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The synthesis of compliant mechanisms yield optimized topologies that combine seviepalrtsi
with highly elastic flexure hinges. The hinges are often represented in finite element analysis by a single
node (one-node hinge) leaving doubts on the physical meaning as well as an uncertainty in the manufacturing
process.

To overcome this one-node hinge problem of optimized compliant mechanisms’ topologies, one-node hinges
need to be replaced by real flexure hinges providing desired deflection range and the ability to bear internal
loads without failure. Therefore, several common types of planar flexure hinges itedt geometries are
characterized and categorized in this work providing a comprehensive guide with explicit analytical expres-
sions to replace one-node hingekeetively.

Analytical expressions on displacements, stresses, maximum elastic deformations, beffidass stienter cf

rotation and first natural frequencies are derived in this work. Numerical simulations and experimental stud-
ies are performed validating the analytical results. More importance is given to practice-oriented flexure hinge
types in terms of cost-saving manufacturability, i.e. circular notch type hinges and rectangular leaf type: hinges.

Saxena and Ananthasurg@©00, Howell (2001, Bruns

and Tortorelli(2007), Ansola et al(2002, Bendsge and Sig-
In order to create machine tools for small scale applicationsmund (2003, Mattson et al(2004, Bendsge and Sigmund
compliant mechanisms (CM) have become more popular in2008. All these techniques lead in a systematic manner
the last years competing against rigid body systems conto final, optimized topologies, i.e. an optimal distribution of
nected by conventional pin joints. CM are flexible, mono- material over the design domain is obtained to meet the user-
lithic structures that gain their motion from the (elastic) de- specified motion requirements. As a key result, one-node
formation of certain parts, so-called flexure hinges. CM hinges (often called pseudo-hinges) with doubtful physical
are potentially more accurate, better scalable, cleaner, lesgieaning arise. As an example, a gripping mechanism and a
noisy and most importantly more cost-saving in manufactur-close up of a one-node hinge, obtained by a topology opti-
ing and maintenance. However, designing CM is more dif-mization procedure without any regularization, is shown in
ficult and non-intuitive due to its inherent complex overall the upper box in Figl. Although some techniques exist
deformation. circumventing this critical issue, e.goulsen(2002, Yoon

Several approaches have arisen to address this dravet al. (2004 or Sigmund(2009, a more consequent way is

back by applying numerical topology design and op-to use the already known data from the finite element cal-
timization procedures. Relevant contributions have culation used in the topology optimization process. Since
been made by various research teams, in particulamodal displacements for a given topology are known, the re-
Ananthasuresh and Kot@l999, Frecker et al.(1997),  quired deflection range and (internal) nodal forces are avail-

able without additional costs, as well. These information can

be used to replace one-node hinges with real flexure hinges

Correspondence tdr. Dirksen that meet the deflection and load bearing requirements as a
BY (frank.dirksen@hsu-hh.de) result of their specific shape, dimension and material data.
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Beneficial procedure for non-intuitive synthesis of com-
pliant mechanisms: Replacing artificial one-node hinges by appro-

priate flexure hinge types meeting specified, known hinge require- "~ Plgnar, flgxure hinge characterized by Ignlgtuepthb,
ments. heightH, variable thicknesgx) > ts and common point®y, P,, P

to resist external (nodal) loads, F,, M.

Necessary mechanical properties of flexure hinges have

been investigated by a few authorfaros and Weisbord — Center of rotation and its motion with deflection, to
(1965 did pioneer work yielding approximate compliances identify and compensate a change of kinematics under
of flexure hinges decades ag®mith (2000 provided in his certain loading conditions.

book a good background on flexure elements and some flex-

ure systemsLobontiu (2003 analytically investigated flex- — Maximum (elastic) deformation, to identify deflection

ure hinges based on energy principles to calculate desired |imits and avoid material failure.
properties at individual single points of hinges. Recently,
Raatz(2006 demonstrated in her dissertation the potential
of flexure hinges in compliant parallel mechanisms using su-
perelastic shape memory alloys.

In spite of the aforementioned research, the mechanical
behavior of flexure hinges is not yet fully characterized in

terms of the synthesis of compliant mechanisms and, thug\nalytical expressions are derived using a standard x-z-

leaving a gap between final, optimized topologies and approt0rdinate system, as shown in FIij.by applying difer-

priate flexure hinges. In order to bridge this gap, mechanicafNt €stablished theories and models. If possible, numerical
properties of flexure hinges are derived and validated in thisimulations and experimental data are used to validate the
work to provide a comprehensive guide from a topology op-2nalytical calculations.

timization standpoint. The overall scheme is shown in Eig. ~ In this work, planar flexure hinges of fiérent geome-
tries are examined: rectangular, circular and parabolic flex-

ure hinges, denoted by superscripts R, C, P respectively, are

used due to an easy manufacturability (R, C) and convenient

mathematical handling (R, P). In particular, circular shape is
For the SyntheSiS of Compliant mechanisms it is crucial thpproximated by parabo"c function using Tay]or expansion
characterize and CategOI’ize individual flexure hinges in teerO avoid Comp"cated expressions_ The geometric approxima_
of their mechanical properties as a result of geometric shap@on error was checked and is negligible in all loaded regions.
and material data. Therefore, relevant mechanical properties 1,4 geometry of flexure hinges is described by lergth

are derived, such as: heightH and variable thicknes$x) > ts as well as common
points P1(0,%), Px(3,%) and P3(1,%), as shown in Fig2.
The depth is set to uniforin= 10 mm over the entire hinge,

which is suficient for the majority of planar applications.

— Mechanical stressesry(X,2), Tx(X.2), to identify criti- Key aspect for the following calculations is the geometric

cal regions that are not apparent. shape given by the variable thicknet§x) of each type of
flexure hinge

— Natural frequencies f, to understand the behavior un-
der dynamic load conditions and to check the quality of
numerical simulations against experimental data.

— Displacementsu(x,2), w(x), to gain a better understand-
ing of the deformation of the whole flexure hinge.

— Stiffnessk;, and bending stiffnessc,, to be able to
model flexure hinges appropriately by spring joints. tR(X) =ts, D



tP(X) = 2(c1 + CoX+C3X? .
) ( 1T 3 ) First and second moments of areas of rectangular (R),

_Ax(H-ty) N Ax*(H —ts) @) circular (C) and parabolic (P) flexure hinges.

=H | 2

Sy(x2) = [, zdA (¥ = [,ZdA

t(%) = 2(zm + Vr2—(x—xu)?) R b2—2) b
g\'s

kv

H2-2412 (24 (H-t)2)? (1-2%)? (3) )
= 4(H —ts) — (4(H —ts))z - 2 . c b((ZM+ \/r27(2><—><M)2) 722) b((X*XM)i;ZJ(ZM*f)f
Parabolic and circular hinges are first written in a general (s alt? ,
form denoted by polynomial céigcientscy, c,, ¢z and cir- (s 45;(: o)) b(H“‘ZX)i;‘gts("x)x)
cle’s center coordinatesy, zy and radiusr, respectively.
In the second lines of Egs2) and @), relevant geometric
boundary conditions
C = ; Co= w Cs= @ The normal stresses,(x,2) = 375 + '\,"yy((x);) z, and shear stresses
| ¢ 124 (H—t)2 (4) Tyz = % depend on the external loads, moments of
S — s . .
XM = =, Zy = = +I, r=———""—, -
M=5 M= AH-1) areaSy(x,2), ly(x,2) and depthb, where a linear-elastic,

isotropic stress-strain relation is assumed. Furthermore, the
are applied. Throughout this paper, the formulationsnormal stresses,, o, and shear stresseg, 7,y are assumed
tRPC — {RPC(x H | t,) are used to keep the solution adaptableto be negligible. Thus, the relevant normal stresses are
to specific problems. . . _ . 1 12(x-Nz_ 122

In order to compare analytical results with numerical and x(@= b_tsFX+ TFZ““ WMy,
experimental data, a high strength aluminum wrought alloy ° °
AlCuzMg; (EN AW 2024) that is often used in applications 12 12°2 12%(x-1)z

F(x2) = Fx Fa 5
of CM due to its high fatigue strength and high elastic strain, ox(x2) bhe(x) " bh2(x) v bh2(x) ®)
is considered throughout this work. The relevant material 1 32(x—1) 3
specifications are oS(x,2) = 2bh.( “* 2oh, ® v S ® =
E=70GPa v=033 p=2790kgm®. and shear stresses are
Although it remains unchanged throughout this publication, R (Z)_(—622 +i)F
the analytical formulas hold for other isotropic materials as >\ b ~ 2bts)
well.

o 312(—414Z + h¥(x))

T X2 = W 2 (6)
Relevant mechanical properties of individual flexure hinges %2)= 3(r2_22_(X_XM)2+(ZM—Zw/rz—(X_XM)z))ZM)F

under quasi-static loading conditions are described and dis@” 4bh...(X)
cussed in this section. Thetal behavior of CM consisting of 3 )
severalflexure hinges is not described here and is subject to¥N€re N:0) = H(l = 2x)" + 40 — X)xts and h..(x) = zw -
further investigations. Since flexure hinges are mainly usedv!”—(X—xw)? are introduced to keep the expressions short.
in CM to allow rotational motion, the main focus is on axial Note, that any stress concentratidfeets are not yet taken
bending caused by external nodal forégs F, and moment ~ into account as they will later, in Se@.4.

My(x) as illustrated in Fig2.

The displacements(x,2), w(x) due to external loadsy, F,
The areas of the cross sectiéix) = bts(x), first moments My, as shown in Fig2, are calculated. Later, they are used
of areaSy(x,2) and second moments of arggx) were cal-  to calculate sffiness and bending fitiess in SecB.5.

culated and are listed in Tablefor all considered flexure In order to calculate displacemeni, z), w(x) and bend-
hinges using thicknesség&) given in Egs. {)—(3). Note, ing slopey(X), different beam theories are supposed to be
that the first moment of area is calculated frato t(x)/2. applicable:Euler-Bernoulli’'sbeam theory assumes that the

The listed moments of area are used to calculate stresséshear-indeformable) cross section remains perpendicular to
and displacements in the following sections. the neutral axis ang ~ tany = —w'(x), which is suficient



for slender beams (e.g. rectangular flexure hinges) underz
going small and moderate bending angldslasticabeam

theory lifts the latter limitation using the correct, non-linear than conventional pin ioints that have practically no limits
expression We (9 My (9 and, thus, it also holds for PnJ P y '

L+~ EL() The maximum elastic deformation of flexure hinges can be
large bending anglesTimoshenko'heam theory hol_(,js for  estimated by combining the occurring stresses derived above
small and moderate bending angles, as Bernoulli's theoryg an equivalent stressy which has to be lower than the

does, but it takes the shear deformation caused by arisyie|qd stress Ro2: ov <Rz Among various established
ing shear stresses into account. Usually, this has a minor ‘ '

. L e . L T
effect on the displacements considering “long” rectangulary'e{d criteria, von-Mises ylelq criteriomry = o+ 315, IS
hinges {(x) < 1). However, it cannot be neglected in the mainly used for ductile materials and, thus, applicable to the
case of “thick” hinges with an increasedTective” thickness ~ majority of materials in compliant mechanisms.
(t" = Tlft(x)dxz |) compared to hinge lengthsuch as most Static load cases and quasi-static motions are considered,;
circular and parabolic hinges. Further details can be found iffatigue éfects and durability are not yet fully investigated
standard literature; particularly the influence of large defor-and will be subject of future investigations and publications.
mations and shear stresses are describ&dve (1920 and Maximum normal stressy max can be found at the thinnest
Wang et al(2000, respectively. cross sectiox = X(t = ts) at the upper or lower edge= +ts/2.

In this work, Timoshenko’s beam theory is used to calcu-\Whereas maximum shear stressgsnax occur at thecenter
late the required displacements, since flexure hinges do ndif the thinnest cross section= x(t =1s) atz=0 and is zero
undergo large rotations and shear deformation cannot be néit the edges,,(z= +ts/2) = 0. Typically in applications con-

Flexure hinges can undergo smaller rotational deformation

glected. The displacement expressions are sidered here, normal stresses are more dominant than shear
stresses suggesting to neglect shear stress. However, maxi-
W (X) = —(X) + F. mum shear stresses are taken into account in the equivalent
asGA(X)’ stress due to safety reasons in this work. Therefore, equiva-
, My(x) lent stresses become
(X)) = =——, (7)
Ely() -
X Fy OVmax = \/(U'maxthx"'U'mabetb) + 37'2max
u(x,2 =21//(x)+f ———dXx
EA(X) 9)
0 2 2
: . Fx 6My(x) F,
Here, the anglew/(X) andy(X) differ by an additional shear =\l i Kkt —— K| +3{ 5 .
bts btz 2bts

deformation term, wheres is a shear correction factor com-

pensating non-uniform shear stressgsn the cross section.  where stress concentration factdtg and Ky, for axial and
Furthermore, the displacemeutx,2) is expanded by an ad-  bending loads (second indicgsb) are introduced.
ditional axial displacement term caused by axial forégs For rectangular leaf type hinges, with uniform thickness

Based on Eq.1), the displacement expressions can be cal-t(x) = t; = const , the critical section is solely determined by

culated for diferent types of flexure hinges. As an example, the maximum bending momemyRmaX(x: 0)=My—-IF,. In

the displacements for a rectangular flexure hinge based oontrast to this, for parabolic and circular notch type hinges,
Timoshenko’s theory become the critical section is determined by the thinnest cross sec-

) ) 3 tion tg, as well, leading to a critical section very close to
_ 12(1+v)tix+30Ix? - 10x 6x2

WR(X) - My, the thinnest cross section xt1/2, where the bending mo-
5EbE Ebt ment become$d o (X~ 5) = My - JF,. Thus, the maxi-
a2 mum equivalent stresses are
¢R(x)=—1zx 6x Ft 12x M,. (®)
Ebt Ebt 2 2
o= EKR+—6(My_IFZ) KR] +3 Fz
Fix= F (12x—6x2)zF Lz Vimax bt ™ bt2 t 2btg )’
7" Ebtg ¥ Eb T EDE (10)

: : : : cP J[Fx cp . B(My—3F;) CP]Z F, \
The derived displacements expressions are used in&6ct. oy .= \|| —Kx +—5—Kg +3( ) .
to calculate sftness and bending finess of diferent flexure ’ bts btg 2bts

hinges. Note, that anti-clastic bendingjeets are neglected,

. The stress concentration factors for rectangular leaf type
as suggested bgonway and Nickol§1965. 9 yp

hingesKg, KtRb strongly depend on the corner radius and
can be found irPilkey and Pilkey(2008. For circular and
parabolic hinges, stress concentration factors can be approx-
imated followingHaibach(2006



KtOx > O x

Stress concentration at flexure hinges due to ndfieite

KSP=14 01(L)+o7(1+E)2(t—5)73
o )T 2r) \2r

1\ -125173
t\[ts t\ L/t

ts\225/ g \-3375
2 (@)

-1 -
ts ts ta< t -133
+O'2(E)(E+?) G

wheret* = % and the radii of curvatureare

11)

r 066
KgP=1+|008(s)  +22(1

Nl

c_P+(H-t))

= t
A(H—ty) cons

(12)
and

)

for circular and parabolic hinges as shown in RBg.Here,
the geometric properties given in EQ) @nd corresponding

(13)

derivativeg’(x), t”(x) were applied to calculate the radius of

(L4t (9?)%2

a parabolaP®(x) = ' 709

Finally, the equivalent stresses can be calculated usin
Eq. ©) for known (nodal) loads and all considered types of

flexure hinges considered in this work.

As an example, Tabl@ illustrates the maximum elastic
deformationw(l) of differently-sized parabolic and circular
flexure hinges based on given geometric parameter: lengt = Ebg 2,(12(1fvl)t§+5|z)
I, heightH =10 mm, depthb=10mm and smallest thick-
nesds. It can be noted, that circular flexure hinges provide a

Maximum elastic deformation of circular (C) and
parabolic (P) flexure hinges undergoing bending due to pure shear
forceF,.

Shape | ts Kix Kip F, w(l) w(l)
- [mm] [mm] [ 1INl [wm]  [rad]
C 8 2 1119 1051 476 520 -0.013
P 8 2 1281 1133 441 361 -0.009
C 9 1 1040 1015 122 932 -0.020
P 9 1 1102 1043 118 658 -0.015
C 95 05 1014 1004 31 1459 -0031
P 95 05 1037 1013 30 1034 -0.022

Generally, the occurring stresses depend directly on the
radii of curvature, i.e. smaller radii of curvature result in
higher stress concentration factors leading to higher stresses.
This is not a surprising result, however Eq®—(13) provide
the reader with analytical expressions to calculate the range
of elastic deformation of flexure hinges in compliant mecha-
nisms prior to any modeling or manufacturingosts.

The stitnessky, k, and, in particular, the bending Stiessc,

of a flexure hinge is important for modeling of compliant
mechanisms using discrete spring joints or reduced finite ele-
ment models. They are calculated analytically and compared
to experimental data for all flexure hinge types considered

in this work. The load$ = (FZ, My,Fx)T and displacements
u = (W(x),»(x),u(x,2))" are coupled by the compliance ex-
pressionsu =N F as given in Eqg. §). For modeling and

topology optimization purposes, it is beneficial to convert
this relation to

Ku=F. (14)

The stitness matrixK represents all mechanical properties
(for quasi-static problems) that are crucial for modeling pur-
poses, topology optimization problems and (embedded) fi-
nite element calculations usingfieient, reduced models.
Generally, these expressions are quite large, especially, for
parabolic and circular flexure hinges. Due to conciseness, the
stiffness matrix of a rectangular flexure hinge is presented
solely. However, the calculation of Stiess matrices for

%arabolic and circular hinges is similar and straightforward.

sing the derived relations between loads and corresponding
displacement from Eq8j yield

5
24(1+v)t3+1012
102+6(1+v)t2
I(12(2:+v)3+512)

0 0

5
1(12(1+)2+512)

(15)

- © o

It

7N

larger deflection range than parabolic counterparts maintainTo compare these analytical calculations with experimen-

ing the aforementioned common material poiR{s P, P3.

tal data with superposed external loads, scalar values



Bending stifnessc, for rectangular (R), circular (C) and < [ »
parabolic (P) flexure hinges: analytical calculations and experimen- . P
tal results. B0
N (i) A
WOB
Shape | ts Cy.ana Cy.exp error LA
H mm] mm] [N [Nm (o) P AN e
P 8 2 19937 180.06 10.72 G X L Pag /g
C 8 2 143.64 133.71 7.43 L = | S(i) /
/ A
R 8 2 5833 6118 -4.66 DNNR A
Z A
| PA1
Y

for bending stithessc, are desirable. Therefore, the
stiffness matrix is decomposed (diagonalized) iktg =
diag(11,42,43), whereldy, 1,13 are the eigenvalues &f. The
resulting eigenvectons;,b,,bs are used to form the orthog-
onal transformation matri¥ = T(by,b2,b3) which is negli- Determination of instantaneous center of rotatih'P
gibly close to identityl (norm(T —1) < 10°%) for every case  of a flexure hinge.

considered in this work. Thus, Edl4) can be rewritten as

A=k 0 0 w F, Pa, Pg and the corresponding displacements= u(l,0),
0 A=¢ 0 yo(=| My (16)  wa=w(1,0) andug = u(l,—H/2) are considered. This yields
0 0 A3 = kx u Fx an overall center of rotation
~—— ——
Ko ! F 1 TA-H+Ua+Up+2l
yielding a desired, decoupled relation among loadfnsts pgé == , (17)
and deflection. 2 ﬁH - uva_l,iB +Wa

The bending sfinessc, for rectangular (R), circular (C)
and parabolic (P) flexure hinges are listed in Tahlddere,  which holds for all types of flexure hinges.
the analytical calculations filer from the experimental re- The motion of the (instantaneous) center of rotation can
sults by a maximum relative errar11 %, which is accept- be calculated considering an infinite nhumber of intermedi-
able, considering manufacturing imperfections in z-directionate steps between undeformed and maximum elastically de-
and its enormoustkect on the sfthess as described in detail formed step. Therefore, the motion paths:
in Ryu and Gweor(1997. Therefore, the aforementioned

analytical e>_<pre.ssion.s represent.agood p_rediction for superé(i): Pyt U()\) S0 - po s ug) (18)
posed, application-oriented loading conditions. A A W(/i) ’ B B W(Bi) ’

the tangent vectors:
The center of rotation and its motion with deflection of bod- -g) o Ug)
ies connected by flexure hinges are crucial for a correct modT Y = Ka = (v‘v(‘))’ TV =Ke= (W‘”)’ (19)
eling of compliant mechanisms. Ignoring the particular cen- A B

ter o_f rotation of er_xure hlnge_s can lead to parasitic motlpnand the corresponding normal vectors:
or failure of the entire mechanism due to unwanted behavior,
e.g. shap throughfiects. _ Wi _ wi

The center of rotation is usually considered for rigid-body- N% :( A ] O :[ B ) (20)
motions. However, many parts of a compliant mechanism
that are connected by flexure hinges are verff atid can
be treated in a similar way. In this work, overall center of
rotation Pgﬁﬁ refers to a fixed point considering undeformed
(0) and maximum elastically deformed state (1) as illustrate
in Fig. 4, whereas its motion refers to the herpolhode, i.e. 2(ua+1)i1a—2(Ug+) g+ HWa
motion of instantaneous center of rotation with deflection. POL) _ 2(Ua~Us)

In order to calculate the center of rotation of a rigid body -
attached to the flexure hinge, the position of two single points

-t -uY)

need to be calculated first. Determining the point of inter-
section ofN{ andNY) leads to the center of rotation for all
Ojntermediate steps, i.e. the desired motion with deflection:

: (1)
_ 2(ua—Ug)ug+Hwpa uA

WA~ = o Ga-te)Wa



Overall center of rotation for rectangular (R), circular (C) Natural frequencies for rectangular (R), circular (C) and
and parabolic (P) flexure hinges. parabolic (P) flexure hinges connected to a rigid bddy=(10 mm,
L=50mm,b=10mm).

Shape I ts F, My P P2

= y : | ts fana frum fex fgxm

-] [mm]  [mm] [N] [Nm] [mm] [mm] (mm] [m] H2) [Hz] [Hzﬁ H2]

R 8 2 35 -1.260 -0.1479 0.0499 R 947 118 1462 (7.3%) 1440(57%) 1362 1410 (3.9%)

C 8 2 35 -1.260 -0.0657 0.0191 C 9.09 099 2186(8.3%) 219.7(7.8%) 2384 242.5(1.7%)

= 8 2 35 _-1.260 -0.0615 0.0143 P 009 107 2848(0.2%) 274.0(4.0%) 2853 288.5(1.1%)
R 842 228 408.4(10.9%) 400.9(8.9%) 368.1 370.0(0.9%)

R 9 1 8 -0.28 -0.1607 0.1168 C 808 200 5349(29%) 524.4(4.8%) 550.9 541.6(1.7%)

Cc 9 1 8 -0.288 -0.0142 0.0307 P 803 213 676.9(6.0%) 643.3(0.8%) 638.4 636.4(0.3%)

P 9 1 8 -0.288 -0.0070 0.0222

cular (C) and parabolic (P) flexure hinges are illustrated in jﬁb m
Table 4 for two different loading conditions. Here, the
coordinates refer to the center of the flexure hinge denoted Cy Cy
by Ax. It can be noted, that theffective center of rotation
is shifted to ¢x,+2) direction for all flexure hinges for the _ . . :

. . . Continuous flexure hinge (left) and equivalent discrete
given load case. The motion of the center of rotation for, " . ; :

. . torsion spring model (right).

rectangular flexure hinges is clearly larger due to the deflec-
tion of the entire hinge length whereas it is very small for
circular and parabolic flexure hinges. Thus, it is crucial to ness(x) # const is not always possible. Therefore, a numer-
consider the center of rotation and its motion with deflectionical approach, namely the Rayleigh quotient
for rectangular flexure hinges in order to ensure an appropri-
ate modeling. w?=

The dfective centers of rotation for rectangular (R), cir- §\f<

max E,
max Ex

(25)

is chosen, where the first natural circular frequengys ap-
proximated by the ratio of maximum values of potential and

The natural frequency of a system consisting of a rigid bodyKInetic energie&, andEy. Following Tabarrok and Karnopp

connected to a flexure hinge as shown in Bigleft) is rele- (1967 yield
vg_nt for complig_nt m.e(.:hanisms undgr dynamic loading con- fl Ely ()W (X)2+ GA. (X)(W'(X) + P(x))2dx
ditions. In addition, it is a good quality measure comparing ‘Ui =0 |
analytical, numerical and experimental studies. Je) fo AW(X)? + Iy (X)P(x)?d x

The natural frequencies are first calculated analytically us
ing the aforementioned Timoshenko’s beam theory. Extend
ing Eq. (7) to a dynamic state yield theftrential equations:

: (26)

‘where displacement and bending angle are described by ap-
propriate test function®¥(x) and W(x). In order to deter-
mine W(x) and W(x), the displacements and bending angle
occuring from a uniform transverse logg with a resulting

SO ’_ bending momenM,(x) = —2qo(l - X)?, as suggested iRao

PARI(X) - (GA.(X)(W (X) +¥)) =0, 22) (2007 gare used. 2

ply(x)gr = (Ely(x)¢) + GAW +) =0. Table5 lists the analytically, numerically and experimen-
tally determined first natural frequenciéga foum. fexp, foip
for different flexure hinges connected to a rigid body, as
w=0, shown in Fig.5 (left). The analytical calculation$,,, are
based on Eq.26) using Timoshenko'’s beam theory. The nu-

Applying standard boundary conditions at fixed eqel0

¥ =0, (23) merical calculationd,,m are obtained by a numerical modal
and free end=| analysis using the commercial software package Abaqus 6.9.
The experimental datde,, is gathered by a experimental
Ely/ =0, modal analysis using non-contact laser scanning vibrometer
GAW +1)=0, (24) system. The frequenciefg’xfg are calculated using the stan-

dard relation

the diferential Eq. 22) can be solved. However, solving =~ 1 [Cyexp
these equations analytically for a variable, unspecified thick-'exp = 5

: (27)

Im



with mass inertid,, that holds for discrete models of ator-  Some of these conclusions are not surprising, however the

sional (bending vibration, as illustrated in Fig(right). key results of this work are the analytical expressions that
It can be noted, that the analytical calculation agrees wellenable the reader:

with the numerical results on all types of flexure hinges. i )

Compared to the experimental data, a relative error less than — 0 calculate the relevant mechanical properties of flex-

11% can be noted. Due to imperfections in the manufac-  Ure hinges explicitly and

turing process of the specimen, this error seems acceptable

to the authors; cfRyu and Gweor(1997. Comparing the

experimental datde,, and fgxfg with each other, a very small

relative error of less than 4 % can be noted. This implies, that

flexure hinges can be modeled by discrete torsional springgrior to any modeling or manufacturingferts. Thus, the

as illustrated in Fig5, using the bending sthessc, calcu-  synthesis and manufacturing process of compliant mecha-

lated in Sect3.5. nisms can be accelerated.

— to select the appropriate type of flexure hinge based
on the (known) nodal loads and displacements resulting
from the synthesis of compliant mechanism,
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