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ON MEROMORPH1C FUNCTIONS THAT SHARE THREE

VALUES AND ON THE EXCEPTIONAL SET

IN W1MAN-VAL1RON THEORY

BY WALTER BERGWEILERI}

1. Introduction and Results

Two meromorphic functions are said to share a value a if they have the
same α-points. We distinguish the cases that we count multiplicities (CM) and
that we ignore multiplicities (/M). One of the main tools that has been used
in the study of functions that share values is Nevanlinna's theory on the distri-
bution of values (cf. [3, 6, 7]). Here it is important to have relations between
the Nevanlinna characteristics T(r, /) and T(r, g) if / and g share values.

It is well-known [2, Theorem 2; 5, Satz 3] that

(1-1) T(r, /)~T(r, g) (rφE)

if / and g share four values IM. Here and in the following E denotes an ex-
ceptional set of finite measure. If / and g share three values IM, then

(1.2) !-,(!)£ £3+o(l)

This was proved by Gundersen [2, Theorem 3] who also gave an example which
shows that the bounds 1/3 and 3 are sharp.

This paper is concerned with the question what can be said about the rela-
tion between T(r, /) and T(r, g) if / and g share three values CM. A recent
result of Brosch [1, Satz 5.7] says that (1.2) can be improved in this case. He
proved that

(1.3)
(r, g) o

It is not known whether these bounds are sharp. Osgood and Yang [8, Theorem
3] proved that T(r, f)^T(r, g) if / and g are entire functions of finite order
and they conjectured that this remains true for arbitrary entire functions. The
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question whether (1.1) holds for meromorphic / and g has been raised by Gun-
dersen [2]. Brosch [1, Satz 2.1] proved that T(r, /)~T(r, g) if / and g are
meromorphic functions of finite lower order. We shall prove that (1.1) does not
hold in general. More specifically, we shall prove that the constant 8/3 in (1.3)
cannot be replaced by any constant less than 2 (and 3/8 cannot be replaced by
any constant greater than 1/2).

THEOREM 1. Let φ(f) be defined for t^tQ>0 and assume that 0(f)->°° as

iί-»oo. Then there exist a set F satisfying

(1.4) f
JF t

and meromorphic functions f and g that share 0, 1 and oo CM such that

α5)

The lemma used in the proof of Theorem 1 applies to another problem. Let
/ be an entire function, M(r, /) its maximum modulus and v—v(r, /) its central
index. Classical theorems due to Wiman [10] and Valiron [9] say that

(1.6) /(*ι>

if zι is in a certain neighborhood of z, if \f(z)\—M(\z\y /) and if \z\=rφF,
where F is an exceptional set of finite logarithmic measure, i. e.,

(1.7) { ^<oo.

The sharpest result of this type seems to be due to Hay man [4]. A simple
consequence (cf. [4, 9, 10]) is

(L8)

where A(r, /)— max{Re/Cε); |z |=r}.
Considering a gap series one easily sees that an exceptional set of some

form is necessary in (1.6). We show that the condition (1.7) for the exceptional
set in (1.8) (and hence in (1.6)) cannot be weakened in a certain sense.

THEOREM 2. Let φ be as in Theorem 1. There exist a set F satisfying (1.4)
and an entire function f such that

(1.9) lim^4=0.
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2. A fundamental lemma

The key step in the proof of Theorems 1 and 2 is

LEMMA 1. Let φ be as in Theorem 1 and let ( A k ) be a sequence of real,
continuous, periodic functions with period 2π such that

(2.1) Γ
J-7Γ

Let (εk) be a sequence of positive real numbers satisfying εk~ >0 as &— >oo.
Then there exist a sequence (mk) of positive integers, sequences (sk\ (sί) and

of real numbers which tend to infinity and an entire function h such that

(2.2)
Jsk t

for k^2 and that

(2.3) \Reh(seίθ)-MkAk(mkθ)\^Mkεk

for sk<s^s'k, Θ<=ΞR and k^2.

Proof. We define

e —z

Then ak is holomorphic in |z|<l and α^(0)—0 by (2.1). It follows from Pois-
son's integral formula that there exists Rk satisfying Rk<l such that

(2.4) |Re ak(reiθ}— Ak(θ)\ ^-y

for Rk^r<l and Θ^R. We choose R'k such that Rk<R'k<l and denote the
tt-th partial sum of the Maclaurin series of ak by pk,n

Now we define the sequences (τru)and (Mk\ a sequence ( h k ) of polynomials
and a real sequence (rk} by recursion.

We choose r1=m1=Mί=l, h^Q and assume that k^2 and that m3, M3, h3

and r} have been specified for l^j^k — 1. We denote the degree of h} by 13

and define Nk—max{lj', l^j^k — 1} and mk=8Nk. Then we choose rk such
that r*>r*-ι+l.

(2.5)
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(2.6) l o g l (rfcr.)
mk Kk

and

(2.7) *ΣM(r, hj)<rZNk

Moreover, we define Mk=(rkYNk and we can achieve by a suitable choice of rk

that

(2.8)

and

(2-9) Mk

To see that (2.9) is satisfied if rk is large enough we note that M(r, ak)^Ckr
for some constant Ck and sufficiently small r since αΛ(0)=0. This implies
together with the definition of mk and Mk that (2.9) is satisfied if rk is large
enough.

Now we choose nk such that

(2.10) Mk\pk>nk(reίθ)-ak(reiθ)\<^ϊ

for r^Rf

k and 0GΞJE. It follows from (2.5), (2.9) and (2.10) that

(2.11) M*M((^Γ, pk, nk)^+^ = ±.

Finally we define

(2.12) hk(z)=Mkpk,

Now let (mk\ (Mk\ ( h k ) and ( r k ) be the sequences defined above and let
( n k ) and (Nk) be the corresponding auxiliary sequences. We define h by

We note that \hk(z)\^2~k for \z\^rk., by (2.11) and (2.12) and that rft-*oo as

y^->oo since r*>r*_ι+l. Hence it follows that the series for A converges uni-
formly on compact sets so that A is an entire function.

Now we define sk and si by

=Rk and Γ-) =i

Then rkRk<Sk<s'k<rk and
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It follows that

and hence that

ι si 1 , R'k
log —= — log-—& sk mk Rk

sk

^ inf φ(t)— log-ξ^lt*rkRk

τ mk Rk

by (2.6).
It remains to prove (2.3). Choose s such that s^s^s* and define

Then Rk^r^R'k and it follows from (2.12), (2.4) and (2.10) that

(2.13)

Furthermore we have

(2.14) ΣM(s, h^
J-l J=l

by (2.7) and from (2.11) and (2.12) we can deduce that

(2.15) M(s, A,)^M(r», h,)£M(r,.ι, h,}^~
Lt

for j^k+L Combining (2.13), (2.14), (2.15) and (2.8) we find that

\Reh(seίθ)-MkAk(mkθ)\

j=k+l



β WALTER BERGWEILER

This completes the proof of Lemma 1.

3. Proof of Theorems 1 and 2

The proof of Theorem 1 requires the following lemma.

LEMMA 2. Let a and β be entire functions and define f by

Denote the counting function of the common zeros of £α — 1 and e^ — 1 by NQ(r)
and define

H(θ)=max{Rea(reiθ), Re β(reίθ\ 0}.

Then

T(r, f)=(l + 0(l))
Z7Γ Jo

where E has finite measure.

Proof. We have

N(r, f)=N(r, )̂-

To compute m(r, /) we define Si={β; \θ\^π, Re a(reίθ}^l], S2={θ; \θ\^π,
Rea(reίθ)>l, Re β(reίθ)<l] and S3={#; \θ\^π, Re a(reiθ)>l, Re β(reίθ}>l}.
Then we have

We also have

ί log+\f(reίe)\dθ
J^2

β dθ+0(l)

= \ _ Re+a(reίθ)dθ + 0(T(r,

and
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f log+\
JSB

It follows that

= Re+(a(reίθ)-β(reίθ))dθ+O(l) .

^s Re+a(reiθ)dθ

+2^L Re+(a(reίθ">-β(reίθ^dθ~N^
The conclusion follows since

Re+(a(reiθ)-β(reίθ))+Re+ β(reiθ)=max{Re a(reiθ\ Re β(reiθ}}

and

for

<?/ Theorem 1. We can choose a sequence ( A k ) which satisfies the
hypothesis of Lemma 1 such that

0 if

- 1 i f - + 2 ~

2 if

and — 1^^4*(^)^2 for all ^e/2. Let Λ be the function oflLemma 1 and define

and

Then / and g share 0, 1 and oo CM. Define

(3.1) G= 0 [s», si] .
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Lemma 2 and a simple computation yield that

T(s, /)=(
and

*.Mk

if Sfc<;s^;sfc and if
We conclude that

T(s, m(2-.(l))T(s, g}

Hence (1.5) is satisfied if we define F=G\E. Since we may assume without
loss of generality that φ(t)^t, we have

On the other hand, we have

t

Hence (1.4) follows and this completes the proof of Theorem 1.

Proof of Theorem 2. We apply Lemma 1 for a sequence ( A k ) which satisfies

If we define G by (3.1), then we find

where B(r, h)= — min{Reh(z); \z\-r}. The conclusion follows since B(r,
M(r, K).

Concluding Remarks. Our method does not yield examples of functions /
and g that share three values CM such that (1.5) holds for a set F of infinite
logarithmic measure. The question how large the set F can be remains open.
It does not seem unlikely that this set is always small in some sense and that
there exists an unbounded set G such that T(r, /)~T(r, g) for reG.
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