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Abstract In this paper, we address the problem of creating an objective benchmark for

evaluating SLAM approaches. We propose a framework for analyzing the results of a SLAM

approach based on a metric for measuring the error of the corrected trajectory. This metric

uses only relative relations between poses and does not rely on a global reference frame. This

overcomes serious shortcomings of approaches using a global reference frame to compute

the error. Our method furthermore allows us to compare SLAM approaches that use different

estimation techniques or different sensor modalities since all computations are made based

on the corrected trajectory of the robot.

We provide sets of relative relations needed to compute our metric for an extensive

set of datasets frequently used in the robotics community. The relations have been obtained

by manually matching laser-range observations to avoid the errors caused by matching algo-

rithms. Our benchmark framework allows the user to easily analyze and objectively compare

different SLAM approaches.
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1 Introduction

Models of the environment are needed for a wide range of robotic applications including

transportation tasks, guidance, and search and rescue. Learning maps has therefore been a

major research focus in the robotics community in the last decades. Robots that are able to

acquire an accurate model of their environment are regarded as fulfilling a major precondi-

tion of truly autonomous agents.

In the literature, the mobile robot mapping problem under pose uncertainty is often

referred to as the simultaneous localization and mapping (SLAM) or concurrent mapping

and localization (CML) problem [Smith and Cheeseman, 1986; Dissanayake et al., 2000;

Gutmann and Konolige, 1999; Hähnel et al., 2003; Montemerlo et al., 2003; Thrun, 2001;

Leonard and Durrant-Whyte, 1991]. SLAM is considered to be a complex problem because

to localize itself a robot needs a consistent map and for acquiring the map the robot requires a

good estimate of its location. This mutual dependency among the pose and the map estimates

makes the SLAM problem hard and requires searching for a solution in a high-dimensional

space.

Whereas dozens of different techniques to tackle the SLAM problem have been pre-

sented, there is no gold standard for comparing the results of different SLAM algorithms. In

the community of feature-based estimation techniques, researchers often measure the dis-

tance or Mahalanobis distance between the estimated landmark location and the true location

(if this information is available). As we will illustrate in this paper, comparing results based

on an absolute reference frame can have shortcomings. In the area of grid-based estimation

techniques, people often use visual inspection to compare maps or overlays with blueprints

of buildings. This kind of evaluation becomes more and more difficult as new SLAM ap-

proaches show increasing capabilities and thus large scale environments are needed for eval-

uation. In the community, there is a strong need for methods allowing meaningful compar-

isons of different approaches. Ideally, such a method is capable of performing comparisons

between mapping systems that apply different estimation techniques and operate on dif-

ferent sensing modalities. We argue that meaningful comparisons between different SLAM

approaches require a common performance measure (metric). This metric should enable the

user to compare the outcome of different mapping approaches when applying them on the

same dataset.

In this paper, we propose a novel technique for comparing the output of SLAM algo-

rithms. We aim to establish a benchmark that allows for objectively measuring the perfor-

mance of a mapping system. We propose a metric that operates only on relative geometric

relations between poses along the trajectory of the robot. Our approach allows for making

comparisons even if a perfect ground truth information is not available. This enables us to

present benchmarks based on frequently used datasets in the robotics community such as

the MIT Killian Court or the Intel Research Lab dataset. The disadvantage of our method

is that it requires manual work to be carried out by a human that knows the topology of

the environment. The manual work, however, has to be done only once for a dataset and

then allows other researchers to evaluate their methods easily. In this paper, we present

manually obtained relative relations for different datasets that can be used for carrying out

comparisons. We furthermore provide evaluations for the results of three different mapping

techniques, namely scan-matching, SLAM using Rao-Blackwellized particle filter [Grisetti

et al., 2007b; Stachniss et al., 2007b], and a maximum likelihood SLAM approach based on

the graph formulation [Grisetti et al., 2007c; Olson, 2008].

The remainder of this paper is organized a follows. First, we discuss related work in

Section 2 and present the proposed metric based on relative relations between poses along
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the trajectory of the robot in Section 3. Then, in Section 4 and Section 5 we explain how to

obtain such relations in practice. In Section 6, we briefly discuss how to benchmark if the

tested SLAM system does not provide pose estimates. Next, in Section 7 we provide a brief

overview of the datasets used for benchmarking and in Section 8 we present our experiments

which illustrate different properties of our method and we give benchmark results for three

existing SLAM approaches.

2 Related Work

Learning maps is a frequently studied problem in the robotics literature. Mapping tech-

niques for mobile robots can be classified according to the underlying estimation technique.

The most popular approaches are extended Kalman filters (EKFs) [Leonard and Durrant-

Whyte, 1991; Smith et al., 1990], sparse extended information filters [Eustice et al., 2005a;

Thrun et al., 2004], particle filters [Montemerlo et al., 2003; Grisetti et al., 2007b], and

least square error minimization approaches [Lu and Milios, 1997; Frese et al., 2005; Gut-

mann and Konolige, 1999; Olson et al., 2006]. For some applications, it might even be

sufficient to learn local maps only [Hermosillo et al., 2003; Thrun and colleagues, 2006;

Yguel et al., 2007].

The effectiveness of the EKF approaches comes from the fact that they estimate a fully

correlated posterior about landmark maps and robot poses. Their weakness lies in the strong

assumptions that have to be made on both, the robot motion model and the sensor noise. If

these assumptions are violated the filter is likely to diverge [Julier et al., 1995; Uhlmann,

1995].

Thrun et al. [2004] proposed a method to correct the poses of a robot based on the in-

verse of the covariance matrix. The advantage of sparse extended information filters (SEIFs)

is that they make use of the approximative sparsity of the information matrix. Eustice et

al. [2005a] presented a technique that more accurately computes the error-bounds within

the SEIF framework and therefore reduces the risk of becoming overly confident.

RMS Titanic: conservative covariance estimates for SLAM The International Journal of

Robotics Research,

Dellaert and colleagues proposed a smoothing method called square root smoothing and

mapping (SAM) [Dellaert, 2005; Kaess et al., 2007; Ranganathan et al., 2007]. It has several

advantages compared to EKF-based solutions since it better covers the non-linearities and

is faster to compute. In contrast to SEIFs, it furthermore provides an exactly sparse factor-

ization of the information matrix. In addition to that, SAM can be applied in an incremental

way [Kaess et al., 2007] and is able to learn maps in 2D and 3D.

Frese’s TreeMap algorithm [Frese, 2006] can be applied to compute nonlinear map es-

timates. It relies on a strong topological assumption on the map to perform sparsification of

the information matrix. This approximation ignores small entries in the information matrix.

In this way, Frese is able to perform an update in O(logn) where n is the number of features.

An alternative approach to find maximum likelihood maps is the application of least

square error minimization. The idea is to compute a network of constraints given the se-

quence of sensor readings. It should be noted that our approach for evaluating SLAM meth-

ods presented in this paper is highly related to this formulation of the SLAM problem.

Lu and Milios [1997] introduced the concept of graph-based or network-based SLAM

using a kind of brute force method for optimization. Their approach seeks to optimize the

whole network at once. Gutmann and Konolige [1999] proposed an effective way for con-

structing such a network and for detecting loop closures while running an incremental es-
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timation algorithm. Duckett et al. [2002] propose the usage of Gauss-Seidel relaxation to

minimize the error in the network of relations. To make the problem linear, they assume

knowledge about the orientation of the robot. Frese et al. [2005] propose a variant of Gauss-

Seidel relaxation called multi-level relaxation (MLR). It applies relaxation at different res-

olutions. MLR is reported to provide very good results in flat environments especially if the

error in the initial guess is limited.

Olson et al. [2006] presented an optimization approach that applies stochastic gradient

descent for resolving relations in a network efficiently. Extensions of this work have been

presented by Grisetti et al. [2007c; 2007a] Most approaches to graph-based SLAM such as

the work of Olson et al., Grisetti et al., Frese et al., and others focus on computing the best

map and assume that the relations are given. The ATLAS framework [Bosse et al., 2003],

hierarchical SLAM [Estrada et al., 2005], or the work of Nüchter et al. [2005], for example,

can be used to obtain the constraints. In the graph-based mapping approach used in this

paper, we followed the work of Olson [2008] to extract constraints and applied [Grisetti et

al., 2007c] for computing the minimal error configuration.

Activities related to performance metrics for SLAM methods, such as the work de-

scribed in this paper, can roughly be divided into three major categories: First, competition

settings where robot systems are competing within a defined problem scenario, such as

playing soccer, navigating through a desert, or searching for victims. Second, collections of

publicly available datasets that are provided for comparing algorithms on specific problems.

Third, related publications that introduce methodologies and scoring metrics for comparing

different methods.

The comparison of robots within benchmarking scenarios is a straight-forward approach

for identifying specific system properties that can be generalized to other problem types.

For this purpose numerous robot competitions have been initiated in the past, evaluating

the performance of cleaning robots [EPFL and IROS, 2002], robots in simulated Mars envi-

ronments [ESA, 2008], robots playing soccer or rescuing victims after a disaster [RoboCup

Federation, 2009], and cars driving autonomously in an urban area [Darpa, 2007]. However,

competition settings are likely to generate additional noise due to differing hardware and

software settings. For example, when comparing mapping solutions in the RoboCup Rescue

domain, the quality of maps generated using climbing robots can greatly differ from those

generated on wheel-based robots operating in the plane. Furthermore, the approaches are

often tuned to the settings addressed in the competitions.

Benchmarking of systems from datasets has reached a rather mature level in the vision

community. There exist numerous data bases and performance measures, which are avail-

able via the Internet. Their purpose is to validate, for example, image annotation [Torralba

et al., 2007], range image segmentation [Hoover et al., 1996], and stereo vision correspon-

dence algorithms [Scharstein and Szeliski, 2002]. These image databases provide ground

truth data [Torralba et al., 2007; Scharstein and Szeliski, 2002], tools for generating ground

truth [Torralba et al., 2007] and computing the scoring metric [Scharstein and Szeliski,

2002], and an online ranking of results from different methods [Scharstein and Szeliski,

2002] for direct comparison.

In the robotics community, there are some well-known web sites providing datasets [Howard

and Roy, 2003; Bonarini et al., 2006] and algorithms [Stachniss et al., 2007a] for mapping.

However, they neither provide ground truth data nor recommendations on how to compare

different maps in a meaningful way.

Some preliminary steps towards benchmarking navigation solutions have been presented

in the past. Amigoni et al. [2007] presented a general methodology for performing exper-

imental activities in the area of robotic mapping. They suggested a number of issues that
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should be addressed when experimentally validating a mapping method. For example, the

mapping system should be applied to publicly available data, parameters of the algorithm

should be clearly indicated (and also effects of their variations presented), as well as param-

eters of the map should be explained. When ground truth data is available, they suggest to

utilize the Hausdorff metric for map comparison.

Wulf et al. [2008] proposed the idea of using manually supervised Monte Carlo Local-

ization (MCL) for matching 3D scans against a reference map. They suggested that a refer-

ence map be generated maps from independently created CAD data, which can be obtained

from the land registry office. The comparison between generated map and ground truth has

been carried out by computing the Euclidean distance and angle difference of each scan,

and plotting these over time. Furthermore, they provided standard deviation and maximum

error of the track for comparisons. We argue that comparing the absolute error between two

tracks might not yield a meaningful assertion in all cases as illustrated in the initial exam-

ple in Section 3. This effect gets even stronger when the robot makes a small angular error

especially in the beginning of the dataset (and when it does not return to this place again).

Then, large parts or the overall map are likely to be consistent, the error, however, will be

huge. Therefore, the method proposed in this paper favors comparisons between relative

poses along the trajectory of the robot. Based on the selection between which pose relations

are considered, different properties can be highlighted.

Balaguer et al. [2007] utilize the USARSim robot simulator and a real robot platform for

comparing different open source SLAM approaches. They demonstrated that maps resulting

from processing simulator data are very close to those resulting from real robot data. Hence,

they concluded that the simulator engine could be used for systematically benchmarking

different approaches of SLAM. However, it has also been shown that noise is often but not

always Gaussian in the SLAM context [Stachniss et al., 2007b]. Gaussian noise, however, is

typically used in most simulation systems. In addition to that, Balaguer et al. do not provide

a quantitative measure for comparing generated maps with ground truth. As with many other

approaches, their comparisons were carried out by visual inspection.

The paper presented here extends our work [Burgard et al., 2009] with a more detailed

description of the approach, a technique for extracting relations from aerial images, and a

significantly extended experimental evaluation.

3 Metric for Benchmarking SLAM Algorithms

In this paper, we propose a metric for measuring the performance of a SLAM algorithm not

by comparing the map itself but by considering the poses of the robot during data acquisi-

tion. In this way, we gain two important properties: First, it allows us to compare the result

of algorithms that generate different types of metric map representations, such as feature-

maps or occupancy grid maps. Second, the method is invariant to the sensor setup of the

robot. Thus, a result of a graph-based SLAM approach working on laser range data can be

compared, for example, with the result of vision-based FastSLAM. The only property we

require is that the SLAM algorithm estimates the trajectory of the robot given by a set of

poses at which observations are made. All benchmark computations will be performed on

this set.
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x∗i
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x∗i ⊖ xi
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Fig. 1 This figure illustrates a simple example where the metric in Eq. 1 fails. The light blue circles show the

reference positions of the robot {x∗i } while the dark red circles show the estimated positions of the robot {xi}.

The correspondence between the estimated locations and the ground truth is shown with dashed lines, and

the direction of motion of the robot is highlighted with arrows. In the situation shown in the upper part, the

robot makes a small mistake at the end of the path. This results in a small error. Conversely, in the situation

illustrated on the bottom part of the figure the robot makes a small error of the same entity, but at the beginning

of the travel, thus resulting in a much bigger global error.

3.1 A Measure for Benchmarking SLAM Results

Let x1:T be the poses of the robot estimated by a SLAM algorithm from time step 1 to T . Let

x∗1:T be the reference poses of the robot, ideally the true locations. A straightforward error

metric could be defined as

ε(x1:T ) =
T

∑
t=1

(xt ⊖ x∗t )
2
, (1)

where ⊕ is the standard motion composition operator and ⊖ its inverse. Let δi, j = x j ⊖ xi

be the relative transformation that moves the node xi onto x j and accordingly δ∗
i, j = x∗j ⊖ x∗i .

Eq. 1 can be rewritten as

ε(x1:T ) =
T

∑
t=1

(

(x1 ⊕δ1,2 ⊕ . . .⊕δt−1,t)⊖ (x∗1 ⊕δ∗
1,2 ⊕ . . .⊕δ∗

t−1,t)
)2

(2)

We claim that this metric is suboptimal for comparing the result of a SLAM algorithm.

To illustrate this, consider the following 1D example in which a robot travels along a straight

line. Let the robot make a translational error of e during the first motion, δ1,2 = δ∗
1,2 +e, and

perfect estimates at all other points in time δt,t+1 = δ∗
t,t+1 for t > 1. Thus, the error according

to Eq. 2, will be T · e, since δ1,2 is contained in every pose estimate for t > 1. If, however,

we estimate the trajectory backwards starting from xT to x1 or alternatively by shifting the

whole map by e, we obtain an error of e only. This indicates, that such an error estimate

is suboptimal for comparing the results of a SLAM algorithm. See also Figure 1 for an

illustration.

In the past, the so-called NEES measure proposed in [Bar-Shalom et al., 2001] as

ε(x1:T ) =
T

∑
t=1

(xt − x∗t )
T Ωt(xt − x∗t ), (3)

has often been used to evaluate the results of a SLAM approach (e.g., [Eustice et al., 2005b]).

Here Ωt represents the information matrix of the pose xt . The NEES measure, however,
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suffers from a similar problem as Eq. 1 when computing ε . In addition to that, not all SLAM

algorithms provide an estimate of the information matrix and thus cannot be compared based

on Eq. 3.

Based on this experience, we propose a measure that considers the deformation energy

that is needed to transfer the estimate into the ground truth. This can be done — similar

to the ideas of the graph mapping introduced by Lu and Milios [1997] — by considering

the nodes as masses and connections between them as springs. Thus, our metric is based on

the relative displacement between robot poses. Instead of comparing x to x∗ (in the global

reference frame), we do the operation based on δ and δ∗ as

ε(δ) =
1

N
∑
i, j

trans(δi, j ⊖δ∗
i, j)

2 + rot(δi, j ⊖δ∗
i, j)

2
, (4)

where N is the number of relative relations and trans(·) and rot(·) are used to separate

and weight the translational and rotational components. We suggest that both quantities

be evaluated individually. In this case, the error (or transformation energy) in the above-

mentioned example will be consistently estimated as the single rotational error no matter

where the error occurs in the space or in which order the data is processed.

Our error metric, however, leaves open which relative displacements δi, j are included in

the summation in Eq. 4. Using the metric and selecting relations are two related but different

problems. Evaluating two approaches based on a different set of relative pose displacements

will obviously result in two different scores. As we will show in the remainder of this section,

the set δ and thus δ∗ can be defined to highlight certain properties of an algorithm.

Note that some researchers prefer the absolute error (absolute value, not squared) instead

of the squared one. We prefer the squared one since it derives from the motivation that the

metric measures the energy needed to transform the estimated trajectory into ground truth.

However, one can also use the metric using the non-squared error instead of the squared one.

In the experimental evaluation, we actually provide both values.

3.2 Selecting Relative Displacements for Evaluation

Benchmarks are designed to compare different algorithms. In the case of SLAM systems,

however, the task the robot finally has to solve should define the required accuracy and this

information should be considered in the measure.

For example, a robot generating blueprints of buildings should reflect the geometry of

a building as accurately as possible. In contrast to that, a robot performing navigation tasks

requires a map that can be used to robustly localize itself and to compute valid trajectories

to a goal location. To carry out this task, it is sufficient in most cases that the map is topolog-

ically consistent and that its observations can be locally matched to the map, i.e. its spatial

structure is correctly representing the environment. We refer to a map having this property

as being locally consistent. Figure 3 illustrates the concept of locally consistent maps which

are suited for a robot to carry out navigation tasks.

By selecting the relative displacements δi, j used in Eq. 4 for a given dataset, the user can

highlight certain properties and thus design a measure for evaluating an approach given the

application in mind.

For example, by adding only known relative displacements between nearby poses based

on visibility, a local consistency is highlighted. In contrast to that, by adding known rela-

tive displacements of far away poses, for example, provided by an accurate external mea-

surement device or by background knowledge, the accuracy of the overall geometry of the
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mapped environment is enforced. In this way, one can incorporate additional knowledge (for

example, that a corridor has a certain length and is straight) into the benchmark.

4 Obtaining Reference Relations in Indoor Environments

In practice, the key question regarding Eq. 4 is how to determine the true relative displace-

ments between poses. Obviously, the true values are not available. However, we can de-

termine close-to-true values by using the information recorded by the mobile robot and

the background knowledge of the human recording the datasets, which, of course, involves

manual work.

Please note, that the metric presented above is independent of the actual sensor used. In

the remainder of this paper, however, we will concentrate on robots equipped with a laser

range finders, since they are probably the most popular sensors in robotics at the moment.To

evaluate an approach operating on a different sensor modality, one has two possibilities to

generate relations. One way would be to temporarily mount a laser range finder on the robot

and calibrate it in the robot coordinate frame. If this is not possible, one has to provide

a method for accurately determining the relative displacements between two poses from

which an observation has been taken that observes the same part of the space.

4.1 Initial Guess

In our work, we propose the following strategy. First, one tries to find an initial guess about

the relative displacement between poses. Based on the knowledge of the human, a wrong ini-

tial guess can be easily discarded since the human “knows” the structure of the environment.

In a second step, a refinement is proposed based on manual interaction.

4.1.1 Symeo System

One way for obtaining good initial guesses with no or only very few interactions can be

the use of the Symeo Positioning System LPR-B [Symeo GmbH, 2008]. It works similar to

a local GPS system but indoors and can achieve a localization accuracy of around 5 cm to

10 cm. The problem is that such a system designed for industrial applications is typically

not present at most robotics labs. If available, however, it is well suited for a rather accurate

initial guess of the robot’s position.

4.1.2 Initial Estimate via SLAM Approaches

In most cases, however, researchers in robotics will have SLAM algorithms at hand that can

be used to compute an initial guess about the poses of the robot. In the recent years, several

accurate methods have been proposed to serve as such a guess (see Section 2). By manually

inspecting the estimates of the algorithm, a human can accept, refine, or discard a match and

also add missing relations.

It is important to note that the output is not more than an initial guess and it is used to

estimate the visibility constraints which will be used in the next step.
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Fig. 2 User interface for matching, accepting, and discarding pairs of observations.

4.2 Manual Matching Refinement and Rejection

Based on the initial guess about the position of the robot for a given time step, it is possible

to determine which observations in the dataset should have covered the same part of the

space or the same objects. For a laser range finder, this can easily be achieved. Between

each visible pair of poses, one adds a relative displacement into a candidate set.

In the next step, a human processes the candidate set to eliminate wrong hypotheses by

visualizing the observation in a common reference frame. This requires manual interaction

but allows for eliminating wrong matches and outliers with high precision, since the user is

able to incorporate his background knowledge about the environment.

Since we aim to find the best possible relative displacement, we perform a pair-wise

registration procedure to refine the estimates of the observation registration method. It fur-

thermore allows the user to manually adjust the relative offset between poses so that the

pairs of observations fit better. Alternatively, the pair can be discarded.

This approach might sound labor-intensive but with an appropriate user interface, this

task can be carried out without a large waste of resources. For example, for a standard dataset

with 1,700 relations, it took an unexperienced user approximately four hours to extract the

relative translations that then served as the input to the error calculation. Figure 2 shows a

screen-shot of the user interface used for evaluation.

It should be noted that for the manual work described above some kind of structure in

the environment is required. The manual labor might be very hard in highly unstructured

scenes.

4.3 Other Relations

In addition to the relative transformations added upon visibility and matching of observa-

tions, one can directly incorporate additional relations resulting from other sources of infor-

mation, for example, given the knowledge about the length of a corridor in an environment.

By adding a relation between two poses — each at one side of the corridor — one can incor-

porate knowledge about the global geometry of an environment if this is available. This fact
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is, for example, illustrated by the black dashed line in Figure 3 that implies a known distance

between two poses in a corridor that are not adjacent. Figure 4 plots the corresponding error

identified by the relation.

In the experimental evaluation, we will show one example for such additional relations

used in real world datasets. In this example, we utilize relations derived from satellite image

data.

5 Obtaining Reference Relations in Outdoor Environments

The techniques described in the previous section can be used to obtain a close-to-ground-

truth for indoor environments. In outdoor scenarios however, the manual validation of the

data is usually less practical due to the reduced structure and the large size. In wide open

areas it may be difficult for a human operator to determine whether a potential alignment

between laser scans is good or not due to the limited range of the scanner. Furthermore the

poor structure of the environment makes this procedure hard even when the laser senses a

high number of obstacles.

GPS is commonly used to bound the global uncertainty of a vehicle moving outdoors.

Unfortunately, GPS suffers from outages or occlusions so that a robot relying on GPS might

encounter substantial positioning errors. Especially in urban environments, GPS is known

to be noisy. Even sophisticated SLAM algorithms cannot fully compensate for these errors

as there still might be lacking relations between observations combined with large odometry

errors that introduce a high uncertainty in the current position of the vehicle.

As an alternative to GPS, it is possible to use aerial images to determine relations close

to the ground truth. We investigated this approach in our previous work [Kümmerle et al.,

2009] and we show that this solution yields a better global consistency of the resulting map,

if we consider the prior information. Satellite images of locations are widely available on

the web by popular tools like Google-Earth or Microsoft Live-Earth. This data can be used

as prior information to localize a robot equipped with a 3D laser range finder.

The overall approach is based on the Monte-Carlo localization framework [Dellaert et

al., 1998]. The satellite images are captured from a viewpoint significantly different from

the one of the robot. However, by using 3D scans we can extract 2D information which is

more likely to be consistent with the one visible in the reference map. In this way, we can

prevent the system from introducing inconsistent prior information.

In the following, we explain how we adapted Monte Carlo Localization (MCL) to oper-

ate on aerial images and how to select points from 3D scans to be considered in the observa-

tion model of MCL. This procedure returns a set of candidate robot locations x̂i. From those

positions, we then select a subset of pairs of locations from which to compute the reference

displacements δ̂i, j to be used in the metric.

5.1 Monte Carlo Localization

To estimate the pose x of the robot in its environment, we consider probabilistic localization,

which follows the recursive Bayesian filtering scheme. The key idea of this approach is to

maintain a probability density p(xt | z1:t ,u0:t−1) of the location xt of the robot at time t given
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(a) (b) (c) (d)

Fig. 3 Example of the performance measure on maps generated using different sensor setups. The relations

between close-by positions are determined by a human assisted scan-alignment procedure performed on scans

acquired at close-by locations. The long dashed line represents a relation added by manually measuring the

relative distance at two locations of the robot: (a) the reference map obtained from the relative measurements,

(b) the reference map superimposed with the network of relative measurements, (c) a map obtained by scan

matching using a 4 meters range sensor, with the superimposed relation (this map is still usable for navi-

gating a robot), (d) a map obtained by cropping the range of the sensor to 3 meters. Whereas the quality of

the rightmost map is visibly decreased, it is also adequate for robot navigation since it preserves a correct

topology of the environment (all doorways are still visible) and it correctly reflects the local spatial structure

of the corridor. Therefore, it is locally consistent, but not globally consistent as (a). See also Figure 4 for

corresponding error plots.
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Fig. 4 This figure shows the behavior of the error metric for the maps (c) and (d) in Figure 3. On the left we

plot the error introduced by the individual relations. The right plot is a magnification of the left one in the

region corresponding to the manually introduced relations marked on the images with the dashed line. This

results in a substantial increase of the global ε of SLAM results under comparison.
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(a) (b)

Fig. 5 (a) A Google Earth image of the Freiburg campus. (b) The corresponding Canny image. Despite the

considerable clutter, the structure of the buildings and the vertical elements are clearly visible.

all observations z1:t and all control inputs u0:t−1. This posterior is updated as follows:

p(xt | z1:t ,u0:t−1) = (5)

α · p(zt | xt) ·
∫

p(xt | ut−1,xt−1) · p(xt−1) dxt−1.

Here, α is a normalization constant which ensures that p(xt | z1:t ,u0:t−1) sums up to one over

all xt . The terms to be described in Eq. 5 are the prediction model p(xt | ut−1,xt−1) and the

sensor model p(zt | xt). One contribution of this work is an appropriate computation of the

sensor model in the case that a robot equipped with a 3D range sensor operates in a given

birds-eye map.

MCL is a variant of particle filtering [Doucet et al., 2001] where each particle corre-

sponds to a possible robot pose and has an assigned weight w[i]. The belief update from

Eq. 5 is performed according to the following two alternating steps:

1. In the prediction step, we draw for each particle with weight w[i] a new particle according

to w[i] and to the prediction model p(xt | ut−1,xt−1).
2. In the correction step, a new observation zt is integrated. This is done by assigning a

new weight w[i] to each particle according to the sensor model p(zt | xt).

Furthermore, the particle set needs to be re-sampled according to the assigned weights to

obtain a good approximation of the pose distribution with a finite number of particles.

So far, we have described the general framework of MCL. In the next section, we will

describe the sensor model for determining the likelihood p(zt | xt) of perceiving the 3D scan

zt from a given robot position xt within an aerial image. For convenience, we will drop the

time index t in the remainder of this section.

5.2 Sensor Model for 3D Range Scans in Aerial Images

The task of the sensor model is to determine the likelihood p(z | x) of a reading z given

the robot is at pose x. In our current system, we apply the so called endpoint model or
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likelihood fields [Thrun et al., 2005]. Let zk be the endpoints of a 3D scan z. The endpoint

model computes the likelihood of a reading based only on the distances between a scan point

ẑk re-projected onto the map according to the pose x of the robot and the point in the map d̂k

which is closest to ẑk as:

p(z | x) = f (‖ẑ1 − d̂1‖, . . . ,‖ẑk − d̂k‖). (6)

If we assume that the beams are independent and the sensor noise is normally distributed we

can rewrite Eq. 6 as

f (‖ẑ1 − d̂1‖, . . . ,‖ẑk − d̂k‖) ∝ ∏
j

e
(ẑ j−d̂ j)2

σ2 . (7)

Since the aerial image only contains 2D information about the scene, we need to select a

set of beams from the 3D scan, which are likely to result in structures that can be identified

and matched in the image. In other words, we need to transform both the scan and the image

into a set of 2D points which can be compared via the function f (·).

To extract these points from the image we employ the standard Canny edge extraction

procedure [Canny, 1986]. The idea behind this is that if there is a height gap in the aerial

image, there will often also be a visible change in intensity in the aerial image and we

assume that this intensity change is detected by the edge extraction procedure. In an urban

environment, such edges typically correspond to borders of roofs, trees, fences or other

structures. Of course, the edge extraction procedure returns a lot of false positives that do

not represent any actual 3D structure, like street markings, grass borders, shadows, and other

flat markings. All these aspects have to be considered by the sensor model.

A straightforward way to address this problem is to select a subset of beams zk from

the 3D scan which will then be used to compute the likelihood. The beams which should

be considered are the ones which correspond to significant variations along the z direction

of the 3D scan. For vertical structures, a direct matching between the extracted edges and

the measurements of a horizontal 2D laser range scanner can be performed, as discussed by

Früh and Zakhor [2004]. If a 3D laser range finder is available, we also attempt to match

variations in height that are not purely vertical structures, like trees or overhanging roofs.

This procedure is illustrated by the sequence of images in Figure 6.

In the current implementation, we considered variations in height of 0.5 m and above

as possible positions of edges that could also be visible in the aerial image. The positions

of these variations relative to the robot can then be matched against the Canny edges of the

aerial image in a point-by-point fashion, similar to the matching of 2D-laser scans against

an occupancy grid map. Additionally, we employ a heuristic to detect when the prior is not

available, i.e., when the robot is inside of a building or under overhanging structures. This is

based on the 3D perception. If there is a ceiling which leads to range measurements above

the robot no global relations from the localization are integrated, since we assume that the

area the robot is sensing is not visible in the aerial image.

Figure 7 shows an example trajectory estimated with this technique (in red) and the

GPS positions (in blue). As can be seen, the estimates are more accurate than the GPS

data. Thus the improved guess facilitates the manual verification of the data. Note that the

approach presented here is used to obtain the candidate relations for outdoor datasets. A

human operator has to accept or decline all relations found by the approach.
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(a)

(b) (c)

(d) (e)

Fig. 6 (a) A 3D scan represented as a point cloud. (b) The aerial image of the scene. (c) The Canny edges

extracted from (b). (d) A view from the top, where the gray value represents the maximal height per cell. The

darker the color the lower the height. (e) Extracted height variations from (d).

6 Benchmarking for Algorithms without Trajectory Estimates

A series of SLAM approaches estimate the trajectory of the robot as well as a map. However,

in the context of the EKF, researchers often exclude an estimate of the full trajectory to

lower the computational load. To facilitate evaluation one could store the current pose for

each processing step and use it to build a trajectory. This would lead to good results if only

local accuracy is considered. However, global corrections appearing later in run-time are not

represented correctly.
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Fig. 7 Trajectory estimated using satellite images versus GPS data overlaid on the image of the ALU-FR

campus.

We see two solutions to overcome this problem: (a) depending on the capabilities of the

sensor, one can recover the trajectory as a post processing step given the feature locations

and the data association estimated by the approach. This procedure could be quite easily

realized by a localization run in the built map with given data association (the data asso-

ciation of the SLAM algorithm). (b) in some settings this strategy can be difficult and one

might argue that a comparison based on the landmark locations is more desirable. In this

case, one can apply our metric operating on the landmark locations instead of based on the

poses of the robot. In this case, the relations δ∗
i, j can be determined by measuring the relative

distances between landmarks using, for example, a highly accurate measurement device.

The disadvantage of this approach is that the data association between estimated land-

marks and ground truth landmarks is not given. Depending on the kind of observations, a

human can manually determine the data association for each observation of an evaluation

datasets as done by Frese [2008]. This, however, might get intractable for SIFT-like features

obtained with high frame rate cameras. Note that all metrics measuring an error based on

landmark locations require such a data association as given. Furthermore, it becomes impos-

sible to compare significantly different SLAM systems using different sensing modalities.

Therefore, we would recommend the first option to evaluate techniques such as EKF.

7 Datasets for Benchmarking

To validate the metric, we selected a set of datasets representing different kinds of environ-

ments from the publicly available datasets. We extracted relative relations between robot

poses using the methods described in the previous sections by manually validating every

single observation between pairs of poses.
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Fig. 8 Maps obtained by the reference datasets used to validate our metric. From top to bottom and left to

right: MIT Killian Court (Boston), ACES Building (Austin), Intel Research Lab (Seattle), MIT CS Building

(Boston), building 079 University of Freiburg, and the University Hospital in Freiburg. The depicted map

of the University Hospital was obtained by using the background information extracted from the satellite

images.
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As a challenging indoor corridor-environment with a non-trivial topology including

nested loops, we selected the MIT Killian Court dataset 1 (Infinite Corridor) and the dataset

of the ACES building at the University of Texas, Austin 2. As a typical office environment

with a significant level of clutter, we selected the dataset of building 079 at the Univer-

sity of Freiburg, the Intel Research Lab dataset 3, and a dataset acquired at the CSAIL at

MIT. For addressing outdoor environments, we recorded a new dataset at the park area of

the University Hospital, Freiburg. To give a visual impression of the scanned environments,

Figure 8 illustrates maps obtained by executing state-of-the-art SLAM algorithms [Grisetti

et al., 2007b; 2007c; Olson, 2008]. All datasets, the manually verified relations, and map

images are available online at:

http://ais.informatik.uni-freiburg.de/slamevaluation/

8 Experimental Evaluation

This evaluation is designed to illustrate the properties of our method. We selected three pop-

ular mapping techniques, namely scan matching, a Rao-Blackwellized particle filter-based

approach, and a graph-based solution to the SLAM problem and processed the datasets dis-

cussed in the previous section.

We provide the scores obtained from the metric for all combinations of SLAM approach

and dataset. This will allow other researchers to compare their own SLAM approaches

against our methods using the provided benchmark datasets. In addition, we also present

sub-optimally corrected trajectories in this section to illustrate how inconsistencies affect

the score of the metric. We will show that our error metric is well-suited for benchmarking

and this kind of evaluation.

8.1 Evaluation of Existing Approaches using the Proposed Metric

In this evaluation, we considered the following mapping approaches:

Scan Matching: Scan matching is the computation of the incremental, open loop maxi-

mum likelihood trajectory of the robot by matching consecutive scans [Lu and Milios,

1994; Censi, 2006]. In small environments, a scan matching algorithm is generally suf-

ficient to obtain accurate maps with a comparably small computational effort. However,

the estimate of the robot trajectory computed by scan matching is affected by an in-

creasing error which becomes visible whenever the robot reenters in known regions

after visiting large unknown areas (loop closing or place revisiting).

Grid-based Rao-Blackwellized Particle Filter (RBPF) for SLAM: We use the RBPF

implementation described in [Grisetti et al., 2007b; Stachniss et al., 2007b] which is

available online [Stachniss et al., 2007a]. It estimates the posterior over maps and tra-

jectories by means of a particle filter. Each particle carries its own map and a hypothesis

of the robot pose within that map. The approach uses an informed proposal distribution

for particle generation that is optimized to laser range data. In the evaluation presented

here, we used 50 particles. Note that a higher number of samples may improve the per-

formance of the algorithm.

1 Courtesy of Mike Bosse
2 Courtesy of Patrick Beeson
3 Courtesy of Dirk Haehnel
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Table 1 Quantitative results of different approaches/datasets on the translation error as well as the corre-

sponding standard deviation and the maximum error. 1 scan matching has been applied as a preprocessing

step to improve the odometry.

Translational error Scan Matching RBPF (50 part.) Graph Mapping

m (abs) / m2 (sqr)

Aces

Eq. 4 using absolute errors 0.173 ± 0.614 0.060 ± 0.049 0.044 ± 0.044

Eq. 4 using squared errors 0.407 ± 2.726 0.006 ± 0.011 0.004 ± 0.009

Maximum absolute error of a relation 4.869 0.433 0.347

Intel

Eq. 4 using absolute errors 0.220 ± 0.296 0.070 ± 0.083 0.031 ± 0.026

Eq. 4 using squared errors 0.136 ± 0.277 0.011 ± 0.034 0.002 ± 0.004

Maximum absolute error of a relation 1.168 0.698 0.229

MIT Killian Court

Eq. 4 using absolute errors 1.651 ± 4.138 0.122 ± 0.3861 0.050 ± 0.056

Eq. 4 using squared errors 19.85 ± 59.84 0.164 ± 0.8141 0.006 ± 0.029

Maximum absolute error of a relation 19.467 2.5131 0.765

MIT CSAIL

Eq. 4 using absolute errors 0.106 ± 0.325 0.049 ± 0.0491 0.004 ± 0.009

Eq. 4 using squared errors 0.117 ± 0.728 0.005 ± 0.0131 0.0001 ± 0.0005

Maximum absolute error of a relation 3.570 0.5081 0.096

Freiburg bldg 79

Eq. 4 using absolute errors 0.258 ± 0.427 0.061 ± 0.0441 0.056 ± 0.042

Eq. 4 using squared errors 0.249 ± 0.687 0.006 ± 0.0201 0.005 ± 0.011

Maximum absolute error of a relation 2.280 0.8561 0.459

Freiburg Hospital

Eq. 4 using absolute errors 0.434 ± 1.615 0.637 ± 2.638 0.143 ± 0.180

Eq. 4 using squared errors 2.79 ± 18.19 7.367 ± 38.496 0.053 ± 0.272

Maximum absolute error of a relation 15.584 15.343 2.385

Freiburg Hospital, only global relations (see text)

Eq. 4 using absolute errors 13.0 ± 11.6 12.3 ± 11.7 11.6 ± 11.9

Eq. 4 using squared errors 305.4 ± 518.9 288.8 ± 626.3 276.1 ± 516.5

Maximum absolute error of a relation 70.9 65.1 66.1

Graph Mapping: This approach computes a map by means of graph optimization [Grisetti

et al., 2007c]. The idea is to construct a graph out of the sequence of measurements. Ev-

ery node in the graph represents a pose along the trajectory taken by the robot and the

corresponding measurement obtained at that pose. Then, a least square error minimiza-

tion approach is applied to obtain the most-likely configuration of the graph. In general,

it is non-trivial to find the constraints, often referred to as the data association problem.

Especially in symmetric environments or in situations with large noise, the edges in the

graph may be wrong or imprecise and thus the resulting map may yields inconsistencies.

In our current implementation of the graph mapping system, we followed the approach

of Olson [2008] to compute constraints.

For our evaluation, we manually extracted the relations for all datasets mentioned in the

previous section. The manually extracted relations are available online, see Section 7. We

then carried out the mapping approaches and used the corrected trajectory for computing the

error according to our metric. Please note, that the error computed according to our metric

(as well as for most other metrics too) can be separated into two components: a translational

error and a rotational error. Often, a “weighting-factor” is used to combine both error terms
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Table 2 Quantitative results of different approaches/datasets on the rotational error as well as the correspond-

ing standard deviation and the maximum error. 1 scan matching has been applied as a preprocessing step to

improve the odometry.

Rotational error Scan Matching RBPF (50 part.) Graph Mapping

deg (abs) / deg2 (sqr)

Aces

Eq. 4 using absolute errors 1.2 ± 1.5 1.2 ± 1.3 0.4 ± 0.4

Eq. 4 using squared errors 3.7 ± 10.7 3.1 ± 7.0 0.3 ± 0.8

Maximum absolute error of a relation 12.1 7.9 3.5

Intel

Eq. 4 using absolute errors 1.7 ± 4.8 3.0 ± 5.3 1.3 ± 4.7

Eq. 4 using squared errors 25.8 ± 170.9 36.7 ± 187.7 24.0 ± 166.1

Maximum absolute error of a relation 4.5 34.7 6.4

MIT Killian Court

Eq. 4 using absolute errors 2.3 ± 4.5 0.8 ± 0.81 0.5 ± 0.5

Eq. 4 using squared errors 25.4 ± 65.0 0.9 ± 1.71 0.9 ± 0.9

Maximum absolute error of a relation 21.6 7.41 5.4

MIT CSAIL

Eq. 4 using absolute errors 1.4 ± 4.5 0.6 ± 1.21 0.05 ± 0.08

Eq. 4 using squared errors 22.3± 111.3 1.9 ± 17.31 0.01 ± 0.04

Maximum absolute error of a relation 26.3 18.21 0.8

Freiburg bldg 79

Eq. 4 using absolute errors 1.7 ± 2.1 0.6 ± 0.61 0.6 ± 0.6

Eq. 4 using squared errors 7.3 ± 14.5 0.7 ± 2.01 0.7 ± 1.7

Maximum absolute error of a relation 9.9 6.41 5.4

Freiburg Hospital

Eq. 4 using absolute errors 1.3 ± 3.0 1.3 ± 2.3 0.9 ± 2.2

Eq. 4 using squared errors 10.9 ± 50.4 7.1 ± 42.2 5.5 ± 46.2

Maximum absolute error of a relation 27.4 28.0 29.6

Freiburg Hospital, only global relations (see text)

Eq. 4 using absolute errors 6.3 ± 5.2 5.5 ± 5.9 6.3 ± 6.2

Eq. 4 using squared errors 66.1 ± 101.4 64.6 ± 144.2 77.2 ± 154.8

Maximum absolute error of a relation 27.3 35.1 38.6

into a single number, see, for example, [Pfaff et al., 2006]. In our evaluation, however, we

provide both terms separately for a better transparency of the results.

We processed all benchmark datasets from Section 7 using the algorithms listed above.

A condensed view of each algorithm’s performance is given by the averaged error over all

relations. In Table 1, we give an overview on the translational error of the various algo-

rithms, while Table 2 shows the rotational error. Comparing two algorithms can be done by

comparing the values given in the tables, namely the maximum error as well as the average

error. It can be seen that the more advanced algorithms (Rao-Blackwellized particle filter

and graph mapping) usually outperform scan matching. This is mainly caused by the fact

that scan matching only locally optimizes the result and will introduce topological errors

in the maps, especially when large loops have to be closed. A distinction between RBPF

and graph mapping seems difficult as both algorithms perform well in general. On average,

graph mapping seems to be slightly better than a RBPF for mapping. It should also be noted

that for the outdoor dataset (Freiburg hospital), the RBPF mapper was not able to close the

large loop and therefore was substantially worse than the graph mapper.

To visualize the results and to provide more insights about the metric, we do not provide

the scores only but also plots showing the error of each relation. In case of high errors in
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a block of relations, we label the relations in the maps. This enables us to see not only

where an algorithm fails, but can also provide insights as to why it fails. Inspecting those

situations in correlation with the map helps to understand the properties of algorithms and

gives valuable insights on its capabilities. For three datasets, a detailed analysis using these

plots is presented in Section 8.2 to Section 8.4. The overall analysis provides the intuition

that our metric is well-suited for evaluating SLAM approaches.

8.2 MIT Killian Court

The MIT Killian Court dataset has been acquired in a large indoor environment, where

the robot mainly observed corridors lacking structures that support accurate pose correc-

tion. The robot traverses multiple nested loops – a challenge especially for the RBPF-based

technique. We extracted close to 5,000 relations between nearby poses that are used for

evaluation. Figure 9 shows three different results and the corresponding error distributions

to illustrate the capabilities of our method. Regions in the map with high inconsistencies

correspond to relations having a high error. The absence of significant structure along the

corridors results in a small or medium re-localization error of the robot in all compared ap-

proaches. In sum, we can say the graph-based approach outperforms the other methods and

that the score of our metric reflects the impression of a human about map quality obtained by

visually inspecting the mapping results (the vertical corridors in the upper part are supposed

to be parallel).

8.3 Freiburg Indoor Building 079

The building 079 of the University of Freiburg is an example for an indoor office environ-

ment. The building consists of one corridor which connects the individual rooms. Figure 10

depicts the results of the individual algorithms (scan matching, RBPF, graph-based). In the

first row of Figure 10, the relations having a translational error greater than 0.15 m are high-

lighted in blue.

In the left plot showing the scan matching result, the relations plotted in blue are gen-

erated when the robot revisits an already known region. These relations are visible in the

corresponding error plots (Figure 10 first column, second and third row). As can be seen

from the error plots, the relations with a number greater than 1,000 have a larger error than

the rest of the dataset. The fact that the pose estimate of the robot is sub-optimal and that the

error accumulates can also be seen by the rather blurry map and that some walls occur twice.

In contrast to that, the more sophisticated algorithms, namely RBPF and graph mapping, are

able to produce consistent and accurate maps in this environment. Only very few relations

show an increased error (illustrated by dark blue relations).

8.4 Freiburg University Hospital

This dataset consists of 2D and 3D laser range data obtained with one statically mounted

SICK scanner and one mounted on a pan-tilt unit. The robot was steered through a park area

that contains a lot of bushes and which is surrounded by buildings. Most of the time, the

robot was steered along a bike lane with cobble stone pavement. The area is around 500 m

by 250 m in size.
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Fig. 9 This figure illustrates our metric applied to the MIT Killian Court dataset. The reference relations

are depicted in light yellow, while the relations marked in the plots are shown in dark blue. The left column

shows the results of pure scan-matching, the middle column the result of a RBPF-based technique with 50

samples, and the right column shows the result of a graph-based approach. The regions marked in the map

correspond to regions in the error plots having high error. Due to its inability of dealing with loop closures

scan matching has a high error when revisiting known regions. However, the absence of significant structure

along the corridors for scan registration is an issue for both the graph-based and the RBPF approach. All in

all, the graph-based approach outperforms the other methods.

Figure 11 depicts the three mapping results, one obtained with scan matching (left), one

with the RBPF (middle), and one with the graph mapper (right). The quality of all maps

is lower than the quality of the map depicted in Figure 8. The reason for that is that while

building the map in Figure 8, we also used the satellite image data which was not available

for the algorithms under evaluation.

Based on the error plots in Figure 11 as well as the overall score depicted in the tables,

we can see that graph mapping outperforms the RBPF and scan matching. The RBPF was

not able to close the large loop and therefore performed similar to scan matching. However,

note that in most parts of the map, the results of the scan matcher and RBPF are comparable

to the one of graph mapping. Significant differences can be observed in the areas labeled as

1 and 3. Here, the two approaches fail to build a consistent map which is the reason for the

significantly higher overall error.

In the area labeled as 4, the results of all algorithms yield matching errors. In that area,

the robot makes a 180 degree turn and looks towards the open park area where almost

no structure that would allow for pose correction is visible. Therefore, none of the tested

algorithms was able to build a perfect map here.
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Fig. 10 This figure shows the Freiburg Indoor Building 079 dataset. Each column reports the results of one

approach. Left: scan-matching, middle: RBPF and right a graph based algorithm. Within each column, the

top image shows the map, the middle plot is the translational error and the bottom one is the rotational error.

Note that for this dataset, we present two alternative sets of relations. One using only

local relations based on the sensor range. In addition, we provide a set where the relations are

generated for pairs of randomly sampled poses. This set should be used if global consistency

is desired. A comparison between the two data sets can be seen in Figure 12. The histograms

count relations based by the difference in the time indices of the connected poses. As can be

seen from the left image, using local relations based on the sensor range leads to a peaked

histogram, since the relations only cover a small time frame. Additional minor peaks occur

if the robot re-visits a region. In contrast, the set of relations used to evaluate the global
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Fig. 11 Maps and error plots of the Freiburg University Hospital. Each column reports the results of one

approach. Left: scan-matching, middle: RBPF and right a graph based algorithm. The second row depicts

the created maps. The first row shows close-ups of areas in these maps. The error plots in the middle are

regarding translation and on the bottom regarding rotation. There are corresponding areas marked in the plots

and the maps.
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Fig. 12 Comparison of local relations with global relations based on their histograms. The abscissa shows

the number of sensor readings between the two positions in a relation (a bin size of 10 was chosen). On the

left side the histogram for the local relation set is shown, while the right side displays the global relations.

consistency of the map is less peaked. Here, the relations uniformly sub-sample all available

pairwise combinations of robot poses.

8.4.1 Utilizing Additional Relations

To illustrate that it is possible to incorporate additional relations as claimed in Section 4.3,

we added in a further experiment the satellite image data which was used to obtain the

close-to-true pose information for the Freiburg hospital. These additional relations favor

approaches that are able to generate global consistency as it is desired for robots that, for

example, build blueprints.

The resulting scores for such a setting are given in the last rows of Table 1 and Table 2,

respectively. As expected, the error in case of the evaluation including global relations is

higher.

8.5 Summary of the Experiments

Our evaluation illustrates that the proposed metric provides a ranking of the results of map-

ping algorithms that is likely to be compatible with a ranking obtained from visual inspection

by humans. Inconsistencies yield increased error scores since in the wrongly mapped areas

the relations obtained from manual matching are not met. By visualizing the error of each

relation as done in the plots in this section, one can identify regions in which algorithms

fail and we believe that this helps to understand where and why different approaches have

problems to build accurate maps.

We furthermore encourage authors to evaluate their algorithms based on multiple datasets

and not just using a single in order to illustrate the generality of the method and not being

optimized for a single dataset.

9 Conclusion

In this paper, we have presented a framework for analyzing the results of SLAM approaches

that allows for creating objective benchmarks. We proposed a metric for measuring the error

of a SLAM system based on the corrected trajectory. Our metric uses only relative relations
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between poses and does not rely on a global reference frame. This overcomes serious short-

comings of approaches using a global reference frame to compute the error. The metric even

allows for comparing SLAM approaches that use different estimation techniques or different

sensor modalities.

In addition to the proposed metric, we provide robotic datasets together with relative

relations between poses for benchmarking. These relations have been obtained by manu-

ally matching observations and yield a high matching accuracy. We present relations for

self-recorded datasets with laser range finder data as well as for a set of log-files that are

frequently used in the SLAM community to evaluate approaches. In addition, we provide

an error analysis for three mapping systems including two modern laser-based SLAM ap-

proaches, namely a graph-based approach as well as system based on a Rao-Blackwellized

particle filter. We believe that our results are a valuable benchmark for SLAM researchers

since we provide a framework that allows for objectively and comparably easy analyzing

the results of SLAM systems.
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