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One of the most popular methods of estimating the complexity of networks is to measure the entropy of network invariants, such
as adjacency matrices or degree sequences. Unfortunately, entropy and all entropy-based information-theoretic measures have
several vulnerabilities. �ese measures neither are independent of a particular representation of the network nor can capture the
properties of the generative process, which produces the network. Instead, we advocate the use of the algorithmic entropy as the
basis for complexity de	nition for networks. Algorithmic entropy (also known as Kolmogorov complexity or �-complexity for
short) evaluates the complexity of the description required for a lossless recreation of the network. �is measure is not a
ected by
a particular choice of network features and it does not depend on the method of network representation. We perform experiments
on Shannon entropy and �-complexity for gradually evolving networks. �e results of these experiments point to �-complexity
as the more robust and reliable measure of network complexity. �e original contribution of the paper includes the introduction
of several new entropy-deceiving networks and the empirical comparison of entropy and�-complexity as fundamental quantities
for constructing complexity measures for networks.

1. Introduction

Networks are becoming increasingly more important in con-
temporary information science due to the fact that they pro-
vide a holistic model for representing many real-world phe-
nomena. �e abundance of data on interactions within com-
plex systems allows network science to describe, model, sim-
ulate, and predict behaviors and states of such complex sys-
tems. It is thus important to characterize networks in terms
of their complexity, in order to adjust analytical methods to
particular networks. �e measure of network complexity is
essential for numerous applications. For instance, the level
of network complexity can determine the course of various
processes happeningwithin the network, such as information
di
usion, failure propagation, actions related to control, or
resilience preservation. Network complexity has been suc-
cessfully used to investigate the structure of so�ware libraries
[1], to compute the properties of chemical structures [2],

to assess the quality of business processes [3–5], and to
provide general characterizations of networks [6, 7].

Complex networks are ubiquitous in many areas of
science, such as mathematics, biology, chemistry, systems
engineering, physics, sociology, and computer science, to
name a few. Yet the very notion of network complexity
lacks a strict and agreed-upon de	nition. In general, a
network is considered “complex” if it exhibits many fea-
tures such as small diameter, high clustering coecient,
anticorrelation of node degrees, presence of network motifs,
and modularity structures [8]. �ese features are common
in real-world networks, but they rarely appear in arti	cial
random networks. Finding a good metric with which one
can estimate the complexity of a network is not a trivial
task. A good complexity measure should not depend solely
on the number of vertices and edges, but it must take into
consideration topological characteristics of the network. In
addition, complexity is not synonymous with randomness
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or unexpectedness. As has been pointed out [8], within
the spectrum of possible networks, from the most ordered
(cliques, paths, and stars) to the most disordered (random
networks), complex networks occupy the very center of
this spectrum. Finally, a good complexity measure should
not depend on a particular network representation and
should yield consistent results for various representations
of the same network (adjacency matrix, Laplacian matrix,
and degree sequence). Unfortunately, as current research
suggests, 	nding a good complexity measure applicable to a
wide variety of networks is very challenging [9–11].

Among many possible measures which can be used to
de	ne the complexity of networks, the entropy of various
network invariants has been by far the most popular choice.
Network invariants considered for de	ning entropy-based
complexity measures include number of vertices, number of
neighbors, number of neighbors at a given distance [12], dis-
tance between vertices [13], energy of network matrices such
as Randić matrix [14] or Laplacian matrix [15], and degree
sequences. �ere are multiple de	nitions of entropies, usu-
ally broadly categorized into three families: thermodynamic
entropies, statistical entropies, and information-theoretic
entropies. In the 	eld of computer science, information-
theoretic measures are the most prevalent, and they include
Shannon entropy [16], Kolmogorov-Sinai entropy [17], and
Rényi entropy [18]. �ese entropies are based on the concept
of the information content of a system and they mea-
sure the amount of information required to transmit the
description of an object. �e underlying assumption of
using information-theoretic de	nitions of entropy is that
uncertainty (as measured by entropy) is a nondecreasing
function of the amount of available information. In other
words, systems in which little information is available are
characterized by low entropy and therefore are considered
to be “simple.” �e 	rst idea to use entropy to quantify the
complexity of networks comes fromMowshowitz [19].

Despite the ubiquitousness of general-purpose entropy
de	nitions, many researchers have developed specialized
entropy de	nitions aimed at describing the structure of
networks [10]. Notable examples of such de	nitions include
the proposal by Ji et al. to measure the unexpectedness of a
particular network by comparing it to the number of possible
network con	gurations available for a given set of parameters
[20]. �is concept is clearly inspired by algorithmic entropy,
which de	nes the complexity of a system not in terms of its
information content, but in terms of its generative process.
A di
erent approach to measure the entropy of networks has
been introduced by Dehmer under the form of information
functional [21]. Information functional can be also used to
quantify network entropy in terms of �-neighborhoods of
vertices [12, 13] or independent sets of vertices [22]. Yet
another approach to network entropy has been proposed by
Körner, who advocates the use of stable sets of vertices as the
basis to compute network entropy [23]. Several comprehen-
sive surveys of network entropy applications are also available
[9, 11].

Within the realm of information science, the complexity
of a system is most o�en associated with the number of

possible interactions between elements of the system. Com-
plex systems evolve over time, they are sensitive to even
minor perturbations at the initial steps of development and
o�en involve nontrivial relationships between constituent
elements. Systems exhibiting high degree of interconnect-
edness in their structure and/or behavior are commonly
thought to be dicult to describe and predict, and, as a
consequence, such systems are considered to be “complex.”
Another possible interpretation of the term “complex” relates
to the size of the system. In the case of networks, one might
consider to use the number of vertices and edges to estimate
the complexity of a network. However, the size of the network
is not a good indicator of its complexity, because networks
which have well-de	ned structures and behaviors are, in
general, computationally simple.

In this work, we do not introduce a new complex-
ity measure or propose new informational functional and
network invariants, on which an entropy-based complexity
measure could be de	ned. Rather, we follow the observations
formulated in [24] andwe present the criticism of the entropy
as the guiding principle of complexity measure construc-
tion. �us, we do not use any speci	c formal de	nition
of complexity, but we provide additional arguments why
entropy may be easily deceived when trying to evaluate
the complexity of a network. Our main hypothesis is that
algorithmic entropy, also known as Kolmogorov complexity,
is superior to traditional Shannon entropy due to the fact
that algorithmic entropy is more robust, less dependent on
the network representation, and better aligned with intuitive
human understanding of complexity.

�e organization of the paper is the following. In Sec-
tion 2, we introduce basic de	nitions related to entropy and
we formulate arguments against the use of entropy as the
complexity measure of networks. Section 2.3 presents several
examples of entropy-deceiving networks, which provide both
motivation and anecdotal evidence for our hypothesis. In
Section 3, we introduce Kolmogorov complexity andwe show

how this measure can be applied to networks, despite its
high computational cost. �e results of the experimental
comparison of entropy and Kolmogorov complexity are
presented in Section 4.�e paper concludes in Section 5 with
a brief summary and future work agenda.

2. Entropy as the Measure of
Network Complexity

2.1. Basic De�nitions. Let us introduce basic de	nitions and
notation used throughout the remainder of this paper. A
network is an ordered pair� = ⟨�, �⟩, where� = {V1, . . . , V�}
is the set of vertices and � = {(V�, V�) ∈ � × �} is the set
of edges. �e degree 
(V�) of the vertex V� is the number of
vertices adjacent to it, 
(V�) = |{V� : (V�, V�) ∈ �}|. A given
network can be represented inmany ways, for instance, using
an adjacency matrix de	ned as

��×� [, �] = {{{
1 if (V�, V�) ∈ �
0 otherwise. (1)
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An alternative to the adjacency matrix is the Laplacian
matrix of the network de	ned as

��×� [, �] =
{{{{{{{


 (V�) if  = �
−1 if  ̸= �, (V�, V�) ∈ �
0 otherwise.

(2)

Other popular representations of networks include the
degree list de	ned as � = ⟨
(V1), 
(V2), . . . , 
(V�)⟩ and the
degree distribution de	ned as

� (
�) = � (
 (V�) = 
�) =
�����{V� ∈ � : 
 (V�) = 
�}����� . (3)

Although there are numerous di
erent de	nitions of
entropy, in this work we are focusing on the de	nition
most commonly used in information sciences, the Shan-
non entropy [16]. �is measure represents the amount of
information required to provide the statistical description of
the network. Given any discrete random variable ! with "
possible outcomes, the Shannon entropy#(!) of the variable! is de	ned as the function of the probability � of all
outcomes of!:

#(!) = − �∑
�=1
� (%�) log� � (%�) . (4)

Depending on the selected base of the logarithm, the
entropy is expressed in bits (& = 2), nats (& = '), or dits (& =10) (bits are also known as Shannon, and dits are also known
as Hartley). �e above de	nition applies to discrete random
variables; for random variables with continuous probability
distributions di
erential entropy is used, usually along with
the limiting density of discrete points. Given a variable!with" possible discrete outcomes such that in the limit " → ∞
the density of ! approaches the invariant measure -(%), the
continuous entropy is given by

lim�→∞#(!) = −∫� (%) � (%)- (%) 
%. (5)

In thiswork, we are interested inmeasuring the entropy of
various network invariants. �ese invariants can be regarded
as discrete random variables with the number of possible
outcomes bound by the size of the available alphabet, either
binary (in the case of adjacency matrices) or decimal (in
the case of other invariants). Consider the 3-regular graph
presented in Figure 1. �is graph can be described using the
following adjacency matrix:

�10×10 =

[[[[[[[[[[[[[[[[[[[[[[
[

0 0 1 0 1 0 0 0 1 0
0 0 0 0 1 0 0 1 1 0
1 0 0 1 0 1 0 0 0 0
0 0 1 0 0 1 1 0 0 0
1 1 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 1
0 1 0 0 0 1 1 0 0 0
1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 0 1 0

]]]]]]]]]]]]]]]]]]]]]]
]

. (6)

1

2

3

4

5

6

7

8

9

10

Figure 1: �ree-regular graph with 10 vertices.

�is matrix, in turn, can be �attened to a vector (either
row-wise or column-wise), and this vector can be treated
as a random variable with two possible outcomes, 0 and 1.
Counting the number of occurrences of these outcomes, we
arrive at the random variable ! = {%0 = 0.7, %1 = 0.3} and
its entropy #(!) = 0.88. Alternatively, this graph can be
described using the degree list � = ⟨3, 3, 3, 3, 3, 3, 3, 3, 3, 3⟩
which can be treated as the random variable with the entropy#(�) = 0. Yet another possible random variable that can be
derived from this graph is the degree distribution�� = {
0 =0, 
1 = 0, 
2 = 0, 
3 = 1} with the entropy #(��) = 0.
In summary, any network invariant can be used to extract a
random variable and compute its entropy.

�us, in the remainder of the paper, whenever mention-
ing entropy, we will refer to the entropy of a discrete random
variable. In general, the higher the randomness, the greater
the entropy. �e value of entropy is maximal for a random
variable with the uniform distribution and the minimum
value of entropy is attained by a constant random variable.
�is kind of entropy will be further explored in this paper in
order to reveal its weaknesses.

As an alternative to Shannon entropy, we advocate the use
of Kolmogorov complexity. We postpone the discussion of
Kolmogorov complexity to Section 3, where we provide both
its de	nition and the method to approximate this incom-
putable measure. For the sake of brevity, in the remainder of
this paper, we will use the term “entropy” to refer to Shannon
entropy and the term “�-complexity” to refer to Kolmogorov
complexity.

2.2. Why Is Entropy a Bad Measure of Network Complexity.
Zenil et al. [24] argue that entropy is not appropriate to
measure the true complexity of a network and they present
several examples of networks which should not qualify as
complex (using the colloquial understanding of the term),
yet which attain maximum entropy of various network
invariants. We follow the line of argumentation of Zenil
et al., and we present more examples of entropy-deceiving
networks. Our main aim is to show that it is relatively easy
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Figure 2: Block network composed of eight of the same 3-node
blocks.

to construct a network which achieves high values of entropy
of various network invariants. Examples presented in this
section outline the main problem with using entropy as
the basis for complexity measure construction: namely, that
entropy is not aligned with intuitive human understanding of
complexity. Statistical randomness, as measured by entropy,
does not imply complexity in a useful, operational way.

�e main reason why entropy and other entropy-related
information-theoretic measures fail to correctly describe the
complexity of a network is the fact that these measures are
not independent of the network representation. As amatter of
fact, this remark applies equally to all computablemeasures of
network complexity. It is quite easy to present examples of two
equivalent lossless descriptions of the same network having
very di
erent entropy values, aswewill show in Section 2.3. In
this paper, we experiment with four di
erent representations
of networks: adjacency matrices, Laplacian matrices, degree
lists, and degree distributions. We show empirically that the
choice of a particular representation of the network strongly
in�uences the resulting entropy estimation.

Another property which makes entropy a questionable
measure of network complexity is the fact that entropy cannot
be applied to several network features at the same time, but it
operates on a single feature, for example, degree and between-
ness. In theory, one could devise a function which would
be a composition of individual features, but high complexity
of the composition does not imply high complexity of all
its components and vice versa. �is requirement to select a
particular feature and compute its probability distribution
disquali	es entropy as a universal and independent measure
of complexity.

In addition, an o�en forgotten aspect of entropy is the
fact that measuring entropy requires making an arbitrary
choice regarding the aggregation level of the variable, for
which entropy is computed. Consider the network presented
in Figure 2. At the 	rst glance, this network seems to be fairly
random. �e density of the network is 0.35 and its entropy
computed over adjacency matrix is 0.92 bits. However, this

network has been generated using a very simple procedure.
We begin with the initial matrix:

@3×3 = [[
[
0 1 0
1 0 1
0 0 1

]]
]
. (7)

Next, we create 64 copies of this matrix, and each of
these copies is randomly transposed. Finally, we bind all
these matrices together to form a square matrix@24×24 and
we use it as the adjacency matrix to create the network.
So, if we were to coalesce the adjacency matrix into 3 × 3
blocks, the entropy of the adjacency matrix would be 0,
since all constituent blocks are the same. It would mean that
the network is actually deterministic and its complexity is
minimal. On the other hand, it should be noted that this
shortcoming of entropy can be circumvented by using the
entropy rate ("-gram entropy) instead, because entropy rate
calculates the entropy for all possible levels of granularity of
a variable. Given a random variable ! = ⟨%1, %2, . . . , %�⟩,
let �(%�, %�+1, . . . , %�+	) denote the joint probability over C
consecutive values of!. Entropy rate#	(!) of a sequence ofC consecutive values of! is de	ned as

#	 (!)
= − ∑

1∈�

⋅ ⋅ ⋅ ∑

�∈�
� (%1, . . . , %	) log2 � (%1, . . . , %	) . (8)

Entropy rate of the variable ! is simply the limit of the
above estimation for C → ∞.

2.3. Entropy-Deceiving Networks. In this section, we present
four di
erent examples of entropy-deceiving networks, sim-
ilar to the idea coined in [24]. Each of these networks has
a simple generative procedure and should not (intuitively)
be treated as complex. However, if the entropy was used to
construct a complexity measure, these networks would have
been quali	ed as complex.�e examples given in this section
disregard any speci	c de	nition of complexity; their aim is
to outline main shortcomings of entropy as the basis for any
complexity measure construction.

2.3.1. Degree Sequence Network. Degree sequence network
is an example of a network which has an interesting prop-
erty: there are exactly two vertices for each degree value1, 2, . . . ,  /2; = |�|.

�e procedure to generate degree sequence network is
very simple. First, we create a linked list of all vertices, for
which 
(V1) = 
(V�) = 1 and ∀ ̸= 1,  ̸=  , 
(V�) = 2. It is
a circle without one edge (V1, V�). Next, starting with vertex
V3, we follow a simple rule:

for  = 3 to  /2 do

for � = 1 to ( − 2) do
add edge(V�, V�/2+�)

end for

end for
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Figure 3: Degree sequence network.

�e resulting network is presented in Figure 3. It is
very regular, with a uniform distribution of vertex degrees,
due to its straightforward generation procedure. However,
if one would examine the entropy of the degree sequence,
this entropy would be maximal for a given number  of
vertices, suggesting far greater randomness of such network.
�is example shows that entropy of the degree sequence (and
the entropy of the degree distribution) can be verymisleading
when trying to evaluate the true complexity of a network.

2.3.2. Copeland-Erdös Network. �e Copeland-Erdös net-
work is a network which seems to be completely random,
despite the fact that the procedure of its generation is
deterministic. �e Copeland-Erdös constant is a constant
which is produced by concatenating “0” with the sequence
of consecutive prime numbers [25]. When prime numbers
are expressed in base 10, the Copeland-Erdös constant is
a normal number; that is, its in	nite sequence of digits is
uniformly distributed (the normality of the Copeland-Erdös
constant in bases other than 10 is not proven).�is fact allows
us to devise the following simple generative procedure for a

network. Given the number of vertices  , take the 	rst  2
digits of the Copeland-Erdös constant and represent them as
the matrix of the size × . Next, binarize each value in the
matrix using the function G(%) = %div5 (integer division)
and use it as the adjacency matrix to create a network.
Since each digit in the matrix is approximately equally likely,
the resulting binary matrix will have approximately the
same number of 0’s and 1’s. An example of the Copeland-
Erdös network is presented in Figure 4. �e entropy of
the adjacency matrix is maximal for a given number of  
vertices; furthermore, the network may seem to be random
and complex, but its generative procedure, as we can see, is
very simple.
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Figure 4: Copeland-Erdös network.

Figure 5: 2-Clique network.

2.3.3. 2-Clique Network. 2-Clique network is an arti	cial
example of a network in which the entropy of the adjacency
matrix is maximal. �e procedure to generate this network
is as follows. We begin with two connected vertices labeled
red and blue. We add red and blue vertices alternatingly,
each time connecting the newly added vertex with all other
vertices of the same color. As a result, two cliques appear (see
Figure 5). Since there are asmany red vertices as there are blue
vertices, the adjacency matrix contains the same number of
0’s and 1’s (not considering the 1 representing the bridge edge
between cliques). So, entropy of the adjacency matrix is close
to maximal, although the structure of the network is trivial.

2.3.4. Ouroboros Network. Ouroboros (Ouroboros is an
ancient symbol of a serpent eating its own tail, appearing
	rst in Egyptian iconography and then gaining notoriety in
later magical traditions) network is another example of an
entropy-deceiving network. �e procedure to generate this



6 Complexity

network is very simple: for a given number of vertices, we
create two closed rings, each consisting of  /2 vertices, and
we connect corresponding vertices of the two rings. Finally,
we break a single edge in one ring and we put a single vertex
at the end of the broken edge. �e result of this procedure
can be seen in Figure 6. Interestingly, even though almost all
vertices in this network have equal degree of 3, each vertex has
di
erent betweenness. �us, the entropy of the betweenness
sequence is maximal, suggesting a very complex pattern of
communication pathways though the network. Obviously,
this network is very simple from the communication point
of view and should not be considered complex.

3. �-Complexity as the Measure of
Network Complexity

We strongly believe that Kolmogorov complexity (�-
complexity) is a much more reliable and robust basis for
constructing the complexity measure for compound objects,
such as networks. Although inherently incomputable,�-complexity can be easily approximated to a degree
which allows for the practical use of �-complexity in
real-world applications, for instance, in machine learning
[26, 27], computer network management [28], and general
computation theory (proving lower bounds of various Turing
machines, combinatorics, formal languages, and inductive
inference) [29].

Let us now introduce the formal framework for �-
complexity and its approximation. Note that entropy is
de	ned for any random variable, whereas �-complexity is
de	ned for strings of characters only. �-complexity �(H) of
a string H is formally de	ned as

� (H) = min {|�| , I (�) = H} , (9)

where � is a program which produces the string H when run
on a universal Turing machine I and |�| is the length of the
program�, that is, the number of bits required to represent�.
Unfortunately, �-complexity is incomputable [30], or more
precisely, it is upper semicomputable (only the upper bound
of the value of �-complexity can be computed for a given
string H). One way for approximating the true value of �(H)
is to use the notion of algorithmic probability introduced
by Solomono
 and Levin [31, 32]. Algorithmic probability��(H) of a string H is de	ned as the expected probability that a
random program� running on a universal TuringmachineI
with the binary alphabet produces the string H upon halting:

�� (H) = ∑
�:(�)=�

1
2|�| . (10)

Of course there are 2|�| possible programs of the length|�|, and the summation is performed over all possible pro-
gramswithout limiting their length,whichmakes algorithmic
probability ��(H) a semimeasure which itself is incomputable.
Nevertheless, algorithmic probability can be used to calculate�-complexity using the Coding �eorem [31] which states

that algorithmic probability approximates �-complexity up
to a constant J:

����−log2 �� (H) − � (H)���� ≤ J. (11)

�e consequence of the Coding �eorem is that it
associates the frequency of occurrence of the string H with
its complexity. In other words, if a particular string H can
be generated by many di
erent programs, it is considered
“simple.” On the other hand, if a very speci	c program is
required to produce the given string H, this string can be
regarded as “complex.” �e Coding �eorem also implies
that �-complexity of a string H can be approximated from its
frequency using the formula:

� (H) ≈ −log2 �� (H) . (12)

�is formula has inspired the Algorithmic Nature Lab
group (https://www.algorithmicnaturelab.org) to develop the
CTM (Coding �eorem Method), a method to approximate�-complexity by counting output frequencies of small Turing
machines. Clearly, algorithmic probability of the string H
cannot be computed exactly, because the formula for algo-
rithmic probability requires 	nding all possible programs
that produce the string H. Nonetheless, for a limited subset
of Turing machines it is possible to count the number of
machines that produce the given string H, and this is the trick
behind the CTM. In broad terms, the CTM for a string H
consists in computing the following function:

CTM (H) = � (",-, H)
= |{I ∈ T (",-) : I (�) = H}|
|{I ∈ T (",-) : I (�) : halts}| ,

(13)

where T(",-) is the space of all universal Turing machines
with " states and - symbols. Function �(",-, H) computes
the ratio of all halting machines with " states and- symbols
which produce the string H and its value is determined with
the help of known values of the famous Busy Beaver function
[33]. �e Algorithmic Nature Lab group has gathered statis-
tics on almost 5 million short strings (maximum length is
12 characters) produced by Turing machines with alphabets
ranging from 2 to 9 symbols, and based on these statistics
the CTM can approximate the algorithmic probability of a
given string. Detailed description of the CTM can be found
in [34]. Since the function �(",-, H) is an approximation of
the true algorithmic probability ��(H), it can also be used to
approximate�-complexity of the string H.

�e CTM can be applied only to short strings consisting
of 12 characters or less. For larger strings and matrices, the
BDM (Block Decomposition Method) should be used. �e
BDMrequires the decomposition of the string H into (possibly
overlapping) blocks {&1, &2, . . . , &�}. Given a long string H, the
BDM computes its algorithmic probability as

BDM (H) = �∑
�=1

CTM (&�) + log2 ����&����� , (14)

where CTM(&�) is the algorithmic complexity of the block &�
and |&�| denotes the number of times the block &� appears in H.
Detailed description of the BDM can be found in [35].

https://algorithmicnature.org/
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Figure 6: Ouroboros network.

Obviously, any representation of a nontrivial network
requires far more than 12 characters. Consider once again the
3-regular graph presented in Figure 1. �e Laplacian matrix
representation of this graph is the following:

�10×10

=

[[[[[[[[[[[[[[[[[[[[[[[[[
[

3 0 −1 0 −1 0 0 0 −1 0
0 3 0 0 −1 0 0 −1 −1 0
−1 0 3 −1 0 −1 0 0 0 0
0 0 −1 3 0 −1 −1 0 0 0
−1 −1 0 0 3 0 0 0 0 −1
0 0 −1 −1 0 3 0 −1 0 0
0 0 0 −1 0 0 3 −1 0 −1
0 −1 0 0 0 −1 −1 3 0 0
−1 −1 0 0 0 0 0 0 3 −1
0 0 0 0 −1 0 −1 0 −1 3

]]]]]]]]]]]]]]]]]]]]]]]]]
]

. (15)

If we treat each row of the Laplacian matrix as a separate
block, the string representation of the Laplacian matrix
becomes H = {&1 = 3010100010, &2 = 0300100110, . . . , &10 =0000101013} (for the sake of simplicity, we have replaced
the symbol “−1” with the symbol “1”). �is input can be
fed into the BDM, producing the 	nal estimation of the
algorithmic probability (and, consequently, the estimation
of the �-complexity) of the string representation of the
Laplacian matrix. In our experiments, whenever reporting
the values of �-complexity of the string H, we actually report
the value of BDM(H) as the approximation of the true �-
complexity.

4. Experiments

4.1. Gradual Change of Networks. As we have stated before,
the aim of this research is not to propose a new complexity
measure for networks, but to compare the usefulness and
robustness of entropy versus�-complexity as the underlying
foundations for complexity measures. Let us recall what
properties are expected from a good and reliable complex-
ity measure for networks. Firstly, the measure should not
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depend on the particular network representation but should
yield more or less consistent results for all possible lossless
representations of a network. Secondly, the measure should
not equate complexitywith randomness.�irdly, themeasure
should take into consideration topological properties of a net-
work and not be limited to simple counting of the number of
vertices and edges. Of course, statistical properties of a given
network will vary signi	cantly between di
erent network
invariants, but at the base level of network representation
the quantity used to de	ne the complexity measure should
ful	ll the above requirements. �e main question that we are
aiming to answer in this study is whether there are qualitative
di
erences between entropy and�-complexity with regard to
the above-mentioned requirements when measuring various
types of networks.

In order to answer this question we have to measure
how a change in the underlying network structure a
ects the
observed values of entropy and�-complexity. To this end, we
have devised two scenarios. In the 	rst scenario, the network
gradually transforms from the perfectly ordered state to a
completely random state. �e second transformation brings
the network from the perfectly ordered state to a state which
can be understood as semiordered, albeit in a di
erent way.
�e following sections present both scenarios in detail.

4.1.1. From Watts-Strogatz Small-World Model to Erdös-Rényi
Random Network Model. A small-world network model
introduced byWatts and Strogatz [36] is based on the process,
which transforms a fully ordered network with no random
edge rewiring into a random network. According to the
small-world model, vertices of the network are placed on a
regular �-dimensional grid and each vertex is connected to
exactly- of its nearest neighbors, producing a regular lattice
of vertices with equal degrees. �en, with a small probability�, each edge is randomly rewired. If � = 0, no rewiring
occurs and the network is fully ordered. All vertices have the
same degree, the same betweenness, and the entropy of the
adjacencymatrix depends only on the density of edges.When� ≥ 0, edge rewiring is applied to edges and this process
distorts the degree distribution of vertices.

On the other end of the network spectrum is the
Erdös-Rényi random network model [37], in which there is
no inherent pattern of connectivity between vertices. �e
random network emerges by selecting all possible pairs
of vertices and creating, for each pair, an edge with the
probability �. Alternatively, one can generate all possible
networks consisting of " vertices and - edges and then
randomly pick one of these networks.�e construction of the
random network implies the highest degree of randomness,
and there is no otherway of describing a particular instance of
such network other than by explicitly providing its adjacency
matrix or the Laplacian matrix.

In our 	rst experiment, we observe the behavior of
entropy and�-complexity being applied to gradually chang-
ing networks. We begin with a regular small-world network
generated for � = 0. Next, we iteratively increase the value
of � by 0.01 in each step, until � = 1. We retain the
network between iterations, so conceptually it is one network

undergoing the transition. Also, we only consider rewiring
of edges which have not been rewired during preceding
iterations, so every edge is rewired at most once. For � =0, the network forms a regular lattice of vertices, and for� = 1 the network is fully random with all edges rewired.

While randomly rewiring edges, we do not impose any
preference on the selection of the target vertex of the edge
being currently rewired; that is, each vertex has a uniform
probability of being selected as the target vertex of rewiring.

4.1.2. From Watts-Strogatz Small-World Model to Barabási-
Albert Preferential Attachment Model. Another popular
model of arti	cial network generation has been introduced
by Barabási and Albert [38]. �is network model is based
on the phenomenon of preferential attachment, according to
which vertices appear consecutively in the network and tend
to join existing vertices with a strong preference for high
degree vertices. �e probability of selecting vertex V� as the
target of a newly created edge is proportional to V�’s degree
(V�). Scale-free networks have many interesting properties
[39, 40], but from our point of view the most interesting
aspect of scale-free networks is the fact that they represent
a particular type of semiorder. �e behavior of low-degree
vertices is chaotic and random, and individual vertices are
dicult to distinguish, but the structure of high-degree
vertices (so-called hubs) imposes a well-de	ned topology
on the network. High-degree vertices serve as bridges
which facilitate communication between remote parts of the
network, and their degrees are highly predictable. In other
words, although a vast majority of vertices behave randomly,
the order appears as soon as high-degree vertices emerge in
the network.

In our second experiment, we start from a small-world
network and we increment the edge rewiring probability� in each step. �is time, however, we do not select the
new target vertex randomly, but we use the preferential
attachment principle. In the early steps, this process is still
random as the di
erences in vertex degrees are relatively
small, but at a certain point the scale-free structure emerges
and as more rewiring occurs (for � → 1), the network starts
organizing around a subset of high-degree hubs.�e intuition
is that a good measure of network complexity should be able
to distinguish between the initial phase of increasing the
randomness of the network and the second phase where the
semiorder appears.

4.2. Results and Discussion. We experiment only on arti-
	cially generated networks, using three popular network
models: Erdös-Rényi randomnetworkmodel,Watts-Strogatz
small-world network model, and Barabási-Albert scale-free
network model. We have purposefully le� out empirical
networks from consideration, due to a possible bias which
might have been introduced. Unfortunately, for empirical
networks, we do not have a good method of approximating
the algorithmic probability of a network. All we could do
is to compare empirical distributions of network properties
(such as degree, betweenness, and local clustering coecient)
with distributions from known generative models. In our
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previouswork [41], we have shown that this approach can lead
to severe approximation errors as distributions of network
properties strongly depend on values of model parameters
(such as edge rewiring probability in the small-world model,
or power-law coecient in the scale-free model). Without a
universal method of estimating the algorithmic probability
of empirical networks, it is pointless to compare entropy
and �-complexity of such networks since no baseline can
be established and the results would not yield themselves to
interpretation.

In our experiments we have used the acssR package [42]
which implements the Coding�eoremMethod [34, 43] and
the Block Decomposition Method [35].

Let us now present the results of the 	rst experiment.
In this experiment, the edge rewiring probability � changes
from 0 to 1 by 0.01 in each iteration. In each iteration, we
generate 50 instances of the network consisting of  =100 vertices, and for each generated network instance, we
compute the following measures:

(i) Entropy and�-complexity of the adjacency matrix

(ii) Entropy and�-complexity of the Laplacian matrix

(iii) Entropy and�-complexity of the degree list

(iv) Entropy and�-complexity of the degree distribution

We repeat the experiments described in Section 4.1 for
each of the 50 networks, performing the gradual change
of each of these networks, and for each value of the edge
rewiring probability � we average the results over all 50
networks. Since entropy and �-complexity are expressed in
di
erent units, we normalize bothmeasures to allow for side-
by-side comparison. �e normalization procedure works as
follows. For a given string of characters H with the lengthC = |H|, we generate two strings. �e 	rst string Hmin consists
of C repeated 0’s and it represents the least complex string of
the length C. �e second string Hmax is a concatenation of C
uniformly selected digits and it represents the most complex
string of the length C. Each value of entropy and�-complexity
is normalized with respect to minimum and maximum value
of entropy and �-complexity possible for a string of equal
length. �is allows us not only to compare entropy and �-
complexity between di
erent representations of networks,
but also to compare entropy to �-complexity directly. �e
results of our experiments are presented in Figure 7.

We observe that traditional entropy of the adjacency
matrix remains constant. �is is obvious, the rewiring of
edges does not change the density of the network (the
number of edges in the original small-world network and
the 	nal random network or scale-free network is exactly
the same), so entropy of the adjacency matrix is the same
for each value of the edge rewiring probability �. On the
other hand, �-complexity of the adjacency matrix slowly
increases. It should be noted that the change of�-complexity
is small when analyzed in absolute values. Nevertheless, �-
complexity consistently increases as networks diverge from
the order of the small-world model toward the chaos of
randomnetworkmodel. A very similar result can be observed
for networks represented using Laplacian matrices. Again,
entropy fails to signal any change in network’s complexity

because the density of networks remains constant throughout
the transition, and the very slight change of entropy for � ∈⟨0, 0.25⟩ is caused by the change of the degree list which
forms the main diagonal of the Laplacian matrix. �e result
for the degree list is more surprising. �-complexity of the
degree list slightly increases as networks lose their ordering
but remains close to 0.4. At the same time, entropy increases
quickly as the edge rewiring probability � approaches 1.
�e pattern of entropy growth is very similar for both the
transition to random network and the transition to scale-free
network, with the latter characterized counterintuitively by
larger entropy. In addition, the absolute value of entropy for
the degree list is several times larger than for the remaining
network representations (the adjacencymatrix and the Lapla-
cian matrix). Finally, both entropy and�-complexity behave
similarly for networks described using degree distributions.
We note that both measures correctly identify the decrease
of apparent complexity as networks approach the scale-
free model (when semiorder emerges) and signal increasing
complexity as networks becomemore andmore random. It is
tempting to conclude from the results of the last experiment
that the degree distribution is the best representation when
network complexity is concerned. However, one should not
forget that the degree distribution and the degree list are
not lossless representations of networks, so the algorithmic
complexity of degree distribution only estimates how dicult
it is to recreate that distribution and not the entire network.

Given the requirements formulated at the beginning of
this section and the results of the experimental evaluation,
we conclude that�-complexity is a more feasible measure for
constructing intuitive complexity de	nitions. �-complexity
captures small topological changes in the evolving networks,
where entropy cannot detect these changes due to the fact
that network density remains constant. Also, �-complexity
produces less variance in absolute values across di
erent
network representations, and entropy returns drastically
di
erent estimates depending on the particular network
representation.

5. Conclusions

Entropy has been commonly used as the basis for modeling
the complexity of networks. In this paper, we show why
entropy may be a wrong choice for measuring network
complexity. Entropy equates complexity with randomness
and requires preselecting the network feature of interest. As
we have shown, it is relatively easy to construct a simple
network which maximizes entropy of the adjacency matrix,
the degree sequence, or the betweenness distribution. On
the other hand, �-complexity equates the complexity with
the length of the computational description of the network.
�is measure is much harder to deceive and it provides a
more robust and reliable description of the network. When
networks gradually transform from the highly ordered to
highly disordered states, �-complexity captures this transi-
tion, at least with respect to adjacencymatrices and Laplacian
matrices.
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Figure 7: Entropy and�-complexity of (a) adjacency matrix, (b) Laplacian matrix, (c) degree list, and (d) degree distribution under gradual
transition fromWatts-Strogatz model to Erdös-Rényi and Barabási-Albert models.

In this paper, we have used traditional methods to
describe a network: the adjacency matrix, the Laplacian
matrix, the degree list, and the degree distribution. We have
limited the scope of experiments to three most popular
generative network models: random networks, small-world
networks, and scale-free networks. However, it is possible to
describe networks more succinctly, using universal network
generators. In the near future, we plan to present a new
method of computing algorithmic complexity of networks

without having to estimate �-complexity, but rather fol-

lowing the minimum description length principle. Also,

extending the experiments to the realmof empirical networks

could prove to be informative and interesting.We also intend

to investigate network representations based on various

energies (Randić energy, Laplacian energy, and adjacency

matrix energy) and to research the relationships between

network energy and �-complexity.
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[29] M. Li and P. M. B. Vitányii, “Kolmogorov complexity and
its applications,” in Algorithms and Complexity, Texts and
Monographs in Computer Science, pp. 1–187, Springer-Verlag,
New York, 2014.

[30] G. J. Chaitin, “On the length of programs for computing 	nite
binary sequences,” Journal of the Association for Computing
Machinery, vol. 13, pp. 547–569, 1966.

[31] L. A. Levin, “Laws on the conservation (zero increase) of infor-
mation, and questions on the foundations of probability theory,”
Akademiya Nauk SSSR. Institut Problem Peredachi Informatsii
Akademii Nauk SSSR. Problemy Peredachi Informatsii, vol. 10,
no. 3, pp. 30–35, 1974.

[32] R. J. Solomono
, “A formal theory of inductive inference. Part
I,” Information and Control, vol. 7, no. 1, pp. 1–22, 1964.

https://oeis.org/A033308


12 Complexity

[33] T. Rado, “On non-computable functions,” �e Bell System
Technical Journal, vol. 41, pp. 877–884, 1962.

[34] F. Soler-Toscano, H. Zenil, J.-P. Delahaye, and N. Gauvrit, “Cal-
culating Kolmogorov complexity from the output frequency
distributions of small turing machines,” PLoS ONE, vol. 9, no.
5, Article ID e96223, 2014.

[35] H. Zenil, F. Soler-Toscano, N. A. Kiani, S. Hernández-Orozco,
and A. Rueda-Toicen, A decomposition method for global eval-
uation of shannon entropy and local estimations of algorithmic
complexity, 2016.

[36] D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-
world” networks,”Nature, vol. 393, no. 6684, pp. 440–442, 1998.
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