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ON MEASUREMENT PROPERTIES OF CONTINUATION RATIO MODELS 

BAS T.  H E M K E R  

CITO NATIONAL INSTITUTE FOR EDUCATIONAL M E A S U R E M E N T  

L. A N D R I E S  VAN DER A R K  AND K L A A S  S I J T S M A  

T I L B U R G  UNIVERSITY 

Three classes of polytomous IRT models are distinguished. These classes are the adjacent category 

models, the cumulative probability models, and the continuation ratio models. So far, the latter class has 
received relatively little attention. The class of continuation ratio models includes logistic models, such 

as the sequential model (Tutz, 1990), and nonlogistic models, such as the acceleration model (Samejima, 
1995) and the nonparametric sequential model (Hemker, 1996). Four measurement properties are dis- 
cussed. These axe monotone likelihood ratio of the total score, stochastic ordering of the latent trait by 

the total score, stochastic ordering of the total score by the latent trait, and invaxiant item ordering. These 
properties have been investigated previously for the adjacent category models and the cumulative proba- 
bility models, and for the continuation ratio models this is done here. It is shown that stochastic ordering 

of the total score by the latent trait is implied by all continuation ratio models, while monotone likelihood 
ratio of the total score and stochastic ordering on the latent trait by the total score are not implied by any 
of the continuation ratio models. Only the sequential rating scale model implies the property of invariant 

item ordering. Also, we present a Venn-diagram showing the relationships between all known polytomous 
IRT models from all three classes. 

Key words: acceleration model, adjacent category models, continuation ratio models, cumulative probabil- 

ity models, hierarchical relationships between IRT models, invariant item ordering, monotone likelihood 
ratio, polytomous IRT models, sequential model, stochastic ordering. 

General Introduction 

In the social and behavioral sciences data collected by means of items in tests and ques- 

tionnaires are often ordered scores, where a higher score indicates a higher position on a latent 

trait such as arithmetic ability, introversion, or attitude towards capital punishment. Examples of 

items with ordered scores are used in the "NT2-profiel toets" (CITO, 1999), an ability test for 

Dutch as a foreign language. We discuss such an item and its sequential scoring rule here because 

it appears to be well suited for the class of continuation ratio IRT models (CRMs; Agresti, 1990, 

pp. 319-321; Mellenbergh, 1995; Molenaar, 1983) that is central to this paper. Each item of the 

"NT2-profiel toets" consists of a spoken Dutch text that ends with a question about this text, for 

example (see also Hemker, 2001), 

[translated from Dutch] Suppose, you work at an office. You have to fax a letter for 

your boss. You have no experience with the fax machine. You know a colleague who 

is able to use the fax machine. What do you ask your colleague? (CITO, 1998, p. 5) 

An examinee has to give a verbal response (in Dutch). Examinees are tested individually by an 

examiner, who scores each item. The item is scored as follows. In the first step, the content of  

the answer is assessed. If  the response is incorrect with respect to content (e.g., "Can I use this 

fax machine?"), the first step is failed and the result is an item score of  0. Only if the examinee's 

response is correct or almost correct (i.e., a request for help or for an explanation of  the operation 
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tional Institute for Educational Measurement, EO. Box 1034, 6801 MG Arnhem, THE NETHERLANDS. E-Mail: 
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of the fax machine) the first step is passed and the examiner proceeds with the second step. In the 

second step the examinee's use of grmmnar is assessed. If the examinee makes more than just a 

few insignificant grammatical errors, the second step is failed and the result is an item score of 1. 

Only if the examinee's response contains no more than a few unimportant grammatical errors 

the second step is passed and the examiner proceeds with the third step. In the third step the 

pronunciation of the response is assessed. If the examiner thinks that the average Dutchman will 

not be able to understand the response easily, the third step is failed and the result is an item score 

of 2. If the examiner thinks that the ave r se  Dutchman can understand the response without too 

much difficulty, the third is passed and the result is an item score of 3. 

Classes of Polytomous Item Response Models 

Continuation Ratio Models 

The class of CRMs to be discussed here may be suited particularly for modeling data ob- 

tained through a sequential scoring rule as illustrated by the example. CRMs usually have logistic 

response functions. Hemker (1996, chap. 6) extended tile class of CRMs to also include nonpara- 

metric response functions of which logistic functions are special cases. Before discussing the 

general form of CRMs, we first introduce some notation. Let the latent trait be denoted by 0, the 

random variable for the score on item j by X j ,  and realizations by x = 0 . . . . .  m. Furthermore, 

all models discussed here assume a unidimensional 0 and locally independent item scores. First, 

we define the conditional probability of passing an item step as 

P ( X j  >_ xlO) (1) 
Mjx(O) = P ( X j  >_ x I X  j ~ X - -  1; 0) = P ( X j  > x - ll0)" 

Equation (1) implies that if x = 0 then Mix(O) = 1 for all 0. Equation (1) is the item 

step response function (ISRF). The conditional probability of obtaining an item score of x, 

P (Xj  = x I 0), is decomposed into a product of x terms, Mix  (0), and one term, 1 - Mj,x+i(O), 

a s  

x 

P ( X j  = xlO) = 1-I Mjr(O) [1 - Mj,x+i(O)] (2) 

y = 0  

(Samejima, 1972, chap. 4). Equation (2) is the category characteristic curve (CCC). Thus, CRMs 

formalize sequential scoring by writing the CCC as a product of x ISRFs for the x subtasks 

that were successfully solved and the conditional probability of failing subtask x 4- 1 given that 

the previous subtasks were mastered. Thus, it is assumed that the steps are executed in a fixed 

sequence. Tutz (1990) discussed two parametric CRMs and characterized both as sequential 

models, 

Adjacent Category Models 

If the order in which the steps are presented to the respondent is not fixed, then two other 

classes of models for ordered item scores might be used. These two classes use alternative defi- 

nitions of the ISRF (e.g., Mellenbergh, 1995; Molenaar, 1983). One class of models is known as 

adjacent categox7 models (ACMs). The ISRF of models from this class is defined as 

P ( X j  = xlO) (3) 

Fix(O) = P ( X j  = xlO) 4. P ( X j  = x -  110)" 

It may be noted that the ISRF of ACMs (3) and the ISRF of CRMs (1) are related by 

Fix(O) = Mjx(O) - Mjx(O)Mj,x+l(O) 

1 - Mjx(O)Mj,x+i(O) 
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Thissen and Steinberg (1986) called parametric models from the class of ACMs divide-by-total 

models and Andrich (1995) called these models Rasch models. Some well-known divide-by-total 

models are the rating scale model (Andersen, 1977; Andrich, 1978) and the generalized partial 

credit model (Muraki, 1992). The best known of these parametric ACMs is the partial credit 

model (Masters, 1982), defined by 

exp(0 - 3jx) (4) 
Fjx(O) = 1 + exp(0 - 3jx)' 

where 3ix is a location parameter. Hemker, Sijtsma, Molenaar and Junker (1996) introduced a 

more general class including a nonparametric model. They called this model the nonparametric 

partial credit model, defined by Fix (0) (Equation (3)) nondecreasing in 0. 

Cumulative Probability Models 

The third class of models is known as cumulative probability models (CPMs). The ISRF of 

models from this class is defined as 

Gjx(O) = P(Xj > xlO). (5) 

It may be noted that the ISRF of CPMs (4) and the ISRF of CRMs (1) are related by 

Gjx(O) = 11 Mjy(O). 
y = l  

(6) 

Thissen and Steinberg (1986) called parametric CPMs difference models, because the CCC is 

obtained by the difference of two adjacent ISRFs. Andrich (1995) called these models Thurstone 

models. A well-known CPM is the homogeneous case of the graded response model (Samejima, 

1969; also, see Samejima, 1997), defined as 

Gjx (0) = 
exp[cej (0 - -  ,~jx)] 

1 + exp[cej (0 - "~jx)]' 

where c~j denotes the slope parameter and )~jx a location parameter, different from 3jx in (4); see 

Masters (1988) for a discussion of the interpretations of 3ix and )~jx. When it is assumed that the 

ISRF in (5) is nondecreasing in 0, without defining the ISRF parametrically, the nonparametric 

graded response model is obtained (Hemker et al., 1996). 

Table 1 summarizes the terminology used to identify the three classes of polytomous IRT 

models. Van Engelenburg (1997, chap. 2) argued that with each of the three classes of polytomous 

IRT models corresponds a particular type of task, and Akkermans (1998, chap. 3) argued that 

with each class corresponds a particular type of scoring rule. 

Motivation of This Study 

Thissen and Steinberg (1986) discussed a taxonomy for divide-by-total models and diffEr- 

ence models. This taxonomy also included models with guessing parameters that are not relevant 

for this study and, consequently, are left out of consideration. The taxonomy only pertained to 

parametric models. Hemker, Sijtsma, Molenaar, and Junker (1997) discussed a taxonomy that ba- 

sically extended the taxonomy of Thissen and Steinberg to include nonparametric models. More- 

over, the formal relationships between all models were described by means of a Venn-diagram, 

based on stochastic ordering (SO) relations between the latent trait 0 and the unweighted sum of 

J item scores, denoted X+. Sijtsma and Hemker (1998) discussed the same classes of models 

with respect to the item ordering property known as invariant item ordering (Sijtsma & Junker, 

1996). 
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TABLE 1. 
An overview of the terminology used to identify classes of IRT models 

Definition ISRF 

Au~or 
P ( X j  = xlO ) 

P ( X j  = x V x -- ll0) 
P ( X j  >_ xlO ) 

P ( X j  >_ xIO ) 

P ( X j  >_ x -- 110) 

Molenaar (1983); 
parmnetric and 

nonparaanetric models 

Thissen and Steinberg (1986); 
Parametric models only 

Andrich (1995); 
Parametric models only 

Tutz (1990); 
Parametric models only 

Adjacent Category 

Models (ACMs) 

Divide-by-Total 

Models 

Rasch Models 

Cumulative 

Probability 

Models (CPMs) 

Difference Models 

Thurstone Models 

Continuation Ratio 

Models (CRMs) 

Sequential Models 

A missing link in this research is the class of CRMs. Both classes of ACMs and CPMs have 

been investigated thoroughly (Andersen, 1977, 1997; Andrich, 1978, 1995; Glas, 1989; Kelder- 

man & Rijkes, 1994; Masters, 1982; Masters & Wright, 1997; Muraki, 1990, 1992; Samejima, 

1969, 1972; Verhelst, Glas, & Verstralen, 1995) and models from these classes have been applied 

to many practical data analysis problems (some recent applications include Alexander & Mur- 

phy, 1998; Cooke, Michie, Hart, & IIare, 1999; Gumpel, Wilson, & Shalev, 1998; Maurer, Raju, 

& Collins, 1998; and Sijtsma & Verweij, 1999). Although potentially useful, the class of CRMs 

thus far has received relatively little attention (the exceptions are Samejima, 1995; Tutz, 1990, 

1997; and Verhelst, Glas, & De Vries, 1997). CRMs are attracting more attention nowadays, 

given the recent studies by Hemker (1996), Van Engelenburg (1997) and Akkermans (1998), 

who compared CRMs with other polytomous IRT models. Thus, it seems reasonable to better 

incorporate the class of CRMs into the polytomous IRT framework. A contribution to this is 

given in this paper, where we investigate likelihood ratio and SO properties between the latent 

trait 0 and the sum score X+, and also the invariant item ordering property. Insight into these 

relationships contributes to a better understanding of the relationships of CRMs to ACMs and 

CPMs and, moreover, gives indications of the practical usefulness of CRMs. 

Introduction to Continuation Ratio Models 

We discuss the most general model from the class of CRMs, and then we discuss several 

special cases. The most general model is the nonparametric sequential model (Hemker, 1996, 

chap. 6), which assumes an order-restricted ISRF, without parametrically defining it. The non- 

parametric sequential model assumes a unidimensional 0, locally independent item scores, and a 

nondecreasing ISRF, given by (1). Several special cases have been proposed. 

Samejima (1995) assumed a semi-parametric ISRF, Mjx (0) = [~jx (0)] ~j , where ~j _> 0 is 

the acceleration parameter. The function qQx(O) = P ( X j  > x I X j  > x - 1; 0) is nonparametric 

and is assumed to be strictly increasing with 0 and 1 as its horizontal asymptotes. The acceleration 

model is the parametric version of Mjx (0) = [~jx (0)] ~j. Let C~jx denote the discrimination 

parameter and fijx the location parameter associated with category x of item j ,  and let D be 

a scaling constant, usually equal to 1.7 to scale the logistic function to the normal-ogive. The 

acceleration model assmnes that 

exp[Dc~ jx (O  - -  f i j x ) ]  I ~j 
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It may be noted that the acceleration model is not a logistic model for ~j ~ 1. The accelera- 

tion parameter contributes to the steepness of  the complete ISRFs, whereas C~jx influences the 

steepness of  a logistic curve in its inflection point: ~j > 1 "pushes down" the entire curve and 

~j < 1 "lifts up" the entire curve, where both effects add to the effect of C~jx on the slope of an 

ISRF in the inflection point. Figure l(a) gives a graphic example of the acceleration model, and 

shows two items each having two ISRFs (solid and dashed curves for different items; parameter 

l(a) l ( b )  
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FIGURE 1. 
The ISRFs of six parametric CRMs for two items (solid and dashed curve) with three answer categories. Figure 1 (a) is 

the Acceleration Model; Figure l(b) is the 2p(jx)-Sequential Model; Figure l(c) is the 2p(j)-Sequential Model; Figure 

1 (d) is the 2p(x)-Sequential Model; Figure 1 (e) is the Sequential Rasch Model; Figure 1 (f) is the Sequential Rating Scale 

Model. 
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values are given in Appendix B) with three answer categories. Figure l(a) shows that Mix (0) is 

not symmetric in its inflection point. 

For ~j = 1, the 2-parameter sequential model with parameters for each (j, x) combination, 

abbreviated 2p(jx)-sequential model, is obtained. This is a logistic model defined by 

exp[c~jx (0 - -  fijx)] 
Mjx(O) = 1 + exp[c~L~:(O - fijx)]" 

A special case of this model can be obtained by fixing ogx across answer categories, so that ajx = 

aj .  The resulting model is the 2p(j)-sequential model. Another possibility is to fix otjx across 

items, so that ajx = Otx. This results in the 2p(x)-sequential model. In Figure l(b), Figure l(c) 

and Figure l(d), we give graphic examples of the 2p(jx)-sequential model, the 2p(j)-sequential 

model and the 2p(x)-sequential model, respectively (parameter values in Appendix B). 

In the sequential Rasch model (Tutz, 1990) or, equivalentl}, the lp-sequential model, the 

ISRF Mix (0) is further constrained by fixing C~jx = 1, so that 

exp(0 - fijx) (7) 
Mjx(O) = 1 + exp(0 - fijx)" 

Alternatively, we may write 

[ 1 = 0 - logit[mjx(O)] = log 1 + mjx(O)J 

De Vries (1988) and Verhelst, Glas, and de Vries (1997) introduced the sequential model to 

analyze partial credit as an alternative to Masters' partial credit model. Their model is equivalent 

to the sequential Rasch model (Equation (7)). 

A special case of the lp-sequential model is the sequential rating scale model (Tutz, 1990), 

in which the location parameter fijx is split up into an item location parameter 8j and a step 

location parameter rx, with ~ x  rx = 0. The sequential rating scale model is the most restricted 

CRM proposed. Graphic examples of the sequential Rasch model and the sequential rating scale 

model are given in Figure l(e) and Figure l(f), respectively. It may be noted that in the sequential 

Rasch model, the sequential rating scale model, and the 2p-sequential models the logit of Mix (0) 

is a linear function of the model parameters (Mellenbergh, 1995; Molenaar, 1983). This is not 

true in the acceleration model. Figure 2 shows the relationships between the various CRMs. The 

arrows in Figure 2 should be read as logical symbols for an implication. 

2p(j)- 
Sequential 
Model 

/ \ 
Sequential Sequential 2p(jx)- Acceleration Nonparametric 
Rating Scale ~ Rasch Sequential D Model ~ Sequential 
Model Model Model Model 

\ / 
2p(x)- 
Sequential 
Model 

FIGURE 2. 

Hierarchical  relat ionships within the class of  CRMs.  
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Measurement Properties for Persons and Items 

Measurement Properties for  Persons 

Motivation for  Using Total Score 

We assume J polytomous items with m + 1 ordered answer categories each and a simple 

scoring rule for each item, that is, X d = 0 . . . . .  m, for all j .  The unweighted total score is 

J 

X+ = Z X d ' X +  = 0 . . . . .  mJ.  

j = l  

Samejima (1996) criticized the use of X+ for estimating 0, because the amount of test informa- 

tion based on any aggregation of the response patterns, such as X+, cannot exceed the amount 

of test information obtained from the response patterns, unless X+ is a sufficient statistic for 

0 (Samejima, 1969, chap. 6). Sijtsma and Hemker (2000) extensively discussed the practical 

usefulness of X+ as opposed to the theoretical usefulness of 0, for example, as discussed by 

Samejima. They argue that X+ is better suited than 0 for communicating test results to mea- 

surement practitioners and laymen, because X+ has an interpretation closely related to solving 

problems correct or incorrect (dichotomous items) or the number of points earned (polytomous 

items), whereas 0 has a complicated interpretation in terms of logits (see Mellenbergh, 1995). 

On the contrary, for test practitioners X+ is quick and simple, and allows immediate feedback 

to testees. Also, Sijtsma and Hemker (2000) note that nothing prevents psychometricians and 

test constructors to use IRT for test construction and the information function for measurement 

evaluation of the estimated 0 on the one hand, and test practitioners, including teachers, to score 

performance on those same tests by means of summary scores such as X+ on the other hand. 

The use of X+ is further corroborated by a theoretical result of Junker (1991), who showed in the 

context of the nonparametric graded response model (Equation (5), response probability Gjx (0) 

nondecreasing in 0) that for infinitely many polytomous items X+ consistently estimates 0. In 

this paper we investigate for CRMs whether X+ can be used for ordering respondents on 0 in an 

SO sense, which is also useful in a nonparametric IRT context where numerical estimates of 0 

are not available. 

We agree with Samejima (1996) that for the evaluation of measurement precision X+ is not 

the optimal statistic, but we also believe that X+ may be an adequate summary test score for 

ordering persons on 0 in a nonparametric context and for communication purposes in a general 

IRT context. Also, Hemker et al. (1997) used measurement properties based on X+ to study 

the relationships between all known ACMs and CPMs. This paper completes this investigation 

by presenting a Venn-diagram displaying the relationships between all known polytomous IRT 

models from the classes of ACMs, CPMs, and also CRMs. 

Monotone Likelihood Ratio 

The first measurement property we consider is monotone likelihood ratio (MLR). For poly- 

tomous items, MLR of X+ in 0 means that for 0 _< C < K _< m J, 

P(X+ = KIO) 
g(K,  C; O) = (MLR) 

P(X+ = CIO) 

is a nondecreasing function of random variable 0 (Lehmann, 1959). It can be shown that the MLR 

property is symmetric in its arguments. By writing the ratio in Equation MLR twice, conditioning 

once on Oa and once on Oh, with Oa < Oh, SO that 

P(X+ = KIO = Oa) P(X+ = KIO = Oh) 

P ( X +  = c I o  = o~) - P ( X +  = c I o  = Oh)' 
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then rearranging probabilities, and applying Bayes' Theorem, eventually we have that 

P(O = Ot~lX+ = C) P(O = OblX+ = K )  
< 

P(O = Oa]X+ = C) - P(O = OatX+ = K)" 

This result means that MLR of X+ in 0 is equivalent to MLR of 0 in X+. MLR is a technical 

property that implies two SO properties (Lehmann, 1959, p. 74) that can be interpreted conve- 

niently in an IRT context. These SO properties are both weaker than the MLR property, in the 

sense that neither SO property implies the MLR property (Lehmann, 1959, sec. 3.3; see also, 

Junker, 1993; Rosenbaum, 1985). In addition, the SO properties do not imply each other. 

Stochastic Ordering Properties 

First, MLR implies the stochastic ordering of the manifest variable X+ by 0 (abbreviated 

SOM). That is, for any two respondents a and b with Oa < Oh, and for any x+, 

P ( X +  > x + f G )  < P ( X +  > x+lOb). (SOM) 

SOM takes the ordering on 0 as a starting point, and implies that a higher 0 results in a higher 

expected total score (see Lehmann, 1986, p. 85, Lemma 20); which pertains to the MLR prop- 

erty). 

Second, MLR implies the stochastic ordering of the latent trait 0 by X+ (abbreviated SOL). 

This means that for any constant value s of 0, and for all 0 _< C < K < m J,  

P(O > siX+ = C) < P(O > s iX+ = K) .  (SOL) 

SOL takes the ordering on X+ as a starting point, and implies that a higher X+ results in a higher 

expected 0 (Lehmann, 1986, p. 85, Lelmna 2(i)). In practice, SOL is of more interest than SOM, 

because only the ordering on X+ can be observed and inferences about 0 are based on X+. For 

example, SOL is requhed for making mastery decisions based on cutoffs for the total score X+. 

Grayson (1988; also see Huynh, 1994) showed that, given unidimensionality, local inde- 

pendence, and monotonicity, MLR holds lk)r tests consisting of dichotomously scored items. By 

implication, SOM and SOL also hold under these assumptions. For the classes of well known 

ACMs and CPMs, Hemker, et al. (1996) showed that MLR holds only for the partial credit 

model (and its special cases), but for none of the other well known polytomous models. In addi- 

tion, Hemker et al. (1997) showed that SOL also holds only for the partial credit model, but that 

SOM holds for each of the well known parametric and nonparametric ACMs and CPMs. For the 

class of CRMs, the properties of MLR, SOM, and SOL have not been investigated thus far. 

A Measurement Property f o r  Items: Invariam Item Ordering 

Let E (X j I 0) denote the conditional expected score of item j .  This conditional expectation is 

the item response function (IRF), both for dichotomous and polytomous items (Chang & Mazzeo, 

1994). Unlike for dichotomous items, for polytomous items the IRF is not a probability, but a 

function ranging from 0 to m. Invariant item ordering (IIO; Sijtsma & Junker, 1996; Sijtsma & 

Hemker, 1998) means that the items have the same ordering by E ( X j  [0), except for possible ties, 

for all values of 0. In general, J items have an IIO (Sijtsma & Hemker, 1998; Definition) if they 

can be ordered and numbered such that 

E(XIIO) ~ E(X2IO) < . . .  < E(Xj IO);  for all O. (IIO) 

Within meaningful subgroups, such as age groups, items may also be ordered using E ( X j ) ,  

j = 1 . . . . .  J,  which is the mean item score across the distribution of 0 in a particular subgroup. 
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If an IIO holds, that is, an item ordering that is the same for all 0's, then the items also have the 

same ordering with respect to E (X j)  between different subgroups. 

IIO is a useful property when the application of a test asstnnes that items have the same 

ordering for different 0's. For example, in intelligence testing using a conventional test format 

(i.e., not an adaptive test format) items are often ordered from easy to difficult to facilitate the 

use of starting and stopping rules for individuals (e.g., the Amsterdam Child Intelligence Test; 

Bleichrodt, Drenth, Zaal, & Resing, 1985) in the tk)llowing way. The youngest age group starts 

with the easiest item and an individual child stops when he/she failed at, for example, three 

consecutive items (the next items are more difficult and it is assumed that the child will also fail 

at those items), qSe next age groups skips, say, the first five items, which are assumed to be too 

easy for them, and starts at item 6. For each individual child, the same stopping rule applies. The 

third age group starts at, say, item 16, and so on. Obviously, this test administration procedure 

uses the assumption that for the whole population the items have an IIO. 

Other applications where an IIO is relevant are the following. Several person fit detection 

methods are based on the difficulty ordering of the items, and applications to individuals all 

use the same item difficulty ordering. Also, items may reflect a developmental sequence that is 

assumed to hold for each individual, and the difficulty ordering that results from the developmen- 

tal ordering by implication also holds at the individual level. Finally, when items are assumed 

to be unbiased the ordering according to difficulty should be the same in different meaningful 

subgroups, for example, defined by gender, ethnicity, and social economic status. 

For dichotomous and polytomous items, all II~F models having nonintersecting IRFs imply 

an IIO (Sijtsma & Hemker, 1998; Sijtsma & Junker, 1996). For dichotomous items, the Rasch 

(1960) model and the double monotonicity model (Mokken & Lewis, 1982) are well known 

examples. For t~lytomous items, the ISRFs of different items need not be nonintersecting to 

obtain nonintersecting IRFs. Sijtsma and Hemker showed that in the ACM class the rating scale 

model (Andrich, 1978) implies an IIO, and in the CPM class the rating scale version of the graded 

response model with equal ISRF slopes (a special case of Muraki's, 1990, model), the strong 

double monotonicity model (Sijtsma & Hemker, 1998), and the isotonic ordinal pmbabilistic 

model (ISOP; Scheiblechner, 1995) each imply an IIO. 

Measm'ement Properties of the Continuation Ratio Models 

First, we show that CRMs do not imply MLR. Next, we show that all CRMs imply SOM, 

but that none of the CRMs imply SOL. Finally, we show that the sequential rating scale model 

implies an IIO when all items have the same number of answer categories. We will derive all 

results assuming that the number of answer categories is fixed over items, which is realistic in 

most applications. Also, this is the assumption followed in previous research on MI,R (Hemker 

et al., 1996), SOM and SOL (Hemker et al., 1997), and IIO (Sijtsma & Hemker, 1998). 

Monotone Likelihood Ratio 

Example 1 (below) shows that the sequential rating scale model (Equation (7), with t3jx = 

rx + ~j substituted) does not imply MLR. Since the sequential rating scale model is a special 

case of all other CRMs (see Figure 2), it follows that none of these more general models implies 

MLR. 

Example 1. The sequential rating scale model does not imply MLR. Consider two items 

( J  = 2; j = 1, 2), each with five answer categories (m = 4). Let the item locations be el = 0 

and ~2 = 1, and let the category locations be rl = - .99 ,  r2 = .98, r3 = -1 .00,  and r4 = 1.01. 

This means that/~11 = - .99 ,  /~12 = .98, /313 = -1.00,  and/~14 = 1.01; and/~21 = .01, 

/~22 = 1.98,/~23 = .00, and f l 2 4  = 2.01. Figure 3 shows the corresponding functions 
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FIGURE 3. 

Graphic display of eight curves representing P(X+ = C + I lO) /P(X+ = CIO) for C = 0 , . . . ,  7, obtained from a 

Sequential Rating Scale Model tbr two items with five ordered answer categories. 

P(X+ = C + 110) 
g(C + 1, C; O) = 

P(X+ = ClO) 

(see Equation MLR) for 0 < C _< 7. The likelihood ratio function that decreases fiom 0 ~ 1.47 

to infinity, is g(C + 1 = 6, C = 5; 0). This function shows that the sequential rating scale model 

does not imply MLR. 

For many other choices of the location parameters than the values in Example 1, the like- 

lihood ratio g(C + 1, C; 0) is often found to be nondecreasing for all C. For the special cases 

of maximum total score X+ = m J and minimum total score X+ = 0, CRMs even imply MLR 

mathematically (proof in Appendix C). Another special case is MLR of item score Xj. Hemker 

et al. (1997; Proposition) showed that MLR of item score Xj is equivalent to nondecreasingness 

of the ISRF of the ACM class (Equation (3)). Additionally, Hemker (1996, chap. 6) showed that 

parametric CRMs with C~jx > c~j,x+l imply that the ISRFs of the ACM class are nondecreasing. 

Thus, the 2p(j)-sequential model and its special cases imply MLR when X+ = Xj. 

Stochastic Ordering 

Since MLR is a sufficient, but not a necessary condition for the pro~rt ies  of SOM and SOL, 

models that do not have MI,R may have one or both SO properties. First, we show that all CRMs 

imply SOM. Next, we show that none of the CRMs imply SOL. 

Theorem 1. All CRMs imply SOM. 

Proof The proof consists of two parts. First, we prove that all CRMs discussed here imply 

SOM of X+ = Xj. It may be noted that unidimensional 0, local independence, and SOM of 

X+ = Xj together define the nonparametric graded response model (Hemker, et al., 1996; see 

(5), where the conditional probability Gjx (0) is assumed to be nondecreasing). Since all CRMs 

assume unidimensionality and local independence, and we prove that these models imply SOM 
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of  X+ = X j, it follows logically that all CRMs imply the nonparametric graded response model. 

Second, we prove that the nonparametric graded response model implies SOM. The first part 

of  the proof is given here (also, see Hemker, 1996, chap. 6), and the second part was proven in 

Hemker et al. (1997, Theorem 1). 

Let Oa < 0b. In the nonparametric sequential model the ISRF (Equation (2)) is nondecreas- 

ing and, therefore, 

It follows that 

P(X j  > xlOa) P (X j  > XlOb) 
< 

P (X j  > x - l ] 0 a )  - P(X j  > x - l ] 0 b ) '  f o r  a l l x  andal l  j .  

x P (X j  >_ ylOa) l---Ix P (X j  _> ylOb) 
[I P(Xj > y-- i-(d~) <11  y = l  -- -- = P (X j  >_ y -  l ]0b )  

4=> 

P(X j  > xlOa) P (X j  > XlOb) 
- < - for all x and all j.  

P ( X  d >_ 010a) - P ( X  d >_ 010b)' 

Since the denominators in (8) equal 1, we have that 

P(X j  > xlOa) < P (X j  > XlOb), 

(8) 

which is equivalent to SOM of the item score X +  = Xj .  Since the nonparametric sequential 

model is the least restrictive model in the CRM class all special cases imply SOM. [] 

Next, we investigate SOL. Example 2 (below) gives an example of  a sequential rating scale 

model that does not imply SOL. Because the sequential rating scale model is the most restrictive 

model in the CRM class, it follows that none of  the CRMs imply SOL. 

Example 2. The sequential rating scale model does not imply SOL. This counterexample 

uses the same parameter values as Example 1. Furthermore, let 0 be a discrete latent trait with 

P(O = 0) = 0.5 and P(O = 1) = 0.5, then P(O >_ l IX+ = 3) ~ .64, and P(O >_ l IX+ = 4) 

.54. Thus, P (0 _> l IX+) is not nondecreasing in X+. Consequently, the sequential rating scale 

model does not imply SOL. 

Example 2 remains valid as a counter example of  SOL for standard normally distributed 

0. The values of P(O > siX+) obtained using numerical integration are given in Table 2, for 

X+ = 4, 5, 6, 7 and s = 0, 1, 2, 3. In Figure 4, P(O > siX+) is depicted for X+ = 0 . . . . .  8 and 

s ranging from - 5  to 5. The left-hand solid curve represents P (0 > siX+ = 0), the right-hand 

solid curve represents P (0 > siX+ = 8), and the remaining curves represent the scores ranging 

from 1 through 7. If  SOL holds then the curves are in ascending order according to X+ and do 

not intersect. It may be noted, however, that P (0 > siX+ = 5) and P (0 > siX+ = 6) (third and 

fourth curve from the right) intersect at 0 ~ 1.47; thus, SOL is violated. 

TABLE 2. 
Numerical values showing that the sequential rating scale model does not imply SOL. Boldface values indicate 

violations of SOL. 

X+ P(O > 0IX+) P(O > 1IX+) P(O > 2IX+) P(O > 3IX+) 

4 .920 .679 .334 .105 

5 .987 .907 .660 .322 

6 .991 .912 .623 .265 

7 .999 .983 .845 .492 
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FIGURE 4. 

Graphic display of nine curves representing P(O > siX+ = K) for K = 0, . . . ,  8, obtained from a Sequential Rating 

Scale Model for two items with five ordered answer categories. 

For most values of X+ and s there is no problem in the ordering of persons on 0 by X+. 

In addition, several examples, not provided here, demonstrate that SOL also holds for many 

values of the item parameters. Example 2 shows, however, that none of the sequential models 

investigated here implies SOL. SOL is only implied in some special cases. For example, we 

already showed that MLR holds for all CRMs if X+ = m J, and that the 2p-sequential model 

with ajx > c~j,x+i implies MLR of the item score Xj. We also noted that MLR implies SOL. 

Consequently, SOL also holds m these special cases. Example 3 (below) shows that, in general, 

CRMs do not imply SOL of the item score Xj. 

Example 3+ The 2p(x)-sequential model does not imply SOL of X j .  Consider an item j 

with three answer categories. Two ISRFs describe this item: MjKO) and Mj2(O). Let tYjl = 1, 

O~j2 = 2,  and f l j  1 = f l j 2  = 0. Thus logit [Mjx (0)] = xO, for all x. Assume a discrete disUibution 

of 0, with P(O = 0) = 05  and P(O = 1) = 0.5. Then P(O >_ 1]Xj = 0) ~ .52, P(O > 1]Xj = 

1) ~ .26, and P(O >_ 1]Xj -~ 2) ~ .56. Thus, P(O >_ 1]Xj) is not nondecreasing in X+ = Xj. 

Consequently, SOL does not hold for the 2p(x)-sequential model when X+ = Xj. 

Example 3 also implies that file 2p(jx)-sequential model, the acceleration model and the 

nonparametric sequential model do not imply SOL of the item score Xj. 

Invariant Item Ordering 

Only the sequential 1-atmg scale model implies an IIO. The sequential rating scale model is 

the most restrictive CRM. First, we prove that the sequential rating scale model implies an IIO. 

For the sequential Rasch model, Example 4 provides a counterexample, which shows that this 

model does not imply an IIO. The combination of this result and the hierarchical relationships 

between the CRMs (see Figure 2) shows that none of the generalizations of the sequential Rasch 

model imply an IIO. 
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Theorem 2. The sequential rating scale model implies an IIO 

Proof Let items i and j have ISRFs according to the sequential rating scale model (Equa- 

tion (7), with/?jx = ej + Tx substituted). Let the location parameters of the items be ordered 

gi _> e j ,  so that Ai j  ~ 8i -- Ej :> O. Because for the CRMs the ISRF (Equation (1)) is a 

nondecreasing function, it follows readily that 

Mix(O) <_ Mix(O + A i j ) ;  for all x. 

From the definition of the sequential rating scale model it follows that for items i and j 

Mix(O + Z~xij) = Mix(O); for all x. (9) 

Equation (9) implies 

x x 

Mix(O) <_ Mjx(O), fo ra l lx  ~ 1-I Mix(O) < 1-I Mjx(O), fora l lx .  (10) 
k=0 k=O 

From (5) and (6) (also see Samejima, 1995) it follows that the right-hand side of (10) is identical 

to 

Next, (11) implies that 

P ( X  i > x]O) < P ( X j  > y]O), f o r a l l  x .  (11) 

m m 

Z P(Xi >_ xl0) _ Z P ( X J  > x]O). (12) 
x = l  xml  

It may be noted that (12) is identical to 

E(Xi I0) _< E(Xj I0). 

Equation (12) can easily be extended to J items and, there{bre, Equation IIO holds for all items 

satisfying the sequential rating scale model. [] 

Example 4. The sequential Rasch model does not imply an HO. Consider two items (j  = 

1, 2), each with three answer categories (m = 2). Consider Equation (7) and let the location 

parameters of the items be/?11 = -1.5,/512 = 2.5,/721 = - . 5 ,  and/?22 = 1. Figure 5 shows 

the IRFs for these items. The IRFs intersect at 0 ~ .4083. For persons with 0 < .4083, item 1 is 

easier than item 2, and for persons with 0 > .4083 file item ordering is reversed. 

Relationships of Continuation Ratio Models with Other Classes of Polytomous IRT Models 

Previous results on formal relationships between all CPMs and ACMs were based on SOL 

and displayed in a Venn-diagram (Hemker et al., 1997). The results of this paper fit nicely into 

this framework. Figure 6 extends the Venn-diagram with the relationships between the CRMs, 

and between the CRMs and the other models. The bold lines indicate the extensions. For a better 

understanding of Figure 6 we summarize the previous results on the formal relationships. 

Molenaar (1983) showed that if the ISRFs of the ACMs, CPMs and CRMs are defined by a 

logistic function, none of the three types of parametric models can be considered a special case 

or a generalization of any of the other models. In agreement with this result, Figure 6 shows the 

three types of parametric models as disjoint clusters of sets, with the outer sets denoteA 2p(jx)- 

PCM, 2p(j)-GRM, and AM, respectively (acronyms explained below Figure 6). 

Nonparametric models only restrict the ISRFs to be nondecreasing. When the ISRF in (3) 

is assumed to be nondecreasing, the nonparametric partial credit model is obtained, and when 

the ISRF in (5) is assumed to be nondecreasing the nonparametric graded response model is 

obtained. Hemker (1996, chap. 6) studied the relationship between the nonparametric models of 
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FIGURE 5. 

The IRFs (Represented by a solid and a dashed line) of two items of the Sequential Rasch Model. 

the CRM class, the ACM class and the CPM class. He proved that the nonparametric partial credit 

model implies the nonparametric sequential model, and that the nonparametric sequential model 

implies the nonparametric graded response model. In Figure 6, the three outer sets represent this 

hierarchical relationship. 

Hemker et al. (1997) proved that all parametric ACMs and all parametric CPMs are spe- 

cial cases of the nonparametric partial credit model. In Figure 6, the two sets of parametric 

ACMs [outer set labeled 2p(jx)-PCM] and parametric CPMs (outer set labeled 2p(j)-GRM) are 

contained in the set denoted np-PCM. Because of this relationship, these two sets of paramet- 

ric models are also special cases of the nonparametric sequential model and the nonparametric 

graded response model; see Figure 6. Also, all parametric CRMs are special cases of the nonpara- 

metric sequential model (see Figure 2) and, thus, of the nonparametric graded response model 

(Figure 6). 

Finally, Hemker (1996, chap. 6), showed that the 2p(jx)-sequential model is a special case 

of the nonparametric partial credit model only if O~jx >_ o~j,x+l, for all j and x. Thus, only the 

2p(j)-sequential model and special cases of this model imply nondecreasingness of the ISRF in 

(3). Therefore, those models are special cases of the nonparametric partial credit model, as can 

be seen in Figure 6 where only the sets representing these models are contained completely in 

the set for the np-PCM. 

Discussion 

This study has yielded two main results. First, we have established which CRMs imply 

one or more of the measurement properties of monotone likelihood ratio (MLR) of the total 

score X+ given the latent trait 0, stochastic ordering of X+ given 0 (SOM), stochastic ordering 

of 0 given X+ (SOL), and an invariant item ordering (IIO). For polytomous IRT models from 

the classes of adjacent category models (ACMs) and cumulative probability models (CPMs), 

Hemker et al. (1996) investigated the MLR property. For the same classes of models Hemker 

et al. (1997) investigated SOM and SOL. This study resulted in a Venn-diagram exhibiting the 

hierarchical relationships between the models from both classes. Finally, for these two classes 
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AM 
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2p(x)-SM 

SRM 

SRSM 

2p(j)-GRM 

lp-GRM 

: nonparametric graded response model 

: nonparametric sequential model 

: nonparametric partial credit model 

: acceleration model 

: 2p(jx)-sequential model 

: 2p(j)-sequential model 

: 2p(x)-sequential model 

: sequential Rasch model 

: sequential rating scale model 

: graded response model 

: one parameter graded response model 

lp-GRM Rat. S. : one parameter graded response model with rating scale restrictions 

2p(jx)-PCM : 2p(jx)-partial credit model 

2p(j)-PCM : 2p(j)-partial credit model (generalized partial credit model) 

2p(x)-PCM : 2p(x)-partial credit model 

PCM : partial credit model 

RSM : rating scale model 

FIGURE 6. 
Venn-diagram showing the relationships of polytomous IRT models from the classes of ACMs, CPMs, and CRMs. Bold 
face notation and bold lines indicate new results. 

of models Sijtsma and Hemker (1998) investigated IIO. ~I~e present study thus fills a gap by 

also investigating these measurement propelties for a class of models that was not studied in the 

previous studies. We now have a complete picture of the measurement properties of MLR, SOM, 

SOL, and IIO for all polytomous IRT models for ordered item scores that are known to date. 

Second, we extended the Venn-diagram for ACMs and CPMs presented by Hemker et al. 

(1997) with results for CPMs. The resulting Venn-diagram contains the hierarchical relationships 

between all polytomous IRT models for ordered item scores from each of the three classes of IRT 

models. 

When a model allows for intersecting IRFs, it does not imply an IIO. Because with each 

intersection of two IRFs the ordering of the E(Xj 10)s changes, it follows that IRT models with 

intersecting IRFs imply many different item orderings, which depend on 0. Thus, the question 

whether some models that do not imply an IIO perhaps might have this property by approxima- 

tion is not an issue. 

The situation is different for the property of SOL, which is the most interesting person 

ordering property. We have many indications from numerical examples that when a model does 
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not imply SOL, this ordering property still may hold by approximation (Sijtsma & van der Ark, 

2001; van der Ark, 2000). This means, for example, that when X+ is used for ordering 0 under a 

model, which does not formally imply SOL, tile ordering may be distorted only for two or three 

adjacent X+ values. For example, let the scale values run from, say, 0 to 60, decisions be based 

on a cut-off score of 40, and the distortion of the X+ ordering occur only for the values of 21 and 

22. Then it could be concluded that the violation of SOt. does not really harm an application that 

uses the cut-off score of 40 as the most relevant scale value. 

Appendix A 

List of acronyms: 

Technical terms: 

CCC: 

IRF: 

IRT: 

ISRF: 

category characteristic curve 

item response function 

item response theory 

item step response function 

Classes of item response models: 

ACMs: adjacent-category models 

CPMs: cumulative probability models 

CRMs: continuation ratio models 

Technical properties 

IIO: 

MLR: 

SO: 

SOL: 

SOM: 

invariant item ordering 

monotone likelihood ratio 

stochastic ordering 

stochastic ordering of the latent trait by the total score 

stochastic ordering of the total score by the latent trait 

Appendix B 

The parameters used to produce the curves in Figure 1 are given in Table B1. 

TABLE B1. 

Parameters used to produce the curves in Figure 1 

Model 

Parameter j x AM 2p(jx)-SM 2 p Q ) - S M  2p(x)-SM SRM SRSM 

1 0.2 1.0 1.0 1.0 1.0 1.0 

2 5.0 1.0 1.0 1.0 1.0 1.0 

ajx 1 1 3.5 3.5 0.5 2.5 1.0 1.0 

1 2 0.5 0.5 0.5 0.5 1.0 1.0 

2 1 1.0 1.0 2.0 2.5 1.0 1.0 

2 2 2.0 2.0 2.0 0.5 1.0 1.0 

fijx l l -1.0 - l . 0  -1.0 -1.0 -1.0 - l . 0  

1 2 3.0 3.0 3.0 3,0 3.0 0.0 

2 1 1.0 1.0 t.0 1.0 1.0 1.0 

2 2 2.0 2.0 2.0 2.0 2.0 2.0 
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Appendix C 

We prove that the nonparametfic sequential model implies MLR for the maximum total 

score X+ = m J.  The nonparmnetric sequential model assumes unidimensionality, local inde- 

pendence, and Mix (0) (Equation (1)) nondecreasing in 0 and is the least restrictive CRM. By 

implication, all CRMs imply MLR for the maximum total score X+ = m J; that is, g(K = 

m J, C < m J; O) is nondecreasing in 0. 

In the proof the following notation is used: Let :rjx (0) -- P (Xj = x 10) and let the number 

of  score vectors that yield X+ = K and X+ = C be denoted by RK and Re, respectively. 

By convention, K > C. Vectors containing scores on the J items summing to X+ = K are 

denoted X(~), with realizations x~.~ (u = 1, . . . ,  Rx).  Similarly, vectors containing scores on the 

J items summing to X+ = C are denoted X(v), with realizations x~ (v = 1 . . . . .  Re).  Let the 

first derivative of  a function with respect to 0 be denoted by means of  a prime. All derivatives in 

the proof are with respect to 0. 

Hemker et al. (1996) showed that, assuming unidimensionality and local independence, 

MLR of  X+ holds if the first derivative of  the likelihood ratio in Equation MLR is nonnegative 

for all 0, that is 

/ ] J ( ) × 1 - [  × _ > 0. ( c 1 )  

u=l v=l j=l  j=l  

In Equation (C1) the only part that may result in negative values is 

~jx(u) (0) njx(v) (0)" 

Therefore, for our proof it is sufficient to show that for K = m J this difference is always 

nonnegative, in'espective of the values of  C. 

The maximum of X+ is re,l, and is obtained for X(u) = (m, m . . . . .  m). It may be noted 

that in this case RK = 1, meaning that 

Yrjx(u)(O) ~jm(O) 

Next, it is shown that for any x and any j ,  

7rj m (0) 7rjx (0) 

is nonnegative. 

Note that 

and in the CRM 

(see Equation (2))• Thus, 

ln[rCjm (0)] ~ = In 

7r}m (0)  _ ln[zcjm (0)]  z, 

~jm (0) 

m 

rcJ re(O) = U Mjy(O) 
y=0 
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which means that for any j 

[Mjy (o )]' 
ln[rCjm (0)]~ = )_~ 

y=0 Mjy(O) 
(C2) 

Similarly, 

Because in the CRM 

~jx (0) _ ln[~jx (0)] f. 
7rjx (0 )  

X 

~jx(O) = V I  Mjy(O)[1 - Mj,x+l(O)] 

y=0 

(see Equation (2)), this implies that for any x (0 < x < m) and any j 

~ [Mjx(O)]' [Mj,x+~(O)]' (C3) 
ln[zCjx ( 0 ) ] '  = Mjy (0) 1 -- Mj ,x+l  (0)" 

y=0 

From Equations (C2) and (C3) it follows that for any x and any j ,  

rCjm(O) rCjx(O) y=0 mjy(O) y=0 mjy(O) 1 - mj,x+l(O)] 

[Mjy(O)]' [Mj,x+l (0)] p 

y = x + l  Mjy(O)  + 1 - Mj,x+l(O)" (C4)  

Note that for all x (0 < x < m) the first derivative of Mix (0) is nonnegative in the nonparametric 

sequential model, because this model assumes that Mix (0) is nondecreasing. Also, m this model 

0 < Mjx(O) < 1, for all x. Thus, Mjy(O) and [1 - Mj,x+l(O)] are nonnegative. This implies 

that Equation (C4) is nonnegative for all x and j .  This implies that Equation (C1) holds when 

K = m J. A similar proof shows that MLR holds for C = 0 and K > 0. 
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