
ON MECHANICAL QUADRATURES, IN PARTICULAR,
WITH POSITIVE COEFFICIENTS*

BY

J. SHOHAT

I. Introduction

The present paper is an extension in various directions of a paper by
Fejer.f

Consider a system of orthonormal polynomials (OP)

4>n(x; a, b;d\p) = <bn(x; dip) = <j>n(x) = an(xn — Sn-ixn~x + • • • )

53 an<f>n(x); n = 0, 1, 2, • ■ ■ ; a„ = an(dip) > 0,J

with the orthogonality property

m 9^ n;
(2) I   <bm(x)d>n(x)dip = Smn = <

Ja Vi ,
m, n = 0, 1,

m = n;

Here and hereafter ij/(x) denotes a bounded non-decreasing function in (a, b),
with infinitely many points of increase, including the end-points a, b. The
limits a and b may be finite or infinite, but such that all moments

(3) an = i    xndip,       n = 0, 1, ■ ■ • , with a0 > 0
" a

exist. From (2) it follows that

(4) f $n(x)Gn-x(x)dp = 0,       f $„(x)G„(x)# = —,    n = 0, 1, - • • .
Ja Ja an2

HereG_i(x) =0andc7s(x) =zZl=oSixi'ls a generic notation for an arbitrary poly-
nomial of degree % s, subject, in some instances, to certain explicitly stated
conditions. The polynomials $n(x)=$n(x; dip)=^n(x; a, b; dip) satisfy the re-
currence relation

* Presented to the Society, October 29, 1935; received by the editors January 29, 1936 and, in
revised form, January 29, 1937.

f L. Fejfir, Mechanische Quadraturen mit positiven Cotesschen Zahlen, Mathematische Zeitschrift,
vol. 37 (1933), pp. 287-309.

% The notations employed are those of my monograph, Theorie generale des polynomes ortho-
gonaux de Tchebycheff (hereafter referred to as M), Memorial des Sciences Mathfimatiques, fasc. 66
(1934), to which the reader is referred for further details.
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$n(x) = (x — c„)$„_i(x) — A„4>„_2(x),      n ^ 2,

($o(x) = 1, *i(*) = x - ci),
' ' ■>

2
Xn —      -      ü> 0, Cn — On Sn—l.

a-n-i

The zeros of <$m(x) are known to be real and distinct; they lie in (a, b) and
will be denoted by

(6) Xi,n(d\p) = %itK = X{,   with   a < xi < x2 < ■ ■ ■ < xn < b.

Using the points (6) as abscissas in the Lagrange interpolation formula
(LIF) for a given function f(x) which is finite at every point of [a, b] and
for which / f{x)dip exists,* we are led to a Gaussian formula of mechanical
quadratures (GMQ formula)

/(*)# - E Hi,4{Xi,n), HUn=-^—-
a t=l J a   (.X —  Xi,n)d>n {Xi,n)

with the following properties:
All "coefficients" Z7,-,„ are positive, namely,

(8.1)       An =" A,„(#) = ("\--i - 1, 2, • • • , »;
J a   L(X —  Xi,n)<t>n' (Xi,„)J

Formula (7) is exact for any polynomial of degree ^2n — 1, i.e.,

/> ft n
/(x)# =  E Hi,nf{Xi,n) + 7vn(/),     With     A(G2n-l)  = 0.

a i=l

The property (8.1) is of importance in connection with the convergence prop-
erties of (7), as shown by Fejer (loc. cit.) and as will be developed below.
The question then naturally arises: does there exist, besides (6), some other
choice of the points *<,„ which yields a mechanical quadratures formula (MQF)
with positive coefficients? Fejer's answer is in the affirmative in the case where
(a, b) is finite, d\[/=dx, and the abscissas xijTl are the zeros of the polynomial

Pn{x) + APn_,{x) + 73Pn-2(x),

where P„(x) is the Legendre polynomial of degree n, A and B are real con-
stants, with B 0, provided the zeros in question are real and distinct and
belong to the (closed) interval [a, 6].t

* Throughout this paper integrals like flf{x)<H' are understood to be taken in the sense of
Stieltjes.

f The various constants dealt with in this paper are assumed to be real, unless explicitly stated
to the contrary.
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1937] ON MECHANICAL QUADRATURES 463

The object of the present paper is to give a more general answer to the
foregoing question. We may mention the following direct generalization of
Fejer's result. The polynomial +Ai>n-i(x) +73f>,,_2(x), where {<E>„(x)}
is any sequence of OP and the constants A, B are arbitrarily chosen, subject
only to the limitation B S 0, has all zeros real and distinct. Employing these
zeros as abscissas, we get MQF (7), with all coefficients positive. Moreover, if
(a, b) is finite the MQF in question converges, i.e., lim„^„7?„(/) =0, for any
bounded/(x) for which fj(x)d\p exists, regardless of the distribution of ab-
scissas relative to (a, 6). We obtain similar results concerning the more gen-
eral polynomial

co„(x) = $„0) 4- 4- • • • 4- 4jfc-i$B-t+i(x).

Various properties of OP are essential for our discussion. The most important
point is to show that under sufficiently general conditions the terms in our
MQF corresponding to abscissas outside (a, b) do not affect the convergence
properties for polynomials.

In connection with our main objective we make a general study of the
zeros of w„(x). We also link the MQ formulae under consideration with the
theory of algebraic continued fractions, and we show that the MQ formulae
related to OP are a powerful tool in the general study of such polynomials.
At the outset we give some properties of the coefficients and the abscissas of
any MQF based on LIF, extending and generalizing results due to Stekloff.f

II. Mechanical quadratures formulae based on
Lagrange interpolation

1. Construction. Let/(x) be single-valued and finite at every point of a
certain interval (a, b) (closed, if it is finite). Choose n distinct points

(9) ci < c2 < • • • < cn,

and construct the associated LIF

" «»(x) " Un(x)
f(x) « E -—-f(Ci),      f(x) = £ -—-+ Pn(f),

(10) i=l    (x — d)cof id) i=l   (X — Ci)Wn iCi)

con(x) = (x — ci)(x — c2) • • • (x — cn),      p„(G„_i) = 0.

By integration, we obtain from (10) a Lagrangian MQF iLMQ formula)

f W. Stekloff, Sur le Probleme de representation des fonctions ä l'aide de polynomes, du calcul
approcM des integrales definies, du developpment de fonctions en series infinies suivant les polynomes
et de V interpolation, considered au point de vue de Tchebycheff. Proceedings of the International
Mathematical Congress, Toronto, 1924, vol. I, pp. 631-640.
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which may be spoken of as "generated" by the polynomial wn(x).* Assuming
the existence of fj{x)dx, we have

/(*)# - Ecyfa),   Ci = -—   , ,
a i=l •» a    (* — Ci)tö„ (C;)

(11.1) f   /(*)# = £„(/) + Rn(f) , QnU)  "  E C</(Ci) ■

In particular

We call the points ct- "abscissas," the coefficients Cj "coefficients" (Cotes'
numbers) of the MQF under consideration.

In dealing with sequences of MQ formulae corresponding to n = N,
iV+1, • ■ • , we shall use the notations

(9.1) Ci,„,      Ci,„, i = 1, 2, ■ • ■ , n.

The following remark is important. If some of the abscissas fall outside the
closed interval [a, b],f we may assign arbitrary finite values to the corre-
sponding/^) in (11), for this evidently does not affect the value of fj(x)d\p,
but only that of Rn(f) which, by definition, represents the difference
JbJ(x)d4' — Qn(f). We agree, in case/(x) is not a polynomial, to let /(c.) =0,
if d is outside In other words,if f(x) is not a polynomial, the summation
Qn{f) ^/.. Cif(ci) is extended over only such d as belong to [a, b]. When deal-
ing with polynomials we keep all terms in the above summation in order not
to destroy the important property Rn(Gn-i) =0.

2. Degree of precision of LMQ formulae. If the abscissas in (11) are so
chosen that

(12) Rn(Gq) = 0,

but for one, at least, Gt+i(x), Rn(Gg+1) 5^0, then q is called "degree of pre-
cision" of our LMQ formula}: (Stekloff, loc. cit.). Here q may have any value
from n — 1, which corresponds to a random choice of abscissas, to 2n — 1

* Pölya (Ueber die Konvergenz von Quadraturverfahren, Mathematische Zeitschrift, vol. 37 (1933),
pp. 264-286) discusses MQF f*f(x)dx=2^l_^if{ci), where the coefficients X,-are chosen according to
a certain fixed rule, not necessarily connected with interpolation.

f If Ci^a (or Ci}zb), it will be assumed that a (or 6) is finite.
t The expression "MQ formula" means here and hereafter a formula with n abscissas, where n

is fixed, unless specified otherwise.
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1937] ON MECHANICAL QUADRATURES 465

in GMQ formula (7). 2n — 1 is the highest possible degree of precision, for
Rn(G2„) =0 leads to a contradiction, namely:

C0„2(x)# =  JZCiWn(Ci)  = 0.
»=1

Theorem I. A necessary and sufficient condition that q = 2n — k be the de-
gree of precision of LMQ formula (11) is that

(13) f c%(*)G^(*)# = 0,
J a

which is equivalent to the statement that un(x) admits of the following representa-
tion

(14) un(x) = $n{x) 4- Ai$n_i{x) 4- • • ■ 4- Ak-i$n-k+i(x) ,*

where the Af are arbitrary constants.

The first part is readily proved by integration, upon combining (4) with
the relations

Gq(x) = un(x) ig-n(x) +Gn-i(x), Gq(ci) = 7n_i(c<), i = 1, 2, • • • , n.

The second part is obvious. Observing that

Gq+i(x) = oon(x)Gg-n+i(x) + G„-i(x),

we immediately obtain the following formula:

'*„   . , .. AMgk+1

Theorem TL The polynomial

(14) Un(x)  =  $>n(x) + Ai$n-l(x) + ■ ■ ■  + 4t_i*n_fc+i(a;),

/b A     2 nG9+i(x)# = + IZ CtGQ+1(Ci)-

satisfies the orthgonality relation (13), with q = 2n — k, and changes sign in (a, b)
at least n — k-\-\ times.

The first part is evident, while the second is easily proved by an argument
well known in the theory of OP.

3. Signs of the coefficients; location of the abscissas. Denote by C< the
positive among the coefficients C< in (11) and by C<" the remaining ones
(negative or vanishing). Let cf, e{' be the corresponding abscissas, and P
and N be the number of Cl and C< respectively.

Theorem III. If q is the degree of precision of LMQ formula (11), then
n^P^ [(q + 2)/2], so thatO^N^ [(2n-q-T)/2].

* By virtue of the recurrence relation (5), a polynomial of the form *n(x)+/,i(a;)*„_i(a;)+ • • •
+Pv(x)Pn-v(x) (Pi(x)—polynomial of degree g i) can be written in the form (14).
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This result is due to Stekloff (loc. cit.). It is readily established by apply-
ing our MQF to the polynomial G(3_d/2 (x) if q is odd, or to Gqn(x) if q is
even. These polynomials vanish at all cl.

Further indications as to the location of the c,- and more particularly, of
the cl and cl', are given in the following theorems.

Theorem IV. Let Dn(x) be a polynomial of degree n satisfying the ortho-
gonality relation fbaDn(x)Gy(x)d\{/ = 0. If ip(x) is constant in {a, ß) c (a, b), then
Dn(x) may change sign in (a, ß) at most n — v+d times, where 0=0 or 1, accord-
ing as n is odd or even. It follows that in an LMQ formula, with degree of pre-
cision q, at most 2n — q-\-d abscissas may lie inside an interval of constancy of
ip(x), where 6 = 0 or 1, according as 2n — q is odd or even.

If (a, ß) contains more than n — v + d points where Dn(x) changes sign,
take any p = n — v + 9 + l of these, say ßj+1, ßj+2, ■ ■ ■ , ßj+u. We have, by hy-
pothesis,

0 = Dn(x)-
J a (X ~ ßj+i)  ■  ■  ■   (X ~ ßj+ß)

ra Dn2(x)dip rb

Jm (,*-. ßi+0 ■ ■ ■ 0- ßO Jß
which is impossible, both integrals on the right being >0. This is a generaliza-
tion of a known property of OP (n — v = \), which is usually proved by means
of Tchebycheff inequalities for the coefficients 77;,„ in (7), (see below, §11).
The above proof (suggested by A. N. Milgram) is a simple application of
the orthogonality property of Dn(x).

Theorem V. (i) If a certain cj' coincides with an end-point a or b, then
there exists a cl >a or <b respectively, (ii) If 2v denotes the greatest integer con-
tained in q — 2N — \, then neither of the intervals (— °°, a], [6, ») may contain
more than P — v — l of the cl .*

To prove part (i), assume for definiteness cjl =a,n odd. By Theorem III,
N — l^(w — 3)/2, and we may construct a G(n-S)n{x) such that G(„_3)/2(c/')
= 0 at all cl', except for cj' =a. Moreover, q^n — \>n — 2,

/'6 2
(a — x)G(„_3)/2(x)# = ^C/(« — cl )C7(„_3)/2(c/),

a

which shows that not all cl lie to the left of a.
To prove part (ii), note that q^2N+2v + \. Construct GN+,(x) such that

GN+v(x) =0 at all cl' and at any v of the cl, say , at c»t', c,/, • ■ • , <:,■„'. Apply-

* We necessarily have P-v-1^0, for x 5 (? - 2A^-1)/2 S (2n - 2 - 2A0 /2 = n - A7 -1 = P -1.
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ing our LMQ formula (11) to (x — a)G2N+Xx) and (b—x)G2N+„(x) we obtain

/b (x — a)Gl+t{x)d-p = zZ,C'{c' — o)Gn+v{cI),

/>b 2 '•(b — x)GN+v(x)dp = EC/(ö — c/)6V+„(c/),       c/ ^ c'„ ■ ■ ■ , c'iv,
a

which shows that the remaining P — v of the c{ cannot all lie in (— », a] or
in [6, oo).

The above theorems readily yield the following corollaries.

Corollary 1. Every LMQ formula has at least [(n+l)/2] positive coeffi-
cients.

Corollary 2. If the polynomial (14) has all zeros real and distinct, the
LMQ formula with degree of precision q = 2n — k, which uses these zeros as ab-
scissas, has at least [(2m — k+2)/2] positive coefficients, hence, at most,
[(k —1)/2] negative or vanishing coefficients.

Corollary 3. If all zeros of the polynomial (14) are real and distinct, and
the associated LMQ formula has all coefficients positive, then neither of the in-
tervals (— oo, a], [b, oo) may contain more than [k/2] abscissas.

Some special cases, (a) k = 1. Here q = 2n — \,n — k-\- \ = n, P = n, N = 0, and
we have a GMQ formula.

08) *-2, i.e.,

(16) wn(x) = $„(x) +Ai^n_1(x),      Ai ^ 0.

Here q = 2n-2, n-k + l=n-l, [k/2] = l, [(*-l)/2]=0, P = n, N = 0; all
zeros are real and simple, with one, at most, :£ a or S; b, and all coefficients are
positive.

(y) k = 3, i.e.,

(17) un(x) = $„(«) + Ai^n^(x) + A2$n_2(x),      A2 ^ 0.

Here at least n — 2 zeros are real and lie between a and b. Assuming further
that all zeros are real and simple, we get for the corresponding LMQ formula

(17.1) q = 2n-3,      P    n— 1,      N ^ 1,

so that one, at most, of the coefficients C< may become negative or vanish.
(8)* =4, i.e.,

(18) un(x) = $„(x) 4- Ai$„-i(x) + A23>n-2(x) 4" A3^n-i(x), A3 ^ 0.
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Here at least n — 3 zeros are real and lie between a and b. If all zeros
are real and simple, then for the corresponding LMQ formula

q = 2n - 4, J>' jj n— J,       A7 ̂  1.

By virtue of Theorem v, we find that in both cases (y) and (5) neither inter-
val (—oo, a], [b, oo) may contain more than two c/, and not more than one
cl if N = 0.

4. Second method for studying the coefficients and abscissas. We now
proceed to study the c,-, d by another method which tells us more about the
coefficients if we know more about the abscissas. Thus, the results previously
obtained will be supplemented and extended.

Consider again an LMQ formula with degree of precision q = 2n — k. We
change the previous notations and divide the abscissas into two groups as
follows.

^ = Si + 52 exterior abscissas :

aU) < a(2) <        < a(„) < a bu,) > JC-l) >        > i,w > b
(19) .     .     u  .     ~ 'v = n — s interior abscissas :

a < C<V < c<2> < • • • < cM < b,

with the corresponding coefficients

c„w m c^,    cm * c<'',    cm = c(0,
so that

"„(*) = (- i)«.n (*)*(*),
it (*) = it (* -«(°) it (bu) - *) - n «n «>

l*öj i=l ?=1 a b
v

*(*) = IT (* - e<0).i=i
Note that LT(x) =0 in [a, b] and >0 in (a, b). We agree to replace LTa(x)

orlJ&v*) by unity in case Si = 0 or j2 = 0. Introduce a new system of OP:

(21) *„(*; #i) sa $„(x; a, 6; #x),      #i(x) = LT (*)#(*)•*

Equation (13) can be rewritten as

(22) f $(x)G3_n(x)#! = 0.
J a

* We recall that *n(x) stands for the OP with the highest coefficient unity, and <£„(*) stands
for the normalized OP (see Introduction).
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We get at once the previous result:

q — n = n — k < v = n — s,     i.e.,     s < 2n — q = k

(for otherwise we obtain a contradiction by taking in (22) Gq-n{x) = ^{x)).
Moreover, (22) leads to a new representation of co„(x) in terms of <£„(x; d\J/i)
(supplementing (14)):

$(*) = $„(x; #i) + 7?i$„_i(x; #i) + • • • + Bkl$v^ky+i(x; #i),

(23) «.(a!) = (- 1)S=II (x)K(x; #i) + ^^(x; #0 + ■ • •
+ Bkl<f>,_kl+1(x; ttyi)],

{Bi = const., v = n — s, ki = k — s).

Upon rewriting (22) as

(22.1) f ^GV^^x)^ = 0
" a

and recalling that <f>(x) is of degree v = n —s, we conclude that the interior
abscissas in (19) originate a new LMQ formula, with d\p(x) replaced by
dipxix) =YL(x)d4/(x), namely:

(24) f V(*)#i - EC//(C(»),
with degree of precision ql = q — s = 2v — ki,kx = k — s. Since qi ^ 2(« — s) — 1, we
see that

(25) g £ 2* - * - 1.
Hence, 2n—s — 1 is the highest degree of precision attainable by the LMQ
formula (11) having s preassigned exterior abscissas.

We proceed to establish relations between the coefficients of the two
LMQ formulae (11) and (24). Applying (11), where co„(x) is now replaced by

we get:

I = 1, 2,
1       rb       *(x)#i 67(26) Cm =_ I _v ' _ -_

IjV°) J* (x - cW)&(c«>) II(cC0)
(27) C<» 67 > 0, for all interior coefficients Cc».

Letting s be fixed, consider some special cases,
(i) q attains its highest value, i.e.,

(28) q = 2n - s - \,       k = s + I.

Here 3>(x) = *,(*; atyi), &i = l, qy = 2v — \. Hence, (24) is a GMQ formula, and

C{ = 27,,,(#i), l=l,2,---,v.
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Furthermore, applying the original LMQ formula (11) to

Gt^-i(x) = U(x)U(.x)<t>(x)<I>r(x; #i,i)/(x - »<«>, #i.<
x — aK

we get

C<» = l/lo/Wi.O^fl^O^a^j^i.OlI'^"')!!^0), * = 1, 2, • • •
a b

and similarly for the C(». But (M, p. 27)

*»(£; #)*»(£; #) = Kn(H; #)/<z„2(#)

y a or £6, # = I g - f | #),
where, by Darboux's formula,

(29) 7C„(x; #) m Kn{x) m £ 0*(se) = -— [tf>„'+1(x)0n(x) - 0„'(x)0n+1(x)].

We thus finally get the following formulae for the coefficients Cf in (11):

Interior coefficients :

Cd) _ _    r   , I = 1,2, ■ ■ ■ ,v;
U(c'l))

(30)
Exterior coefficients :

c<« = l/jllV'OlKo^W^0;^.*)},*
a b

c«) = i/{n(ö('))n'(&o))^(6(');#i,3)}
a 6

(1 £ * S *; 1 5 j $ *2;       = #/(* - a(i)),       = -#)),

This leads to
Theorem VL Consider an LMQ formula with Si abscissas a(1)<a<2)

< • • ■ <al*>) ̂ a and s2 abscissas bi'')>bl'>-1) > ■ • ■ >b(1)'^b, having the high-
est possible degree of precision q = 2n — s — \=2n — k, with $™Si-f-Sj, k = s+\.
Then all interior coefficients are positive; the exterior coefficients alternate in sign,
namely: sgn C(i) = ( — l)s ~\ sgn CU) = ( — l)'-1 1

Corollary. If q = 2n — k, with k = si+s2-r-l, JAew a// the coefficients are
positive if and only if Si £ 1, s2 g 1.

(ii) q = 2n — s — 2, i.e., q = 2n — k, with £ = s+2. Here again all interior co-
efficients are positive. In fact,

k = 2,      ffx = 2i> — 2,       $(*) = $„(x; #!) + Bi$r_2(x; d\px),

* Cf. C. Winston, On mechanical quadratures formulae involving the classical orthogonal polyno-
mials, Annals of Mathematics, vol. 35 (1934), pp. 658-677.
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so that, by the preceding discussion, all C{, and hence, by (27), all Ca), are
positive. We have

pi) t-nw-fnt.))^}'*,
In particular, for s = 0,

tn.«   c-"-a-/.'{(,_^,(„„)}'*,
so that for g = 2n — 1, 2n — 2, we have the same expression for C» (see (8.1)).
Apply now (15) to the polynomials

IJ>) IR*)
Gin-a-i{x) =- $2(x), —-5>2(x), i = 1, 2, • • • , sx;j = 1, 2, • • • , st.

x — o(0 6()) — x

Then

(- 1)M+ C<%- I)""'I n'(«(i)) I *V°) > 0, i = 1, 2, • • • , sh
a

(- l)Mw/«.'-Hi + C('»(- 1)'| n'(60)) I W) < 0,      j m 1, 2, ■ • • , St.

Hence, ( — 1)"j4*_i<0 implies that the C(i) alternate in sign; ( — l)*^4i_i>0
implies that the CU) alternate in sign.*

(iii) q = 2n — k, with k = s+3, s+4. Here we may have no more than one
negative or vanishing coefficient, as is seen from

o < f n (*) -n^r—^V«4* = + ft«cwn fr(w).J „ \{x — cw)(x — c(w) j

1 ̂  Ii,   h £ r,   ii ^ fe,
where Ai, A2 are certain positive constants. Similarly we prove the more gen-
eral result: if q = 2n — k, with k = s+r (r^l), then we may have no more than
[(r —1)/2] negative or vanishing interior coefficients.

LMQ formulae, where all coefficients are positive, enjoy special important
properties as was indicated by Fejer (loc. cit.). It seems proper to call such
formulae 11MQ formulae of Fejer's type" (FMQ formulae). The following sec-
tion is devoted to their discussion.

* In particular, in case q=2n—4, Si = si= 1, A3>0 implies Cu>>0, and A3<0 impliesC&(i)>0.
If C6(d<0 or CaXO, then respectively:

I C»0) I < I ̂ ,|/{o»L>w1)(6t1)-o»>)*»(a(1)) },
|C«u>| < U.|/{onL,(^i)(60)-at»))*»(i<»)}.
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III. FMQ formulae
5. Existence; properties of the abscissas. Using the previously introduced

*i, s2, s = Si+s2, we state the following results.
(a) o3„(x) = $n(x)+A$n-i(x), A arbitrary, always generates an FMQ for-

mula (A = 0 yields a GMQ formula).
(ß) un(x) = $n(x)+Ai$n-1(x)+A2$n-2(x) (A2^0) generates an FMQ for-

mula, if St = s2 = l or Si+S2 = l, ^42<0. It cannot generate such a formula if
Si = 2 or s2 = 2 (here S!+s2^2).

(a) has been shown above; (ß) follows from the Corollary to Theorem VI
and from (31), (32). It will be improved below.

The following result is important, since it deals with the A{ only.

Theorem VII. The polynomial

(33) co„(x) = *„(x) + Ai$„_i(x) + A2$n^2(x), A2 < 0,

has, with any $n(x; a, b; dip), all zeros real and distinct. It generates an FMQ
formula*

We already know that n — 2 zeros are real and distinct and lie in (a, b).
It thus remains to prove that no double or imaginary zero may occur. This
is readily achieved by means of Darboux's formula

n

Kn(x, y,dip) = Kn(x, y) = zZ <Pi(x)<pi{y)

(34)
an   cbn+i(x)4>n(y) - <pn{x)4>n+1{y)

an+i x — y

Rewrite (33):

anccn(x) = d>n(x) + A{<t>n_x{x) + A2'd>n_2(x),      A2 < 0.

Let w„(x) have a double zero £ or two conjugate imaginary zeros £, |. In
the first case

<£n(Ö + AUn^(0 + AUn-2(0  = 0,       d>n (£) + AUn~l(& +        *»'-*(Ö  = 0,
whence, making use of (29),

a„a„_2 7sT„_i(£)
^42 =- > 0.

a„2_i Kn-2{£)

In the second case we have

* Cf. Fej6r (loc. cit., pp. 302-303), where the last part of this theorem is established for the
case in(x)=Pn(x)— Legendre polynomial.
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*„({) + Ai<bn-l(0 + AUn-XH)  = 0, + AUn-l(Z) + ^ä'$—*(f)  = 0,
and we can use (34) with the result

7f„_l(£, I)
^42 =-— > 0.

an2_!   7!:„_2(£, 0

The second part of Theorem VII is proved in precisely the same manner
as in the special case considered by Fejer.

Corollary. For the polynomial (33) we can have neither Si = 2, nor s2 = 2.

This follows from what was said in (ß) above.
The following simple example shows that if the condition ^42<0 is vio-

lated, the polynomial (33) may have a double zero. Take a = — 1, b = 1 and a
"symmetric" sequence of OP, i.e., a sequence for which all cn in (5) vanish.
The polynomial

&>2„(x) =  3>2n(x) + X2n<l>2n_2(x) = X<£2n_l(x)

has a double zero at the origin.
Still more can be said about the abscissas in case A2 = 0. We make use of

the known property of OP by which (see (6))

(35)        a < %\,n ^ XljTi_l ^ X2)n ^ %2,n—l ^ * * "   ^ Xn_ltTl_l ^ Xn>n <I 0,

and state

Theorem VIII. The zeros ciin of the polynomial

oj„(x) = $„(x) + ^4i$n_i(x),

wAere yli(^O) is aw arbitrary constant which may depend on n, are distributed
as follows:

In case A\>0,

C\,n ^ Xl,n, Xlj7i_l *C Cl.n—1 ^ %2,n, , %n—l,n—l ^ ^n.n ^ XWin.

J» ease Ai <0,

Xl,n <C CllTi <C X\in— lj X2,n <C C2,n        %2,n—l, ' ' ' j

Xn— l,n— 1 ^ Cn—l,n—1 ^ Xn—\,n, Xn,n ^ Cn,n*

The proof follows from the relations

^n(Xi,„)a)„(xi+l,n)  = $„_l(xi+l,n)$n_l(Xi,n)  <0, 1 £ i S « — 1,

Wn(*i,n-l)ü)«(xi+1,n_i)  =  $„(»i,„_l)*n(Xi+l,„-l)  <0, 1 ^  i ^ « — 2,

sgn {a>n(xi,„)oj„(xi,„_i)} = — sgn {o)„(x„,„)oj„(x„_1,„_i) } - sgn^i,

sgn {on(xi,„)con(— °o)} = — sgn {co„(x„,„)oj„(-f- °o)} = - sgn^lj.
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6. Upper bounds for the coefficients. The following theorem plays an
important part in the study of the convergence properties of FMQ formulae.

Theorem IX. Any coefficient C< (*=1, 2, • • • , n) of an FMQ formula,
with degree of precision q, satisfies the inequality

r" 2
d ^ min  I G[,/2](x)#

•7 a

for all G[5/2] (x) such that Glqm(xi) = 1. It follows (by known properties of OP)
that

Ci ^ l/-7vU/2](ei; d\p), i = 1, 2, • • • , n.

In fact, for G[q/2] (x) with the above property we have

/' ^    2 n 2GiQ,2i(x)drp = zZc'Giq/2](ci) ^ Ci.
a 1=1

7. The convergence properties. Hereafter, the interval (a, b) is assumed
to be finite. The case of an infinite interval will be treated elsewhere, but many
of the results here obtained hold for an infinite interval as well.

We further assume to have given an infinite sequence of polynomials

(36) o„ = con(x) = <$n(x) + Ai$n_i(x) + ■ ■ ■ + ^4t_l$„_i+l(x)

[n = 1, 2, • • • ; &-i(x) = 0; Ai are constants)

with the following properties: (i) the zeros Ci,„<c2,„< • • • <cn,n of each wn
are real and distinct; (ii) each co„ generates an FMQ formula (11). In discuss-
ing the convergence of (11), i.e., the relation lim„^xRn(f) =0, we consider two
cases.

Case I. All abscissas belong to [a, b]. Here we have

Theorem X. The FMQ formula (11), with all abscissas in [a, b], converges
for any bounded fix) for which faf(x)d\p exists.

This is a direct extension of an identical theorem of Fejer stated for the
special case of the ordinary Riemann integral fbJ(x)dx* The present case re-
quires more care, due to possible discontinuities of iK^O-t Lßt F denote the
class of functions to which our FMQ formula can be applied. Thus, the state-
ment f(x) cF implies that fj(x)dip exists and

* Fejer, loc. cit, pp. 303-307. A different proof for this special case was given earlier by Steklofi
(Bulletin of the Russian Academy of Sciences, 1916). The same result was derived recently by
R. Bailey, Convergence of sequences of positive linear functional operators, Duke Mathematical Journal,
vol. 2 (1936), pp. 287-303.

f The following version of the proof is due to J. D. Tamarkin. It is identical in principle with,
but is an improvement in form over, the original proof of the author.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1937] on mechanical quadratures 475

0.(/)-» J /(*)#, as »
We now have the following

Lemma. If fbJ{x)d\p exists and if, corresponding to any e>0, there exist two
functions fi,t(x) and f2,e(x), both belonging to F and such that

£ f(x) ^ ft,.(x) in [a,b], 0 £ f  [/,,«(*) - /i,.(*)]flV- < t,
J a

then alsof(x) cF.
In fact, due to the positiveness of the coefficients C< in

Qn(f) - itched,
t=l

we have for each n,

<?«(/!,<)  = Qn(/2,«).

Letting here n—* <x> and observing that, by hypothesis,

Q»ifi,.)-* f /#..(*)#, • 7 = 1,2,
we conclude that both lim sup„<00Q„(/) and lim inf „-.„()„(/) lie between

that
fhfi,t(x)dt and fbf2,t(x)dip, each of which, tends to fbf(x)d\p, as e—>0. It follows

as w —^ oo

and this proves our Lemma.
In order to prove Theorem X, we observe that all polynomials belong to

F. Since any continuous function f(x) can be approximated uniformly on
[a, b] by polynomials, the above lemma shows that all continuous functions
also belong to F. Now letf(x) be a step-function taking the constant value 1
in (a, ß) (a<a<ß<b) and the value zero elsewhere in [a, b], where a and ß
are points of continuity of ip(x). Let 8<b — a be such that a<a— 8, ß + 8<b.
Define two continuous functions fi,s(x), f2,s(x) as follows:

/I in [a,ß], 0 in [a, a-8],  [ß + 8,b],
[linear in (a — 8, a), (ß, ß + 5),

/l in [a + 8, ß- 8], 0 in [a, a], [ß,b],
fl,t\X) = i

(.linear in (a, a + 8), (ß — 8, ß).

fut(x) = <
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It is clear that
fi,t(x) = /(*) = fi.s(x) in [<h °].

On the other hand,

0 = f  [fUx) ~ /!..(*)]# = *(a + 5) - *(« - 8) + tfß + 8) - +(ß - 8).

Since a, ß are points of continuity of ip(x), the right4iand member tends to 0
as 5—4); hence, by the above lemma,/(x) cT^. It follows that any linear com-
bination of a finite number of functions of the type of the above fix) belongs
to F, and so does, therefore, any step-function with a finite number of steps,
whose points of discontinuity in (a, 6) are points of continuity of yj/(x). (The
values of such a function at its points of discontinuity may be chosen arbi-
trarily, since they do not affect the value of faf(x)d\l/.)

Assume now that/(x) is any function for which fj{x)dip exists. This means
that

/► 6 n—1/(x)# = lim X/(£*)[Hxi) — #(**-i)J) as max (Xi — «i-i) —»0.
a i=0

Here x0 = a, xn = b,      <x,-, and    is taken arbitrarily in Since the
set of points of continuity of \p(x) is dense in [a, b], we may assume all in-
terior points of subdivision Xi, x2, ■ ■ ■ , xn_x to be points of continuity of ip{x).
Let nii, Mi denote respectively infx/(x), supx/(x) for x in x,]. Let
fi,n(x), fi,n(x) be two step-functions assuming constant values m,-, Af; re-
spectively in [x,--i, a;,-], their values at x = Xi being arbitrary, subject to the
only condition

fu*(xi) ^ /(*<),     fi.n(xi) = /(**), * " 1» 2, •••,»— 1.
Then it is clear that

/!..(*)£/<*) £/«(*). a=x^i,

f //.*(*)#-» f'/(*)#.as « —* oo , 7 = 1, 2.

A direct application of the lemma shows that/(x) cT*", and this completes the
proof of our theorem.

Remark. For Ai=A2 = ■ ■ ■ =Ak-i = 0, the preceding proof shows the
convergence of any GMQ formula (in a finite interval), without imposing
any restriction on xf/(x).*

* Stieltjes in his classical paper, Quelques recherches sur les quadratures dites mecaniques, Oeuvres,
vol. I, pp. 377-394, has proved the convergence of the GMQ formula for the case d4/{x) = p{x)dx,
f(i)ä0, with the restriction f%p(x)dx>0, a£a<ß^b. It was the desire to lift this restriction that
prompted Stieltjes to introduce a new concept of integral which we now call the Stieltjes Integral.
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Case II. Some abscissas fall outside [a, b]. Without loss of generality,
we may assume a = — 1, 0 = 1.

Theorem XI. The convergence Theorem Xfor the FMQ formula generated
by the polynomial

wn(x) = $n(x) 4- Ai$n-i(x) 4- ■ ■ ■ + Ak-i$n-k+1(x)

holds, regardless of the location of the abscissas relative to ( — 1, 1), even if the
coefficients Ai, • • • , At-i and the integer k vary with n, provided: (i) \}/(x) is con-
tinuous at x = +1, and (ii) the number I of abscissas c,-,„ such that 1 = | c<,„ | < 1
-\-h,where h>0 is arbitrarily small butfixed,is o [K<,(± 1; d4>)],a = [(2n — k)/2].
(The latter condition is obviously satisfied if k is bounded, for K„(±l; d\f/)
—> oo, as »—> oo ; see Lemma I below.)

An analysis of the proof of Theorem X, in connection with our agreement
concerning/(ci,„) for | c,-,„| > 1, shows at once that Theorem XI will be proved
if we prove the following lemmas.

Lemma I. Let c denote an end-point of [a, b], where rp(x) is continuous.
Then

lim Kn{c; oVO = 00 •
n—*«

Reduce, without loss of generality, [a, 6] to [ — 1,1]. Take, to be definite,
c = l.Then(M, p. 52)

- < I  x2"# = ( I 4-1       ) *2"#
7sTn(l;#)     J0 V^o Jum-*»/

= o(l)4- f 1 #(*)
J l_n-2/3

= o(l) 4- >A(1) - ^(1 ~ «_2/3) ~» 0, as «->».

Combining the above lemma with Theorem IX, we derive

Lemma II. If c, with the same significance and property as in Lemma I, is
one of the abscissas, then the corresponding coefficient, say, C,-,„—>0, as n—> oo.

Lemma III. Under the conditions of Theorem XI, the part of the summation
Qnif) which extends over abscissas not in [—1, 1] tends to 0, as m—>co, if f(x)
is a polynomial of arbitrarily fixed degree r. Hence, making use of Lemma II,

iZ Ci,nGr{ci,n) -> f Gv(*)#, as »-> oo (r fixed).
I«*,„I<1 ^ a

For brevity denote by f any abscissa not in [—1,1], with the correspond-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



478 ■ J. SHOHAT

ing coefficient C£. We have, by Theorem IX,

(37) C( ^
1

<
2a<>

1/2

K.{t;aV)   " l[S+(S2- l)1/2]" + [i- (S2

Moreover, according to Tchebyheff,

I GT(x) I = g on [— 1, l] implies

G,(ö I = -f I + (*2 - 1)1/2]r + k - (*2 - 1)1/2]r I.

_12
l)1'2]"/ '

[November

{   > 1."

(38) e >i.
Hence,

(39)
C(Gr(0\ =

4ga0
I)1'2   > 1,

E CtGr(Ö

[i + a2 - i)i/2]2—

£ 4g£a0{l + Ä + [(1 + A)2 - l]W*}^-»r.

Furthermore,

(40)        Ct =
1 1

if   1 £ I £| < 1 4- A,t
#)     7l„(<7; #)

where d is that of the points ± 1 which is nearest to £, and

lg lg

(41)
E C{Gr(£)|g +7C(1;#) 7C,(-1;#)

I = max I Gr(x) I in [— 1 — A, 1 4- h].

Upon combining (39) and (41), we obtain a proof of our Lemma.

Remark. If we assume that the inequality |c<,„| = l+h holds for all ab-
scissas outside ( — 1, 1) (i.e., the number I in Theorem XI is zero), then the
condition thati^(x) be continuous at x= +1 is unnecessary, as seen from (39).
It is interesting to note that the same reasoning which yields the proof of
Theorem X proves also the following

Theorem XII. Let {\f>n(x)}, n = 1, 2, • • • , be a sequence of functions mono-
tonic and uniformly bounded in the finite interval [a, b], such that, as n—*<x>,

* J. Shohat, On a general formula in the theory of Tchebycheff polynomials and its applications,
these Transactions, vol. 29 (1927), pp. 569-583; p. 575. The considerations therein employed for
d\l/(x) = q{x)dx, apply, without modification, to the general d\j/(x).

t Kn (x) = 2^"i_1<t>i(x)(j>i (x)>0, x>xn,n, and <0, x<xi,„, so that, as xincreases, Kn(x) increases
for x>xn,n and decreases for x<x,,n-
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ipn(x) converges to a monotonic function \[/(x) over a set of points dense in [a, b]
and containing a, b. Then

/ib /* b/(*)#„(*) =   I /(*)#(*)
a <f a

for any fix) for which fhJix)d^/n(x), fbJ(x)dipix) exist.
This constitutes an extension of the Helly-Bray Theorem,* where f(x) is

assumed to be continuous, but, to compensate, >p(x), ypn(x) are functions of
bounded variation.

8. New representation of d and Qnif)\ relation to algebraic continued
fractions. Given the LMQ formula (11), introduce the polynomial of degree
H—1,

/l o}nix) — co„(y)—-— #(y),
x — y

and we get the following representation for d, Qn(J)'

fn(Ct) .A CniCi)
(43) C,--^-,   i- 1,2, ••-,»;     Qn(f) = Y.-~rm.

0>n iCi) i_l   C0„ (Ci)

In particular, for any fixed z, real or complex, but not on [—1, 1], we have,
assuming that all c< are on [ — 1, 1 ]:

/     1    \ <^n(2)
(44) Oj-)=-—■

\z — X/ »»(»)

Returning to T^AfQ formulae, we observe that our convergence theorem evi-
dently holds for complex functions of the real variable x, hence, also for the
function l/(z — x), z being fixed as in (44). Thus, for the FMQ formula as
described in Theorem X, with all abscissas on [—1, l],

(45) lim
O-njz) C1 d^X)

n->» C„(z)

z given, real or complex, not on [—1,1].
Now introduce a sequence of horizontal step-functions \pnix),n = l, 2, ■ ■ ■ ,

as follows: i^„(—1)=0, \pn(x) is constant in each interval [—1, Ci,„),
[ci,n, C2,n), ■ • • , [cn,n, l], and has a saltus at x = Ci,n, c2,n, ■ • • , cn,„, the saltus
at x = Ci,n being d,„, i = l, 2, •••,». It follows that ^„(x) is bounded and

* Theorem XII is known to hold for continuous f(x) (ci. G. C. Evans, The Logarithmic Potential,
American Mathematical Society Colloquium Publications, vol. 6, pp. 14-15), and the above reasoning
is applicable, for f*J(x)d4/n(x), which here replacesQn(J), has the same positive linear character as the
latter.
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non-decreasing in [ — 1, l], with ^«(1) = Ci,»+ • • • +C„,n = a0. With the aid
of the sequence {$n(x)}, we may rewrite our FMQ formula (11) as

(46) J* ' /(*)#(*) = j ' /(*)#»(*) + i?n(/) ,

and our convergence Theorem X states that

(47) lim   f  /(*)#»(*) = f /(.r)#(x).
n—»w •/ _i »/ _1

It is interesting to note that (47) has been obtained without further investi-
gating the nature of \pn{x).

The application of the above considerations to GMQ formulae is especially
interesting. Here <rn(z)/o)„(z) = Q„(z)/$n(z) is the (n+l)st convergent to the
continued fraction

Xl X2 X„(48)--j-!--j-
I z — c\     I a - cj I z — cn

"associated" with the integral J^d\p{y)/(z — y), and thus (47) yields at once the
convergence of the continued fraction (48) to the above integral, for any z real or
complex, not on [ — 1, 1].*

9. The remainder. Write

(49) 7v„(/) = f 1 [f(x) - Gq(x)]dt - £ Ci.Md.n) - <?,(«..)],
J -l t=i

and consider several cases.
(i) f(x) is continuous in [ — 1, l]. (49) gives at once:

(50) \Rn(f)\ <2aaEq(f),

where Eq(f) is the "best approximation" oif(x) on [ — 1, 1 ] by polynomials of
degree ^q, i.e.,

£»(/) = min max | f(x) - Gq(x) \.
Gq |i|gl

In particular, with/(x) = 1/(z — x), z real and \ z\ > 1, and all d,n on [—1, 1 ] :t

* The same convergence theorem shows immediately that the "moment-problem"
fl%nd4/(x) = given a„, n = 0, 1, • • • ,

for the finite interval (a, b) is "determined," i.e., has at most one solution, for anyone solution gives
rise to the same sequence of OP, hence, to the same GMQ formula.

f The expression for £„(l/(z—x)) is due to S. Bernstein (Lecons sur les ProprUtes Extremales et
la Meilleure Approximation des Fonctions Analytiques d'une Variable Reelle, Paris, 1926, p. 121).
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#0) <r„(z)
(51)

z — X Cd„(z)

< 2a0/(z2- l)[z+ (z2 - 1)1/2]5 (I z+ (z2 - 1)1/2| > 1).

(More generally, (49) shows the convergence, for any continuous f(x), of
every LMQ formula, for which the sum Z"-i|Ci,„| is bounded, as n—>«>.)
For q = 2n — 1, (51) gives the degree of convergence of the continued fraction
(48) to f*d\p(x)/{z-x) for real z, outside [-1, l].

If, in addition,/(x) has in [—1, l] derivatives of various orders, we may
take in (49) for Gq(x) a properly chosen interpolation polynomial for/(x).
Thus, with q = 2n —4, Si = s2 = l, Ci,„= — 1, c„,„ = 1, choose Gq(x) so that

G,(± 1)-/(± 1), Gi\d,%) =f'\ci,n), a = 0, l;i = 2, 3, ■■■ ,n- 1.
Then, by virtue of (23),

/<2"-2)(£) (1               -Bi 152) Rn(J) - - -±-— ^-+-1,
(2n - 2)! U»_i(#i) a„2_3(#i)f

where | £ | = 1 and di/i = (1 —x2)d\j/.
(ii) /(x) is analytic. Let /(£) (<=x4-iy) be analytic in a certain region,

bounded by a simple closed rectifiable curve C which contains in its interior
the line-segment [—1, 1]. Then

/(*) =^.fLux J c

f(t)dt
t — X

and, by (44),

f1 1   f1 C f(t)dt      1 r /(<>»(<)
(53) /(*)#(*) = —      #(x)      ^— = —     -1L^L * + *„(/).

It is readily proved that

(54) J ^ #(*) j £SF(x, y)dy} = | j F(x, y)#(x)| ,

if F(x, y) is continuous in x, y for — 1 ̂ x£l; a£y£/3; (a, /3) finite. Hence,

If1 r 0)dt      If f1 #(*)(55) —      #(x)      i±±-= frt)dt
llTlJ _1 J c  t — X        2lTlJ c J -1    ^ — X

2ttiJ c       LV-i £ — x co„(£)J
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We proceed to transform the expression (56). Denoting generally

a!      ß' / 1 \
— + —+   •    =( — )»       *>0, a'*0,
Xs      x*+1 \xs/

we have, by the definition of degree of precision,

/    1   \ rl #(*)
«,(0^(0 - TB(0 = (--),      F(t) = I-,

\ x"-n+2/ J-i t — x

m - s» _ (j_y
(57)

0";
-

Upon writing

<r»(0 1 f1 «„(0 - «»(*) J1/ , 1 f1 «„(*)#(*)-=- I -oVw = F(<)-I -
"n(0        <O„(0«/_1 /—X &)„(/) J_l /— X

and comparing with (57), we conclude that

1  ««(*)#(*) 5,(0
F(0 g,(0 = i r1

w„(<)      «„(/)./_i..(0       £■>„(/) «7-1 < — X »»(*)
(58)

r1 co„(x)#(x)■s»(0 = ->
t — x

and (56) gives

i c f(t)sn(t)dt   l c   r «•»(<)!

In the special case of the Güf<2 formula, Sn(t) is the so-called Tchebycheff
function of second kind,

(60) ,,,  c1 *-(>n(0  = —-
_1 t

$„(x)#(x)

and (59) gives an expression for the remainder of the GMQ formula in terms
of the remainder of the associated continued fraction (48). Namely,

1   C f{t)Sn{t)dt      1   r      T ß»(0 1
(59.1)     Rn(f) = — I - = — / fit)  Fit) --^r\dt,2iri j c      *»(/)        2tti j c      L $„(0 J

where, we recall, Qn(z)/$n(z) is the (« + l)st convergent to (48). In the gen-
eral case of an FMQ formula with degree of precision q = 2n — k, we may
substitute into (42) the expression (14) for w„(x), which gives, by (60),
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1 C *A      + ^i-s-iW + • ■ • + ^-i5„_*+i(0
Rnif) - I /(0 -

/ 2xi Jc      *,(/) + ^i*_i(0 + • • • + ^-i^-fc+i«
(61)

1      f /„>■»        ß-W + ^iß—lW + ■ • •  + 4j-lO»-*+l(0)= —   /(OlF(0-\dt.

Formulae (56), (61) hold for any LMQ formula with all abscissas on [ — 1,1],
/(0 being analytic inside and on C.

The above formulae show once more the close connection between the
theory of mechanical quadratures and that of algebraic continued fractions.
The latter enables us to estimate Rn(f) if an estimate is known for S„(t).

For real t we may proceed as follows. Formula (60) shows that the
{S„(0} are the coefficients in the expansion

1
- ~ ZJ anSn(t)(j>n(x),
t       X „=o

whence, from known results,

I 5,(0 I £ a0l'2/anEn (——) = ao/{2-'(*2 - 1) | t ± (t2 - I)1'2!»-1} .
\t — x/

Here we assume that t is real, \t\ > 1, and ± is so chosen that 11+ (t2 —1)1/2|
>1. Furthermore, if S denotes the minimum distance from / to the line-seg-
ment [ — 1, l], then

I *«0) I ■ I (* - •••(/- *..«) I >
whence,

5„(0
*.(0 *»(0 £ ao/2"-1^2 - 1)5" I t + (t2 - l)1'2!"-1.

10. The case of d\f/(x) =p(x)dx. p(x) an 5-function. The Lebesgue inte-
gral

p(x)dx
(62) f'-J-l (I"(1-x2)1'2

then exists. In this important special case we can go much further in the dis-
cussion of the abscissas and the remainder in our FMQ formula (11), for here
$„(x) possesses many asymptotic properties. Thus, as n—> <»,

(63) an = 2nA [l + o(l)], X„ —> \, c„ -» 0; A > 0, independent of «.

*n(+ 1) = o[(J + e)"L e > 0, arbitrarily small;
(64) *»(± l)/*„-i(± l)-> ± I-
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$n(x) ~ Kn(x) ~ (2w)2n7£(w); $(w), K(w) independent of n,
(65) , .

w = {x + (x2 - l)1/2}/2,

x is not on [ — 1, 1] (M, pp. 50, 52, 54). The determination of the radical
(x2 — l)1'2 here and hereafter is so chosen that >°o, as \x\—->°o. These
asymptotic relations for $n(x) hold uniformly in any finite closed region in
the x-plane whose minimum distance from the line-segment [ — 1, 1 ] is posi-
tive. We denote such a region by D.

Now, the relations

>F(x),->0,   as n
$n(x) *n(») \ J-1   X — J/

imply
Qn+l(x)

Q»(«)
uniformly in D. Note that the transformation

(66) w = \x + {x2 - l)1/2}/2,       x = l\2w + l/(2w)f

maps conformally the complex x-plane onto the w-plane outside the circle
\w\ Si, so that the line-segment [ — 1, 1] corresponds to the circumference
\w\ =j, and the line-segments (— °°, — 1 ] and [l, <*) correspond to the line-
segments (— co, — I ] and [|, oo) respectively. We now proceed to investigate
the zeros c,-,„ of the polynomial

(14) C0„(x) = <f>„(x) + v4i$„_i(x) + ■ • • + ^(fc_i$„_ifc+i(x),

under the following assumptions, which we call "assumptions P":
(a) k is fixed, independent of n;
(ß) AhAi, • ■ ■, Aic-i, if dependent on n, have finite limits hi, k2, ■ ■ • , A*_i,

as ft—> oo .
Note in passing that, by virtue of (a), (ß), we have here

,.      *n(x) Qn(x) +AiQn-l(x) + ■ ■ ■  + A k^Qn-k+lix)
(67) hm- = hm- = F(x)

n-.» 0}n(x) n-» $n(x) + Ai$n-i(x) + ■ • •  + A k-l$n-k+l(x)

at any point x not on [—1,1], which does not coincide with one of the zeros of
the polynomial

(68) 27(w) ■ w*-1 + hiWk~2 + • ■ • + ifc-i (w = {x + (x2 - l)1/2}/2).

We have
4>„(x) $n-i(x)

(69) wn(x) = $„_i+1F„(x), Fn(z) ■-— + Ax •-——- + • • • +At-lt
$n-k+l(x) $„_ifc+i(x)
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and the rational function F„(x) is analytic outside ( — 1, 1); its zeros outside
[—1,1] are zeros for a„(x), and vice versa, and its only singularities are poles
in ( — 1, 1). The following asymptotic relations form the basis of the subse-
quent discussion.

As «—> «, we have uniformly in D, by virtue of (63), (64), (65),

(70) ",(g)    - Fn{x) -* H{w),      »„(*) ~ 1>n-k+1(x)H(w),
$n-.k+l(X)

w»(± 1)
<71) ——~rr~r = Fn(+ 1) —» 77(+ J).

*n-*+l(± 1)

It follows that in all cases

(72) ü)n(+ 1) -> 0,   as   »-» oo .

We set

(73) w<(. = [a,n + (el, - l)1/2}/2,      (f = 1, 2,   ••,»;*- 1, 2, ••• )

corresponding to the zeros of con(x) (at least w —&4-1 of which lie in ( — 1, 1)).
We denote by wj ,j = l, 2, ■ ■ ■ , k — 1, the zeros of H(w), and set

(74) */ = —fowl + —~),      j = 1, 2, • • • , k - 1.2 \ 2w,! /

The relations (69), (70) lead to
Theorem XIII. Let D be a finite closed region in the x-plane at a minimum

positive distance from the line-segment [—1, 1 ], and let 77' be the corresponding
region in the w-plane. If D' contains in its interior zeros Wj', wrf, • • • , wJ|U'
of H(w), but no zeros wj on the boundary (k — 1 5:0), then for n^N = N(D')
sufficiently large, co„(x) has in D' precisely ß zeros Cj,.n, ■ ■ ■ , Cj ,„ (a zero of
multiplicity p being counted p times). Moreover,

lim Cj„n = Xfl = — \ 2wi', 4- -—-1, x = 1, 2, • • • , p.
»->« 2  v 2wj[)

We readily draw the following conclusions:
(i) The zeros of o)n(x), n = l, 2, • • • , are all bounded.
(ii) Denote by v the number of zeros wj' outside the circle | w\ = 1/2. For

n sufficiently large, w„(x) has precisely v zeros c't'n outside the line-segment
[—1, l] converging to f{2w/' -\-\/2wl' }, as w-^co. If v = k — l, these <;,'„
account for all zeros of an(x) outside [ — l,l].Ifj'<A — 1, the remaining zeros
of o)n(x), if they do not actually belong to [ — 1, l], belong to it asymptoti-
cally, i.e., all their limit-points lie on [ — 1, 1].
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(iii) A necessary condition for the reality of all zeros of co„(x), for n suffi-
ciently large (hereafter expressed by n S: N, N being properly chosen in the
case under discussion) is that H(w) shall not have imaginary zeros wj, with
I w' I >J. In other words, if oin(x) generates an LMQ formula , then the zeros wj
of H{w) outside the circle \ w\ 5=j| are necessarily all real. The corresponding
points */ =|[2wj +l/(2w/)} are the limiting positions, as n—><x>, for the
corresponding abscissas of our LMQ formula. The most interesting case is
that of co„(x) generating an FMQ formula.

Theorem XIV. A necessary condition that

un(x) = 3>„(x) + Ai$>n_i{x) + • • ■ + Ak_i$n_k+i(x)

satisfying the "assumptions P" generates an FMQ formula for n^N is that all
zeros of H(w) lying outside the circle \w\ = 1/2 shall be real and that either in-
terval (— oo, — J], [|, oo) shall contain no more than [k/2] of these zeros.

As an illustration, we take up once more the special cases k = 2, 3, A< in-
dependent of n.

(i) k = 2, i.e.,

cjn(x) = $„(x) + Ai$n^i(x),      Al ^ 0.

The discussion centers around Ci,n, c„,„. Here

(75) ff(») m w + Ai,      v{ - - Ai.
Ax > \ implies Ci,„ < — 1(» = N), 6i,»—*%(2Ai + 1/(2^0), as »—>co .

Ai < — \ implies c„,„ > l(n ^ TV), cBlB—>i(24i + 1/(2A0), as «—><».

I Ai\ £ i implies — 1 < c,-,B < 1, i = 1, 2, • • • ,«.
lim coB(± l)/*„(± 1) = Ai ± i

n—► oo

in all cases.* We may add that since Xi,n—> — 1, xB,B—*+l, as «—><», we get
from Theorem VIII

(76) Ai>% implies cn,n—*l; Ai< — \ implies Ci,»—>—l;
\Ai\ £j implies cllB—>—1, cB,B-*l.

(ii) £ = 3, i.e.,

««(«) = 4>„(x) + yli$„_i(x) + ^42$B_2(a:), At^0.

* Write

L*»-i(^)
and note that        /*„_i(o:) always increases with x and —>±Jata;= + l,as m—> °°.

■
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The discussion centers around two of the zeros of co„(x). Here

(77) H(w) = w2 + Aiw + A2.

We discuss the following possibilities.

(78.1) Af - 4A, < 0, |w/|>i, 7=1,2.
an(x) has two imaginary zeros, which converge to ^ {2w,! + l/(2w,!)}, j = 1, 2.

(78.2) ^!2-4^2>0,       |w/'|>§, 7=1,2.

The zeros of o)n(x) are all real, two lying outside ( — 1, 1) and converging to
i{2w/+l/CZw/)},y-l> 2. If A2>0, then s1 = 2, s2 = 0, or st=0, s2 = 2. If
A2<0, then 51 = j2 = l. Thus, under the assumption (78.2), un{x). generates an
LMQ formula which becomes an FMQ formula, if and only if ^42 <0 (see case
03), §5).
(78.3) ^12-4^2>0,       I W I £ i»       I *»]>!•
Here again all zeros of w„(x) are real, one necessarily outside ( — 1, 1) and
converging to § {2w2 4-1/ (2w2)}.

(78.4) yl12-4^2>0,       I wl I = I, .7 = 1,2.

The zeros of co„(x), for n^N, either all belong to [—1, l], or else, the limit-
points of the sequence of the two exterior zeros are on [ — 1,1].

(78.5) A? - 4A2 = 0,       \ Ai \ > 1.
Here again all zeros of un(x) are real, with two outside [—1, 1 ] and both con-
verging to — (A i2 4-1)/(2.41). There may be a double root, or we may have
5i = 2, $2 = 0, or Si =0, s2 = 2;con(x) cannot generate an FMQ formula.

In a similar manner we may discuss the case k = A.
In the above discussion we have encountered cases where con(x) generates

an LMQ formula which cannot have all coefficients positive. However, we
are dealing here with polynomials <&n(x) which possess special properties, and
the question arises: do these special properties compensate for the presence
of negative coefficients in our MQ formula? The answer is in the affirmative,
as is shown in

Theorem XV. Consider the polynomial (14) un(x), where, in addition to
the "assumptions P," it is assumed: (i) the zeros wj of the polynomial (68) H(w)
are all real and distinct, \wj | >l/2. If con(x) generates an LMQ formula, the
latter converges, as w—>=c, for any fix) for which f-\f(x)d\p exists.

The proof follows the same lines as that of Theorems X, XI, making use
of the following properties of the MQ formula under discussion:
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(i) the number of negative coefficients is bounded;
(ii) ttn(x)~w"-*+1a>(w), x real or complex, not on [—1, 1 ], u(w) independ-

ent of n;
(iii) A, B denoting certain fixed finite quantities independent of n, we

have:

I «<« - a</> I = fa > 0, I o<» - o<™» I % fa> 0, - 1 - fa =      = ̂ ,
1 + fa S b' S B      {n ̂  N; fa, fa independent of n;

i,j = 1,2, •   • , si)l,m = 1, 2, • • • , st; i ^ j; I ^ m).

(i) is known; (ii) follows from (71), (72), (73); (iii) follows from the fact
that all      b(l) converge, as n—><x>, to certain fixed points \\2w'j +l/(2w/)}.

(iv) s = k — l, so that q = 2n — s — 1, hence (by Theorem VI), all interior
coefficients are positive.

We have thus obtained a wide class of convergent LMQ formulae, the
existence of which is assured by the considerations developed above.

Remark. We may liberalize considerably the conditions imposed upon
77(w), without impairing the validity of Theorem XV. Thus, under (62), \p(x)
is continuous at x = +1, so that Kn( + 1; d\f/)—><», as »—><», and we could
modify accordingly the condition requiring that all \wj \ >i, permitting a
certain number (necessarily finite) of a(i), o0'1 to converge to +1 respectively
(see (40), (41)). We shall not dwell here upon this and other possible modifi-
cations, except the following one.

Theorem XV (bis). Given any d\f/(x) and an LMQ formula employing
s = Si+St (s\, s2 fixed) arbitrarily preassigned abscissas, with degree of precision
q = 2n — s — l. The formula converges for any fix) for which f]_1fix)d\p exists;
$ix) is supposed to be continuous at x= +1, if these points (owe or both) are
among the preassigned abscissas.

In fact, referring to §4, we see that the conditions (i), (ii), (iii), (iv),
given above and the expressions (30) for the exterior coefficients hold for the
LMQ formula under discussion.

11. Tchebycheff inequalities for the coefficients of some classes of FMQ
formulae. These important inequalities, given without proof by Tchebycheff
in 1874 for GMQ formulae, were proved in 1884 by Stieltjes and Markoff
independently.* Markoff went somewhat further than Stieltjes, extending
Tchebycheff inequalities to certain classes of FMQ formulae. The following

* Stieltjes, loc. cit., pp. 384-392; A. Markoff, On Certain Applications of Algebraic Continued
Fractions (in Russian), Thesis, St. Petersburg, 1884. It is curious to note that both use the same proof,
namely, applying properly constructed MQ formulae to suitably chosen polynomials. In what follows
the proof is omitted.
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is taken, with slight modifications and extensions (in order to cover the cases
q = 2n — 3, 2n—4) from Markoff's Thesis.

Theorem XVI. The coefficients d in an FMQ formula, with degree of pre-
cision q = 2n—\, 2n — 2, or q = 2n — 3 with Si-\-s2 = l, 2, or q = 2n — 3, 2n — 4,
Si=$2 = 1, satisfy the following Tchebycheff inequalities:

0

(2

(3

(4;

(5

(6:

In

a

(8

(9

(""#(*) > Ci + C2 + ■ • • 4- CVi,   i - 2,3, • • •
* o

j *#(x) < Ci 4-Cj 4- • • ■ i = 1, 2, • • • , n,

I   dip(x) > Ci+i + ■ ■ ■ +Cn,   i = 2, 3, • • • , n,
J a

J^#(*)<CH-+C„   i= 1,2, ■••,»,
#(x) > Ci+i 4- • • • 4- C*_i,   i = 1, 2, • • • , n — 1; k = 2, 3, • • • , n,

/Ok d\j/{x) < d 4- • • • 4- Ck,   i, k = 1,2, • • • ,»,

particular,

f "#(*) <Ci,       f #(*) <Cn,
a cn

rci+i

J    #(*) >0, i= 1,2, •••,»- 1,

#(*;) > Ci+i, i «• 1,2, •••,» — 2.

Remarks, (i) These inequalities hold for any (a, o), finite or infinite,
(ii) If Ci9^a, b, we may assign in the above inequalities to ip{x) at x = ct

any value in [\p(ci — 0), ^(^4-0)]. Thus, (8) may be rewritten as

/•ci+1-0 #(*) > 0, i = 1,2, 1,

which shows that a subinterval of constancy of ip(x) cannot contain more
than one abscissa—a property proved above in a different manner.

(iii) We agree to let if/(x) =\(/(a) or \[/(x) =\[/(b) for xSa or x^b respec-
tively. Then it is not necessary to take (with Markoff) c{^a, c„£o.
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(iv) The above inequalities hold for an LMQ formula, with q = 2n — 3 and
Si = 2 or S2 = 2 (then necessarily s2 = 0 or Si = 0 respectively), with the following
exceptions: Ci < c2 = a invalidates the inequalities

(79.1)

cn>cn-!^b invalidates the inequalities

(79.2) f #(*) <Cn,        f " #(*) > 0.

In fact, by Theorem VI, d < 0 or C„ < 0 respectively, while the integrals on
the left vanish, according to our agreement.

(v) For an LMQ formula, with q = 2n — 4, $i = 2, s2 = 0, or Si = 0, s2 = 2, the
above inequalities hold, with the same possible exceptions as stated for
q = 2n — 3. By virtue of (32), Ci<c2£a actually invalidates (79.1) if ^43<0
in (14), and c„>c„_i = o actually invalidates inequalities (79.2) if yl3>0.

(vi) Assuming all C<>0 and all c< in (a, b), choose

a < £i < £2 < • • • <£nSb,

so that

Ci + Ct + • ■ ■ + d =

It follows from the inequalities (1, 2) that

a < a < £i < c2 < £2 < ■ • ■ < c„ < in = b.

12. Discussion of the abscissas and the coefficients based on Theorem XL*
First, assume qS2n — 4. We make use of the inequality (8), from which fol-
lows an important property of the abscissas which we call "C-property,"
namely: a sub-interval (c, d) of constancy of ip(x), contains, including its end-
points, at most one abscissa.

We now turn to Theorem XL Suppose that for a certain fixed i and with
certain /, m, we have, as »—>» :

(80.1) Ct+l,n, " ' '  1 Ci+i,n *

(80)    (80.2)  Ci_!,n Ci_2,„, • • • , Cl_m,„ »;£!''< i' S *,

(80.3)    I ci+!+i,„ - £' I,    I Ci_m_i,„ - |" I > A > 0,

* The reasoning of the second part of this section generally follows that of Fejer, but the results
are considerably modified in many respects, due to our dealing with <p{x) not necessarily continuous,
and, a fortiori, not necessarily absolutely continuous.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1937] ON MECHANICAL QUADRATURES 491

where h is fixed, independent of n* The interval [£" + 5, — 8] now contains
no zeros of w„(x), for n^N. If £" do not coincide with 6 or a respectively,
choose 5 so that £' + 5, £" + 5 are points of continuity of \p(x). Apply Theorem
XI to the following functions:

Mx) = 1 in [{" +8, t - *1, Mx) = 1 in [{* - 5, £' + S],

/,(*) = 1 in [{" - 5, I" + 5]; /,-(») = 0 elsewhere, / - 1, 2, 3.

We get:

hm Qn(fi) = f '    <#(*) = *(£' - 5) -        + 5) = 0,

/< {'+«# = lim (Ci,„ + Ci+i,„ + • • • + Ci+;,„),
j n—»«

/i r'+i # = lim (Cf_i,n + Ci_2,„ + • • • + C,_m,„).

It follows that the values of the integrals ß>+ssd\P( = 0), do
not depend on 5. This means that \p(x) is constant in the intervals (£", £')>
(«', «'+8), cr-«, r'),so that

f£ di = ̂ cr + o) - m - o),   f£ + # =    + o) - ^(r - o).
Hence, by virtue of the "C-property," m = 1,1 = 0. Furthermore, the assump-
tion iK£' + 8)— )K£' — 8)=0 implies ^(x) = const. in (£", £')> which requires
that c,_i,„ be to the left of with a similar conclusion from the assumption
lA(£" + 8)—^(£" —8) = 0. Finally, we notice that we cannot have simultane-
ously

W + 8) - f(f - 8) = 0, + 8) - *<|' - 6) = 0,
for then ^(z) = const, in (£"—8, £'+S), and this, by the "C-property," con-
tradicts (80). Thus, if (80) is satisfied, then: (a) 1 = 0, m = \; (ß) \p{x) is con-
stant in (£", £'), (r, i'+5), (£"-8, $"); (7) lim„_C,-,„=^(r+0)-V'(r-0)
= o-i,limn,ooC,_i,n=i/'(£"-(-0)-^(f"-0) =o-2; (8) ^+^^0, i.e., one at least
of the points £" is a point of discontinuity of \p{x) and the saltus is the
limiting value of the corresponding coefficient. Moreover, if, for instance,
ip{x) is continuous at £ =    then c<_i,n£|" (w = A); (e) ct-,„ and Ci_i,„ cannot

* All limits £", • • • here considered are assumed to belong to [a, b]. If £' = 6 or £" = a, then
£'+ä, £" —5 should be replaced by ft or a respectively. Here and hereafter s or N denote properly
chosen sufficiently small or sufficiently large numbers respectively, which may be different in differ-
ent formulae.
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both belong to the interval (£", £') (n^N). It follows that if one at least of
the conditions />0 or m> 1 is satisfied, then the third condition (80.3) cannot
hold.

By the foregoing, any subinterval (c, d) c (a, b) which has no abscissas
d,n, for n^N, is an interval of constancy for ip(x). More precisely, the zeros
of w„(x) are everywhere dense in any subinterval [au bx] which is not an
interval of constancy for \p(x), i.e., [ai, bi] contains at least one zero of co„(x),
for n ^ N, in its interior (or at its end-points, if \p(x) is continuous at x = au bi).
(We omit the proof, since it is quite similar to that of Fejer, loc. cit., pp. 308-

This property can be generalized as follows: Let a subinterval [c, d] con-
tain no more than one abscissa civ,ny for n=nu n2, ■ ■ ■ , nv, ■ ■ ■ .* Then, if
\{/(x) is continuous at x = Ci, di(cSci<diSd)

Hence, \f/(x) = const, in (c, d); limv,ooC^,„„ = 0.
The above results hold for any convergent FMQ formula. Suppose now

that all abscissas lie in [a, b]. We can state some more properties as follows
(again derived by reasoning similar to that of Fejer).

In a convergent FMQ formula corresponding to a finite interval either all co-
efficients —»0, as n—>co, or else, \p(x) has discontinuities in (a, b). Hence, ifyp(x)
is continuous throughout [a, b] (and a fortiori, if d\p(x)=p(x)dx, p(x)^0 and
integrable in (a, b)), then limre,ooC,,„ = 0, i=l, 2, ■ ■ ■ , n.

We may go still further if we assume q = 2n — 1, i.e., when dealing with a
GMQ formula. Here we have the following result.

If in a GMQ formula

(81) lim Ci,n = i = 1, 2, • • ■ ,

then \p(x) is a step-function with saltus o-, at £ = £,-, and lim„^00C,-,„ = o-i,

The statement concerning C,\« follows as above in (y). As to the behavior
of \p(x), (81) implies, by the preceding, that \p(x) is constant in the intervals
(?<-i, £<)• Moreover, were i//(x) continuous at a certain point £ = £,-, |<_i and

309.)

lim Ci,

i = l,2, ■■■ .

* This is possible. Consider, for example, an{x) = *„(x; d\f), where (a, b) = ( — h, h), d\p = p(x)dx,
pt—x) = p(x), p(x) = 0 in (—hi, hi) C ( — h, h). Then Cn+i,2n+i=0, n = 0, and this is the only
zero of oi2n+i(x) in [ — hi, h], while o>m(x) has no zeros in this interval.
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£s+i would have been points of discontinuity, so that \p(x) = const, in the in-
terval (£,-_!,        which could contain one abscissa only, namely, cf,„, and

Ci-l,n *> 5i—l, Ci—2,n = £i-2, ' " -  j Cs+l,n = £t'+l, Ct+2,n = £i+2, - * ' •

This contradicts (81), for all d,n lie in (a, o), while Ci,» decreases and c„,„ in-
creases, as n increases. It follows that if ip(x) is continuous throughout [a, b],
with no subintervals of constancy, then neither (80) nor (81) is possible.

The above results generalize those known for GMQ formulae. It is in-
teresting to note that in their proof there was no need to invoke the theory
of algebraic continued fractions nor that of the Moment-Problem (on the con-
trary, the preceding results are applicable to the latter problem). We have
made use of but a small part of our convergence theorems, namely, of the
fact that the FMQ formula under discussion converges for any/(x) which is
constant in any finite subinterval, arbitrarily chosen, and vanishes elsewhere.
Thus, our results hold for an infinite interval as well, once the above con-
vergence property is established for such functions.

13. The sequence |con(x)} forms an OP sequence. We close with a brief
discussion of the following interesting question.

Under what conditions is the sequence

W„(x) = $n(x) + Ai$n-l(x) + • ■ ■ + y4*_i$„_fc+1(x)
(14)

(n = 0,1, • • • ; $_,•(*) m 0, Au A2, ■ ■ ■ , A^ = const.)

itself a sequence of OP?

The solution offered below, although incomplete, is of interest, for it in-
troduces a rather unusual kind of OP, where the corresponding \p(x) has a
subinterval of constancy. It also offers a good illustration of the preceding
results. In what follows we discuss—and incompletely—the following case
only:

(82) «.(*) - %(*) + A*_i(*)
(« = 0, 1, • • • ; $_i(x) = 0; A ^ 0, independent of n).

The answer to the proposed question will be in the affirmative if and only if
a recurrence relation of the form (5) exists for the {co„(x)}:

. "n+2(x) = &>n+2 =  (x — C^+2)iCn+1(x) — X„'+2CO„(x)
(83)

(n ^ 0, wo = 1, wi = x — c{),

where Xi' (>0) and c{ are arbitrary, and all X„' are positive. Substituting here
for (>)n, (tin+i, (tin+2 their expressions (82) and making use of (5), we get:
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Cn+2 —  Cn+2  =  0,   X„'+2 — Xn+2 + ^4(c„'+2 — Cn + l)  =  0 ,    « =  0, 1, •  • • ,

X„'+2 — Xn+i = 0, «=1,2,

whence,

„.;,„       c{ = ci — A;      c£ = c„,      n = 2, 3, ■ • ■ ,
(84)

X„' = X„_i,      n = 3, 4, • • • ;      X2' = X2 - A(c2 - ci),

so that the given sequence of OP, {$n(x)}, must satisfy the following condi-
tions :

(85) X„+i — Xn+2 + ^4(c„+2 — c„+i) =0,      n = 1, 2, ■ ■ • .

Here we try to satisfy (85) in the following special manner:

(86) cH+2 — cn+i = h — const., independent of n (n = 1, 2, • • • ).

The above relations now yield

(87) Xn+1 - Xn+2 - - Ah,       n = 1, 2, • • • ,
(88) cn = in - 2)h + C2,      X„ = (w — 2)Ah + X2, n = 3, 4, • • • ,

Xi, X2>0 and Ci, c2 arbitrary; Ah = 0. Taking (without loss of generality)
Xi' =Xi = l and changing notations, we state the following result.

Consider the continued fractions

l|        X|     X + ^äI \ + nAh\
(89)   F(x) m

Fi(x) -

(90)

x — c     \ x      \ x — h I x — nh
l| \ + Ac\ Xl \ + Ah\

x — c + A \ x \ x — h      \ x — 2h
X+ (n - \)Ah\

i x — nh

where the constants X, A, c,h are such that

(91) X > 0,      X + ^c>0,      Ak = 0.

The denominators of the successive convergents to (89) and (90), which we denote
respectively by {$n(x)\, [o}n(x)} give a solution of our problem, i.e., each se-
quence {#„(*:)}, {co„(x)} is an OP sequence (which is not new), and their mutual
relation is expressed in (82).

What can be said of the orthogonality intervals and of the corresponding
\p(x), ipi(x) for each sequence?

Leaving aside the case Ah>0 which leads to infinite intervals of orthogo-
nality, assume h = 0. We find from (89), (90):
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(92) F(x) = 2/{x - 2c + (x2 - 4X)1'2}

(93) Fi(x) = 2\2/{2X2(x - A - c) - (\ + Ac)(x + (x2 - 4X)1/2)} .

For the sake of brevity, we make the additional assumption c = 0. Making use
of some results of Stieltjes,* we state our final results as follows. For the se-
quence {$„(x)}:

l|     x| x|
F(x) === —L __L_ _J_ _ . . . = \x - (xi _ 4X)1/2}/2X

--f2irX J-

x
.1/22X1'2 dy

(4X - y2)1/2——

(X>0; x real or complex, not on [-2X1'2, 2X1/2]).
The interval of orthogonality is ( —2X1/2, 2X1/2) and

*(*)= — f i.^~y')mdy.
2ir\ J _2x1/2

For the sequence {w„(x)

,a2    l r=-+ —J1 - \/A2      1   r2X1'2 (4X-y2)1'2 dy

x — a        A •7_2x1'2      y — a     x — y

= {x + 2A + (x2 - 4X)1'2}/2^(* - a),      a = — A — X/A,

In case ^4 >0 the interval of orthogonality is (a, 2X1/2), and

^i(a) = 0, ^(x) = const. = 1 - \/A2 on (a, - 2X1/2],

X      1   Cx dy
Mx) = 1-1-— (4X - y2)1'2—— on [- 2X1'2, 2X1/2].

yl2     A «/_2x1/2 y — a

In case A <0 the interval of orthogonality is ( —2X1/2, a), and

1   r* d\p(y)
fr'x) =- -iL on [- 2X1'2, 2X1'2],

A J _2x1/2 a — y

^i(x) = const. =
1    r 2X1'2 fl^y)

yf J _2xV2 a — y

on ^X1'2,**),

1   f2x"2 d$(y) X- + 1-
* a — y A2

1    f2X"2 dft,
^4 J _2X1/2 a —

Thus, in both cases

Stieltjes, Recherches sur les fractions continues, Oeuvres, vol. II, pp. 402-566; pp. 509-510.
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1 #(*)
#i(*) =-—- in (- 2X1/2, 2X1'2).

A  X — a

Note that all zeros c,-,„ of an(x) lie in ( —2X1/2, 2X1/2), except one. Moreover
(in accordance with the general theory and with the preceding discussion),
asw—>■<»,

->2X1/2, if ^4 > 0,

ci,„ —♦ — 2X1/2, c„,„ —» a, if A < 0,

where a, introduced above, is the zero of the polynomial

x + (x2 - 4X)1'2 .    , . .
H (w) == if + A =-hyl       (I a; I —> co , as | 2c | —><»).

■^i(x) has no saltus if and only if ^42=X; then the two intervals of orthogonal-
ity obtained above coincide with ( —2X1/2, 2X1/2), and

1 #(*)
#i(«) = XW2 2X1/2 - x

University of Pennsylvania,
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