SPACES

Elias Saab

Let E be a Banach space that is complemented in its bidual by a projection $P: E^{* *} \rightarrow E$. It is shown that E has the Radon Nikodym property if and only if for every Radon probability measure λ on the unit ball K of $E^{* *}$ such that $\omega^{*}-\int_{A} x^{* *} d \lambda \in E$ for every weak* Borel subset A of K, the projection P is λ-Lusin measurable and for every x^{*} in E^{*} the map $x^{*} P$ satisfies the barycentric formula for λ on K.
J. J. Uhl Jr. asked the following question: Let E be a Banach space which is complemented in its bidual by a projection $P: E^{* *} \rightarrow E$ which is weak* to norm universally Lusin measurable. Does E have the Radom-Nikodym property?

In [4] we showed that if E is the dual of a Banach space Y and if P is the natural projection from $E^{* *}=Y^{* * *}$ to $Y^{*}=E$ then the above condition is necessary and sufficient for E to have the Radon-Nikodym property.

In [4] we also showed that for any Banach space E, if P is weak* to weak Baire-1 function then E has the Radon-Nikodym property.

Recently G. Edgar showed using an idea of Talagrand and Weizsäcker that the projection

$$
L_{1}[0,1]^{* *} \longrightarrow L_{1}[0,1]
$$

is weak* to weak universally-Lusin measurable. This shows that Uhl's question does not have a positive answer in general, however if one examines the results of [4] he can see that if P is Baire-1, it is universally Lusin-measurable and for every x^{*} in E^{*} the map $x^{*} P$ satisfies the barycentric formula. It turns out that a Banach space E has the Radon-Nikodym property if and only if for every Radon probability measure λ on the unit ball K of $E^{* *}$ such that $\omega^{*}-\int_{A} x^{* *} d \lambda \in E$ for every ω^{*}-Borel subset A of K the projection P is λ-Lusin measurable and for every x^{*} in E^{*} the map $x^{*} P$ satisfies the barycentric formula for λ on K.

Let us fix some terminology and conventions. All topological spaces in this paper will be completely regular. The set of all Radon probability measures on a topological space (X, τ) will be denoted by $M_{+}^{1}(X, \tau)$.

Definition 1. Let $\left(X, \tau_{1}\right)$ and $\left(Y, \tau_{2}\right)$ be two topological spaces and let

$$
f: X \longrightarrow Y \text { and } \mu \in M_{1}\left(X, \tau_{1}\right)
$$

the $\operatorname{map} f$ is said μ-Lusin measurable if for every compact set K in X and for every $\varepsilon>0$ there is a compact set $K_{\varepsilon} \subset K$ such that $\mu\left(K \backslash K_{\varepsilon}\right)<\varepsilon$ and the restriction $f \mid K_{\varepsilon}$ of f to K_{ε} is continuous.

If f is μ-Lusin measurable, the image of μ denoted by $f(\mu)$ and defined by $f(\mu)(A)=\mu\left(f^{-1}(A)\right)$ for every Borel subset A of ($\left.Y, \tau_{2}\right)$ belongs to $M_{+}^{1}\left(Y, \tau_{2}\right)$.

Definition 2. Let E be a Banach space and let (T, Σ, λ) be a probability space. A function $f: T \rightarrow E$, is Bochner integrable if there exists a sequence $\left(f_{n}\right)$ of simple functions such that
(i) $\lim _{n}\left\|f(t)-f_{n}(t)\right\|=0$ for λ-almost all $t \in T$ and
(ii) $\lim _{n} \int_{T}\left\|f(t)-f_{n}(t)\right\| d \lambda=0$.

If f is Bochner integrable we denote by

$$
\text { Bochner }-\int_{A} f d \lambda=\lim _{n} \int_{A} f_{n} d \lambda
$$

for every A in Σ.
Definition 3. A Banach space E is said to have the RadonNikodym property if for every probability space (T, Σ, λ) and every vector measure $m: \Sigma \rightarrow E$ such that $\|m(A)\| \leqq \lambda(A)$ for every A in Σ, there exists $f: T \rightarrow E$ Bochner integrable such that

$$
m(A)=\text { Bochner }-\int_{A} f d \lambda \text { for }
$$

every A in Σ.
For more about the Radon-Nikodym property see [1].
If (X, τ) is a topological space, Σ the Borel subset of (X, τ) and $\lambda \in M_{+}^{1}(X, \tau)$ and $f: X \rightarrow(E,\| \|)$ which is λ-Lusin measurable and bounded then f is Bochner integrable.

If C is a w^{*}-compact convex subset of the dual E^{*} of a Banach space E and $f:(X, \tau) \rightarrow\left(C, \sigma\left(E^{*}, E\right)\right)$ then f is said to be w^{*}-integrable with respect to $\lambda \in M_{+}^{1}(X, \tau)$ if
(i) For every $x \in E$ the map $t \rightarrow x(f(t))$ is λ-integrable.
(ii) For every $A \in \Sigma$ there exists $x_{A}^{*} \in C$ such that $x\left(x_{A}^{*}\right)=$ $\int_{A} x(f(t)) d \lambda$ for every $x \in E$. The element x_{A}^{*} will be denoted by

$$
x_{A}^{*}=\omega^{*}-\int_{A} f d \lambda .
$$

Let $\mu \in M_{+}^{1}\left(C, \sigma\left(E^{*}, E\right)\right)$ it is easy to see that the identity map $I:\left(C, \sigma\left(E^{*}, E\right)\right) \rightarrow\left(C, \sigma\left(E^{*}, E\right)\right)$ is μ weak*-integrable. An affine function $h:\left(C, \sigma\left(E^{*}, E\right)\right) \rightarrow \boldsymbol{R}$ which is μ-Lusin measurable is said to satisfy the barycentric formula for μ on C if for every w^{*}-Borel subset A of C

$$
h\left(w^{*}-\int_{A} I d \mu\right)=\int_{A} h \cdot I d \mu
$$

If $\lambda \in M_{1}(X, \tau)$ we denote by $\operatorname{supp} \lambda$ the support of λ.
Lemma 4. Let (X, τ) be a topological space and $\lambda \in M_{+}^{1}(X, \tau)$. Let C be a w^{*}-compact convex subset of the dual E^{*} of a Banach space E and f and ϕ

$$
f, \phi:(X, \tau) \longrightarrow\left(C, \sigma\left(E^{*}, E\right)\right)
$$

two 入-Lusin measurable maps such that for every Borel subset A in (X, τ),

$$
\omega^{*}-\int_{A} f d \lambda=\omega^{*}-\int_{A} \phi d \lambda
$$

Then $f=\phi \lambda$-almost everywhere.
Proof. Let K be a compact set in (X, τ) such that $\phi \mid K$ and $f \mid K$ are continuous from $(K, \tau) \rightarrow\left(C, \sigma\left(E^{*}, E\right)\right)$ then we claim that $f=\phi \lambda$-almost everywhere on K. Let $\mu=\lambda \mid K$, it is enough to show that

$$
\phi|\operatorname{supp} \mu=f| \operatorname{supp} \mu
$$

if not there exists $t_{0} \in \operatorname{supp} \mu$ such that $\phi\left(t_{0}\right) \neq f\left(t_{0}\right)$. Let $x \in E$ such that $x\left(\phi\left(t_{0}\right)-f\left(t_{0}\right)\right)=1$, the scalar map $t \rightarrow \psi(t)=x(\phi(t)-f(t))$ is continuous on K, therefore there exists a neighborhood V of t_{0} in K such that

$$
t \in V \Longrightarrow \psi(t) \geqq \frac{1}{2} .
$$

Observe that $t_{0} \in \operatorname{supp} \mu \Rightarrow \mu(V)>0$ and hence

$$
\int_{V} \psi(t) d \lambda=\int_{V} \psi(t) d \mu \geqq \frac{1}{2} \mu(V)>0
$$

on the other hand we have $\omega^{*}-\int_{V} f d \lambda=\omega^{*}-\int_{V} \phi d \lambda$ which in turn implies that $\int_{V} x(f(t)) d \lambda=\int_{V} x \phi(t) d \lambda$ there fore $\int_{V} \psi(t) d \lambda=0$ a contradiction that finishes the proof of the claim. To finish the proof choose for every $n \geqq 1$ a compact K_{n} such that
(i) $f \mid K_{n}$ and $\dot{\rho} \mid K_{n}$ are both continuous on K_{n}.
(ii) $\lambda\left(X \backslash K_{n}\right) \leqq 1 / n$.
(iii) $K_{n}=H_{n} \cup N_{n}$ where $f\left|H_{n}=\phi\right| H_{n}$ and $\lambda\left(N_{n}\right)=0$

Let $K=\bigcup_{n=1}^{\infty} H_{n}, M=X \backslash \bigcup_{n=1}^{\infty} K_{n}$ and $M=\bigcup_{n=1}^{\infty} N_{n}$ then $X=K \cup M \cup N$ where $\lambda(M \cup N)=0$ and $f=\phi$ on K.

From now on, E will be a Banach space complemented in its second dual $E^{* *}$ by a projection $P: E^{* *} \rightarrow E$ and K will denote the closed unit Ball of $E^{* *}$.

Theorem 5. The Banach space E has the Radon-Nikodym property if and only if for every $\lambda \in M_{+}^{1}\left(K, \sigma\left(E^{* *}, E^{*}\right)\right)$ such that $\omega^{*}-\int_{A} x^{* *} d \lambda \in E$ for every w^{*}-Borel subset A of K, the projection P is weak* to norm λ-Lusin measurable and for every x^{*} in E^{*} the map $x^{*} P$ satisfies the barycentric formula for λ on K.

Proof. Let $\lambda \in M_{+}^{1}\left(K, \sigma\left(E^{* *}, E^{*}\right)\right)$ such that

$$
m(A)=\omega^{*}-\int_{\Lambda} x^{* *} d \lambda \quad \text { belongs }
$$

to E for every ω^{*}-Borel subset A of K. It is easy to see that

$$
\|m(A)\| \leqq \lambda(A) \quad \text { for every }
$$

ω^{*}-Borel subset A of K and therefore m is a σ-additive E-valued vector measure. If E has the Radon-Nikodym property one can find

$$
f: K \longrightarrow(E,\| \|)
$$

λ-Bochner integrable such that for every w^{*}-Borel subset A of K we have

$$
m(A)=\text { Bochner }-\int_{A} f d \lambda=\omega^{*}-\int_{A} x^{* *} d \lambda
$$

Apply Lemma 4 to conclude that $f\left(x^{* *}\right)=x^{* *} \lambda$-almost everywhere and use the fact that f is λ-Lusin measurable from $K \rightarrow(E,\| \|)$ to write $K=\bigcup_{n=1}^{\infty} K_{n} \cup N$ where $\left(K_{n}\right)$ is a sequence of disjoint norm compact subset of E and $\lambda(N)=0$. This shows that the identity

$$
I:\left(K, \sigma\left(E^{* *}, E^{*}\right)\right) \longrightarrow(K,\| \|)
$$

is λ-Lusin measurable and therefore P is λ-Lusin measurable. Let x^{*} in E^{*}, we have to show that

$$
x^{*} P\left(\omega^{*}-\int_{A} x^{* *} d \lambda\right)=\int_{A} x^{*} P\left(x^{* *}\right) d \lambda
$$

To this end observe that

$$
\begin{aligned}
& x^{*} P\left(\omega^{*}-\int_{A} x^{* *} d \lambda\right)=x^{*}\left(\omega^{*}-\int_{A} x^{* *} d \lambda\right)=x^{*}(m(A)) \\
& \quad=x^{*}\left(\sum_{n=1}^{\infty} m\left(K_{n} \cap A\right)\right)=\sum_{n=1}^{\infty} x^{*}\left(m\left(K_{n} \cap A\right)\right) \\
& \quad=\sum_{n=1}^{\infty} \int_{K_{n} \cap A} x^{*}\left(x^{* *}\right) d \lambda=\sum_{n=1}^{\infty} \int_{K_{n} \cap A} x^{*} P\left(x^{* *}\right) d \lambda \\
& \quad=\int_{A} x^{*} P\left(x^{* *}\right) d \lambda
\end{aligned}
$$

Conversely, let λ be in $M_{+}^{1}\left(K, \sigma\left(E^{* *}, E^{*}\right)\right)$ such that for every weak* Borel subset A of K we have

$$
m(A)=\omega^{*}-\int_{A} x^{* *} d \lambda \in E .
$$

Let $x^{*} \in E^{*}$, then

$$
x^{*}(m(A))=x^{*} P(m(A))=\int_{A} x^{*} P\left(x^{* *}\right) d \lambda=\int_{A} x^{*}\left(x^{* *}\right) d \lambda .
$$

Therefore $\omega^{*}-\int_{A} I d \lambda=\omega^{*}-\int_{A} P d \lambda$ where I is the identity map on K. Now apply Lemma 4 to deduce that K can be written

$$
K=\bigcup_{n=1}^{\infty} K_{n} \cup N
$$

where each K_{n} is w^{*}-compact on which $I=P$ and $\lambda(N)=0$. This implies that for every $n \geqq 1, K_{n}$ is norm compact and is contained in E and hence $I:\left(K, \sigma\left(E^{* *}, E^{*}\right)\right) \rightarrow(K,\| \|)$ is λ-Lusin measurable. To prove now that E has the Radon-Nikodym property, let Σ be σ-algebra of all Lebesgue measurable subsets of $[0,1]$ and let μ be the Lebesgues measure on $[0,1]$. Consider a vector measure m : $\Sigma \rightarrow E$ such that $\|m(A)\| \leqq \mu(A)$ for every $A \in \Sigma$. By [5], there exists a map $f:[0,1] \rightarrow K$ such that
(i) For every ω^{*}-Borel subset B of $K, f^{-1}(B)$ belongs to Σ.
(ii) The image measure $f(\mu)$ belongs to $M_{+}^{1}\left(K, \sigma\left(E^{* *}, E^{*}\right)\right)$.
(iii) For every $A \in \Sigma$

$$
m(A)=\omega^{*}-\int_{\Lambda} f d \mu
$$

It follows easily that for any w^{*}-Borel subset B of K

$$
\omega^{*}-\int_{A} x^{* *} d f(\mu) \in E .
$$

Therefore $I:\left(K, \sigma\left(E^{* *}, E^{*}\right)\right) \rightarrow(K,\| \|)$ is $f(\mu)$-Lusin measurable by what we did above. Consequently K can be written $K=\bigcup_{n=1}^{\infty} K_{n} \cup N$ where $f(\mu)(N)=\mu\left(f^{-1}(N)\right)=0$ and K_{n} is norm compact subset of
$E^{* *}$. It follows that If: $[0,1] \rightarrow(K,\| \|)$ is μ-almost separably valued. Also note that if 0 is an open set in $(K,\| \|)$ then $f^{-1}(0) \in \Sigma$. This shows that the map

$$
f=\operatorname{If}:[0,1] \rightarrow(K,\|\quad\|)
$$

is μ-Lusin measurable and therefore Bochner integrable and hence

$$
m(A)=\omega^{*}-\int_{A} f d \mu=\text { Bochner }-\int_{A} f d \mu
$$

for every $A \in \Sigma$. This shows that f takes its values μ-almost everywhere in E, therefore E has the Radon-Nikodym property.

The proof of the above theorem implies the following corollary.
Corollary 6. For any Banach space E the following two conditions are equivalent:
(i) The space E the Radon-Nikodym property.
(ii) For every $\lambda \in M_{+}^{1}\left(K, \sigma\left(E^{* *}, E^{*}\right)\right)$ such that $\omega^{*}-\int_{A} x^{* *} d \lambda \in E$ for every w^{*}-Borel subset A of K, the identity

$$
\left(K, \sigma\left(E^{* *}, E^{*}\right)\right) \rightarrow(K,\|\quad\|)
$$

is λ-Lusin measurable.
If E is completed in $E^{* *}$ by a projection $P: E^{* *} \rightarrow E$ then (i) and (ii) are equivalent to
(iii) For every $\lambda \in M_{+}^{1}\left(K, \sigma\left(E^{* *}, E^{*}\right)\right)$ such that $\omega^{*}-\int_{4} x^{* *} d \lambda \in E$ for every ω^{*}-Borel subset A of K, the projection P is λ-Lusin measurable and for every $x^{*} \in E^{*}$, the map $x^{*} P$ satisfies the barycentric formula for λ on K.

Corollary 7 [4]. If E is complemented in $E^{* *}$ by a weak* to weak Baire-1 projection P, then E has the Radon-Nikodym property.

Proof. If P is Baire-1, it is λ-Lusin-measurable for any $\lambda \epsilon$ $M_{+}^{1}\left(K, \sigma\left(E^{* *}, E^{*}\right)\right)$ and for every $x^{*} \in E^{*}$, the map $x^{*} P$ is Baire-1 and therefore satisfies the barycentric formula for λ on K.

In [4] it was shown that if $P:\left(E^{* *}, \sigma\left(E^{* *}, E^{*}\right)\right) \rightarrow\left(E, \sigma\left(E^{*}, E\right)\right)$ is Baire-1, then E is a weakly compactly generated Banach space. Using this fact we can now give the following:

Example of a Banach space having the Radon-Nikodym property and complemented in its bidual by a nonweak* to weak Baire-1 projection.

Let R be the Banach space constructed by Rosenthal in [2], this
space bas the following properties:
(1) It is a dual space, therefore it is complemented in $R^{* *}$.
(2) It is a closed subspace of a weakly compactly generated Banach space, therefore it has the Radon-Nikodym property [3].
(3) It is not weakly compactly generated so $P: R^{* *} \rightarrow R$ is not Baire-1.

For more examples related to this paper see [4].

References

I. J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Survey No. 15, American Mathematical Society, Providence, 1977.
2. H. P. Rosenthal, The heredity problem for weakly compactly generated Banach spaces, Comp. Math., Groningen, (28), (1974), 83-111.
3. E. Saab, A characterization of w^{*}-compact convex sets having the Radon-Nikodym property, Bull. Soc. Math., 2 ème serie, 104 (1980), 79-88.
4. —, Universally Lusin-measurable and Baire-1 projections, Proc. Amer. Math. Soc., to appear, 78 (1980), 514-518..
5. H. Weizsäker, Strong measurability, lifting and the Choquet Edgar theorem, Lecture notes no 645, 209-218.

Received April 25, 1980.
The University of British Columbia
Vancouver, B. C.
V6T 1Y4 Canada
Current address: The University of Missouri Department of Mathematics
Columbia, MO 65211

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

Donald Babbitt (Managing Editor)
University of California
Los Angeles, CA 90024
Hugo Rossi
University of Utah
Salt Lake City, UT 84112
C. C. Moore and Andrew OgG
University of California
Berkeley, CA 94720

J. Dugundji
Department of Mathematics
University of Southern California
Los Angeles, CA 90007
R. Finn and J. Milgram
Stanford University
Stanford, CA 94305

ASSOCIATE EDITORS

| R. Arens E. F. Beckenbach | B. H. Neumann | F. Wolf K. Yoshida |
| :--- | :--- | :--- | :--- | :--- |

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON
 UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY
 UNIVERSITY OF HAWAII
 UNIVERSITY OF TOKYO
 UNIVERSITY OF UTAH
 WASHINGTON STATE UNIVERSITY
 UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Abstract

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50 .

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $\$ 102.00$ a year (6 Vols., 12 issues). Special rate: $\$ 51.00$ a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address shoud be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.). 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.
Pacific Journal of Mathematics
Vol. 97, No. $2 \quad$ February, 1981
Patrick Robert Ahern and N. V. Rao, A note on real orthogonal measures 249
Kouhei Asano and Katsuyuki Yoshikawa, On polynomial invariants of fibered 2-knots 267
Charles A. Asmuth and Joe Repka, Tensor products for $S L_{2}(\mathscr{K})$. I. Complementary series and the special representation 271
Gary Francis Birkenmeier, Baer rings and quasicontinuous rings have a MDSN 283
Hans-Heinrich Brungs and Günter Törner, Right chain rings and the generalized semigroup of divisibility 293
Jia-Arng Chao and Svante Janson, A note on $H^{1} q$-martingales 307
Joseph Eugene Collison, An analogue of Kolmogorov's inequality for a class of additive arithmetic functions 319
Frank Rimi DeMeyer, An action of the automorphism group of a commutative ring on its Brauer group 327
H. P. Dikshit and Anil Kumar, Determination of bounds similar to the Lebesgue constants 339
Eric Karel van Douwen, The number of subcontinua of the remainder of the plane 349
D. W. Dubois, Second note on Artin's solution of Hilbert's 17th problem. Order spaces 357
Daniel Evans Flath, A comparison of the automorphic representations of GL(3) and its twisted forms 373
Frederick Michael Goodman, Translation invariant closed $*$ derivations 403
Richard Grassl, Polynomials in denumerable indeterminates 415
K. F. Lai, Orders of finite algebraic groups 425
George Kempf, Torsion divisors on algebraic curves 437
Arun Kumar and D. P. Sahu, Absolute convergence fields of some triangular matrix methods 443
Elias Saab, On measurable projections in Banach spaces 453
Chao-Liang Shen, Automorphisms of dimension groups and the construction of AF algebras 461
Barry Simon, Pointwise domination of matrices and comparison of \mathscr{I}_{p} norms 471
Chi-Lin Yen, A minimax inequality and its applications to variational inequalities 477
Stephen D. Cohen, Corrections to: "The Galois group of a polynomial with two indeterminate coefficients" 483
Phillip Schultz, Correction to: "The typeset and cotypeset of a rank 2 abelian group" 486
Pavel G. Todorov, Correction to: "New explicit formulas for the nth derivative of composite functions" 486
Douglas S. Bridges, Correction to: "On the isolation of zeroes of an analytic function" 487
Stanley Stephen Page, Correction to: "Regular FPF rings" 488

