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ON  MEROMORPHIC FUNCTIONS  COMMUTING
WITH ELEMENTS  OF A FUNCTION  GROUP1

JOHN  RODERICK SMART

Abstract. The problem of whether there always exist mero-

morphic functions commuting with all substitutions of a function

group is solved in the affirmative.

1. Introduction. Maurice Heins studied [4], [5] mapping properties of

meromorphic functions Fin the upper half plane, Im t>0, which commute

with all substitutions of the modular group M. Thus,

(1.1) F(û-^±-6) = F(Vr) - VF(r) = 2ÍM±*
\CT + dl cF(t) + d

for each V=("c I), with a, b, c, drational integers and ad—bc=l. Brady

[1], a student of Heins, parametrized all solutions of the above functional

equations in terms of a complex parameter and an unrestricted modular

function A, that is, a meromorphic function in Im t>0 satisfying A(Vr)=

A(r) for each Fin M. Brady in the same paper generalized this result to

the following extent. Let T be a function group with domain of discontinuity

Q and suppose Fx, F2 and F3 are three distinct functions which commute

with the elements of Y. Then for any Ft^Fx which also commutes with the

elements of Y, the cross ratio A(t)=[(Fi-F2)(F3-F)I(F3-F2)(F1-F)]

is an automorphic function for Y, and so

a 2) F = f,(fl ~ Fs) + (A~ 1)(Fl ~ Fù'   (F1-F3) + (A- 1)(F2 - F3)  '

Brady's result is only quoted for Fuchsian groups but the proof is valid in

the more general situation. Outside the case T = Af, he had no way of con-

structing functions F commuting with the transformations in Y. In §2 we

show how to construct such functions from automorphic forms and how

to get three linearly independent such functions. In §3 we treat the case of

Received by the editors March 16, 1971.

AMS 1970 subject classifications. Primary 30A58; Secondary 30A20, 10D05, 10D15,
33A25.

Key words and phrases. Automorphic form, Fuchsian group, Kleinen group, Weier-

strass zeta function, modular group, Dedekind eta function.

1 Work supported by National Science Foundation grant GP-20219.

© American Mathematical Society 1972

343

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



344 J.   R.   SMART [June

the modular group M specially and show the motivation for the functions

defined in §2.

We now introduce some definitions and notation. The general reference

for this material is either Lehner [8] or Ford [2]. Let T be an infinite group

of two by two matrices with complex entries containing —/, /=(J ?), for

which the associated group of linear fractional transformations F =

{Vr=(ar+b)l(cr+d): V—(ac a)eF} is a function group. That is, there is a

domain Q of ordinary points of T carried into itself by the elements of V,

and the boundary of Q consists of limit points of T. Such groups comprise

the so-called Fuchsian and Kleinen groups. Two points rx, t2 of 2ü are

equivalent if there is a V in T such that Vrx — rt. Let Ft, the orbit of t,

denote the set of images of r by elements of I\

Let r be a real number; then a function v:T^>-{r:\T\ = l} is called a

multiplier system for T and —r if a certain consistency condition [8, p. 267]

is satisfied. If r is integral, then y is a character on T. A function/mero-

morphic on Q which satisfies

(1.3) f(Vr) = v(V)(cr + dYf(r),        re®,

foreach V=Q ¿)eF, is called an unrestricted automorphicform of weight —r

for T and —r. Here (cr+d)r=exp{r log(cr+d)} with — 7r^arg(cT-)-</)< 7r.

If/has a finite number of poles in a fundamental region R (c&) then/is

called an automorphic form. If r=0 then/is called an automorphic function.

The set of these automorphic forms form a complex vector space denoted

by {r, -r, v}.
On certain function groups F one can construct automorphic forms by a

method introduced by Poincaré [8, v. 2]. Let H(z) be a rational function

whose poles are not at limit points of T nor in the orbit of co. If/n_t2 the

series

(1.4) B(z;H) = ^H( Vz)j(cz + d)2m,

where summation is over all V=("c ¿) in T (co is not fixed by any element

of T), converges uniformly and absolutely on compact subsets of 9) not

containing any points equivalent to the poles of H or to co. d(z; H)e

{T, —2m, 1}. By use of the /1-transform [5, v. 3] one can extend the con-

struction of forms to the remaining function groups.

Now we turn to the Weierstrass zeta function. Let cox, co2 be complex

numbers such that Im co2/a)1>0. Then £(t; cox, w¡) is defined by

(1.5) £(t; coi, oj2) = 1/r2 + 2 {1/(t - co) + 1/co + tV},

where summation is over all periods ío=wcr)1+/íco2 with m, n integers not
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both 0. Then for all t,

(1.6) £(t + û>x)•- £(r) + f¡x,        í(t + oo2) = l(r) + r¡2,

where rj1 = t]1(w1, w2) and r¡2=r¡2(o^,co2) are the pseudoperiods. They

satisfy Legendre's relation [9, p. 376]

(1.7) o^ifli — <i)i'?2 = 2ttí.

It follows from Heins study [5] of functions of type (1.1) that an ordered

pair of complex numbers (r¡x, r¡2)^(0, 0) is the pair of pseudoperiods for a

suitable Weierstrass zeta function.

I would like to thank the referee for pointing out an error in the earlier

version and the reference to Hurwitz's work.

2. In this section we show how to derive, from automorphic forms,

meromorphic functions F satisfying (1.1) for the transformations in a

function group Y. We further show how to construct three linearly inde-

pendent such functions. Now we prove the main theorem.

Theorem 1. Let Y be a function group with domain of discontinuity 2,

v a multiplier system for Y and —r, andfe{Y, —r, v}. Then

(2.1) F(r) = rf(r)lf'(r) + r

commutes with all substitutions of T.

Proof. Let V=(ac "d)eY then f(VT)=v(V)(cT+d)rf(r). Differentiating

this relation with respect to t and noting that í7Ft/í/t=1/(ct+í/)2, we

obtain

/'(Ft) = v(V)[r(cr+d)^cf(T) + (cr + d)'+2f'(r)].

Thus

F(Vr) ä_¡£to_     ar+b

(cr + d)[crf(r) + (cT+d)f'(T)]      CT + d

_ [1 + c(ar + b)]rf+(ar + b)(cr + d)f

(cr + d)[crf + (cr + d)f]

_ [ad - be + c(ar + b)]rf + (ar + b)(cr + d)f

(cr + d)[crf + (cr + d)f]

= ^+T^ + ^' = V(Fr).
c(rf + rf) + df

Lemma 1. Let Y be a function group, then there are points ru t2 and

T3eS¡, which are pairwise inequivalent ; and forms f andf2e{Y, —A, 1} so

that fi has simple poles at tx and t2 and is regular at r3, andf2 has simple

poles at Tt and t3 and is regular at t2.
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Proof. Suppose first T is a function group for which co is an ordinary

point and co is not fixed by any element of T. Let rx, r2, r3 be chosen so

that they are inequivalent and none belongs to the orbit of co. Let Hx(r)=

1/(t-tJ(t-t,) and //,(t)=1/(t-t1)(t-t3). Then d(r; H,) defined in

(1.4) with m = 2 belongs to {F, —4, l}. Moreover, one can see by the proof

of the Theorems V.2.D and V.2.E of Lehner [8, pp. 160-161] that 0(t; HJ
has simple poles at the required points. Moreover, by the choice of the rit

di is regular at r3, and 62 is regular at t2. Now if F does not have the

required properties at co we consider AFA~l for a real matrix A of

determinant 1. The region of discontinuity of AFA*1 is A2 and the fixed

points {£,•} of the transformations of AFA'1 are {At,) where {t,} are the

fixed points of the transformations of F. Thus we can pick an A so that

AFA~* has the required properties at oc. Then solving as above we obtain

points l,i, £2, t,3eQ¡ and functions gx, g2 with the properties of the theorem.

Now consider fi=gi\A~l=gi(AT)(dATJdT)m; fi is an automorphic form

on A~1(AFA~1)A = F [8, p. 164]. Clearly,/! has poles at t^/T1^ and

t2=,4-1£2 and is regular at -4_1t3. f2 has similar properties.

Theorem 2. Let F be a function group then there exist three linearly

independent functions which commute with all substitutions ofF.

Proof. Pick O^t^ t2, t3, and/i and/2 as in Lemma 1. By Theorem 1,

Fi—4(filf'i)+r, i=l, 2, commutes with all substitutions of F. Let
F3(r) = r, be the identity function. Suppose

aFx + bF, + cF3 = 0.

We see that fjf¡ has a zero at r=rx, so setting t=tx in the above equation

we have a+b + c=0. Thus the above equation reduces to

afijf'i + bf,jf, = 0.

However,/¡//i and/2//> are linearly independent since they have poles at

different places, thus their reciprocals are linearly independent. So a—b =

0=c.

Remark. One can now apply the parametrization theorem of Brady

quoted in the introduction to parametrize as in (1.2) all F's commuting

with elements of F in terms of Fx, F2, F3 and unrestricted automorphic

functions A.

3. In this section we give the motivation for the definition of F given in

(2.1). Let M denote the (homogeneous) modular group, the 2x2 matrices

with rational integer entries and determinant 1. M denotes the corre-

sponding group of linear fractional transformations.
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Theorem 3.   Let fe{M, —r,v) and define

(3.1) gl(r) =/'(t)//(t), g2(r) = ^(-l/r)/r,

then F(r)=g2(T)lg1(r) commutes with the elements of M.

Proof. It is an easy calculation to show that F(T)=rf(r)/f'\t)-\-t, and

thus this is a special case of Theorem 1. However, we prefer to give an

alternate proof. M is known to be generated by ÍT=(¿ \) and F=(J ~J);

thus it suffices to prove F(Ut)=F(t)+1 and F(Ft)= — 1/F(t). First, from

the definitions, F(— 1/t)=— t^1(t)/t^2(t)= — 1/F(t). We also easily find

that

gl(-lH  =  TT +  T*gx(T)

or

(3-2) rgl(r) - g2(r) - -r.

If Legendre's relation (1.7) were written in inhomogeneous notation it would

have the above form, so we could call (3.2) a generalization of Legendre's

formula. Now jJi(t+1)=jj1(t) so that g2(T+Y)=(r+\)gl(T+l)+r=

TgÁ?)+gi(T) + r=gi(T)+g2(T). It follows that F(t+1)=F(t)+1.

We now turn to the pseudoperiods of the Weierstrass zeta function and

the investigation which led to the definitions (2.1) and (3.1). Our method

will be similar to one used by Hurwitz [6], [7] to obtain the transformation

properties of the discriminant A(t) in the theory of elliptic modular forms.

We shall consider r]i=l(z+(i>i)—£(z). In order to obtain an expression for

r¡x we sum the absolutely convergent series (1.5) for £ over all (o=mai1 +

na>2 first over all meZ and then over neZ. In the expression for r\i ob-

tained in this way we get a series which is telescopic and obtain after

simplification

0.3) »-rz,   ;  *+±£
n    m (ma>i + nco2)       wx 3

where the dash denotes that the term «=0 is missing and the conditionally

convergent sums are understood in the sense of Cauchy principal values.

Similarly we obtain

(3.4) r¡2 = 2 2---f-"2 + - - •
m    n (mœx + na>2)       w2 3

If we now suppose the periods are normalized so that co2=t, (ox=l and

Im t>0, we obtain

(3.5) r,i(r) = 2' I'        * + y(i + l).
n      m    (m + fit) 3   \ T /

(3.6) r,2(r) = tTI' * + ^(t + A,
m   n   (m + ht)        3 \       t/
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where r¡x(r) = nx(l, t), 'n2(r) = r¡2(l, t), and the dash on the summation

sign means that the summation variable omits the value 0. It is interesting

that Legendre's relation (1.7) implies the following difference in value of

conditionally convergent series:

(3.7) 2' 2' (m + nr)-2 - 2' 2' (m + nr)'2 = 27tí/t.
n      m m      n

A slightly more general result was derived by Hurwitz [6, p. 349]. It follows

from (3.5) and (3.6) that

(3.8) »7i(-1/t) . Tijt(T).

This is the motivation for the definition of g2 in (3.1). There is a known

connection [3, p. 313] between t^ and the Dedekind ^-function. Dedekind's

r¡ is defined by
GO

(3.9) t¡(t) = e'"n2Y\ (1 - e2"",r),       Im r > 0.
71 = 1

Fricke proved that

(3.10) »h(t) = -4w(V(t)/îKt)) = -477/(log r¡(r))'.

This motivates the definition (3.1). Thus the choice of/(r)=jy(T) for

Theorem 3 leads to the function considered by Heins [4].
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