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Abstract
Magnetoencephalography (MEG) is a non-invasive functional imaging
modality based on the measurement of the external magnetic field produced by
neural current sources within the brain. The reconstruction of the underlying
sources is a severely ill-posed inverse problem typically tackled using either
low-dimensional parametric source models,such as an equivalent current dipole
(ECD), or high-dimensional minimum-norm imaging techniques. The inability
of the ECD to properly represent non-focal sources and the over-smoothed
solutions obtained by minimum-norm methods underline the need for an
alternative approach. Multipole expansion methods have the advantages of the
parametric approach while at the same time adequately describing sources with
significant spatial extent and arbitrary activation patterns. In this paper we first
present a comparative review of spherical harmonic and Cartesian multipole
expansion methods that can be used in MEG. The equations are given for the
general case of arbitrary conductors and realistic sensor configurations and
also for the special cases of spherically symmetric conductors and radially
oriented sensors. We then report the results of computer simulations used to
investigate the ability of a first-order multipole model (dipole and quadrupole)
to represent spatially extended sources, which are simulated by 2D and 3D
clusters of elemental dipoles. The overall field of a cluster is analysed using
singular value decomposition and compared to the unit fields of a multipole,
centred in the middle of the cluster, using subspace correlation metrics. Our
results demonstrate the superior utility of the multipolar source model over ECD
models in providing source representations of extended regions of activity.
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1. Introduction

Magnetoencephalography (MEG) is a non-invasive functional imaging modality based on the
measurement of the external magnetic field produced by neural current sources within the
human brain. MEG directly measures these electrophysiological signals with millisecond
resolution. Because of this unique advantage over slower haemodynamic-based modalities,
such as fMRI and PET, MEG is expected to play an important role in revealing crucial aspects of
brain function and dysfunction. Unfortunately, MEG source estimation is a severely ill-posed
inverse problem. Most approaches used to solve this problem can be roughly classified as either
imaging or parametric methods. Imaging relies on a tessellation of the cortex, assigning an
elemental current source to each area element, and solving the resulting linear inverse problem
(Wang et al 1992). Accurate tessellations produce a highly underdetermined problem, the
regularization of which leads to over-smoothed current distributions. An alternative approach
is to use a parametric representation of the neural source. Such model-based methods include
the classic equivalent current dipole (ECD) and its extension to multiple current dipole models
(e.g. de Munck et al 1988, Mosher et al 1992, Hämäläinen et al 1993). The definition of these
models is based on the assumption that the underlying sources can be adequately represented
by the ECD. Although the ECD model can lead to accurate localization for very focal sources,
localization error may increase in the case of spatially extended sources.

The ECD model generally oversimplifies the inverse problem, while the imaging methods
tend to overly smooth the reconstructed source distributions. We consider here an alternative
multipolar modelling approach that has the advantages of the parametric approach, in terms
of a relatively small number of parameters to be estimated, while at the same time allowing
for sources with significant spatial extent and arbitrary activation patterns.

The use of multipole expansions to solve biomagnetic inverse problems has mainly been
restricted to magnetocardiography (MCG) (Grynszpan and Geselowitz 1973, Karp et al 1980,
Katila and Karp 1983, Ernè et al 1988, Gonnelli and Agnello 1987, Nenonen et al 1991);
however, a few MEG multipole source localization algorithms have recently been suggested
(Alvarez 1991, Nolte and Curio 1997, 2000, Haberkorn 1998, Mosher et al 1999a, 1999b,
2000). Multipole expansions have also been used to tackle miscellaneous issues related to
biomagnetic inverse problems other than direct source localization. For instance, spherical
expansions may be used to achieve analytical descriptions of surface boundaries in realistic
head models (Purcell et al 1991, Nolte et al 2001). The computation of higher order multipole
moments can also be used to achieve a conversion of MCG recordings between separate
acquisition systems (Burghoff et al 1997, 2000). Moreover, multipole expansion methods can
be used to increase the accuracy of dust load estimation in the lungs (Stroink 1987).

The discussion in this paper is restricted to the application of multipoles to expand the
magnetic field measured in MEG in order to improve localization precision and increase
the information contained in the estimated source parameters. Our intentions in this paper
are two-fold: (i) to present a comparative review of the different multipolar expansions that can
be used in this context, and (ii) to investigate the utility of multipolar expansions in representing
extended neural sources in MEG. In section 2, the general theory of multipole expansions is
introduced. Section 3 describes the use of current multipole expansions (CME) to describe the
MEG measurement field produced by a localized current source located at an arbitrary location
within the spherical head model. Next, a magnetic multipole expansion (MME) framework
for MEG is described in terms of spherical (section 4) and Cartesian (section 5) expansions.
Section 6 investigates the field patterns generated by the current multipole expansion of the
radial magnetic field and displays the results of computer simulations of patches and cubes of
neural activity where singular value decompositions (SVD) and subspace correlation metrics
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Figure 1. A localized source distribution s(r′).

are used to investigate the ability of the multipolar source models to match the subspace
spanned by clusters of elemental dipoles. Although important issues related to solving the
inverse problem are briefly discussed at the end of the paper, the focus of this paper remains
the forward mapping from neural sources to measured magnetic fields.

2. Multipole expansion methods

A multipole expansion is a series expansion that can be used to represent the field produced
by a source in terms of an expansion parameter which becomes small as the distance from
the source increases. The contributions of the leading terms in a multipole expansion are
generally the strongest. Multipole expansions are commonly used in problems involving the
gravitational field of mass aggregations, the electric and magnetic fields of charge and current
distributions, and the propagation of electromagnetic waves. The objective of this section is
to review the general properties of multipole expansions, a thorough understanding of which
is a prerequisite to selecting a multipole expansion framework best suited to the MEG forward
problem.

Consider Poisson’s equation

∇2ψ(r) = −s(r) (1)

where r is the location vector and ψ is a scalar potential caused by a localized source
distribution s, as illustrated in figure 1. The solution of (1) in integral form is

ψ(r) = 1

4π

∫
s(r′)

|r − r′| d3r ′ (2)

where the integral must be evaluated over all regions where s is nonzero. If the source
distribution s can be bounded by a closed surface S, then ψ(r) outside S satisfies Laplace’s
equation. If the bounding surface is a sphere of radius a, for instance, we have

∇2ψ(r) = 0 r > a (3)

where r = |r|.
A multipole expansion of the scalar potential ψ outside the bounding surface can be

achieved by expanding in spherical or Cartesian coordinates the Green’s function

G(r, r′) = 1

|r − r′| (4)

and inserting into (2). In the following we derive the multipole expansion by expanding the
scalar Green’s function using both spherical harmonic and Taylor series expansions.



526 K Jerbi et al

2.1. The spherical harmonic multipole expansion

An expansion of the inverse of the distance between the observation point r = (θ, φ, r) and a
source centred at r′ = (θ ′, φ′, r ′) is given by (Jackson 1975, p 92)

1

|r − r′| =
∞∑
l=0

r ′l

r l+1
Pl(cosγ ) for r > r ′ (5)

where Pl (x) are the Legendre polynomials of order l and cosγ = (r · r′)/(rr ′), i.e. γ is the
angle between r and r′. The addition theorem for spherical harmonics is (Morse and Feshbach
1953)

Pl(cosγ ) = 4π

2l + 1

l∑
m=−l

Ŷ ∗
lm(θ

′, φ′)Ŷlm(θ, φ) (6)

where the complex angular functions Ŷlm are the normalized spherical harmonics

Ŷlm(θ, φ) =
√

2l + 1

4π

(l − m)!

(l + m)!
Pm
l (cosθ) eimφ (7)

where Pm
l (cosθ) are the associated Legendre functions of the first kind. We use the

notation Ŷlm to distinguish the above definition from the non-normalized spherical harmonics
Ylm = Pm

l (cosθ) eimφ .
Inserting (6) in (5) yields an expansion of the scalar Green’s function in spherical

harmonics

1

|r − r′| =
∞∑
l=0

l∑
m=−l

4π

2l + 1

r ′l

r l+1
Ŷ ∗
lm(θ

′, φ′)Ŷlm(θ, φ) (8)

from which we expand the potential ψ in (2) yielding

ψ(r) =
∞∑
l=0

l∑
m=−l

1

2l + 1
Alm

Ŷlm(θ, φ)

rl+1
(9)

where the complex coefficients Alm are the multipole moments defined by

Alm =
∫

Ŷ ∗
lm(θ

′, φ′) r ′l s(r′) d3r ′. (10)

Hence the spherical harmonic multipole expansions provide a practical expression for
computing the scalar potential ψ through a summation of rapidly decreasing terms (∼r ′/r)
with an elegant separation of the observation parameters from the source parameters. The
multipole moments Alm fully describe the properties of the source distribution that can be
inferred from the observations.

Note that some authors (e.g. Morse and Feshbach 1953, Wikswo and Swinney 1984) use
the real form of the spherical expansions instead of the complex form given here.

2.2. The Cartesian multipole expansion

Instead of using spherical harmonics, an expansion in Cartesian coordinates can be achieved
using a Taylor series expansion of the scalar Green’s function about a location l yielding

1

|r − r′| =
∞∑
n=0

1

n!
[(r′ − l) · ∇′]n

(
1

|r − r′|
)
r ′=l

(11)



Multipolar modelling in MEG 527

where ∇′ is the gradient w.r.t. to the primed variables. The first terms of the Taylor series up
to the order n = 2 provide a second-order approximation of Green’s function

1

|r − r′| 
 1

|r − l| + (r′ − l) ·
(

r − l

|r − l|3
)

+
1

2
(r′ − l)(r′ − l) :

(
3(r − l)(r − l) − I|r − l|2

|r − l|5
)

(12)

where the standard Cartesian tensor notation is used. The scalar product and the tensor
contraction are defined by A · B = AiBi and P : Q = PijQji , where i and j sum over x, y
and z4. The unit tensor is denoted as I , with elements Iαβ = δαβ where δαβ is the Kronecker
delta i.e. I is the 3 × 3 identity matrix.

The Taylor series expansion about the origin of the coordinate system, l = (0, 0, 0),
simplifies by noting that ∇′ (1/|r − r′|)|r′=0 = −∇(1/r), yielding

1

|r − r′| = 1

r
− r′ · ∇

(
1

r

)
+

1

2
r′r′ : ∇∇

(
1

r

)
+ · · · (13)

= 1

r
+ r′ · r

r3
+

1

2
r′r′ :

(
3 rr − I r2

r5

)
+ · · · . (14)

We will develop the Cartesian multipole expansion about the origin using (13), then generalize
these results for an arbitrary expansion point l. Inserting (13) in (2) gives (cf Wikswo and
Swinney 1985)

ψ(r) = 1

4π

∫
s(r′) d3r ′

(
1

r

)
− 1

4π

∫
s(r′)r′ d3r ′ · ∇

(
1

r

)

+
1

4π

1

2

∫
s(r′)r′r′ d3r ′ : ∇∇

(
1

r

)
+ · · · . (15)

The first three terms of the expansion represent the zeroth-, first-, and second-order multipole
contributions to the overall potential at r. The corresponding monopole, dipole, and
quadrupole moments are given respectively by∫

s(r′) d3r ′
∫

s(r′)r′ d3r ′ 1

2

∫
s(r′)r′r′ d3r ′. (16)

The Cartesian components of the dipole through octupole moments of the scalar multipole
expansion, as well as simple source–sink configurations that help visualize them, are presented
by Wikswo (1983).

A generalization of the procedure leads to an infinite Taylor series expansion about the
origin (Morse and Feshbach 1953):

ψ(r) = 1

4π

∞∑
n=0

n∑
l=0

n−l∑
k=0

(−1)n

l!k!(n − l − k)!
cnlk

∂n

∂xl∂yk∂zn−l−k

(
1

r

)
(17)

where the nth-order multipole moments are

cnlk =
∫
v′
s(r′)x ′ly ′kz′n−l−k d3r ′. (18)

For completeness, we now consider a multipolar expansion of a vector potential Ψ(r) caused
by a localized source vector s(r′). The solution of the related Poisson equation is

$(r) = 1

4π

∫
s(r′)

|r − r′| d3r ′. (19)

4 Given four vectors a, b, c and d, the colon product also satisfies ab : cd = b · cd · a.
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By analogy to the scalar case, the expansion is achieved by expanding the dyadic Green’s
function G(r, r′) = I/|r − r′| where I is the unit dyadic. While expanding the dyadic
Green’s function in spherical harmonics leads to an elaborate expansion in terms of vector
solutions of the vector Laplace equation (Morse and Feshbach 1953, p 1802), the expansion in
Cartesian coordinates is less complex and can be easily derived by a straightforward extension
of the equations for the scalar case replacing the scalar source term by its vector counterpart.

2.3. Comparison between spherical and Cartesian multipole expansions

Considerable algebraic manipulations can show that the nth order Cartesian multipole
expansion is equivalent to the nth order spherical harmonic expansion. An important
difference, however, is the number of moments in each expansion. The moments cnlk in
(18) show that the Taylor series multipole expansion up to an order n contains (n+ 1)(n+ 2)/2
moments. The spherical harmonics multipole expansion has only (2n + 1) moments given by
Anm in (10). The difference in the number of terms first appears for n = 2 for which the Taylor
series expansion has six moments whereas the spherical harmonic series has only five.

The Taylor series has a redundant term which does not give rise to a potential. Morse
and Feshbach (1953) note that this redundancy comes from the trace of the quadrupole tensor
because the contribution of the unit dyadic results in a constant times ∇2(1/r), which is
zero. This degree of freedom is automatically neglected in the spherical harmonic series. A
similar situations exists for the octupole. Three combinations of octupolar potentials from the
Taylor expansion form silent distributions. Similar combinations also exist in higher order
multipoles. Although the redundancy does not affect the utility of multipoles for describing
an external potential, the redundancy can easily be avoided in the case of the quadrupole by
forcing its tensor representation to be traceless. Removing the unit dyadic (idemfactor) from
the quadrupole yields the traceless tensor∫

s(r′)(r′r′) d3r ′ ⇒
∫

s(r′)
(
r′r′ − 1

3 r ′2 I
)

d3r ′ (20)

The differences between various scalar multipole expansions and the relationship between
their multipole moments are discussed in more detail by Geselowitz (1965) and Wikswo and
Swinney (1984).

2.4. Generalization of the Taylor series multipole expansion

The scalar multipole expansions presented in section 2.1 (spherical coordinates) and section 2.2
(Cartesian coordinates) are based on a series expansion of the scalar Green’s function in (4).
These expansions are therefore only useful if we wish to expand a field that can be written in
the form given in (2). As this is not always the case and since it is useful to be able to readily
expand fields produced by a vector source s(r′), we now generalize the use of a Taylor series
to obtain a multipole expansion of any field ψ(r) given by

ψ(r) = 1

4π

∫
s(r′) · %(r, r′) d3r ′. (21)

The Taylor expansion of %(r, r′) about an arbitrary location l is given by

%(r, r′) =
∞∑
n=0

1

n!
[(r′ − l) · ∇l]n%(r, l) (22)

where ∇l is defined as

∇lφ(r, l) ≡ ∇′(φ(r, r′)|r′=l. (23)
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Inserting (22) in (21) and borrowing the notation used by Castellanos et al (1978) yields

ψ(r) = 1

4π

∞∑
n=0

1

n!

∫
s(r′)[(r′ − l) · ∇l]

n%(r, l) d3r ′ (24)

= 1

4π

∞∑
n=0

∇n
l %(r, l) ‖&n (25)

where the double vertical bars denote the n-fold contractions between the two polyads ∇n
l (the

nth consecutive derivative w.r.t. to l) and &n (the nth order moments) is defined by

&n = 1

n!

∫
(r′ − l)ns(r′) d3r ′. (26)

For instance, a first-order approximation of the scalar field defined by (21) is thus given
by dipolar and quadrupolar terms and can be explicitly computed using (25) and (26) to yield

ψ(r) 
 1

4π

(∫
s(r′) d3r ′ · Φ(r, l) +

∫
(r′ − l)s(r′) d3r ′ : ∇lΦ(r, l)

)
. (27)

3. Current multipole expansion in Cartesian coordinates

3.1. Introduction

Magnetoencephalographic measurements arise from quasi-static bioelectric source currents
inside the head. Under the quasi-static approximation, the vector potential satisfies Poisson’s
equation ∇2A(r) = −µ0J(r). Thus the solution for a localized source distribution is

A(r) = µ0

4π

∫
J(r′)

|r − r′| d3r ′ (28)

where volume integral is over the region of non-zero current density J(r′). The magnetic
induction B(r) can be derived from A(r) as B(r) = ∇ × A(r). Throughout this paper, we
will assume the current density is well behaved and localized to a finite region, such that an
enclosing surface may be formed just outside this region. Under this assumption, the standard
vector identities readily convert the curl into the well-known law

B(r) = µ0

4π

∫
J(r′) × (r − r′)

|r − r′|3 d3r ′. (29)

If we observe just the radial component of this field, the solution further simplifies to

r

r
· B(r) = µ0

4π

∫
r · r′ × J(r′)
r|r − r′|3 d3r ′. (30)

An important and widely used substitution in MEG is to partition the current density into
a primary current density Jp(r′) and a volume current Jv(r′). The volume currents flow in
response to the local variations in the potential, J v(r′) = −σ(r′)∇′V (r′), where σ(r′) is
the conductivity, which we assume to be isotropic. The more important primary currents are
the ‘generators’ of these volume currents. In other words, neural activity generates primary
currents in specific regions of the brain that then flow passively throughout the entire brain to
complete the ‘circuit’.

A further important assumption is to assume that regions of conductivity are homogeneous,
with known boundaries enclosing these surfaces. Given a piecewise homogeneous volume
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Figure 2. MEG primary model: radial MEG sensors measure the external magnetic field caused by
a localized neural source distribution Jp within a spherically symmetric conducting head model.

conductor, the total current density J(r′) in (28) satisfies (Geselowitz 1970, Grynszpan and
Geselowitz 1973)

J(r′) d3r ′ = Jp(r′) d3r ′ −
∑
ij

(σi − σj )V (r′) dS′
ij (31)

where the vector element of surface dS′
ij is directed from the ith region to the jth region and

V is the electric potential on this surface. Accordingly, the vector potential A can be split into
a primary and a secondary component A = Ap + Av ,

Ap(r) = µ0

4π

∫
Jp(r′)
|r − r′| d3r ′ (32)

Av(r) = −µ0

4π

∑
ij

(σi − σj )

∫
Sij

V (r′)
|r − r′| dS′

ij . (33)

Thus the primary and volume field contributions can be expressed respectively as

Bp(r) = µ0

4π

∫
Jp(r′) × (r − r′)

|r − r′|3 d3r ′, (34)

Bv(r) = µ0

4π

∑
ij

(σi − σj )

∫
Sij

V (r′)
(r − r′)
|r − r′|3 × dS′

ij . (35)

If the volume conductor comprises spherically symmetric regions of homogeneous
conductivity, then all surfaces in (31) are radial, and substitution of (31) into (30) reveals
that the contribution from the volume currents vanishes. In other words, the volume currents
Jv do not contribute to the radial component of the magnetic field outside a spherically
symmetric volume conductor. This result applies also, in the limiting case, to the component
normal to a homogeneous conducting half-space. Radial measurements outside a spherically
symmetric conductor and normal measurements outside a homogeneous half-space are the
most basic models used in MEG and MCG respectively. In both cases the CME can be derived
without taking the volume current into consideration. In this section we use the term primary
model when referring to a spherically symmetric conductor and a radial sensor configuration
(figure 2). Expanding the field outside such a model yields an expansion of the radial field Br

which we refer to as a primary CME. In contrast, a full CME denotes an expansion of the full
magnetic field B outside an arbitrary volume conductor.
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3.2. Primary CME about an arbitrary expansion point

Typically, a Cartesian expansion of the primary magnetic field is achieved by first expanding
the vector potential and then taking the curl of the result. Although this is not the only possible
method, it is straightforward and has been widely used in MCG source localization (e.g. Katila
1983, Nenonen et al 1991).

In most of the available literature, especially within the MCG community, multipole
expansions are presented as expansions about the origin of the coordinate system. Since it
is advantageous to expand the field about the centroid of the source, which is not necessarily
at the origin of a fixed coordinate system, some authors (e.g. Nolte and Curio 1997) use a
coordinate system with a variable origin. Here, we will explicitly derive the equations for
the general case of a multipole expansion about an arbitrary location l for a fixed coordinate
system.

The vector potential due to the primary current given in (32) follows the form of (19).
Inserting the first two terms of the Taylor expansion of the Green’s function given in (12) in
the expression for the vector potential in (32) yields

Ap(r) = µ0

4π

1

|r − l|
∫
v′

Jp(r′) d3r ′ +
µ0

4π

r − l

|r − l|3 ·
∫
v′
(r′ − l)Jp(r′) d3r ′ + · · · . (36)

The two integrals in (36) represent the first two source moments of the expansion

q =
∫
v′

Jp(r′) d3r ′ (37)

Q̃E =
∫
v′
(r′ − l)Jp(r′) d3r ′ (38)

where q is the current dipole and Q̃E is a ‘locally defined’ current quadrupole. The expansion
in (36) can be written as

Ap(r) = µ0

4π

q

|r − l| +
µ0

4π

r − l

|r − l|3 · Q̃E + · · · . (39)

We use the notation Q̃E to distinguish between multipole moment for expansions defined
about an arbitrary location and those defined about the origin of the coordinate system. The
quadrupole moments of the latter are QE = ∫

v′ r′Jp(r′) d3r ′. It is easy to see that Q̃E and
QE are related by

Q̃E = QE − lq. (40)

An important property of multipole expansions is that the first non-vanishing moment is
independent of the expansion origin l whereas higher moments are not. The first non-vanishing
moment in the expansion of the vector potential in (39) is the current dipole q, which is origin
independent. The current quadrupole Q̃E clearly depends on the expansion point l. This
dependency is directly related to the shift theorem formulated by Geselowitz (1965) which
describes the relationships between multipole representations as a function of the expansion
point. In the particular case where the monopole term is zero, the dipole components remain
the same while the quadrupole components can be computed using shift equations. These
equations express the new quadrupole moments in terms of the dipole and quadrupole moments
of the original expansion. The shift equations through the octupolar moments for the spherical
harmonic multipole expansion are given by Wikswo and Swinney (1985).

Applying the curl operator to Ap in (39) yields

Bp(r) = ∇ × Ap(r) = µ0

4π
∇ ×

(
q

|r − l|
)

+
µ0

4π
∇ ×

(
r − l

|r − l|3 · Q̃E

)
+ · · · . (41)
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After considerable manipulations (appendix A) we obtain the expansion

Bp(r) = µ0

4π

q × r

|r − l|3 +
µ0

4π

2 mp

|r − l|3 +
µ0

4π

3 ((r − l) · Q̃E) × (r − l)

|r − l|5 + · · · (42)

where mp is the primary magnetic dipole moment, i.e. defined in terms of the primary current
density only, and given by

mp = 1

2

∫
v′

r′ × Jp(r′) d3r ′. (43)

Using (42) and Br(r) = Bp(r) · er the multipole expansion of the radial component of
the magnetic field about a location l outside a spherically symmetric conductor is given by

Br(r) = µ0

4π

r

|r| ·
(

2mp

|r − l|3 − 3 ((r − l) · Q̃E)) × l

|r − l|5 + · · ·
)

(44)

or alternatively using the dyadic contraction notation we can write

Br(r) = µ0

4πr

(
2mp · r
|r − l|3 +

3(r × l)(r − l)

|r − l|5 : Q̃E + · · ·
)
. (45)

The expansion form in (45) is given as a sum of a primary magnetic dipole mp and a
current quadrupole Q̃E = QE − lq. For consistency and simplicity, we would also like to
reformulate this initial expansion in terms of just a current dipole and a current quadrupole. We
achieve this substitution by introducing the cross product tensor X r defined by r×x ≡ X r · x.
Now using the relationship Xr : Q̃E = 2 r · mp − r × l ·q we can rewrite (45) as

Br(r) = µ0

4πr

(
r × l · q
|r − l|3 +

3 (r × l)(r − l) + |r − l|2X r

|r − l|5 : Q̃E + · · ·
)
. (46)

Truncating the expansion in (46) after the quadrupolar term gives a first-order
approximation of the radial field outside a spherically symmetric conductor which can be
written as

Br(r) = µ0

4π
kD · q +

µ0

4π
kQ : Q̃E. (47)

where the dipole gain vector kD and the 3 × 3 quadrupole gain tensor kQ are defined by

kD(r, l) ≡ r × l

r |r − l|3 (48)

kQ(r, l) ≡ 3 (r × l)(r − l) + |r − l|2 Xr

r |r − l|5 . (49)

We can easily verify that the terms kD and kQ are related by

kQ(r, l) = ∇l kD(r, l) (50)

where ∇l is the gradient defined in (23). This result is in agreement with the general expansion
given in (27).

3.3. Primary CME about the origin of the coordinate system

The multipole expansion about the origin of the coordinate system is immediately obtained
by inserting l = 0 in (42)

Bp(r) 
 µ0

4π

(
q × r

r3
+

2mp

r3
+

3 (r · QE) × r

r5

)
. (51)
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Equation (51) and the relationship Br(r) = Bp(r) · er give the first-order current multipole
expansion of the radial magnetic field about the origin for a spherically symmetric conductor

Br(r) 
 µ0

4π

2 mp · r

r4
. (52)

The contributions of the first and third term in (51) vanish. This result is easily verified by
computing the radial component of the magnetic field as defined by Jackson (1975, p 182)
assuming a spherically symmetric conductor. Finally, (51) can also be used to obtain the
z-component of the magnetic field Bz = B · ez, yielding the same expression for Bz used in
Katila and Karp (1983). One noteworthy observation is that Bz contains explicit contributions
from the current dipole, the primary magnetic dipole and symmetric quadrupole terms whereas
Br , as defined in (52), only shows the contribution of a magnetic dipole. This difference is
important when attempting to relate multipole expansions for primary sources in MCG to the
expansions needed in MEG.

From the three source terms in (51) we distinctly see the separate contribution of a current
dipole q, a magnetic dipole mp and a current quadrupole term QE to the magnetic field. These
separations imply that both electric and magnetic moments contribute to the magnetic field
measured outside the localized source. Indeed, it has been shown (Grynszpan and Geselowitz
1973, Haberkorn 1994, Nolte and Curio 1997) that while this is the case for the expansion of
the magnetic field, it is not true for the electric scalar potential V . Performing the multipole
expansion of the latter shows that only the electric multipoles contribute to the external electric
potential.

An equivalent statement is made by Katila and Karp (1983) and Wikswo (1983) by
identifying the electric and magnetic coefficients in the quadrupole tensor QE . By writing the
quadrupole tensor as a sum of its symmetric and anti-symmetric parts, the authors show that
the magnetic dipole moment is given by the anti-symmetric part of the tensor and that it is
electrically silent (these moments represent current loops). Only the symmetric portion of the
quadrupole tensor contributes to the electric potential measurements. In other words, electric
potential measurements give no information about magnetic dipole moments. These can only
be obtained through magnetic measurements.

3.4. Full CME about an arbitrary expansion point

The above expansions of the primary current do not directly address the volume currents
that contribute to other components of the external magnetic field. Direct extensions of
the expansions to the volume currents in terms of expansions of the vector potential involve
complex manipulations based on vector spherical harmonics (Grynszpan and Geselowitz 1973,
Jackson 1975). In the next section, we will develop an alternative approach to expanding these
currents by considering instead the magnetic scalar potential. A result of that development
used in this section is the integral expression for the magnetic scalar potential caused by a
localized current density J , stated as (Bronzan 1971),

Vm(r) = 1

4π

∫
J(r′) · r × r′

|r − r′|[r|r − r′| + r2 − r · r′]
d3r ′. (53)

As noted by Bronzan (1971), (53) is valid for an arbitrary coordinate system and a
localized source, where the observation point r is outside the source and does not lie on a line
between the origin and the source. Therefore, if we place the origin inside the source body,
these equations hold for all points outside of the body. Furthermore, if the body is spherically
homogeneous about the origin, then direct insertion of (31) into the numerator of (53) easily
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reveals that the formula simplifies by replacing J(r′) by Jp(r′). Therefore, the magnetic
potential outside a spherically symmetric volume conductor is given by

Vm(r) = 1

4π

∫ (
r × r′

F(r, r′)

)
· Jp(r′) d3r ′ (54)

where we define the function F to represent the denominator in (53),F(r, r′) = |r−r′|(r |r−
r′| + r2 − r′ · r).

As this model is so widely used in MEG, we elaborate on its CME development
here. Comparing (54) with the general form in (21) yields the identities ψ(r) = Vm(r),
s(r′) = Jp(r′), and %(r, r′) = −(r × r′/F (r, r′)). Consequently, (25) yields

Vm(r) = 1

4π

∞∑
n=0

∇n
l

(
r × l

F(r, l)

)
‖&n (55)

where the nth order current moments are defined in (26) yielding

&n = 1

n!

∫
(r′ − l)n Jp(r′) dr′. (56)

Since the magnetic field satisfies B(r) = −µ0∇ Vm(r), we can write the full CME of
B(r) up to the nth order as

B(r) = − µ0

4π

∞∑
n=0

∇n
l

[
∇

(
r × l

F(r, l)

)]
‖&n

= − µ0

4π

∞∑
n=0

∇n
l

[
F X l + ∇F (l × r)

F 2

]
‖&n (57)

where F = F(r, l). We may now rewrite the infinite CME about an arbitrary location l as

B(r) =
∞∑
n=0

Bn(r, l) (58)

such that the magnetic field of the nth order current multipole located at l is defined by

Bn(r, l) = −µ0

4π
∇n
l

[
FX l + ∇F (l × r)

F 2

]
‖&n. (59)

The zeroth-order (n = 0) is the dipole field,

B0(r, l) = Bdip(r, l) = Gdip(r, l) · q (60)

where we define the dipole gain vector as

Gdip(r, l) = −µ0

4π

[
FX l + ∇F (l × r)

F 2

]
(61)

and the current dipole moment is q = &0 = ∫
Jp(r′) dr′. Inserting (61) in (59) enables us to

write the gain polyad of the nth order current multipole as

Bn(r, l) = ∇n
l (Gdip(r, l))‖&n. (62)

Equation (62) shows that all nth order-multipole fields can be computed in terms of the nth-
order derivatives of the dipole gain Gdip with respect to the dipole location, in agreement with
the general statement in Nolte and Curio (1997).

Finally, the full CME about an arbitrary expansion point l is obtained by inserting (62) in
(58) yielding

B(r) =
∞∑
n=0

∇n
l (Gdip(r, l))‖&n (63)

where the current multipole moments&n are given in (56) and the dipole gain is given in (61).
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As a result, the first-order approximation of the CME of the full magnetic field outside a
spherically symmetric volume conductor is

B(r) = −µ0

4π

[
FX l + ∇F(l × r)

F 2

]
· q − µ0

4π
∇l

(
FX l + ∇F(l × r)

F 2

)
: Q̃E + · · · (64)

where the moments q and Q̃E are defined in (37) and (38) respectively.
The first term in (64) can be written as

Bdip(r) = µ0

4π

Fq × l − (q × l · r) ∇F

F 2
(65)

which is the well-known equation (Sarvas 1987) for the magnetic field outside a spherical
head model, given a current dipole of moment q at location l. The second term in (64) is the
quadrupolar field and has not been explicitly expanded for brevity (see Mosher et al 2000 for
explicit expansions of the gradients).

The equations for the first-order primary and full CME about an arbitrary expansion point
given a spherically symmetric volume conductor are summarized in table 1. A comparable
development of this expansion may be found in Nolte and Curio (1997).

Table 1. The first-order current multipole expansion (CME) about an arbitrary point l of the radial
and full magnetic fields outside a spherically symmetric conductor. Higher order terms (octupole,
hexadecapole, etc) for the full CME can be directly deduced from equation (62).

Full expansion B(r) = −µ0

4π

[FX l + ∇F(l × r)

F 2

]
· q − µ0

4π
∇l

(FX l + ∇F(l × r)

F 2

)
: Q̃E + · · ·

Radial expansion Br (r) = µ0

4π

r × l

r |r − l|3 · q +
µ0

4π

3 (r × l)(r − l) + |r − l|2Xr

r|r − l|5 : Q̃E + · · ·

Moments q =
∫
v′

Jp(r′) d3r ′ and Q̃E =
∫
v′
(r′ − l)Jp(r′) d3r ′

4. Magnetic multipole expansion in spherical coordinates

4.1. Background

We now consider a magnetic multipole expansion (MME) framework with magnetic moments
defined in terms of the effective magnetic moment density r′ × J(r′). As in the previous
section, if the volume conductor is spherically symmetric about the same origin, then the
MMEs conveniently simplify to forms that only involve the primary current density.

In order to obtain an MME of the field measured outside the head using arbitrarily oriented
MEG sensors, an expression for the multipole expansion of the complete magnetic field B
is required. The inner product of the field with the true orientation of each sensor will then
lead to the desired expansion of the scalar measurement field. Maxwell’s equations for the
quasi-static magnetic field are

∇ × B = µ0J (66)

∇ · B = 0 (67)

where J denotes the total current density. In the region outside the current source, the magnetic
field satisfies ∇ × B = 0, and can therefore be represented as a gradient of a magnetic scalar
potential Vm(r),

B = −µ0∇ Vm. (68)
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Hence we have

r · B = −µ0 r
∂Vm

∂r
(69)

or

Br = −µ0
∂Vm

∂r
. (70)

Inserting (68) in (67) yields ∇2Vm = 0. Thus Vm is harmonic and uniquely determined by
its radial derivative and by the requirement that it vanish at infinity. We can therefore use the
radial component of the field to determine the scalar magnetic potential using

Vm = 1

µ0

∫ ∞

ξ=r

Br (ξer ) dξ (71)

where er is the radial unit vector. Inserting the expression of the radial field Br into (71) leads
to an integral over ξ . The complete magnetic field B is then obtained using (68).

This method was first presented by Bronzan (1971) and a similar approach was given
by Gray (1978). In both papers the aim was to obtain a spherical harmonic expansion of the
magnetic field using the scalar magnetic potential instead of the vector magnetic potential.
This same procedure was independently used by Sarvas (1987) in order to derive the closed
form expression (65) for the full magnetic field produced by the current dipole in a spherically
symmetric conductor.

The above equations are in accordance with a general theorem stating that at a source-free
field point the complete magnetic field B(r) can be determined by its radial component. The
theorem has been proved rigorously by Bouwkamp and Casimir (1954). A brief plausibility
argument of the theorem is also given in the appendix of Gray (1978). An important
consequence of (71) is that if the conductor is assumed to be spherically symmetric it is
possible to compute the complete magnetic field B without knowledge of the conductivity
profile, as we introduced in the previous section.

Deriving a multipole expansion of the complete magnetic field via the vector potential
has been described for the general case of an inhomogeneous conductor by Grynszpan and
Geselowitz (1973). The authors expanded the vector potential A via the expansion of the
dyadic Green’s function in terms of the solution functions of the vector Laplace equation in
spherical coordinates (Morse 1953, pp 1799–1803). Bronzan (1971), however, noted that the
awkward manipulations of the dyadic expansions can be avoided by using the expansion of
the magnetic scalar potential B = −µ0∇ Vm. We review his simpler development and the
improvements by others.

4.2. Arbitrary volume conductor

Bronzan (1971) has shown that the complete multipole expansion of the magnetostatic field
B outside a localized current density distribution J can be obtained using a procedure we
refer to as the magnetic scalar potential method. His derivation consists of carrying out a line
integral for Vm over the radial component of the magnetic field. The scalar magnetic potential
outside a localized current distribution is hence

Vm(r) = 1

µ0

∫ ∞

r

B(ξer ) · er dξ (72)

where er = r/r . Using (29), (72) can be written as

Vm(r) = 1

4π

∫ ∞

r

∫
v′

J(r′) × (ξer − r′)
|ξer − r′|3 · er d3r ′ dξ (73)

= 1

4π

∫
v′

J(r′) · (er × r′)
∫ ∞

r

dξ

|ξer − r′|3 d3r ′. (74)
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Computing the integral over ξ yields equation (53), presented in section 3.4 and used to obtain
a CME of the full magnetic field. Explicit representation of the nth term in (63) is difficult.
The MME of the full-field B is formally easier to derive if we first expand Vm, then apply the
gradient to obtain a full expansion of B.

We begin by stating (73) in the form (Bronzan 1971)

Vm(r) = − 1

4π

∫
v′

∇′ · [r′ × J(r′)]
∫ ∞

r

dξ

ξ |ξer − r′| d3r ′. (75)

The term |ξer − r′|−1 in (75) is a Green’s function, and r′ × J(r′) is the magnetic moment
density or magnetization (Jackson 1975). Thus the difference between the MME and the CME
approaches of the previous section is the rearrangement of the source term to be in terms of
magnetization, rather than current density. Green’s function can thus be expanded in spherical
coordinates using (8). Hence

Vm(r) = −
∞∑
l=0

l∑
m=−l

Ŷlm(θ, φ)

2l + 1

∫
v′
r ′l Ŷ ∗

lm(θ
′, φ′) ∇′ · [r′ × J(r′)]

∫ ∞

r

ξ−(l+2) dξ d3r ′. (76)

The integral over ξ is
∫ ∞
r

1/(ξ l+2) dξ = −∫ 0
1/r t

l dt = (r−(l+1))/((l + 1)). Therefore, the
multipole expansion of the scalar magnetic potential in spherical harmonics is (Bronzan
1971),

Vm(r) =
∞∑
l=0

l∑
m=−l

Mlm

2l + 1

Ŷlm(θ, φ)

rl+1

Mlm = −
∫
v′
r ′l Ŷ ∗

lm(θ
′, φ′)

∇′ · [r′ × J(r′)]
l + 1

d3r ′ (77)

where Mlm are the magnetic multipole moments (3 for the dipole (l = 1), 5 for the quadrupole
(l = 2) etc). The same result as in (77) was presented by Gray (1978) using a slightly different
derivation, proceeding directly from the Maxwell equations.

For the sake of direct comparison with the related equations throughout the literature,
we note that if we choose to use the non-normalized form of the spherical harmonics
Ylm(θ, φ) = Pm

l (cosθ) eimφ and positive summation indices5, (77) becomes

Vm(r) = 1

4π
Re

∞∑
l=1

l∑
m=0

Mlm

Y ∗
lm(θ, φ)

rl+1
(78)

Mlm = − γl,m

l + 1

∫
v′
r ′lYlm(θ ′, φ′) ∇′ · (r′ × J(r′)) d3r ′ (79)

or also6

Mlm = γl,m

l + 1

∫
v′

∇′ [r ′lYlm(θ ′, φ′)
] · (r′ × J(r′)) d3r ′ (80)

where

γl,m = (2 − δm,0)
(l − m)!

(l + m)!
. (81)

5 Switching to positive summation indices, i.e. m = 0, . . . , l, is common practice and is straightforward to do given
that Ŷl,−m(θ, φ) = (−1)mŶ ∗

lm(θ, φ). Note that the moment no longer contains the conjugate form of the spherical
harmonic and that the initial value of the index l is 1.
6 The moments of the spherical harmonic multipole expansion are of the form Alm = ∫

s(r′)f (r′) d3r ′. It is easy
to prove that for sources that are the negative divergence of a vector field S, i.e. s = −∇ · S, the moments reduce to
the simpler from Alm = − ∫

f (r′)∇′ · S(r′) dV ′ = ∫ ∇′f (r′) · S(r′) dV ′ (e.g. Wikswo 1985, p 4304).
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Finally, the expansion of the complete magnetic field B outside an inhomogeneous volume
conductor is obtained using B = −µ0∇Vm with (78) yielding

B(r) = −µ0

4π
Re

∞∑
l=1

l∑
m=0

Mlm∇
(
Y ∗
lm(θ, φ)

rl+1

)
. (82)

This result is identical to the expansion derived by Grynszpan and Geselowitz (1973,
p 913) but has the advantage that it is derived without developing the full machinery of vector
spherical harmonics.

4.3. Piecewise homogeneous head models

The results above are valid for a bounded inhomogeneous conductor, where J denotes the
total current density. In regions of homogeneous conductivity, as discussed in Section 3.1,
we may substitute (31) for the current density. The general form of the magnetic multipole
moments of the full magnetic field outside a bounded piecewise homogeneous conductor can
be derived from (80), yielding (Grynszpan and Geselowitz, 1973)

Mlm = γl,m

l + 1

∫
∇′ [r ′lYlm(θ ′, φ′)

] · r′ ×

 Jp(r′) d3r ′ −

∑
ij

(σi − σj )V (r′) dS′
ij


 . (83)

As further discussed in section 3.1, if these homogeneous regions are spherically
symmetric about the origin, then the contributions from the radial surfaces vanishes.
Consequently, the multipole moments Mlm are given by

Mlm = αlm + iβlm = γl,m

l + 1

∫
v′

∇′ [r ′lYlm(θ ′, φ′)
] · (r′ × Jp(r′)) d3r ′. (84)

Hence, the multipole moments in the case of a spherically symmetric head model are fully
determined by the primary current density Jp (or equivalently, the primary magnetization
r′ × Jp). The multipole expansion in this case becomes

B(r) = −µ0

4π
Re

∞∑
l=1

l∑
m=0

(αlm + iβlm)∇
(
Y ∗
lm(θ, φ)

rl+1

)
. (85)

The result in (85) can also be derived from a spherical expansion of the radial field Br

(Haberkorn, 1994). Moreover, it has been shown that the dyadic multipole expansion of the
magnetic field for an infinite homogeneous conductor is (Grynszpan and Geselowitz, 1973,
Haberkorn, 1994)

Binf (r) = µ0

4π
Re

∞∑
l=1

l∑
m=0

(Alm + iBlm)∇
(
Y ∗
lm(θ, φ)

n rl+1

)
× r

− µ0

4π
Re

∞∑
l=1

l∑
m=0

(αlm + iβlm)∇
(
Y ∗
lm(θ, φ)

rl+1

)
(86)

where αlm and βlm are the magnetic moments defined in (84) and Alm and Blm are the electric
moments defined by

Alm + iBlm = γl,m

∫
v′

∇′ [r ′lYlm(θ ′, φ′)
] · Jp(r′) d3r ′. (87)

Comparing the magnetic field outside a spherically symmetric conductor (85) to the field
of an infinite homogeneous conductor (86) leads to an interesting observation: the magnetic
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field contribution of the electric multipoles and the contribution arising from the spherically
symmetric conducting medium cancel each other out. It is therefore possible to expand the
full magnetic field B outside a spherically symmetric conductor uniquely in terms of magnetic
moments. Equation (85) provides such an expansion.

4.4. Radially oriented MEG sensor configuration

Finally, as in the previous section, we consider only the radial component of the magnetic
field, using the developments of this section. A spherical multipole expansion of the radial
field component Br(r) = B(r) · er is easily obtained, using the general result in (82) and the
relationship −∇(

Y ∗
lmr

−(l+1)
) · er = (l + 1)Y ∗

lmr
−(l+2), leading to

Br(r) = µ0

4π
Re

∞∑
l=1

l∑
m=0

(l + 1)Mlm

(
Y ∗
lm(θ, φ)

rl+2

)
(88)

where the multipole moments are generally defined by (80). However, if the volume conductor
is assumed to be spherically symmetrical and centred at the origin of the coordinate system,
then the moments depend only on the primary current density and are thus given by (84).

The spherical expansions and the related multipole moments of order l derived in the
above sections for different volume conductors are summarized in table 2.

Table 2. The spherical harmonic multipole expansion of the full magnetic field and of its radial
component outside a bounded volume conductor.

Full expansion B(r) = −µ0

4π
Re

∞∑
l=1

l∑
m=0

Mlm∇
(Y ∗

lm(θ, φ)

rl+1

)

Radial expansion Br (r) = µ0

4π
Re

∞∑
l=1

l∑
m=0

(l + 1)Mlm

(Y ∗
lm(θ, φ)

rl+2

)

Volume conductor Spherical multipole moments

Inhomogeneous Mlm = γl,m

l + 1

∫
v′

∇′
[
r ′lYlm(θ ′, φ′)

]
· (r′ × J(r′)) d3r ′

Piecewise homogeneous Mlm = γl,m

l + 1

∫
∇′

[
r ′lYlm(θ ′, φ′)

]
· r′ ×

[
Jp(r′) d3r ′ −

∑
ij

(σi − σj )V (r′) dS′
ij

]

Spherically symmetric Mlm = γl,m

l + 1

∫
v′

∇′
[
r ′lYlm(θ ′, φ′)

]
· (r′ × Jp(r′)) d3r ′

5. MME in Cartesian coordinates

It is often desirable to tackle multipole expansion problems using Cartesian tensors because
the derivations for the dipolar and quadrupolar terms are elementary and the Cartesian
multipole moments are easier to visualize. In inverse modelling, the translational invariance of
the Cartesian coordinates simplifies the construction of multiple source models. We will
therefore focus our discussion on the derivation of the MME in Cartesian coordinates by first
considering the general case of Cartesian multipole expansions assuming an arbitrary volume
conductor. Next, we present the general equations needed for the special case of a spherically
symmetric head model followed by the MME of the radial field component.
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5.1. Arbitrary volume conductor

Maxwell’s equations for the quasi-static magnetic field B(r) due to a localized current
distribution J are

∇ × B(r) = µ0J(r) (89)

∇ · B(r) = 0. (90)

Taking the curl of (89) and using the identity ∇ × (∇ × P ) = ∇(∇ · P ) − ∇2P and (90) we
get the Poisson equation for the magnetostatic field

∇2B(r) = −µ0 ∇ × J(r). (91)

By analogy to (1) and (2), the solution of (91) is given by

B(r) = µ0

4π

∫ ∇′ × J(r′)
|r − r′| d3r ′. (92)

The radial component is thus indirectly described by the scalar

r · B(r) = µ0

4π

∫
r · ∇′ × J(r′)

|r − r′| d3r ′. (93)

Although we can use the above expression to obtain a multipole expansion of the magnetic
scalar potential defined in (71), an alternative expression for r ·B(r) presented by Gray (1979)
is better suited for the multipole expansion. Consider the scalar product of the Poisson equation
(91) with r,

r · ∇2B(r) = −µ0 r · ∇ × J(r). (94)

Given the general identity (e.g. Jackson 1975, p 744) r · (∇2P ) = ∇2(r · P ) − 2∇ · P ,
(94) becomes

∇2( r · B(r)) = −µ0 r · ∇ × J(r). (95)

The solution of this Poisson equation is given by

r · B(r) = µ0

4π

∫
r′ · ∇′ × J(r′)

|r − r′| d3r ′ (96)

Equations (93) and (96) are alternative equations for the same scalar quantity r · B. At
first glance, comparing these equations might lead to a suspicion of inconsistency; however,
an alternative derivation of (96) starting from (93) clarifies the relationship and confirms the
result (appendix B). The integrand in (96) is now a relatively simple function of r, and we can
easily expand this function. Using the property r · ∇ × J = −∇ · (r × J) and inserting the
Taylor expansion of Green’s function as given by (13) into (96) yields

r · B(r) 
 −µ0

4π

[ ∫
[∇ · (r′ × J(r′))] d3r ′

]
1

r

+
µ0

4π

[ ∫
[∇ · (r′ × J(r′))] r′ d3r ′

]
· ∇

(
1

r

)

− µ0

4π

[
1

2

∫
[∇ · (r′ × J(r′))] r′r′ d3r ′

]
: ∇∇

(
1

r

)
. (97)

The first term in (97), which represents the contribution of the monopole, vanishes because
the integral vanishes when the Gauss theorem is applied. Therefore

r · B(r) = µ0

4π

[
−2 m · ∇

(
1

r

)
+ QM : ∇∇

(
1

r

)
+ · · ·

]
(98)
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where the vector m is the magnetic dipole moment defined by

m = −1

2

∫
[∇ · (r′ × J(r′))] r′ d3r ′ = 1

2

∫
r′ × J(r′) d3r ′ (99)

and the tensor QM is the magnetic quadrupole moment defined by

QM = −1

2

∫
[∇ · (r′ × J(r′))] r′r′ d3r ′ = 1

2

∫
(r′ × J(r′)) · ∇′ (r′r′) d3r ′. (100)

Using (69) and noting that r ∂
∂ r
r−(l+1) = −(l + 1)r−(l+1), we substitute this relation into

each term of (98) to yield the magnetic scalar potential Vm (Gray 1979),

Vm(r) = 1

4π

[
−m · ∇

(
1

r

)
+

1

3
QM : ∇∇

(
1

r

)
+ · · ·

]
. (101)

where Vm(∞) = 0. Finally using B = −µ0∇Vm we obtain the multipole expansion for the
full magnetic field (Gray 1979),

B(r) = µ0

4π

[
m · ∇∇

(
1

r

)
− 1

3
QM : ∇∇∇

(
1

r

)
+ · · ·

]
(102)

where the magnetic dipole and quadrupole moments are respectively defined by (99) and
(100). Two alternative approaches to the Cartesian expansion of the magnetic field outside
a localized source are found in Castellanos et al (1978) and more recently in Gonzalez et al
(1997).

5.2. Properties of the magnetic quadrupole moment

In this section we examine the trace and symmetry properties of QM . The trace Tr(Q) ≡∑
α Qαα is given by

Tr(QM) = 1

2

∫
(r′ × J(r′)) · ∇′ r ′2 d3r ′ = 1

2

∫
(r′ × J(r′)) · (−2 r′) d3r ′ = 0. (103)

Thus the quadrupolar moment QM is a traceless tensor. Moreover, (100) can be transformed
into the form (Gray 1979),

QM = 1

2

∫
(r′ × J(r′)) r′ + r′(r′ × J(r′)) d3r ′. (104)

From this form of the tensor we see that QMαβ = QMβα, and therefore QM is also symmetric.
The implications of these properties are best understood by considering the portion of the

field that arises from the quadrupolar term. This contribution can be identified in (98) as being

QM : T (r) (105)

where we define

T (r) = ∇∇
(

1

r

)
=

(
3 rr − Ir2

r5

)
. (106)

Consequently the tensor components are given by

T ij = 3 rirj − δij r
2

r5
. (107)

It is now easy to see that T ij = T ji and
∑3

i=1 T ii = 0. The tensor T is therefore both
symmetric and traceless. As a result, only the traceless symmetric part of any definition of the
quadrupole moment QM will survive the contraction QM : T because

A : B = At : Bt + Aa : Ba + Ats : Bts (108)
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Table 3. The Cartesian MME about the origin of the coordinate system. For a spherically
symmetric conductor centred at the origin of the coordinate system, the same equations remain
valid if we replace J by Jp.

Full expansion B(r) = µ0

4π

[
m · ∇∇

(1

r

)
− 1

3
QM : ∇∇∇

(1

r

)
+ · · ·

]
Radial expansion Br(r) = µ0

4π

[ 2m · r
r4

+ QM :
( 3 rr − I r2

r6

)
+ · · ·

]

Moment Definition Properties

Dipole m = 1

2

∫
r′ × J(r′) d3r ′ Origin independent

Quadrupole QM = 1

2

∫
(r′ × J(r′))r′ + r′(r′ × J(r′)) d3r ′ Traceless, symmetric

Q′
M =

∫
(r′ × J(r′))r′ d3r ′ Traceless, asymmetric

where At , Aa and Ats are the trace, antisymmetric and traceless symmetric parts of A
respectively (Gray 1980).

Now, since T is symmetric the two terms arising from (r′ × J(r′))r′ and from
r′(r′ × J(r′)) in (104) will contribute equally to the external field. We can therefore define a
new quadrupole moment Q′

M such that

Q′
M =

∫
(r′ × J(r′)) r′ d3r ′. (109)

or another in terms of r′(r′ × J(r′)). The moment Q′
M is not generally symmetric and is

thus not equal to QM in general, although it does have the same field contribution. The main
difference is that Q′

M has eight independent components whereas QM has five. A related
issue is that a non-symmetric Q′

M may not have physical principal axes, unlike the case for
symmetric source distributions (Gray 1980).

The important observation here is that only the traceless symmetric part of the moment
tensor contributes to the overall field. Thus, from the perspective of solving inverse problems,
a non-unique relationship exists between any particular magnetic field and the quadrupolar
component of the best fitting truncated multipole expansion. Consequently, to avoid this
ambiguity, we may apropriately restrict the definition of the moments to be traceless and
symmetric when using these expansions in solving the MEG inverse problem.

5.3. Spherically symmetric head model

For the case of a spherically homogeneous conductor centred on the origin, as in section 4.3,
we may replace the total current density J with just the primary current density Jp. The
dipolar and quadrupolar moments of the magnetic multipole expansion outside a spherically
symmetric conductor are given by

m = 1

2

∫
r′ × Jp(r′) dν ′ (110)

and

QM = 1

2

∫
(r′ × Jp(r′))r′ + r′(r′ × Jp(r′)) dν ′. (111)

A full multipole expansion of the magnetic field outside a spherically symmetric conductor
for a source placed at the origin of the coordinate system is thus given by inserting (110) and
(111) into (102). The expansions for a spherically symmetric head model can be immediately
obtained from the equations in table 3 by substituting Jp for J .
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5.4. Radially oriented MEG sensors

The Cartesian expansion of the radial magnetic field about the origin of the coordinate system
can be obtained from (98) by first computing the gradients as in (14) and then scaling by 1/r
to yield

Br(r) = µ0

4π

[
2m · r

r4
+ QM :

(
3 rr − I r2

r6

)
+ · · ·

]
(112)

where the moments are defined in (99) and (100). If the volume conductor is spherically
symmetric, the contribution of the volume currents to the radial field vanishes. In this case the
moments are given in (110) and (111).

5.5. MME about an arbitrary location

The above expansions are centred on the origin and as such converge geometrically at the rate
of r ′/r. The multipole series converges faster if the expansion point is near the centroid of the
primary current region rather than at the origin of the coordinate system. Consequently, we
are interested in using multipole expansions computed about an arbitrary location.

The MME of the full magnetic field about the origin of the coordinate system is given by
equation (102) and its magnetic moments are defined in (99) and (100). Because this MME is
valid for an arbitrary Cartesian coordinate system, we may write the multipole expansion of
the same field in a translated coordinate system centred at l with the coordinate R = r − l.
Denoting the magnetic field and the current density in the new coordinate system by Bl(R)

and Jl(R) we have

Bl(R) = B(R + l) = B(r) (113)

Jl(R) = J(R + l) = J(r). (114)

The MME in (102) may now be written in the new coordinate system as

Bl(R) = µ0

4π

[
m̃ · ∇∇

(
1

R

)
− 1

3
Q̃M : ∇∇∇

(
1

R

)
+ · · ·

]
(115)

where the shifted magnetic dipole and quadrupole moments are respectively obtained by
replacing r′ with R′ in (99) and (100), i.e.

m̃ = 1

2

∫
R′ × Jl(R

′) d3R′ (116)

Q̃M = 1

2

∫
(R′ × Jl(R

′)) · ∇′ (R′R′) d3R′. (117)

Note that the derivatives ∇ and ∇′ are taken with respect to R and R′ respectively and that,
similar to the CME section, the notation m̃ and Q̃M is used to distinguish moments computed
about a new expansion point from those obtained with the same source if computed about the
origin of an initial coordinate system and denoted by m and QM .

Finally, if we transform the expansion back to the original coordinate system using the
relationships in (113) and (114), we obtain the full field B expanded about an arbitrary
point l,

B(r) = µ0

4π

[
m̃ · ∇∇

(
1

|r − l|
)

− 1

3
Q̃M : ∇∇∇

(
1

|r − l|
)

+ · · ·
]

(118)

where the moments are respectively defined by

m̃ = 1

2

∫
((r′ − l) × J(r′)) d3r ′ = 1

2

∫
(r′ × J(r′)) d3r ′ = m (119)
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and

Q̃M = 1

2

∫
((r′ − l) × J(r′)) · ∇′ ((r′ − l)(r′ − l)) d3r ′. (120)

The magnetic moments in (119) and (120) are given in terms of the magnetization centred
about an arbitrary point l; therefore, the volume currents in a conductor that is spherically
symmetric about the origin do not readily cancel in the higher order moments. The MME
in (118) is limited to problems that can be solved in terms of the total current density. In
contrast, defining the source term to be the magnetization about the origin r′ × J(r′) and
expanding the kernel using a Taylor series expansion about l yields a less conventional and
more complicated MME expression. In this case, however, in a conductor of homogeneous
spherical symmetry, we can again neglect the volume currents, yielding an MME expressed in
terms of primary magnetization currents only (Mosher et al 1999a, 1999b, 2000), analogous
to the CME expression developed in section 3.4. While this reduction to primary currents is
a strong advantage, the higher order moments now depend on both the coordinate system and
the expansion point.

6. Simulations

6.1. Current multipole unit fields

We investigate properties of the CME of the radial magnetic field by considering the field
patterns produced by the dipolar and quadrupolar components of the expansion. The volume
conductor is assumed to be spherically homogeneous about an origin, such that we need only
consider the primary currents in our formulas. For further simplification in the exposition,
we arranged all sensors radially, with the result that (46) is the relatively simple CME model
for these dipolar and quadrupolar fields. Truncating the CME of the radial component of the
MEG field after the quadrupolar term leads to the truncated expansion given in (47),

Br(r) = µ0

4π
kD · q +

µ0

4π
kQ : Q̃E

where the three-dimensional vector kD and the 3 × 3 tensor kQ are defined by (48) and (49)
respectively.

We consider a simulated array of m sensors arranged on a spherical half-shell at a distance
of 12 cm from the origin. The set of measurements is arranged in an m-dimensional vector and
we define the m × 3 dipolar gain matrix KD as the concatenation of the vectors kD evaluated
at m different sensors on a spherical sensor array. In other words, each row of KD is the
evaluation of kD at a different sensor location. Similarly, the lexicographical ordering and
concatenation of the 3 × 3 tensors kQ leads to the m × 9 quadrupolar gain matrix KQ.

Since the measurements are on a virtual hemispherical surface, the measurements can be
interpolated on this surface to yield continuous topographic maps. In the figures that follow,
we view decompositions of these topographic maps from directly above the hemisphere.
Each column of the gain matrices represents a topography for a particular component of
the moments and plots of the three columns of KD and the nine columns of KQ yield partly
redundant patterns. These redundancies can be eliminated by plotting a lower rank set of unit
fields that span the column space of the gain matrices. A singular value decomposition (SVD)
of KD and KQ yields unit orthogonal topographies that sum together to create any possible
observable topography. We denote the SVD of each matrix as

KD = UD8DV
T
D KQ = UQ8QV

T
Q (121)
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Figure 3. Three-dimensional topographies for the current multipole expansion of (a) the first two
singular vectors of UD obtained from the SVD of the dipolar gain matrix KD and (b) of the first
seven singular vectors of UQ obtained by SVD of the quadrupolar gain matrix KQ, for an expansion
point centred on the z-axis at l = (0, 0, 70) mm and assuming a hemispherical array of m = 138
radial sensors at 120 mm from the centre of the sphere. The measurements are interpolated onto
the surface of the hemisphere, contoured and viewed from above. Consecutive isocontours differ
by a factor of two. Dotted lines represent zero-crossings.

where the columns of the orthogonal matrices U and V contain the left and right singular
vectors respectively and diag(8) = σ1, σ2, . . . , are the singular values ordered in descending
order (Golub and van Loan, 1989). The number k of strictly non-zero singular values
determines the rank of the matrix, and we will use the convention that SVD yields only
those components that correspond to the rank of the matrix, i.e. the SVD of an m × n matrix
of rank k yields U of dimension m × k, 8 is k × k, and V is n × k.

Given that the contributions of radially oriented current dipoles vanish, KD has a rank
of two. The SVD of KQ reveals that it is of rank seven and contains, in its column space,
the two-dimensional subspace spanned by the columns of KD. The columns of the matrices
UD (rank two) and UQ (rank seven) are the singular vectors that correspond to the non-zero
singular values. Each singular vector may be viewed as a basis component in an orthogonal
decomposition of the measurement vector and we may view each singular vector as a virtual
topography by interpolating its values onto the simulated hemispherical measurement surface.
We consider the particular case of a current multipole located at l = (0, 0, 70) mm, which
results in the orthogonal topographies shown in figures 3(a) and (b) respectively.

Since the rank seven quadrupolar subspace UQ also contains the rank two dipolar subspace
UD, it is convenient for viewing purposes to reduce UQ to a rank five subspace using the
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Figure 4. Three-dimensional topographies of the first five singular vectors of U∗
Q obtained after

an orthogonal projection of KQ away from the dipolar gain matrix. Dotted lines represent zero-
crossings.

orthogonal projection operator P⊥
D = I − UDU

T
D , where I is the identity matrix, such that

P⊥
DKQ projects the quadrupolar subspace away from the space spanned by KD. Applying the

orthogonal projection yields the rank five matrix K∗
Q defined by

K∗
Q = P⊥

D KQ. (122)

The five-unit field patterns of the left singular vectors of U∗
Q, obtained from the SVD of K∗

Q,
are shown in figure 4. By construction, the patterns in figures 3(a) and 4 are orthogonal to one
another. The combination of these independent field topographies can be viewed as a spatial
basis of the multipole model.

6.2. Spatially extended sources

In order to assess the utility of the proposed multipolar approach from a forward modelling
standpoint, we used clusters of elemental dipoles to simulate spatially extended neural sources.
We then qualitatively and quantitatively compared the fields generated by these extended
sources with those of the multipolar model above, investigating the degree of dipolarity and
the contributions of the higher order field patterns.

An elemental dipole can be viewed as a very small volume of primary current activity and
integrating this volume yields an elemental dipole moment qi for the ith volume. This moment
and the centre of this small volume are then used in (48) to generate the contribution of each
volume element to the measurement field. Thus a larger region of primary current density
is partitioned into numerous adjacent elemental dipoles. Several two-dimensional and three-
dimensional dipole clusters were created for this study. The orientation of each elemental
dipole was left unconstrained. As in the above simulations, we continued to use a 120 mm
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Figure 5. Examples of 2D (top) and 3D (bottom) clusters of dipoles. An elemental dipole is
assigned to each grid point to simulate spatially extended areas of activation. Both the patch and
the cube are centred at l = (0, 0, 70) mm. Sparse grids are shown to simplify the visualization.
Denser grids (1–2 mm dipole spacing) were used in the simulations.

hemispherical array of radially oriented sensors and all dipole clusters were centred on the
z-axis at z = 70 mm. The arrangement is illustrated in figure 5.

For m measurements, each elemental dipole may be represented by a m × 3 gain matrix and
the overall gain matrix GCluster of a patch or cube of dipoles is represented by superposition
(concatenation) of the gain matrices for each elemental dipole in the grid into an overall
m × 3p matrix, where p is the number of dipoles. As above, we can then perform an SVD
of GCluster and examine the dominant singular values and their corresponding left and right
singular vectors. The range of the singular values for several 2D and 3D clusters is shown
in figure 6. In all cases, two equally strong singular values are followed by between five and
seven additional weaker yet significant singular values. The significance of the kth singular
value can be quantified by computing its percent energy contribution e(k) to the overall matrix

e(k) =
k∑

i=1

σ 2
i

/
N∑
i=1

σ 2
i (123)

where N is the total number of singular values. This metric provides a convenient way of
identifying how many of the singular values are needed for the description of the subspace
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Table 4. Cumulative contributions e(k) (in %) of the first nine singular values (k = 1, . . . , 9) to the
overall matrix energy for 2D and 3D clusters of dipoles of different dimensions. The rank of the
first subspace that accounts for more than 99% of the energy is given in the last row. All patches
were centred at (0, 0, 70) mm and had a 1 mm uniform dipole spacing.

2D grid dimensions (cm) 3D cluster dimensions (cm)

k 0.5 × 0.5 1 × 1 2 × 2 3 × 3 4 × 4 1 × 1 × 1 2 × 2 × 2

1 49.8% 49.32% 47.60% 45.02% 41.85% 49.17% 46.97%
2 99.60 98.64 95.19 90.04 83.69 98.34 93.94
3 99.84 99.46 98.02 95.74 92.64 99.16 96.88
4 99.92 99.73 98.98 97.71 95.85 99.44 97.89
5 100 99.99 99.90 99.55 98.73 99.71 98.86
6 100 99.99 99.93 99.70 99.13 99.85 99.35
7 100 100 99.97 99.84 99.52 99.99 99.83
8 100 100 99.98 99.91 99.71 99.99 99.89
9 100 100 100 99.98 99.90 99.99 99.92

rank 2 3 5 5 6 3 6

with a given accuracy (e.g. 99%). The results for several 2D and 3D clusters (table 4) clearly
show that, for the 2D patches, the first five singular values already describe more than 99% of
the total matrix energy of the patch. The contribution of the third, fourth and fifth component
increases with the size of the patch, i.e. the spatial extent of the source, which we also observe
in figure 6. Similar observations follow for the 3D patches.

The elemental dipoles were formed on a uniform 1 mm grid in all dimensions. We also
investigated other grid densities by varying the dipole spacing up to 3 mm and we found that
the effect of grid density on the singular values was very small compared to the effect caused
by changing the dimensions of the cluster.

To investigate the magnetic field patterns that constitute the principal components in the
SVDs and the current fields that produce them, we plotted the topographies associated with
each of the first 12 left singular vectors Ui (i.e. columns of matrix U ) for a cube of dipoles
(figure 7). The first three topographies clearly represent current dipolar patterns in x-, y- and
z-directions respectively. The next five topographies show typical quadrupolar patterns. The
remaining topographies are octupolar and higher.

As described above, each set of three columns of GCluster corresponds to one of the
elemental dipoles in the patch, and as such the right singular vectorsVi can be used to describe
the orientation and strength of each of the dipoles needed to produce each of the field patterns
shown in the corresponding left singular vectors. For a given right singular vector Vi , each set
of three elements in the vector represents the orientation and magnitude of the corresponding
elemental dipole in the patch. We can therefore plot ‘arrows’ of the corresponding orientations
and lengths at the three-dimensional locations of all dipoles in a patch, thereby revealing the
pattern of dipolar activity in three dimensions that gave rise to the particular topography.

In figure 8 we plot the first 12 right singular vectors for a 20 × 20 mm2 two-dimensional
patch of dipoles. The successive configurations clearly show standard dipolar, quadrupolar
and higher order source patterns. Again, these figures support the use of multipolar models as
a natural decomposition.

The SVD analysis of these clusters show two strong dipolar components, reflecting the
high degree of dipolarity obtained by superimposing the effect of hundreds of elemental
dipoles in a relatively small volume. This observation provides strong empirical support for
the widespread use of equivalent current dipoles for representation of focal activation. The
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Figure 6. SVDs of clusters of dipoles centred at (x, y, z) = (0, 0, 70) mm. Top: Singular value
decay for patches of variable size (5 × 5 mm2, 20 × 20 mm2, 40 × 40 mm2). Bottom: Singular
value decay for cubes of dipoles (5 × 5 × 5 mm3, 10 × 10 × 10 mm3, 20 × 20 × 20 mm3, 30 ×
30 × 30 mm3).

topographies of the next singular vectors suggest that their contribution could be modelled by
adding quadrupolar terms to the dipolar source. Indeed, the same field patterns we see in the
first seven singular vector topographies in figure 7 match remarkably well with the unit fields
of current dipoles and current quadrupoles shown in figures 3(a) and 4. These observations
provide a strong graphical illustration for the argument that multipolar models are a rather
natural approach to parametric representation of distributed current sources. As one might
expect, the singular values show that the contribution of the higher order source pattern gains
in importance when the size of the patch increases. Accordingly, including higher order source
models such as quadrupoles or octupoles should lead to a better source description than simple
dipoles for spatially extended sources.
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Figure 7. Topographies produced by the first 12 left singular vectors Ui for a 20 × 20 × 20 mm3

cube centered on the z-axis at z = 70 mm within a spherical head model on a spherical array of
sensors at 12 cm from the centre of the head. Consecutive contours differ by a factor 2. Dotted
lines represent zero-crossings.

The above analysis qualitatively displays the correspondence between the dominant
current patterns in a patch of elemental dipoles and the multipolar models. To perform a
quantitative comparison between the multipole models and these patches, we also computed
the multipolar gain matrices KD and KQ for an expansion point at the centroid of these patches.
We then computed the principal angles θ i, i = 1, . . . , k (Golub and van Loan 1989) between
the field pattern subspaces for the current multipole model and the patches; here k is the
minimum of the ranks of the two matrices. The similarity between the two subspaces can be
expressed in terms of the scalar distance metric (Golub and van Loan 1989)

dist(GCluster,GModel) =
√

1 − cos2(θk) . (124)

If the two matrices share a common subspace of dimension n � k then the first n principal
angles will be zero. The distance between the two subspaces will be zero if one subspace
completely contains the other. For the purposes of using multipole models to represent clusters
of dipoles, it is desirable that the principal angles between the model and cluster gain matrices
are approximately zero up to the effective dimension of the cluster gain matrix.

Since angles may range from zero to π , we find it more intuitive to view these angles in
terms of a ‘subspace correlation’ metric defined simply as the cosine of the principal angle.
Thus a subspace correlation of unity indicates perfect alignment between two dimensions,
and a correlation of zero their orthogonality. In table 5 we show the subspace correlations
for patches of various sizes compared with the current multipole gain (47), i.e. dipolar and
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Figure 8. Plots of dipole orientations for the first 12 right singular vectors Vi for a 20 × 20 mm2

patch centred at (0, 0, 70) mm within a spherical head model.

Table 5. The subspace correlations (cosine of the principal angles, cos θ i)) between the multipolar
source model and the cluster subspaces (rank i, where i = 1, . . . , k). The distances (dist) between
the relevant subspace of GCluster (rank k) and the multipole model are explicitly given in the last
row. The 2D and 3D clusters of dipoles have variable effective dimensions and are all centred at
z = 70 mm.

2D patch dimensions (cm) 3D patch dimensions (cm)

i 0.5 × 0.5 1 × 1 2 × 2 3 × 3 4 × 4 1 × 1 × 1 2 × 2 × 2

1 1.0 1.0 1.0 0.9999 0.9997 1.0 1.0
2 1.0 1.0 1.0 0.9999 0.9997 1.0 1.0
3 – 1.0 0.9997 0.9991 0.9975 1.0 1.0
4 – – 0.9996 0.9985 0.9957 – 1.0
5 – – 0.9991 0.9965 0.9909 – 1.0
6 – – – – 0.8755 – 0.9999

k 2 3 5 5 6 3 6

dist 0.0 0.0 0.04 0.08 0.48 0.0 0.01

quadrupolar terms. These values should be interpreted in light of the results in table 4, since the
values of the principal angles are only of interest up to the effective dimension of the subspace.
We chose k in (124) to be the effective rank of the relevant subspace, i.e. the subspace of the
patch that describes 99% of the total energy of the patch.



552 K Jerbi et al

Due to the redundancies among KD and KQ, the CM model is effectively rank seven (two
dipolar plus five quadrupolar terms). The subspace correlation results in table 5 demonstrate
that the relevant subspace (rank k) of the patches is successfully matched (dist 
 0) by the
multipole model in all of the cases shown except for the 4 × 4 cm patch. In this particular
case, the source is so large (16 cm2) that a high subspace correlation up to the sixth dimension
is needed to describe more than 99% of the total patch energy, yet the multipole model
achieves good correlations up to only the fifth dimension. This one exception does not limit
the proposed use of the CME model truncated at the quadrupolar term because we realistically
expect many of the extended sources of interest in the human brain to be smaller than 16 cm2.

Generally, we found that the multipolar model achieves high subspace correlations up to
rank five for the 2D patches and up to rank seven in the 3D clusters. In contrast, the classical
ECD model only matches the subspace spanned by the first two singular vectors of the patch,
i.e. its first two dipolar components shown by the plots of V1 and V2 in figure 8. For extremely
focal sources (e.g. 5 × 5 mm), a rank two current dipolar model is sufficient, because these
vectors explain 99% of the total source energy (k = 2). For more spatially extended sources,
however, source models of higher dimension are required. Simulating such sources via 2D and
3D clusters of dipoles and comparing using subspace angles shows the ability of multipolar
models to approximate the higher order subspaces obtained. This correspondence between
model and cluster provides strong evidence for the claim that multipolar expansions are better
suited to model spatially extended activation areas in MEG.

Finally, we note that these results were obtained with rather simplistic clusters of dipoles in
a noiseless simulation, in order to highlight the relationship between current patterns, source
size and multipolar models. We have begun investigations using realistic cortical grids of
dipoles based on high-resolution brain segmentations. In Mosher et al (1999a), we showed
how roughly 3.5 cm2 cortical patches arbitrarily located anywhere in the cortical regions
yielded MEG fields that were in many cases dipolar, and we repeated these observations for
the EEG case in Mosher et al (1999b). Both cases were also computed in substantial simulated
noise. A smaller set of sources in these simulations did require the addition of the quadrupolar
components, and further work is needed to quantify under what realistic conditions these
models apply.

7. Discussion

The multipolar expansions derived in this paper are based on expansions of the scalar Green’s
function. The derivations lead to compact formulations of infinite series expansions in
spherical coordinates and to Cartesian expansions about arbitrary locations in explicit forms
for the first terms of the expansion (dipole and quadrupole). In this paper we also highlight the
links between much of the early development in MEG/MCG current multipole expansions,
the related expansions in magnetic multipoles, and recent work by ourselves and others in
multipolar expansions applied to EEG and MEG.

Spherical harmonic and Cartesian magnetic and current multipole expansion methods
have been described in this paper. Since all ultimately represent the same sources, they
are, in principle, equivalent. A ‘good’ source model is one that describes the external field
as accurately as possible in a parsimonious fashion. For MEG applications, the sources are
expected to consist of groups of neurons in an extended region of cortex that is small compared
to its total surface area. Since the number of multipolar terms required to achieve a given
accuracy is roughly determined by the extent of the source and the relative distance from the
expansion point to the source and the measurement region, it appears preferable to compute
expansions about a location close to geometric centroid of the source. Just as current dipole
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models involve the estimation of location and moment parameters, so inverse methods using
first-order multipoles could involve estimation of the best expansion point and the source
moments. The degree to which the best expansion point matches the centroid of the activated
region and the accuracy with which this can be estimated in the presence of noise, remain
open questions.

To date, the application of multipolar expansions to MEG source modelling has been
impeded by the apparent complexity and variety of possible multipole expansion procedures
on the one hand and by little evidence of the real utility of higher order models on the other.
The fundamentals of the multipole expansions and their relationships, as presented in the this
paper, may help to resolve the first of these issues. The cluster analysis that we have performed
provides strong empirical support for the use of multipole models for representing extended
sources in MEG. Future work will concentrate on the development and evaluation of methods
for incorporating multipolar models in robust inverse procedures for MEG data analysis.
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Appendix A. Deriving curl of Ap

Using ∇ × (VU ) = ∇V × U + V∇ × U , we perform the curl on the first term in (41),

∇ ×
(

q

|r − l|
)

= − (r − l)

|r − l|3 × q = q × (r − l)

|r − l|3 .

The curl in the second term of (41) yields

∇ ×
(
(r − l) · Q̃E

|r − l|3
)

= −3(r − l)

|r − l|5 × ((r − l) · Q̃E) +
∇ × [

(r − l) · Q̃E

]
|r − l|3

where

∇ × [
(r − l) · Q̃E

] =
∫

∇ × ((r − l) · (r′ − l)Jp(r′)) d3r ′

=
∫

∇((r − l) · (r′ − l)) × Jp(r′) d3r ′

=
∫
((r′ − l) · ∇)(r − l) × Jp(r′) d3r ′

=
∫
(r′ − l) × Jp(r′) d3r ′

= 2 mp − l × q (A.1)

where mp is the primary magnetic dipole defined in (43). Performing the appropriate
substitutions in (41) yields (42).

Appendix B. Solution to Poisson equation for r · B

Beginning with (93), standard vector identities yield

a = µ0

4π

∫
J(r′) × (r − r′)

|r − r′|3 · r d3r ′ = µ0

4π

∫
J(r′) · (r − r′)

|r − r′|3 × r d3r ′. (B.1)
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Using the identity

(r − r′) × r = r × r′ = (r − r′) × r′ (B.2)

(B.1) can be written as

= µ0

4π

∫
J(r′) · (r − r′)

|r − r′|3 × r′ d3r ′

yielding (96). Starting with (93), the same result (96) is thus obtained through simple vector
calculus. The rather unobvious relationship between (93) and (96) is best understood by
considering the implications of the identity in (B.2).
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Hämäläinen M, Hari R, Illmoniemi R J, Knuutila J and Lounasmaa O V 1993 Magnetoencephalography—theory,

instrumentation, and applications to invasive studies of the working human brain Reviews of Modern Physics
65 413–98

Jackson J D 1975 Classical Electrodynamics (New York: Wiley)
Karp P J, Katila T E, Saarinen M, Siltanen P and Varpula T 1980 The normal human magnetocardiogram, II. A

multipole analysis Circ. Res. 47 117–30
Katila T E 1983 On the current multipole presentation of the primary current distributions Il Nuovo Cimento 2D

660–4
Katila T E and Karp P 1983 Magnetocardiography: Morphology and multipole presentations Biomagnetism: An

Interdisciplinary Approach (New York: Plenum) pp 237–63
Morse P M and Feshbach H 1953 Methods of Theoretical Physics, Part II (New York: McGraw-Hill)



Multipolar modelling in MEG 555

Mosher J C, Baillet S, Jerbi K and Leahy R M 2000 MEG Multipolar Modeling of Distributed Sources Using
RAP-MUSIC Conf. Record of the Thirty-Fourth Asilomar Conf. on Signals, Systems and Computers 1 318–22

Mosher J C, Baillet S and Leahy R M 1999b EEG Source Localization and Imaging Using Multiple Signal
Classification Approaches J. Clin. Neurophysiol. 16 225–38

Mosher J C, Leahy R M, Schattuck D and Baillet S 1999a MEG Source Imaging Using Multipolar Expansions
(Lecture Notes in Computer Science) (Berlin: Springer) pp 98–111

Mosher J C, Lewis P S and Leahy R M 1992 Multiple dipole modeling and localization from spatiotemporal MEG
data IEEE Trans. Biomed. Eng. 39 541–57
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