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Abstract
A finite strain model for the mechanical degradation of composite materials with multiple families of fine reinforcing fibers
is developed and studied. At any instant of time the matrix material may or may not be degrading with all, some, or none
of the interpenetrating fibers also undergoing degradation. This multi-component description of damage is governed by
coupled differential equations when more than one damage mechanism is active. These differential equations, and the
threshold values of the strain invariants that activate the damage process, emerge naturally from a general framework
that describes the response of dissipative systems under a maximum rate of dissipation postulate. In this context we
then study uniaxial loadings when either a constant stretch or a constant force is suddenly applied to the composite. It is
found that the initial type of degradation (e.g. degrading fibers in a non-degrading matrix) may transition to an alternative
type of degradation (e.g. the degradation of all constituents) at some finite time into the process. A rich variety of
material and load-dependent transition possibilities are systematically uncovered using a combination of asymptotic
and numerical techniques. The resulting macroscopic behavior as the material weakens involves relaxation and creep
phenomena that are formally similar to viscoelastic material behavior in solids even though the underlying processes are
significantly different. Describing implants and tissue constructs containing biodegradable polymers is one possible area
of application.

Keywords
biodegradable constructs, constitutive behavior, creep, degradable polymer, fiber-reinforced materials, hyperelasticity,
maximum rate of dissipation, stress relaxation

1. Introduction

Degradable polymers are macromolecules which structurally degrade when subject to a variety of external
stimuli including, as determined by the material system in question: moisture, temperature, corrosion agents,
and even light exposure. These degradation processes are typically accelerated when the material is either highly
stressed or highly strained (e.g. [1, 2]). The degradation itself may involve a variety of damage mechanisms.
For polymer matrices containing polymeric fibers these degradation mechanisms include scission of the long-
chain molecules comprising the matrix and dissolution of the internal filaments comprising the structural fibers.
The modeling of large deformation mechanical degradation in single-component isotropic materials has been
placed in a useful continuum mechanical framework in [3] using concepts from irreversible thermodynamics
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(namely [4]). In [3] it is shown how a maximum rate of dissipation postulate can lead to a single differential
equation that governs the time evolution of a damage variable which is a central ingredient of the constitutive
description. Such a theory for example applies to isotropic polymers, that is, polymers that do not contain fiber
reinforcement.

In the framework of [3] each point in the material may or may not be degrading as determined by the
current local conditions of finite strain. At those locations where degradation is not currently taking place the
material is instantaneously behaving as a classical hyperelastic material [5, 6]. In contrast, at locations where
degradation is taking place the material is formally time dependent with structural mechanical properties that
weaken with time. As described in [3], this degradation is dependent upon the local state of finite strain, with
damage taking place at a faster rate at those locations where the strain measures which govern the damage are
relatively greater. Such inhomogeneity in degradation kinetics of a degradable isotropic cylindrical annulus has
been studied for various loading conditions in [7].

While the discussion in [3] places the phenomena under consideration in a wide physical context, the mathe-
matical framework as developed in detail in [3] limits attention to the consideration of isotropic materials under
considerations of purely mechanical degradation as determined by elevated states of strain. In the present paper
we maintain the purely mechanical focus of [3] while generalizing the class of materials under consideration so
as to allow for directional stiffening in key directions. In particular, this allows for the consideration of degra-
dation of fiber–matrix composites. For such materials it is then necessary to consider the various possibilities
in which all, some or none of the individual fiber and matrix constituents may be undergoing degradation at
any instant of time. When no degradation is taking place in any of the constituents, that is, when all of the
structural components maintain fixed mechanical properties, then the framework described here reduces to a
conventional anisotropic hyperelastic theory. Such overall material stability can be lost, meaning that the mate-
rial suffers degradation, when various finite strain measures exceed threshold values. As in [3] these threshold
values emerge naturally from the theoretical treatment. However, unlike the particular theory developed in [3],
the presence of multiple structural components (i.e. a matrix containing possibly multiple families at fibers)
at each material point in the present continuum description allows for the possibility that multiple degradation
mechanisms can be occurring simultaneously at each material point. Mathematically, this leads to a multi-
component description of damage that is in turn governed by coupled differential equations whenever more
than one damage mechanism is active.

In the present paper we consider the case where the material contains two families of reinforcing fibers
that proceed through the material at sufficiently fine scales so as to be amenable to a continuum description at
each material point. In particular, this allows for the consideration of various fine-scale ‘cross-ply’ and ‘woven
fabric’ types of reinforcing. Our previously stated focus on purely mechanical effects means that we do not
here seek to account for hygrothermal, chemical, or radiation effects, although the broader consideration of
how such agents would couple to the purely mechanical stress–deformation phenomena considered here is
certainly of significant interest and hence is motivation for future examination in the context of a suitably
generalized version of the present treatment. Here we remark that we have recently considered the possibility
of swelling induced degradation of a fiber reinforced material using similar concepts [8],1 where attention was
restricted to transverse isotropy, i.e. the case of a single reinforcing direction. The present paper, while not
considering the issue of swelling, develops the framework of [3] and [8] so as to apply to a relatively general
class of fiber-reinforced materials. In the process we uncover a variety of interesting damage-induced creep and
relaxation effects due to material weakening that were not readily apparent from such earlier studies.

We begin in the next section with the underlying thermodynamic framework which in the present purely
mechanical setting makes use of two basic constitutive functions: a Helmholtz stored energy density W , and a
rate of mechanical energy dissipation function ξ̂ . Degradation of the matrix and the two fiber families is encap-
sulated in three scalar variables: αm, αf1 , and αf2 , respectively, each of which increases when there is degradation
of the associated material constituent. The maximum rate of dissipation postulate then leads to general expres-
sions for the Cauchy stress T and to basic conditions governing the time evolution of the degradation scalars.
Special classes of constitutive functions W and ξ̂ are introduced in Section 3 so as to represent the fiber–matrix
composites of interest. Here it is useful to remark that the hyperelastic modeling of such materials is currently
a subject of considerable interest (namely, [14, 15, 16, 17, 18]) and, in particular, such models are receiving
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increasing attention in the modeling of biological soft tissue (namely, [19, 20, 21]). The modeling presented
here then results in eight separate possible degradation cases, as determined by which of the three constituents
are degrading in conjunction with each other (including the trivial case of no degradation). Each of the seven
nontrivial degradation cases is governed by appropriate kinetic evolution equations for the increase of either
αm, αf1 , or αf2 .

The theory is illustrated in the context of homogeneous deformations involving uniaxial loading. By con-
sidering loading that is symmetric with respect to the two fiber families, attention is restricted to degradation
that proceeds equally in the two fiber families. As indicated in Section 4 this reduces from eight to four the
number of separate degradation cases which must be considered. These ideas are developed in the context of a
degradation phase diagram whose axes are the two principal stretches in the fiber-containing plane. The form
of these phase diagrams is dependent upon the material parameters that enter into the constitutive functions W
and ξ̂ . Hard (isometric) loading is examined in Section 5 wherein the axial stretch is fixed. Degradation then
gives rise to paths in the phase diagram and, depending on the intensity of the applied stretch, the degradation
path may pass through different regions of the phase diagram corresponding to different types of degradation.
In all cases, degradation gives rise to a stress relaxation type of phenomenon when the axial stretch is fixed. In
contrast, if the overall force is fixed, then a creep-type phenomenon is observed as the material degrades. The
associated soft (isotonic) loading is examined in Section 6. More complex degradation paths are generated for
isotonic loading than are generated for isometric loading since now both stretch components may change with
time. Even so, the basic qualitative features of the mechanical response can be determined directly from ana-
lytical arguments based upon the asymptotics of the governing ordinary differential equations (ODEs). These
results are confirmed directly by separate numerical simulation. Indeed a major focus of both Sections 5 and 6
involves the use of rigorous qualitative arguments that examine how degradation paths are attracted to partic-
ular asymptotic state curves in the degradation phase diagram. The paper concludes with summary comments
in Section 7 including the particular relevance of this study to biodegradable polymers.

2. Kinematics and thermodynamic framework

Let X be the position vector of a typical particle in the reference configuration that is regarded as the state of
the unloaded body prior to degradation. Locations in the deformed body are denoted by x. The deformation is
an invertible mapping from X to x. The deformation gradient is F = ∂x/∂X. The left and right Cauchy–Green
deformation tensors are defined by

B = FFT, C = FTF.

Let v be the particle velocity vector, and L and D denote the velocity gradient tensor and the stretching tensor,
respectively, i.e.

v = ∂x

∂t
= ẋ, L = ḞF−1, D = 1

2
(L + LT), (1)

where a superposed dot denotes time differentiation while holding the particle fixed.2

The material is taken to be incompressible so that F is subject to the constraint

detF = 1. (2)

We consider a material with two families of fibers. Unit vectors M(1) and M(2) give the orientation of these fibers
in the reference configuration of the composite material. In general, these directions could vary with location
X, and each family is subject to the possibility of degradation. Individual fibers are not spatially resolved in this
continuum treatment so that their presence is accounted for by the anisotropic constitutive law of the material.

The Cauchy stress field is denoted by T and is subject to the usual stress equations of equilibrium

div T = 0.

Degradation is described by means of the scalar field variables αm, αf1 . and αf2 which represent the respective
degree of degradation of the matrix and of the two fiber families at the reference location X at time t. The values
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αm = 0 and αfi = 0, i = 1, 2, denote the undamaged material state, whereas the values αm = 1 and αfi = 1
represent full degradation. It is assumed that both αm and the αfi cannot decrease with time, hence it is required
that

α̇m ≥ 0, α̇fi ≥ 0 (i = 1, 2). (3)

In particular, there is no notion of healing in the present development. Degradation occurs at those instants of
time at which at least one of the inequalities in Equation (3) is strict. Since αm = αm(X, t), αf1 = αf1(X, t)
and αf2 = αf2(X, t) it can be the case that degradation occurs at some material points but not at other material
points.

Attention is restricted to isothermal processes so that temperature need not enter into the formal develop-
ment. For the temperature of interest let W be the Helmholtz energy density of the fiber–matrix composite
per unit volume in the reference configuration. It is a function of C and the degree of degradation of each
constituent and so is written as

W = W (C, αm, αf1 , αf2).

The rate of mechanical energy dissipation ξ is the difference between the stress power and the rate of change
in the mechanical energy storage. The second law statement of continuum thermodynamics for isothermal
processes then reduces to a requirement that this dissipation is non-negative. This is expressed as

ξ := T : D − Ẇ ≥ 0. (4)

Although the thermodynamic framework employed in this work is general enough to include diffusion and
chemical reactions of chemical species with the functional groups in a macromolecule network (e.g. [22]), our
concern here is modeling of degradation processes induced by finite strain and it is assumed for the present
development that the degradation processes are the only source of dissipation. As in [3] the functional form for
ξ is specified constitutively:

ξ = ξ̂ (C, αm, αf1 , αf2 , α̇m, α̇f1 , α̇f2). (5)

By the maximum rate of dissipation formalism [3] it is assumed that the degradation processes of interest
proceed so as to maximize this quantity.

Evaluating Ẇ with the aid of the chain rule allows Equation (4) to be expressed as(
T − 2F

∂W

∂C
FT

)
: D − ∂W

∂αm
α̇m − ∂W

∂αf1

α̇f1 − ∂W

∂αf2

α̇f2 = ξ . (6)

The rate form of the constraint (2) is D : I = 0. Thus, maximizing ξ subject to (5), (6), and D : I = 0 gives, by
means of the two Lagrange multipliers λ1 and λ2, the following auxiliary function

� = ξ̂ − λ1

((
T − 2F

∂W

∂C
FT

)
: D − ∂W

∂αm
α̇m − ∂W

∂αf1

α̇f1 − ∂W

∂αf2

α̇f2 − ξ̂
)

− λ2D : I.

The extrema of � with respect to D is found by requiring that the derivative of � with respect to D vanishes;
this gives

−λ1

(
T − 2F

∂W

∂C
FT

)
− λ2I = 0. (7)

In view of (3) the extrema of � with respect to α̇m requires either that α̇m = 0 or otherwise that the derivative
of � with respect to α̇m vanishes, the latter of which gives

∂ξ̂

∂α̇m
+ λ1

( ∂W

∂αm
+ ∂ξ̂

∂α̇m

)
= 0. (8)

Similarly, either α̇f1 = 0 or otherwise

∂ξ̂

∂α̇f1

+ λ1

( ∂W

∂αf1

+ ∂ξ̂

∂α̇f1

)
= 0. (9)
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Finally, either α̇f2 = 0 or otherwise

∂ξ̂

∂α̇f2

+ λ1

( ∂W

∂αf2

+ ∂ξ̂

∂α̇f2

)
= 0. (10)

On the assumption that λ1 �= 0, conditions (7)–(10) give

T = 2F
∂W

∂C
FT − pI, (11)

− ∂W

∂αm
= η

∂ξ̂

∂α̇m
(if α̇m > 0), (12)

− ∂W

∂αf1

= η
∂ξ̂

∂α̇f1

(if α̇f1 > 0), (13)

− ∂W

∂αf2

= η
∂ξ̂

∂α̇f2

(if α̇f2 > 0), (14)

where p = λ2/λ1 and η = (1 + λ1)/λ1. Substituting from (11) back into (6) and using the constraint D : I = 0
gives

ξ̂ = − ∂W

∂αm
α̇m − ∂W

∂αf1

α̇f1 − ∂W

∂αf2

α̇f2 . (15)

By virtue of (12)–(14) this can also be written as

ξ̂ = η
∂ξ̂

∂α̇m
α̇m + η

∂ξ̂

∂α̇f1

α̇f1 + η
∂ξ̂

∂α̇f2

α̇f2

from which one obtains that

η = ξ̂

∂ξ̂

∂α̇m
α̇m + ∂ξ̂

∂α̇f1
α̇f1 + ∂ξ̂

∂α̇f2
α̇f2

. (16)

The rate equation (15) shows how, in this framework, all of the mechanical dissipation is associated with
degradation of either the matrix or the fiber constituents. In this regard the separate driving forces for matrix
and fiber degradation are identified as

Dm = − ∂W

∂αm
, Df1 = − ∂W

∂αf1

, Df2 = − ∂W

∂αf2

. (17)

3. Specific forms for the constitutive functions

We continue the development in the context of particular expressions for the elastic strain energy W and specific
functional forms for the dissipation ξ̂ .

3.1. Elastic strain energy functions with degradation-dependent constitutive parameters

Standard models in hyperelasticity are readily generalized to account for degradation by allowing the
constitutive parameters to ‘weaken’. To this end let W be given by

W (C, αm, αf1 , αf2) = 1

2
μ(I1 − 3) + 1

2
γ1(I (1)

4 − λ2
nat1

)2 + 1

2
γ2(I (2)

4 − λ2
nat2

)2, (18)

where
I1 = trC = F : F, (19)
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I (1)
4 = M(1) · CM(1) = FM(1) · FM(1), (20)

I (2)
4 = M(2) · CM(2) = FM(2) · FM(2). (21)

In the absence of damage, this W with γ2 = 0 and λnat1 = 1 is a simple and relatively standard material model
for a neo-Hookean material that is reinforced with a single family of aligned fibers that are at their natural
length in the reference configuration. The generalization to γ2 �= 0 with λnat2 = 1 allows for the consideration
of two such fiber families. More generally, λnati is a material parameter that allows for the consideration of fiber
pre-stretch in the i fiber family. For example, λnat1 is the stretch that puts a fiber from fiber family 1 into its
natural length in the reference configuration. If the fiber is at its natural length in the reference configuration,
then λnat1 = 1.

The strain energy W given by (18) contains moduli μ, γ1 and γ2. These moduli are allowed to depend upon
the current state of degradation by relations of the form

μ = μ̂(αm), γ1 = γ̂1(αf1), γ2 = γ̂2(αf2), (22)

where μ̂, γ̂1, and γ̂2 are constitutive functions. This accounts for the presence of αm and αfi in the argument
list of W in Equation (18). The functions μ̂, γ̂1, and γ̂2 remain constant as long as αm and αfi remain constant,
in which case Equation (18) is a simple, but standard, model for a hyperelastic material that is anisotropic by
virtue of fiber reinforcement [23].

If the fibers in the two families are distinguished only by different directions but are otherwise the same
as regards their mechanical properties and the way in which degradation affects these properties, then λnat1 =
λnat2 ≡ λnat and

γ1 = γ̂ (αf1), γ2 = γ̂ (αf2), (23)

where the single function γ̂ (·) now replaces the previously separate functions γ̂1(·) and γ̂2(·). We henceforth
assume that γ1 and γ2 are governed by relations of the form (23) in what follows.

The stress tensor T which then follows from (11) and (18) under these assumptions is

T = −pI + μB + 2γ1(I (1)
4 − λ2

nat)FM(1) ⊗ FM(1) + 2γ2(I (2)
4 − λ2

nat)FM(2) ⊗ FM(2). (24)

The stress in the reference configuration is then found by taking F = I and hence C = I, I (1)
4 = I (2)

4 = 1 so that
Equation (24) reduces to

T = (−p + μ)I + 2(1 − λ2
nat)

(
γ1M(1) ⊗ M(1) + γ2M(2) ⊗ M(2)

)
. (25)

Thus, if λnat = 1, then the undeformed configuration is stress free upon taking p = μ. However, if λnat �= 1,
then the condition T = 0 cannot be met by Equation (25) for any choice of p. This is to expected since λnat �= 1
corresponds to fibers that are prestressed with respect to the reference configuration.

While the consideration of initially prestressed fibers is of significant interest, the most essential features
of the present modeling are most easily illustrated in the context of a composite material for which all of the
fiber families are at their natural length in the reference configuration. Since this case is of substantial physical
interest in its own right, we subsequently limit attention to the case λnat = 1 for the rest of this paper. That is,
we henceforth take a simplification of Equation (18) in the form of

W (C, αm, αf1 , αf2) = 1

2
μ(I1 − 3) + 1

2
γ1(I (1)

4 − 1)2 + 1

2
γ2(I (2)

4 − 1)2. (26)

The Cauchy stress which now follows on the basis of (11) is then

T = −pI + μB + 2γ1(I (1)
4 − 1)FM(1) ⊗ FM(1) + 2γ2(I (2)

4 − 1)FM(2) ⊗ FM(2). (27)

Degradation is associated with a decrease in value of the moduli μ, γ1 or γ2 as given by Equations (22)1 and
(23). A simple model that we will consider here is (see [8])

μ̂(αm) = μ0(1 − βmαm), γ̂ (αf ) = γ0(1 − βf αf ), (28)
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where we have used the generic placeholder variable αf for the purposes of giving γ̂ . In Equation (28), βm and
βf are material constants obeying 0 < βm ≤ 1 and 0 < βf ≤ 1. Also μ0 and γ0 are the original modulus values
for the undamaged material. The minimum value for the modulus functions, meaning that associated with
either maximal matrix degradation or maximal fiber degradation, are respectively given by μ̂(1) = (1 − βm)μ0

and γ̂ (1) = (1 − βf )γ0. Thus, βm and βf are constitutive parameters that represent the maximum possible
degradation (with values closer to one meaning a larger possible maximum degradation, and a value of one
meaning that the constituent deteriorates to the extent that it no longer offers any structural support).

It follows from Equation (17) that the specific forms (26) and (28) give degradation driving forces

Dm = βmμ0

2
(I1 − 3) ≥ 0, (29)

Df1 = βf γ0

2
(I (1)

4 − 1)2 ≥ 0, (30)

Df2 = βf γ0

2
(I (2)

4 − 1)2 ≥ 0. (31)

3.2. A rate of dissipation function that is motivated by the isotropic form of Rajagopal et al.

We now turn to consider the second constitutive function that is central to the modeling, namely that which
governs the dissipation ξ . To this end we take the rate of dissipation to be given as the sum of separately
identifiable rates of dissipation for each of the three constituents: matrix, fiber family 1, and fiber family 2.
Motivated by the form discussed by Rajagopal et al. in [3] consider

ξ̂ = ξ̂m(αm, α̇m) + ξ̂f (αf1 , α̇f1) + ξ̂f (αf2 , α̇f2), (32)

with

ξ̂m(αm, α̇m) = 
mα̇m + �m
(α̇m)

nm+1
nm

(1 − αm)
1

nm

, (33)

ξ̂f (αf , α̇f ) = 
f α̇f + �f
(α̇f )

nf +1
nf

(1 − αf )
1

nf

, (34)

where 
m, �m, nm, 
f , �f , nf are positive material constants. It is to be noted that the same function ξ̂f is taken
to apply to both families of fibers so as to remain in keeping with the notion that each fiber family is identical
with respect to its original mechanical properties. As indicated in what follows, the form of both ξ̂m and ξ̂f

gives rise to a degradation threshold characterized by the first terms in each expression (namely that with the

m and 
f ), followed by a damage evolution which is governed by the second term.

3.3. Kinetic evolution ODEs for the degradation process

We now turn to consider the detailed kinetic relations governing the evolution of αm, αf1 , and αf2 on the basis
of the above development. In view of Equation (3) it follows that there are eight possibilities:

• no degradation (N): α̇m = 0, α̇f1 = 0, α̇f2 = 0;
• matrix degradation only (M): α̇m > 0, α̇f1 = 0, α̇f2 = 0;
• fiber family 1 degradation only (F1): α̇m = 0, α̇f1 > 0, α̇f2 = 0;
• fiber family 2 degradation only (F2): α̇m = 0, α̇f1 = 0, α̇f2 > 0;
• matrix degradation combined with degradation of the first fiber family (M1): α̇m > 0, α̇f1 > 0, α̇f2 = 0;
• matrix degradation combined with degradation of the second fiber family (M2): α̇m > 0, α̇f1 = 0,

α̇f2 > 0;
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• degradation of both fiber families (no matrix degradation) (FF): α̇m = 0, α̇f1 > 0, α̇f2 > 0;
• degradation of all constituents (MFF): α̇m > 0, α̇f1 > 0, α̇f2 > 0.

Consider the case M of matrix degradation. The associated kinetic equation for the matrix degradation
emerges from (15) using (17)1, (32)–(33), and α̇f1 = α̇f2 = 0. Algebraic manipulation then gives an equation
of the general form treated in [3]:

α̇m =
(Dm − 
m

�m

)nm
(1 − αm), (M). (35)

Since α̇m > 0, it follows that this situation applies only if Dm > 
m, or equivalently (see (29))

I1 >
2
m

βmμ0
+ 3. (36)

Turning to the case F1, one similarly obtains the kinetic equation

α̇f1 =
(Df1 − 
f

�f

)nf
(1 − αf1), (F1), (37)

whereupon α̇f1 > 0 requires that Df1 > 
f . This will occur if

I (1)
4 > 1 +

√
2
f

βf γ0
, (38)

meaning that the fiber is sufficiently stretched. In addition, if
√

2
f /βf γ0 < 1, then fiber degradation also
occurs if

I (1)
4 < 1 −

√
2
f

βf γ0
, (39)

meaning that the fiber is sufficiently contracted. Corresponding results hold for the case F2, namely

α̇f2 =
(Df2 − 
f

�f

)nf
(1 − αf2), (F2), (40)

with a requirement that either

I (2)
4 > 1 +

√
2
f

βf γ0
, (41)

or

I (2)
4 < 1 −

√
2
f

βf γ0
. (42)

It follows that the case M of matrix degradation occurs if condition (36) is met and all of the conditions:
(38), (39), (41), (42) are not met. Similarly, the case F1 of fiber degradation in the first fiber family occurs if
either condition (38) or (39) is met and conditions (36), (41), and (42) are all not met. Conditions associated
with the case F2 follow similarly.

The degradation possibility M1 occurs if (36) and either of (38) or (39) are simultaneously met, while both
(41) and (42) are not met. In this case (15) with (17)1, (17)2, (32)–(34), and α̇f2 = 0 gives

(Dm − 
m)α̇m + (Df1 − 
f )α̇f1 = �m
(α̇m)

nm+1
nm

(1 − αm)
1

nm

+ �f
(α̇f1)

nf +1
nf

(1 − αf1)
1

nf

. (43)
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A second kinetic equation is required to close the system. Note in this case that Equation (16) is not sufficient
to ensure that both Equations (12) and (13) hold. Thus, the required second kinetic equation is obtained by
eliminating η between Equations (12) and (13). This yields

1

Df1

(

f + �f (1 + 1

nf
)

(
α̇f1

1 − αf1

) 1
nf

)
= 1

Dm

(

m + �m(1 + 1

nm
)

(
α̇m

1 − αm

) 1
nm )

. (44)

Hence, Equations (43) and (44) serve as two ODEs for the degradation kinetics at each point in the body where
degradation type M1 takes place.

Governing equations for the cases M2 and FF follow by a similar logic. Thus, for the case M2 one has
α̇f1 = 0 with αm and αf2 determined on the basis of the two equations

(Dm − 
m)α̇m + (Df2 − 
f )α̇f2 = �m
(α̇m)

nm+1
nm

(1 − αm)
1

nm

+ �f
(α̇f2)

nf +1
nf

(1 − αf2)
1

nf

, (45)

and

1

Df2

(

f + �f (1 + 1

nf
)

(
α̇f2

1 − αf2

) 1
nf

)
= 1

Dm

(

m + �m(1 + 1

nm
)

(
α̇m

1 − αm

) 1
nm )

. (46)

For the case FF one has α̇m = 0 with αf1 and αf2 determined on the basis of the two equations

(Df1 − 
f )α̇f1 + (Df2 − 
f )α̇f2 = �f
(α̇f1)

nf +1
nf

(1 − αf1)
1

nf

+ �f
(α̇f2)

nf +1
nf

(1 − αf2)
1

nf

, (47)

and

1

Df1

(

f + �f (1 + 1

nf
)

(
α̇f1

1 − αf1

) 1
nf

)
= 1

Df2

(

f + �f (1 + 1

nf
)

(
α̇f2

1 − αf2

) 1
nf

)
. (48)

The final case is that of degradation of all of the constituents (MFF). In this case Equation (15) with (17)
and (29) gives

(Dm − 
m)α̇m + (Df1 − 
f )α̇f1 + (Df2 − 
f )α̇f2

= �m
(α̇m)

nm+1
nm

(1 − αm)
1

nm

+ �f
(α̇f1)

nf +1
nf

(1 − αf1)
1

nf

+ �f
(α̇f2)

nf +1
nf

(1 − αf2)
1

nf

. (49)

It is now the case that two additional kinetic equations are required to close the system. In this case all of the
quantities α̇m, α̇f1 , and α̇f2 are non-zero, whereupon it is required that the three conditions (12)–(14) all hold for
the value of η as given by (16). Thus, one such condition follows as in the case M1 by eliminating η between
(12) and (13) so as to again obtain (44). Similarly, another independent condition follows as in the case M2
by eliminating η between (12) and (14) so as to again obtain (46). Here we note that we could alternatively
eliminate η between (13) and (14) so as to obtain (48). Any two of (44), (46), and (48) can be taken as the two
closure conditions, since the unchosen third condition then follows from the other two.

This completes the specification of the degradation equations for the seven cases M–MFF. It is to be noted
that the various governing differential equations (35), (37), (40), (43), (44), (45), (46), (47), (48), and (49) all
contain either Dm, Df1 , or Df2 and so couple to the current state of deformation by virtue of (29)–(31). These
issues will now be demonstrated in the context of uniaxial load.
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4. Balanced uniaxial load

Suppose that the fibers are straight with properties that are independent of spatial location. The matrix material
is also assumed to be independent of spatial location. If under these circumstances we consider homogenous
deformation, then the Cauchy stress is independent of spatial position, so that the stress equations of equilibrium
are automatically satisfied.

In the reference configuration, let e3 be a unit vector that is normal to the plane containing the two fiber
families. We consider loadings that are consistent with states of plane stress in the fiber-containing plane.

Let the directions defined by the bisectors of the fiber alignment directions in the reference configuration be
given by unit vectors e1 and e2 such that {e1, e2, e3} is a right-handed system. That is to say we take

M(1) = cos �e1 + sin �e2 (50)

M(2) = cos �e1 − sin �e2 (51)

in terms of a given orientation angle � from e1 in the reference configuration.
Consider the case of balanced uniaxial loading with respect to the e2 axis, meaning that

T =
⎡
⎣0 0 0

0 T 0
0 0 0

⎤
⎦ . (52)

We seek the anticipated shear-free deformations, meaning that the deformation gradient is of the form

F =
⎡
⎣λ⊥ 0 0

0 λ 0
0 0 1

λλ⊥

⎤
⎦ (53)

so that λ is the axial stretch and λ⊥ is the transverse stretch in the fiber-containing plane. Then

I1 = λ2
⊥ + λ2 + 1

λ2
⊥λ2

, (54)

I (1)
4 = I (2)

4 = λ2
⊥ cos2 � + λ2 sin2 � ≡ I4. (55)

It follows by virtue of the symmetry of the deformation that αf1 = αf2 ≡ αf so that only symmetric degradation
possibilities are assumed in this setting.3

Entering (27) with (50), (51), (53), (54), and (55), one finds, as required by (52), that T12 = T13 = T23 = 0,
whereas the requirement T33 = 0 gives p = μ/λ2

⊥λ2. Then the remaining conditions of T11 = 0, T22 = T give

0 = λ2
⊥ − 1

λ2
⊥λ2

+ 4
γ

μ

(
λ2

⊥ cos2 � + λ2 sin2 � − 1
)
λ2

⊥ cos2 �, (56)

T = μ
(
λ2 − 1

λ2
⊥λ2

)
+ 4γ

(
λ2

⊥ cos2 � + λ2 sin2 � − 1
)
λ2 sin2 �, (57)

with μ = μ̂(αm) and γ = γ̂ (αf ) as given by (28).
The axial force needed to sustain this deformation is given by the product of T and the current cross-

sectional area. The current cross-sectional area is the original area Ao multiplied by the two transverse stretches
(λ⊥ and 1/λλ⊥). In other words the axial force is SAo where

S = T/λ; (58)

in fact, this S is the corresponding component of the Piola–Kirchhoff stress tensor. In this context we consider
first a hard loading device and then a soft loading device.
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For a hard loading device, the stretch λ is specified whereupon (56) – (58) determine λ⊥, T and S. In
the event that degradation occurs, as the material weakens one anticipates that a decreasing stress value S is
sufficient to maintain the fixed value of λ. The time dependent stresses obtained on this basis exhibit a stress
relaxation. The transverse stretch λ⊥ would generally also exhibit change during this process as well.

For a soft loading device, the stress value S is specified whereupon (56)–(58) determine λ, λ⊥, and T . In
the event that degradation occurs, as the material weakens one anticipates that the fixed S gives an increasing
stretch λ. The time-dependent stretch obtained on this basis would therefore exhibit a creep elongation. The
changing λ in this process will in turn generally give rise to a changing λ⊥ during this creep elongation.

It is to be remarked that hard loading (specified stretch) is sometimes referred to as isometric loading, and
that soft loading (specified force) is sometimes referred to as isotonic loading.

4.1. Degradation scenarios

There are four possibilities consistent with the symmetry assumption αf1 = αf2 ≡ αf , namely N, M, FF or MFF.
Furthermore, it follows from (36)–(42) that the values of λ and λ⊥ completely determine the degradation type
as follows:

• N occurs if λ and λ⊥ obey

λ2 + λ2
⊥ + 1

λ2λ2
⊥

< 3 + 2
m

βmμ0
,

and

−
√

2
f

βf γ0
< λ2 sin2 � + λ2

⊥ cos2 � − 1 <

√
2
f

βf γ0
.

In this case both αm and αf do not change, so that the moduli μ and γ remain fixed. This includes the
case λ = λ⊥ = 1 corresponding to no deformation.

• M occurs if λ and λ⊥ obey

λ2 + λ2
⊥ + 1

λ2λ2
⊥

> 3 + 2
m

βmμ0
,

and

−
√

2
f

βf γ0
< λ2 sin2 � + λ2

⊥ cos2 � − 1 <

√
2
f

βf γ0
.

In this case αf remains fixed, while the increase in αm is governed by

t∗mα̇m =
((

λ2 + λ2
⊥ + 1

λ2λ2
⊥

− 3
)

− 2
m

βmμ0

)nm
(1 − αm).

Here we have introduced a new constant

t∗m =
( 2�m

βmμ0

)nm
, (59)

which is a natural time scale for the matrix degradation process.4

• FF occurs if λ and λ⊥ obey

λ2 + λ2
⊥ + 1

λ2λ2
⊥

< 3 + 2
m

βmμ0
,

and either

λ2 sin2 � + λ2
⊥ cos2 � − 1 >

√
2
f

βf γ0
,
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or

λ2 sin2 � + λ2
⊥ cos2 � − 1 < −

√
2
f

βf γ0
.

In this case αm remains fixed, while it follows from Equation (47) that the increase in αf is governed
by

t∗f α̇f =
((

λ2 sin2 � + λ2
⊥ cos2 � − 1

)2
− 2
f

βf γ0

)nf
(1 − αf ), (60)

where the time constant

t∗f =
( 2�f

βf γ0

)nf
, (61)

is a natural time scale for the fiber degradation process. That Equation (60) is the sole evolution
equation for the degradation in this case follows from the observation that Equation (48) is now
satisfied identically.

• MFF occurs if λ and λ⊥ obey

λ2 + λ2
⊥ + 1

λ2λ2
⊥

> 3 + 2
m

βmμ0
,

and either

λ2 sin2 � + λ2
⊥ cos2 � − 1 >

√
2
f

βf γ0
,

or

λ2 sin2 � + λ2
⊥ cos2 � − 1 < −

√
2
f

βf γ0
.

In this case αm and αf simultaneously increase as governed by

(
βmμ0

(
λ2 + λ2

⊥ + 1

λ2λ2
⊥

− 3
)

− 2
m

)
α̇m

+
(

2βf γ0(λ2 sin2 � + λ2
⊥ cos2 � − 1)2 − 4
f

)
α̇f

= βmμ0
(t∗mα̇m)

1
nm α̇m

(1 − αm)
1

nm

+ 2βf γ0

(t∗f α̇f )
1

nf α̇f

(1 − αf )
1

nf

, (62)

and

βmμ0

(
λ2 + λ2

⊥ + 1

λ2λ2
⊥

− 3
)(


f + βf γ0

(nf + 1

2nf

) (
t∗f α̇f

1 − αf

) 1
nf )

= βf γ0

(
λ2 sin2 � + λ2

⊥ cos2 � − 1
)2(


m + βmμ0

(nm + 1

2nm

) (
t∗mα̇m

1 − αm

) 1
nm )

.

(63)

We remark that the form of the kinetic equations listed above have eliminated the constitutive parameters
�m and �f in terms of the characteristic degradation times t∗m and t∗f .
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Table 1. Material parameters for two different materials.

� γo/μo 
m/μo 
f /μo βm βf

Material 1 π/4 0.5 0.08 0.001 0.8 0.6, 0.9, 1.0
Material 2 π/4 2.0 0.02 0.02 0.8 0.8

4.2. Degradation phase diagram

A degradation phase diagram of (λ⊥, λ) values obeying λ⊥ > 0 and λ > 0 is created by the separating curves
from the above development. Namely the curves

λ2 + λ2
⊥ + 1

λ2λ2
⊥

= 3 + 2
m

βmμ0
,

λ2 sin2 � + λ2
⊥ cos2 � = 1 +

√
2
f

βf γ0
,

and, if βf γ0 > 2
f , the curve

λ2 sin2 � + λ2
⊥ cos2 � = 1 −

√
2
f

βf γ0
, (64)

separate regions of (λ⊥, λ)-values corresponding to the four possibilities: N, M, FF, and MFF, thereby creating a
degradation phase diagram for balanced uniaxial load. This diagram is dependent on the values of �, 
m/βmμ0,
and 
f /βf γ0.

For the purposes of illustration we consider two basic material parameter combinations in detail. Specif-
ically, by material 1 and material 2 we mean material parameters: �, γ0/μ0, 
m/μ0, 
f /μ0, βm, and βf as
shown in Table 1.

In Table 1 we use μ0 as a normalization parameter for constitutive parameters with units of stress. For
material 1 we shall consider three separate values of βf as indicated in the table. We note that we do not specify
�m, �f , nm, and nf for these materials. By virtue of Equations (59) and (61) this is the same as not specifying
t∗f , t∗f , nm, and nf for these materials. In what follows we consider different values for these constants so as to
clarify the affect of the degradation time scales.

Figure 1 shows the degradation phase diagram for material 1 with βf = 0.6 while Figure 2 shows the
degradation phase diagram for material 2. The phase diagram in Figure 1 shows degradation process zones for
all four degradation types: N, M, FF, and MFF. In contrast, the phase diagram in Figure 2 does not admit to
an FF degradation process. For both materials it is the case that βf γ0 > 2
f and the separating curve given by
(64) is the inner circular arc in each diagram. Although not shown here, the phase diagram for material 1 with
either βf = 0.9 or βf = 1.0 is similar in form to that in Figure 1. The only difference is that the larger values of
βf cause the two circular arcs to move closer together, which does not alter the basic form of the phase diagram
in Figure 1.

Such a diagram is convenient for organizing the discussion of both the hard and the soft loading device. In
each case we consider a step loading. For the hard device we consider a suddenly applied stretch λ > 1; for the
soft device we consider a suddenly applied stress S > 0. The nature of the stress–stretch relations (56)–(58)
then gives that S > 0 for the hard device, λ > 1 for the soft device, and 0 < λ⊥ < 1 in both devices. The
relations λ > 1 ⇔ S > 0 hold for all possible values of μ and γ obeying 0 < μ ≤ μ0 and 0 < γ ≤ γ0.
Hence, for the ensuing discussion of step loading we may restrict attention to degradation phase diagrams on
the region 0 < λ⊥ < 1, λ > 1.

For each such diagram, Equation (56) with μ = μ0 and γ = γ0 determines the curve of uniaxial stretch
states for an undamaged material. We call this the curve of undamaged stretch states and denote this curve by
C0. For both the hard and soft loading device, the state of the system immediately after the application of load
will be referred to as the initial state. All such initial states correspond to a point on the curve of undamaged
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Figure 1. Degradation phase diagram for material 1 with βf =0.6. Note that the undeformed location (λ⊥, λ) = (1,1) is in the N
region where no degradation takes place.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.61.7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

λ⊥

λ

N

MFF

MFF

M

Figure 2. Degradation phase diagram for material 2. Once again the undeformed location (λ⊥, λ) = (1,1) is in the N region.

load states. However, if there is damage then, as time goes on, the value of (λ⊥, λ) will depart from this initial
location. For the hard device, where λ is fixed, this departure will cause (λ⊥(t), λ) to trace out a horizontal
path in the degradation phase diagram. For the soft device, where S is fixed, the trace of (λ⊥(t), λ(t)) is a more
general path. This will be demonstrated in detail in the examples that follow.

Before considering the path (λ⊥(t), λ(t)) for any particular condition of soft or hard loading, it is useful to
construct three additional load state curves analogous to the previously introduced curve of undamaged load
states. These three additional curves are:

• the curve of stretch states corresponding to full fiber degradation with an undamaged matrix5 that is
obtained from Equation (56) upon setting μ = μ0 and γ = (1 − βf )γ0; this curve will be denoted by
CFF

∞ ;
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Figure 3. Degradation phase diagram for material 1 with βf = 0.6 showing stretch state curves C0, CM∞, CFF∞ , and CMFF∞ .

• the curve of stretch states corresponding to undamaged fibers with full matrix degradation that is
obtained from Equation (56) upon setting μ = (1 − βm)μ0 and γ = γ0; this curve will be denoted by
CM

∞;
• the curve of stretch states corresponding to full fiber degradation and full matrix degradation that is

obtained from Equation (56) upon setting μ = (1 − βm)μ0 and γ = (1 − βf )γ0; this curve will be
denoted by CMFF

∞ .

These three curves, in conjunction with the curve of undamaged stretch states, each contain (λ⊥, λ) = (1, 1)
and are otherwise completely determined by the different values of the ratio γ /μ. In the region λ > 1 of the
degradation phase diagram these curves order themselves from left to right according to the value of the ratio
γ /μ. In particular, the stretch state curve CM

∞ is the leftmost such curve, and the stretch state curve CFF
∞ is the

rightmost such curve. As regards the ordering of the remaining two curves, it follows that the stretch state curve
CMFF

∞ is to the left of the curve of undamaged stretch states C0 if βf < βm, while CMFF
∞ is to the right of C0 if

βf > βm (the two curves are coincident if βf = βm).
Figure 3 shows the degradation phase diagram for material 1 with βf = 0.6 on the region 0 < λ⊥ ≤ 1,

λ ≥ 1 along with all four of the stretch state curves as discussed above. As already indicated, the initial t = 0+

state of stretch for both the hard and soft loading device will correspond to a point on the curve C0. The other
three stretch state curves are useful for describing the asymptotic state of stretch

(λ⊥(∞), λ(∞)) ≡ lim(λ⊥(t), λ(t)), as t → ∞.

Specifically, large time states in the MFF degradation region will asymptotically approach a point on the curve
CMFF

∞ . The physical significance of the two curves CM
∞ and CFF

∞ is a bit more subtle. For example, if FF is the
only type of degradation that has ever taken place then large time states in the FF degradation region will
asymptotically approach a point on the curve CFF

∞ . Similarly, if M is the only type of degradation that has ever
taken place then large time states in the M degradation region will asymptotically approach a point on the curve
CM

∞. In addition, the curves CM
∞ and CFF

∞ have significance in the MFF region as regards the possibility of an
overshoot type phenomenon. These issues will now be illustrated in the context of particular examples for both
the hard and the soft loading device.
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Figure 4. Transverse stretch λ⊥ and nominal stress S/μo as a function of normalized time t∗ for material 1 with βf = 0.6. The
case shown is of a hard loading device with λ = 1.2 so that the degradation is of type FF for all time. Here nf = nm = 2 and the
non-dimensionalized time is defined by t∗ = t/t∗m. The three curves are for τ = 0.2, 1, and 6.

5. Hard loading device

5.1. Material 1 with βf = 0.6

Consider the hard loading device; a stretch λ > 1 is suddenly applied and subsequently held fixed. Our interest
is in S(t) and λ⊥(t). Using the specified value of λ it follows that the initial t = 0+ value of λ⊥ is immediate
from the curve C0. Consider material 1 with βf = 0.6 for which the degradation phase diagram is shown in
Figure 3. This figure shows that the curve C0 is respectively within the N, FF, or MFF regions, according to
whether 1 ≤ λ < 1.153, 1.153 < λ < 1.275, or λ > 1.275. This establishes the degradation type at t = 0+ for
the hard loading device. For example, the range 1 ≤ λ < 1.153 gives no degradation and hence the material
behaves as a conventional hyperelastic material. In this case both λ⊥ and S remain at their initial t = 0+ values
for all time.

Suppose now that 1.153 < λ < 1.275 so that the degradation type is initially FF. The subsequent increase
in αf is governed by (60) giving αf → 1 as t → ∞ and hence γ → (1−βf )γ0 = 0.4γ0. The associated t → ∞
value of λ⊥ is therefore on the curve CFF

∞ . In the phase diagram of Figure 3 this curve is to the right of the curve
of undamaged load states C0. As FF degradation proceeds, the time evolution of the pair (λ⊥(t), λ) generates a
horizontal line segment on the phase diagram beginning on C0 and ending on CFF

∞ . Since this horizontal segment
is confined to the FF region, the degradation remains of FF type for all time and the t → ∞ state of the system,
including both the t → ∞ values of T and S, can be determined without solving the kinetic equation (60).

However, to consider the rate of the approach to the asymptotic values λ⊥(∞) and S(∞) it is necessary to
consider Equation (60) for the degradation kinetics. For FF degradation the degradation kinetics is dependent
on the as yet unspecified value of t∗f . To show the effect of different t∗f it is convenient to normalize time by t∗m
and to introduce the non-dimensionalized parameter

τ = t∗f
t∗m

= (2�f /βf γo)nf

(2�m/βmμo)nm
.

Figure 4 shows curves of λ⊥ versus t/t∗m and S/μo versus t/t∗m for λ = 1.2 with different values of τ . Larger
values of τ correspond to a relatively longer time scale for the fiber degradation and hence a slower fiber
degradation kinetics. This is confirmed in the figure where larger values of τ exhibit a slower approach to the
asymptotic values λ⊥(∞) = 0.902 and S(∞) = 0.549μ0. In all cases we find that this approach involves
monotonic decrease from S(0) to S(∞) confirming the anticipated stress relaxation.

In the context of the same phase diagram consider now the hard device loading when the degradation type
is initially MFF, that is consider λ > 1.275. Then, as long as the degradation type remains MFF, the subsequent
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Figure 5. Transverse stretch λ⊥ and nominal stress S/μo as a function of normalized time t∗ = t/t∗m for material 1 with βf = 0.6.
Shown is the case of a hard loading device with λ = 1.3 and the degradation is of type MFF for all time. Here nf = nm = 2 and the
non-dimensionalized time is defined by t∗ = t/t∗m. The three curves are for τ = 0.1, 0.25, and 1.0.

increase in both αm and αf is governed by Equations (62) and (63). As t → ∞ this gives αm → 1, αf → 1
and thus μ → (1 − βm)μ0 = 0.2μ0, γ → (1 − βf )γ0 = 0.4γ0. Hence, as MFF degradation proceeds, the
time evolution of the pair (λ⊥(t), λ) traces a horizontal path on the phase diagram that begins on the curve C0

and asymptotically approaches the point on the curve CMFF
∞ corresponding to the given value of λ. Here, since

CMFF
∞ is to the left of C0 on the degradation phase diagram, the value of λ⊥ must decrease; this is in contrast

to the previously considered case of FF degradation where the value of λ⊥ exhibited a monotonic increase in
time. Figure 5 shows an example of this MFF degradation for λ = 1.3 using the three separate values: τ = 0.1,
0.25, 1.0. In all three cases S(t) is monotonically decreasing and so gives the anticipated stress relaxation as
the material becomes increasingly damaged. However, λ⊥(t) is monotonically decreasing only for the case in
which τ = 0.25. The behavior of λ⊥ is not monotone in the other two cases. In the case τ = 0.1 the function
λ⊥(t) is first increasing before exhibiting a monotonic decrease to its asymptotic value. For the case τ = 1
the function λ⊥(t) is first decreasing to a value that is less than its asymptotic value before increasing to the
asymptotic value. It is to be emphasized that the large time asymptotic value is the same in all three cases,
namely λ⊥(∞) = 0.8135 as can be determined directly from the location on CMFF

∞ where λ = 1.3. We now
describe the affect that this has on the path traced out in the degradation phase diagram.

In the degradation phase diagram, the hard loading path with λ = 1.3 for the case τ = 0.25 involves a
leftward departure from C0 after which the path continues to the left as it approaches its asymptotic value on
CMFF

∞ as t → ∞. Hence, for τ = 0.25 the path is exactly the horizontal line segment from C0 to CMFF
∞ . In

contrast, for the case τ = 0.1 the path in the degradation phase diagram first involves a rightward departure
from C0 before doubling back and approaching CMFF

∞ as t → ∞. For the case τ = 1.0 the path in the degradation
phase diagram departs leftward from C0 and then overshoots CMFF

∞ before doubling back and approaching CMFF
∞

as t → ∞. The two cases of non-monotone λ⊥(t) each generate a doubling back of the trace of the path
(λ⊥(t), λ) in the phase diagram. As indicated above, the example of τ = 1 gives rise to an overshoot. The
example of τ = 0.1 gives rise to an anomalous start-up meaning that λ⊥(t) at t = 0+ is initially increasing, in
contrast to the eventual decrease that is required for the path to asymptotically approach CMFF

∞ for large times.
The fact that λ⊥(t) need not be monotone for MFF degradation is due to the fact that MFF degradation

is dependent upon the two different time scales t∗m and t∗f . If the fiber degradation time scale is much faster
than the matrix degradation time scale, then, at least initially, the degradation tends to make αf → 1 while αm

remains close to zero. This corresponds to γ → (1 − βf )γ0 with μ = μ0. On this basis, the value of λ⊥ is
‘pulled’, at least early in the degradation process, to the value associated with the curve of load states that is
obtained by setting μ = μ0 and γ = 0.4γ0 in Equation (56). In other words the degradation path is initially
attracted to the curve CFF

∞ . The curve CFF
∞ is to the right of C0 and this gives an initial rightward departure from
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Figure 6. Transverse stretch λ⊥ and nominal stress S/μo as a function of normalized time t∗ = t/t∗m for material 1 with βf = 0.6.
Shown is the case of a hard loading device with λ = 1.277. Five responses are shown, each corresponding to a different value of τ .
In the three cases of τ = 1.5, 2.6, and 4 the degradation remains of type MFF or all time. In the two cases τ = 0.2 and 0.5, the
degradation is initially of type MFF region but then changes to type FF at some finite time into the hard loading process.

C0 as was observed for the above example when τ = 0.1. Conversely, if the time scale for matrix degradation is
much faster than that for fiber degradation, then, at least initially, the degradation tends to make αm → 1 while
αf remains close to zero. This corresponds to μ → (1 − βm)μ0 = 0.2μ0 and γ → γ0. On this basis, the value
of λ⊥ is ‘pulled’, at least early in the degradation process, to the value associated with the curve CM

∞. The curve
CM

∞ is to the left of the curve CMFF
∞ which is in turn to the left of the curve C0. In this case the path for (λ⊥(t), λ)

overshoots its asymptotic state on CMFF
∞ before doubling back to ultimately approach its asymptotic value on

that curve. This was observed for the case τ = 1.0 in Figure 5.
It therefore follows that if τ is relatively large, then the curve CM

∞ can serve as an early time attractor for the
path while it is in the MFF region of the degradation phase diagram. This caused the overshoot in Figure 5 for
τ = 1.0. Conversely, if τ is relatively small, then the curve CFF

∞ can serve as an early time attractor for the path
while it is in the MFF region of the degradation phase diagram. This caused the anomalous start-up in Figure
5 for τ = 0.1. Since the initial value curve C0 is between these two curves it follows that CM

∞ and CFF
∞ form

natural bounds for the path (λ⊥(t), λ) within the degradation phase diagram.
We now recall that the degradation is initially of type MFF if λ > 1.275 since C0 is within the MFF region

for all such λ. On the basis of the above discussion it follows that the degradation will subsequently remain
of type MFF for those values of λ which have the property that the line segment between CM

∞ and CFF
∞ is

completely within the MFF region. A sufficiently close examination of Figure 3 would show that this property
does not hold for all λ > 1.275 but does hold for λ > 1.2785. Here the value 1.2785 gives the particular value
of λ where the curve CFF

∞ intersects the boundary curve separating the MFF region from the FF region. For
λ > 1.2785 the degradation will therefore remain of type MFF for all time, and the examples given in Figure 5
are representative of the various behaviors that can occur for that range of λ.

The final range of λ to consider for the hard device loading of material 1 with βf = 0.6 is thus the small
range of values 1.275 < λ < 1.2785. In this case there are four basic qualitative behaviors for the function
λ⊥(t). Three of these behaviors involve MFF degradation for all time while the fourth behavior involves MFF
degradation which then abruptly changes to FF degradation. The three behaviors with MFF degradation for
all time mirror the three basic behaviors that occur for λ > 1.2785 which were previously exhibited in Figure
5, namely: MFF behavior for all time with monotone decreasing λ⊥(t), MFF behavior for all time with λ⊥(t)
that is first increasing and then decreasing, and MFF behavior for all time with λ⊥(t) that is first decreasing
and then increasing. Consider an imposed stretch of λ = 1.277 which in turn makes λ⊥(0+) = 0.850. The
three behaviors which have just been described are found to occur for the three values: τ = 2.6, 1.5, and 4
(respectively) as shown in Figure 6.
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Table 2. Hard device loading degradation behavior for material 1 with βf = 0.6.

Stretch range Degradation behavior

1 < λ < 1.153 No degradation

1.153 < λ < 1.275 FF degradation for all time, λ⊥ monotone increasing

1.275 < λ < 1.2785 Initial MFF degradation that may or may not transition to
FF degradation as determined by the degradation kinetics.
This MFF degradation may involve monotone λ⊥ or may
instead involve either λ⊥ overshoot (large τ ) or λ⊥
anomalous start-up (small τ ). Transition to FF degradation
requires λ⊥ anomalous start-up with very small τ .

λ > 1.2785 MFF degradation for all time. This degradation may involve
monotonic λ⊥ or may instead involve either λ⊥ overshoot
(large τ ) or λ⊥ anomalous start-up (small τ ).

The fourth type of qualitative behavior for the range of values 1.275 < λ < 1.2785 is due to the fact that in
this range of λ the curve CFF

∞ is within the FF region. If the initial MFF degradation involves fiber degradation
that is very much faster than matrix degradation it then follows that the value of λ⊥ could be drawn into the FF
degradation region. For λ = 1.277 the degradation phase diagram shows that this will occur if λ⊥ exceeds the
value 0.858. This behavior is shown in Figure 6 for both τ = 0.2 and τ = 0.5. In both of these cases the MFF
degradation response causes λ⊥(t) to increase in a manner that is sufficient to cause λ⊥ to hit the value 0.858 at
some finite time. At that time the degradation shifts from type MFF to type FF.6 There is then no further change
in μ but the FF degradation makes for a continued decrease in γ . Subsequently, this causes λ⊥ to increase
monotonically, whereupon the path in the degradation phase diagram is drawn further to the right and hence
further into the FF degradation region. As t → ∞ it will again be the case that γ → (1 − βf )γ0 = 0.4γ0 while
μ remains at whatever value it had when MFF degradation ceased. This value of μ will therefore be between
μ0 and (1 −βm)μ0 = 0.2μ0. Because this final value of μ is less than μ0 it follows that the asymptotic value of
λ⊥ will be less than that associated with the curve CFF

∞ . In other words the asymptotic location (λ⊥(∞), 1.277)
will be in the FF region but to the left of the curve CFF

∞ . The two separate values τ = 0.2 and τ = 0.5 illustrate
how the asymptotic value λ⊥(∞) is now dependent on the value of τ . While we have shown how the behavior
λ⊥(t) exhibits a variety of different qualitative behaviors for λ obeying 1.275 < λ < 1.2785, the behavior of
S(t) in all cases involves a monotonic decrease in time for the simple reason that, in all cases, the moduli μ and
γ decrease with time (Figure 6).

Table 2 summarizes the different qualitative degradation behaviors described above for material 1 with
βf = 0.6 subject to a hard device tensile loading.

5.2. Material 1 with βf = 0.9

Having just concluded a rather thorough discussion of hard loading for material 1 with βf = 0.6 we now turn
to consider hard loading for material 1 with βf = 0.9. The degradation phase diagram in this case for λ > 1
is shown in Figure 7. Comparing this diagram with that for material 1 with βf = 0.6 in Figure 3 it is seen that
the only qualitative difference is that the curve C0 is now to the left of CMFF

∞ . This is due to the fact that now
βf > βm. In addition there are small quantitative changes to the locations of the various curves and boundaries,
and hence small changes in the locations of various curve intersections. For example, it is now the case that
the curve C0 transitions from the N region to the FF region at λ = 1.130 and transitions from the FF region to
the MFF region at λ = 1.275. The three locations where the FF–MFF boundary intersects with the curves C0,
CMFF

∞ , and CFF
∞ are of special significance in the following discussion. These intersections are given in Table 3.

There are now five separate intervals in which the hard device process for λ > 1 exhibits qualitatively
different behavior, namely 1 < λ < 1.130, 1.130 < λ < 1.2755, 1.2755 < λ < 1.2781, 1.2781 < λ < 1.2793,
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Figure 7. Degradation phase diagram for material 1 with βf = 0.9 showing stretch state curves C′, CM∞, CFF∞ , and CMFF∞ .

Table 3. Intersection of the FF–MFF boundary with C0, CMFF∞ , and CFF∞ .

C0 CMFF∞ CFF∞
FF–MFF boundary λ = 1.2755 λ = 1.2781 λ = 1.2793

Table 4. Degradation behavior for material 1 with βf = 0.9.

Stretch range Degradation behavior for material 1 with βf = 0.9

1 < λ < 1.130 No degradation

1.130 < λ < 1.2755 FF degradation for all time

1.2755 < λ < 1.2781 Initial MFF degradation that transitions to FF degradation

1.2781 < λ < 1.2793 Initial MFF degradation that may or may not transition to
FF degradation as determined by the degradation kinetics

λ > 1.2793 MFF degradation for all time

and λ > 1.2793. The basic aspects of this behavior can be extracted from a thoughtful consideration of the
degradation phase diagram in Figure 7. Table 4 summarizes this qualitative behavior.

We now elaborate on the claims presented in Table 4. To begin with, we omit until a later paragraph any
consideration of the stretch range 1.2755 < λ < 1.2781. This is because each of the other four stretch ranges
have an associated degradation behavior that corresponds to one of the four behaviors present in material 1 for
the previously considered value βf = 0.6 (summarized in Table 2).

The reason for the four behaviors on 1 < λ < 1.130, 1.130 < λ < 1.2755, 1.2781 < λ < 1.2793,
and λ > 1.2793 follows on the basis of the same type of considerations as was the case for material 1 with
βf = 0.6. Namely, in the FF region the path traced out by (λ⊥(t), λ) moves to the right as γ decreases and
asymptotically approaches CFF

∞ if there is no matrix degradation whatsoever. Similarly, in the MFF region the
response is restricted to be within the curves CM

∞ and CFF
∞ . If the matrix degradation operates on a sufficiently

faster time scale than that of the fiber degradation, then CM
∞ may serve as a short time attractor for the path

(λ⊥(t), λ). Alternatively, CFF
∞ may serve as a short time attractor for the path in the MFF region in the event that
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Figure 8. Evolution of λ⊥ and S/μo with t∗ for a hard loading device for material 1 with βf = 0.9 and λ = 1.2788. Other parameters:
βm = 0.8, and nf = nm = 2.
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Figure 9. Evolution of λ⊥ and S/μo with t∗ for a hard loading device for material 1 with λ = 1.277 and βf = 0.9. Other parameters:
βm = 0.8 and nf = nm = 2. Four values of τ are used, three of which give a monotone λ⊥(t) and one of which gives an anomalous
start-up.

the fiber degradation is much faster than the matrix degradation. Paths that remain in the MFF region approach
the corresponding point on CMFF

∞ as t → ∞.
For example, we recall for material 1 with βf = 0.6 that the range 1.275 < λ < 1.2785 corresponds to

an initial MFF degradation that may or may not transition to FF degradation as determined by the degradation
kinetics (as shown in Figure 6). For material 1 with βf = 0.9 the corresponding range for such behavior is
1.2781 < λ < 1.2793. An example of λ in this range is the value λ = 1.2788 as illustrated in Figure 8. This
figure shows λ⊥(t) and S(t) for five values of τ , three of which give MFF for all time and two of which give
a transition to FF. The three values of τ that illustrate MFF degradation for all time show the three different
qualitative behaviors for λ⊥(t) that were also shown in Figure 6: monotone, overshoot, and anomalous start-
up. The conspicuous difference is that now MFF degradation for all time gives λ⊥(∞) > λ⊥(0+) so that, for
example, the monotone behavior of λ⊥(t) now involves monotone increase instead of monotone decrease. This
is due to the fact that C0 is to left of CMFF

∞ when βf = 0.9, which is opposite to the ordering of these two curves
for βf = 0.6. This in turn alters how large or small τ correspond to either overshoot or anomalous start-up
for MFF degradation. For example the overshoot possibility, which now involves increase of λ⊥(t) followed by
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Figure 10. Degradation phase diagram for material 2 showing stretch state curves C0, CM∞, and CFF∞ . For this material, since βf = βm

the curves C0 and CMFF∞ are coincident.

decrease, is generated by a relatively fast fiber degradation, which is opposite to the MFF time scale ordering
that gives overshoot when βf = 0.6.

Finally, for material 1 with βf = 0.9 we consider the stretch range 1.2755 < λ < 1.2781 which gives a
degradation behavior unlike any that occurs for material 1 with βf = 0.6. In this stretch range the original MFF
type degradation is guaranteed to terminate at finite time after which the degradation is guaranteed to be of type
FF. This is again because of the ordering of the various curves. Namely, for this stretch range the curve C0 is
in the MFF degradation region, but the curve CMFF

∞ is in the FF degradation region. Thus, as CMFF
∞ attracts the

value λ⊥(t) for large time during the MFF degradation it is inevitable that (λ⊥(t), λ) will be drawn into the FF
degradation region. Once drawn into this region, the ensuing FF degradation pulls the path point further to the
right, although not as far as CFF

∞ because μ < μ0 due to the matrix degradation during the MFF degradation
phase. Thus, once the path is captured by the FF degradation region it remains trapped within this region for all
subsequent time. This is illustrated in Figure 9 for λ = 1.277. As shown in this figure, the behavior of λ⊥ may
be monotone or may exhibit anomalous start-up. However, now the overshoot-type behavior does not occur
because, after the transition to FF degradation, there is then only one time scale governing the fiber degradation
in the present modeling.

5.3. Material 1 with βf = 1

We conclude the discussion of hard loading for material 1 with a brief comment regarding the case in which
βf = 1. In this case the degradation phase diagram and the ordering of the curves remain qualitatively the same
as that for material 1 with βf = 0.9. In particular the curves are ordered: CM

∞, C0, CMFF
∞ , CFF

∞ as one proceeds
from left to right for λ > 1. It follows that the degradation behavior mirrors that of material 1 with βf = 0.9.
The main quantitative difference is that there are small changes in the stretch values λ that demarcate the five
different behavior range possibilities which were indicated previously in Table 4. Here we note, and this is the
reason why we here briefly consider material 1 with βf = 1, that the equation for CFF

∞ is simply λ⊥ = λ−1/2

when βf = 1. Thus, the large time behavior for this material under FF degradation approaches that of the
isotropic matrix material. This is true both for the case where the degradation is always of FF type and for
the case where the material transitions to FF degradation after an initial period of MFF degradation. In other
words, if βf = 1, then FF degradation that continues unabated for all time asymptotically eradicates the fibrous
component. This results in a formally isotropic material in the limit t → ∞.
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Table 5. Hard device degradation behavior for material 2.

Stretch range Degradation behavior

1 < λ < 1.126 No degradation

1.126 < λ < 1.311 M degradation for all time, λ⊥ monotone decreasing

1.311 < λ < 1.402 Initial MFF degradation that may or may not transition to
M degradation as determined by the degradation kinetics.
The MFF degradation may involve either λ⊥ departing
leftward (large τ ) or rightward (small τ ). Transition to M
degradation requires λ⊥ leftward start-up (very large τ ).

λ > 1.402 MFF degradation for all time, this degradation may involve
either λ⊥ departing to the left (large τ ) or to the right (small τ ).
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Figure 11. Evolution of λ⊥ and S/μo with t∗ for a hard loading device with material 2 and λ = 1.36. For this value of λ the
degradation is initially of type MFF but may transition to type M depending on the kinetics. Four values of τ are shown, one of which
gives a transition to M degradation and three of which do not.

5.4. Material 2

We now consider the hard device loading for material 2. The curves C0 and CMFF
∞ are coincident for this material

since βf = βm. We also recall from Figure 2 that there is no FF degradation region in this case. Figure 10 shows
the degradation phase diagram for this material along with the stretch state curves. The curve C0 intersects the
N–M boundary at λ = 1.126 and intersects the M–MFF boundary at λ = 1.311. The only other intersection of
qualitative significance is that which occurs between the curve CM

∞ and the M–MFF boundary. This intersection
occurs at λ = 1.402.

The qualitative degradation behavior for material 2 subject to hard device tensile loading can now be
extracted from Figure 10 on the basis of the previous logical considerations. As indicated in Table 5 there
are four separate ranges of λ that involve different qualitative behavior.

The degradation is guaranteed to be of type MFF for all time if λ > 1.402. In addition, if 1.311 < λ < 1.402,
then the degradation is initially of type MFF and will remain of type MFF if τ is sufficiently small. Degradation
that remains of type MFF for all time involves a transverse stretch such that λ⊥(∞) = λ⊥(0+) by virtue of the
coincidence of C0 and CMFF

∞ . Thus, when the degradation is of type MFF for all time then any departure of λ⊥(t)
from its initial value may formally be viewed as an anomalous start-up. In this case the two time scales t∗m and t∗f
affect λ⊥(t); the faster of the two time scales then dominates the λ⊥ start-up kinetics and the slower time scale
dominates the λ⊥ return kinetics. The stress is once again monotonically decreasing. Figure 11 shows example
behavior for λ = 1.36.
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Table 6. Soft device degradation behavior for material 1 with βf = 0.9.

Stress range Soft device degradation behavior

0 < S/μ0 < 0.395 No degradation

0.395 < S/μ0 < 0.688 FF degradation for all time

0.688 < S/μ0 < 0.832 Initial FF degradation that transitions to MFF degradation

S/μ0 > 0.832 MFF degradation for all time
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Figure 12. Degradation paths (λ⊥(t), λ(t)) for soft loading of material 1 with βf = 0.9 for τ = 0.1 (left) and τ = 5 (right).

6. Soft loading device

6.1. Material 1 with βf = 0.9

For material 1 with βf = 0.9 we recall that the hard loading device gave five separate qualitatively different
degradation ranges for λ as described in Table 4. For soft device tensile loading of this same material there are
four separate qualitatively different degradation ranges for S as described in Table 6.

A conspicuous difference between the hard and soft device tensile loading of this material is that in hard
device loading there is MFF degradation that transitions to FF degradation, but not vice versa, whereas in soft
device loading there is FF degradation that transitions to MFF degradation, but not vice versa. We now indicate
how we arrive at these conclusions and discuss the associated behaviors in more detail.

The upper bound value S = 0.395μ0 for the range of S that gives no degradation follows from Equation
(57) and (58) using the location (λ⊥, λ) = (0.926, 1.130) where C0 intersects the N–FF boundary. The range of
S that gives no degradation in soft loading exactly corresponds to the range of λ that gives no degradation in
hard loading. For the other degradation scenarios there is no longer any such simple correspondence between
the soft and hard loading device behaviors.

For S in the next range, 0.395μ0 < S < 0.688μ0, the degradation is initially of type FF and the degradation
path (λ⊥(t), λ(t)) remains within the FF region while being attracted to an appropriate point on the curve CFF

∞ .
As an example, the degradation path for S = 0.65μ is shown in Figure 12. Such a path is completely determined
from Equations (56), (57), and (58) by holding S and μ0 fixed and letting γ decrease from its initial value γ0 to
its final value (1−βf )γ0 = 0.1γ0. The largest value of S that keeps such a path within the FF degradation region
is determined from Equations (57) and (58) using the location (λ⊥, λ) = (0.880, 1.279) where CFF

∞ intersects
the FF–MFF boundary. On this basis one obtains the upper bound value S = 0.688μ0 in Table 6 for the range
of S that gives FF degradation for all time.

For S in the next range, 0.688μ0 < S < 0.832μ0, the degradation is initially of type FF but the degradation
path encounters the FF–MFF boundary as it is attracted to CFF

∞ . The upper bounding value S = 0.832μ0 for
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Figure 13. Axial stretch λ and transverse stretch λ⊥ as a function of normalized time t∗ = t/t∗m for material 1 with βf = 0.9 at
the fixed value S = 0.75μ0. For this value of S the degradation is initially of type FF but then changes into type MFF. The creep-type
response for three different values of τ are shown, τ = 0.1, 0.5, and 5.

this behavior follows from the location (λ⊥, λ) = (0.850, 1.275) where C0 intersects the FF–MFF boundary.
For these values of S the initial portion of the degradation path (λ⊥(t), λ(t)) is in the FF region, and this initial
portion can again be obtained directly from Equations (56), (57), and (58). However after the degradation path
enters the MFF region it can no longer be determined solely from those equations since the degradation kinetics
determines how the ratio γ /μ changes with time. This is why Figure 12 consists of two separate panels, the
left panel is for τ = 0.1 and the right panel is for τ = 5. For the previous ranges of S under consideration,
i.e. S < 0.688μ0, the degradation path was unaffected by τ which is why the short path for S = 0.65μ0 is
the same in both panels. However, for S > 0.688μ0 the degradation path is highly dependent upon τ in the
MFF degradation region. The paths for S = 0.75μ0 are shown in the two panels of Figure 12. The two paths
are identical so long as the path is within the FF degradation region. However, once the path enters the MFF
degradation region the effect of τ is apparent from the figure. In particular, the path for τ = 0.1 remains above
the curve CMFF

∞ while the path for τ = 5 does not. In both cases the path is confined to that portion of the MFF
degradation region that is between CM

∞ and CFF
∞ . Also, in both cases, as t → ∞ the path approaches a common

location on (λ⊥(∞), λ(∞)) on CMFF
∞ . This asymptotic value can be determined exactly on the basis of Equations

(56), (57), and (58) for the given value of S by taking μ = (1 − βm)μ0 = 0.4μ0 and γ = (1 − βf )γ0 = 0.1γ0.
Graphs showing the time-dependent functions λ(t) and λ⊥(t) with S = 0.75μ0 for three different τ are

shown in Figure 13. In particular, the graph of λ(t) exhibits the anticipated creep-type elongation as the material
weakens. More generally all of the degradation paths in Figure 12 show λ increasing along the degradation path;
hence, the creep-type elongation is a general feature of tensile soft loading when degradation takes place. In
contrast, λ⊥ in Figure 13 is slightly non-monotone since λ⊥ increases during the FF degradation portion of the
path, but decreases during the MFF degradation portion of the path (see again Figure 12).

Similar considerations govern the remaining range S > 0.832μ0 where the degradation is of type MFF for
all time. Once again the degradation path connects the initial point (λ⊥(0+), λ(0+)) on C0 to the asymptotic
point (λ⊥(∞), λ(∞)) on CMFF

∞ , both of which can be determined a priori without consideration of the path
kinetics. However, for 0 < t < ∞ the determination of (λ⊥(t), λ(t)) requires the consideration of the kinetic
equations (62) and (63). In particular, for large τ the degradation path will swing towards CM

∞, with a relatively
closer approach for larger τ . In a similar fashion the degradation path will swing towards CFF

∞ for relatively
small τ . Specifically, the effect of τ on the path trajectory for this range of S is shown in Figure 12 for S = μ0.

6.2. Material 2

As a final example we consider the soft device loading for material 2. There are then four basic degradation
behaviors as described in Table 7. We recall for this material that βm = βf gives C0 = CMFF

∞ .
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Table 7. Soft device degradation behavior for material 2.

Stress range Degradation behavior

0 < S/μ0 < 0.47 No degradation

0.47 < S/μ0 < 0.96 M degradation for all time

0.96 < S/μ0 < 1.40 Initial M degradation that transitions to MFF degradation

S/μ0 > 1.40 MFF degradation for all time
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Figure 14. Degradation paths (λ⊥(t), λ(t)) for soft loading of material 2 for τ = 0.001 (left) and τ = 0.01 (right).

Similar to the case of material 1, in soft device loading there is the possibility of initial M degradation that
transitions to MFF degradation, but not vice versa, whereas in hard device loading for this material there is the
possibility of MFF degradation that transitions to M degradation, but not vice versa. The value S = 0.47μ0

that demarcates the upper bound for no degradation is found by first locating the point (λ⊥, λ) = (0.905, 1.126)
where the curve C0 intersects the N–M boundary and then calculating S from Equations (57) and (58) using
μ = μ0 and γ = γ0. It follows that the range of S for no degradation under soft loading corresponds exactly to
the range of λ for no degradation under hard loading.

The next range, 0.47μ0 < S < 0.96μ0, gives M degradation for all time. In this range the degradation paths
(λ⊥(t), λ(t)) are completely determinable from Equations (56), (57), and (58) by holding S and γ0 fixed and
letting μ decrease from its initial value μ0 to its final value (1 −βm)μ0 = 0.2γ0. In particular, λ(t) is increasing
and the large time asymptotic point (λ⊥(∞), λ(∞)) is on the curve CM

∞. The degradation path for S = 0.7μ0

that is determined in this fashion is shown in Figure 14. The upper bound value of S for this type of behavior,
namely S = 0.96μ0, may be found by first locating the point (λ⊥, λ) = (0.591, 1.402) where the curve CM

∞
intersects the M–MFF boundary, and then using these values to calculate S from Equations (57) and (58) upon
taking γ = γ0 and μ = (1 − βm)μ0 = 0.2μ0.

The range 0.96μ0 < S < 1.40μ0 gives an initial M degradation that then changes to MFF degradation
because the degradation path crosses the M–MFF boundary. The path does not depend upon τ while under-
going M degradation, but as soon as the path enters the MFF degradation region then the effect of τ becomes
pronounced. This again accounts for the two panel depiction in Figure 14. As in the example of material 1 with
soft loading, relatively large values of τ cause the path to swing toward CM

∞ and relatively small values of τ

cause the path to swing toward CFF
∞ . This is shown in Figure 14 for S = 1.2μ0. Once again the t → ∞ point

(λ⊥(∞), λ(∞)) is independent of τ and can be located on the curve CMFF
∞ . The upper bound value S = 1.40μ0

for this range of behavior is found by first locating the point (λ⊥, λ) = (0.773, 1.311) where the curve C0 inter-
sects the M–MFF boundary and then these values are used to calculate S from Equations (57) and (58) upon
taking μ = μ0 and γ = γ0.
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Finally for S > 1.40μ0 the degradation is of type MFF for all time so that the full path is dependent upon the
kinetic parameter τ as illustrated in Figure 14 for S = 1.41μ0. Once again the asymptotic value (λ⊥(∞), λ(∞))
is independent of τ and can be located on the curve CMFF

∞ . In particular, the initial values of λ and λ⊥ follow
from Equations (56), (57), and (58) using γ = γ0 and μ = μ0 whereas the t → ∞ asymptotic values follow
from these same equations using γ = 0.2γ0 and μ = 0.2μ0. The degradation path between the initial and final
points is again dependent upon the kinetics.

7. Summary and applications

By extending the framework of [3] to the case of multiple degradation variables one is able to model multi-
component material systems wherein each component is subject to its own specific mechanism of damage
accumulation. Here, we have considered the case of a material with two fiber families within a surrounding
matrix, all of which are potentially subject to degradation. As in [3] the modeling is in terms of two constitutive
functions, a Helmholtz stored energy density W and a rate of mechanical energy dissipation function ξ̂ . The
energy W is a function of the damage variables (here αm, αf1 , and αf2) and of the usual strain invariants and

pseudo-invariants describing the anisotropic symmetry class of interest (see [6]). Here we have used I1, I (1)
4 ,

and I (2)
4 as given in (19)–(21) for this purpose. More generally, one may let W depend upon trC2 and, since the

material consists of two fiber families, the additional pseudo-invariants M(1)·C2M(1), M(2)·C2M(2), M(1)·CM(2).
Here we chose to concentrate early in the development on the specific model in Equation (18) which does not
employ these additional quantities. In a similar fashion the rate of dissipation function ξ̂ may also depend upon
these damage variables, invariants and pseudo-invariants while also being dependent upon the time derivatives
of the damage variables. Here again we focused on the specific form (32)–(34) which has no explicit dependence
upon the finite strain.

Even in this specific and relatively simple context one obtains a mathematically rich description of the
resulting material behavior. This was demonstrated here for a uniform material with equal-property fibers under
a uniaxial loading that is symmetric with respect to the two fiber orientations. Then, in addition to the possibility
that no degradation takes place, there are three non-trivial degradation possibilities: matrix degradation (M),
fiber degradation (FF), and degradation of both the fibrous and matrix components (MFF). What is perhaps
most striking is how even the simple loadings of suddenly applied constant stretch (hard loading) and suddenly
applied constant force (soft loading) can lead to unexpected transition possibilities between the three non-trivial
degradation scenarios. This was demonstrated in Sections 5 and 6 with the aid of special material parameter
choices. For example, it was shown for one such material (material 1 with βf = 0.9) that hard device loading
can give an MFF degradation that eventually transitions to the simpler FF degradation. However, the hard device
loading for this material cannot give the converse, namely an initial FF degradation that eventually transitions
to an MFF degradation. It is therefore quite interesting that this same material has an opposite type behavior
when subject to soft device loading. Namely, certain suddenly applied levels of force give an FF degradation
that eventually transitions to an MFF degradation, however there are no values of force which, when suddenly
applied, give an MFF degradation that eventually transitions to an FF degradation.

In order to demonstrate such behavior and to uncover the myriad of transition-dependent degradation possi-
bilities for both the hard and soft device we have constructed degradation phase diagrams in a two-dimensional
stretch space. Within this diagram we then plotted four additional curves: the curve of initial (suddenly loaded)
states C0, the curve of asymptotic states for the M region CM

∞, the curve of asymptotic states for the FF region
CFF

∞ , and the curve of asymptotic states for the MFF region CMFF
∞ . By considering how these curves both attract

and bound the stretch path we are able to provide significant insight as to the overall qualitative behavior of the
system as it degrades. This is especially important for the case of MFF degradation which, unlike the simpler M
and FF degradation, has a dependence on the separate time scales for matrix and fiber degradation. This causes
the degradation path in the MFF region to display a wide range of qualitative behaviors. As shown here, these
behaviors are systematically revealed by an analysis that combines asymptotic and computational analysis.

One aim of such modeling is to characterize biodegradable polymers which are currently experiencing
significant development with applications to tissue engineering [24, 25], medical implantable devices [26,
27], and drug delivery [28, 29]. In particular, tissue engineering applications require biodegradable scaffolds
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with mechanical properties (e.g. porosity, anisotropy) similar to that of the original tissue. Recent advances in
electrospinning technology make electrospun fiber-reinforced composites an excellent candidate for such appli-
cations in a variety of different tissues including vascular, bone, and tendon [30, 25, 31]. Such biodegradable
scaffolds must provide mechanical support in vivo while the tissue heals with the possible additional require-
ment that any scaffold remnant is removable when the healing process is complete. Fine control of the rate of
the degradation, so as to precisely couple with the change of mechanical properties of the healing tissue, is a
central aim of such medical interventions. The type of modeling presented here, when formulated in the con-
text of an appropriate boundary value problem that describes the scaffold geometry, may provide a theoretical
foundation for quantitative characterization of specific fiber–matrix composite constructs.

Notes

1. The study [8] makes use of a description for swelling that takes volumetric expansion as a prescribed quantity and the reader is
referred to [8] as well as the numerous other sources (e.g. [9, 10, 11, 12, 13]) that provide extended discussion on the many ways
in which swelling can be described in large-deformation continuum mechanics.

2. Equation (1)2 corrects the typo in equation (3)2 of [8] which inadvertently included a transpose.
3. The possibility of symmetry-breaking bifurcation is not considered here.
4. Note from (29) that �m has units of [stress][time]1/nm . It is convenient to define �m in this fashion because it permitted a simple

expression within (35).
5. Here and in what follows the use of the terminology full fiber degradation is short for the fully allowed fiber degradation

as determined by the constitutive parameter βf . A corresponding meaning will be attached to the terminology full matrix
degradation.

6. The time at which the transition from MFF to FF occurs is dependent upon τ and so is different for the two cases τ = 0.2 and
τ = 0.5.
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