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Summary

Currently, the main tool for the simulation of forming processes is the finite element
method. Unfortunately, for processes involving very large deformations, for instance
extrusion or forging, finite elements based on a Lagrangian description of the
kinematics are problematic. Results can become inaccurate and even lose their
physical meaning as a result of the distortion of the finite elements.

There are techniques available to avoid or reduce element distortion problems. The
essence of these techniques is to decouple the motion of the material from the motion of
the element mesh. Examples are ALE/Eulerian formulations or re-meshing strategies.
Nonetheless, a Lagrangian description of motion is often preferred. By expressing
the governing equations in material coordinates there is no need for numerical
convection schemes or mapping algorithms. Hence the drawbacks related to these
numerical schemes are of no concern. Besides, keeping track of the free boundary is
straightforward.

In the 1980s, a new group of numerical methods emerged. This group is entitled
meshless methods, and aims at avoiding problems related to the use of a mesh.
Whereas finite elements base their shape functions on elements, meshless methods
base their shape functions purely on nodal positions. Consequently, this nodal-based
approach does not restrict the relative motion of nodes by shape criteria related to
elements. The goal of the research as presented in this thesis is to develop a meshless
method for solving forming processes involving large deformations in a more efficient
manner than currently possible with finite elements.

The first step in this research was to select a single method for further development
out of the large number of methods that have been proposed in the course of
time. For this comparative study three meshless shape functions and two numerical
integration schemes to evaluate the weak form were selected. It can be concluded
that diffuse meshless shape functions, like moving least squares and local maximum
entropy approximations, are more accurate than simple linear interpolation upon a
Delaunay triangle. However, the computational effort for these two diffuse functions is
approximately a factor seven to fifteen higher than for the linear triangle interpolation.
Concerning the numerical integration of the weak form, the use of a Gaussian
integration scheme results either in volumetric locking or in instabilities. A nodal
integration scheme, on the contrary, performs very well. Volumetric locking is absent
and good accuracy is obtained on highly irregular nodal grids.
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Taking these two conclusions on shape functions and numerical integration into
consideration, the linear triangle interpolation in combination with a nodal integration
scheme was chosen for further development. For this combination, an extension to
large deformations was presented. The new method, named Adaptive Smoothed
Finite Elements (ASFEM), is based on a cloud of nodes following a Lagrangian
description of motion and a triangulation algorithm that sets up the connectivity
between these nodes for each increment. As a result of the nodal integration scheme,
the constitutive behaviour is evaluated at the nodal positions. The re-triangulation of
the cloud of nodes does therefore not require the mapping of state variables associated
with the material model.

A computer code incorporating an implementation of the ASFEM method was
developed and tested on the simulation of two forming processes. Firstly, the forging
of a steel circular rod was analysed. Since the deformations in this process are
large, but not as extreme as for instance for an extrusion problem, a finite element
simulation based on a Lagrangian formulation was performed of the same problem.
Close agreement is observed between the results of both methods. For the ASFEM
simulations, triangles with an optimal shape were generated for each increment. As a
result, it was shown that the triangulation of the ASFEM method is of better quality
than the finite element mesh. Secondly, the extrusion of a simplified aluminium
profile was simulated. After the simulation of the start-up phenomena, the ASFEM
simulation reached a ‘steady state’. The results at this state compare well to a
Eulerian finite element simulation. To conclude, for both processes large deformations
were simulated successfully without failure of the algorithm as a result of problems
related to the mesh.



Samenvatting

Tegenwoordig is de eindige-elementenmethode het voornaamste gereedschap om
een vormgevingsproces te simuleren. Echter, voor processen waarin zeer grote
vervormingen optreden, zoals het extrusie- of smeedproces, is het gebruik van eindige-
elementen in combinatie met een Lagrangiaanse beschrijving van de kinematica
problematisch. Door de vervorming van de eindige-elementen kunnen de resultaten
onnauwkeurig worden en zelfs hun fysische betekenis verliezen.

Er zijn methoden beschikbaar om het probleem van element vervorming te voorkomen
of te verminderen. De essentie van deze methoden is om de beweging van het materiaal
te ontkoppelen van de beweging van de elementen mesh. Voorbeelden hiervan zijn
Euleriaanse/ALE beschrijvingen en re-meshing strategieën. Desalniettemin wordt
aan een Lagrangiaanse beschrijving van de kinematica in veel gevallen de voorkeur
gegeven. Door de vergelijkingen uit te drukken in Lagrangiaanse coördinaten
zijn numerieke convectie- of mappingschema’s niet nodig en voorkomt men de
bijbehorende nadelen van deze algoritmen. Bovendien is de beschrijving van de vrije
rand in Lagrangiaanse coordinaten ongecompliceerd.

Omstreeks 1980 zijn ontwikkelingen begonnen betreffende een nieuwe groep van
numerieke methoden. Deze groep, bekend onder de naam ‘meshless methoden’, heeft
als doel het voorkomen van problemen die verband houden met het gebruik van een
mesh. Waar de shapefuncties in het geval van eindige-elementen zijn gebaseerd op
een mesh, zijn voor meshless methoden de shapefuncties uitsluitend gebaseerd op
de posities van de knooppunten. Deze knooppunt-gebaseerde beschrijving van het
continuüm legt geen restricties op aan de relatieve verplaatsing van knopen door
criteria, die zijn gerelateerd aan de kwaliteit van de mesh. Het doel van het in
dit proefschrift behandelde onderzoek is om een meshless methode te ontwikkelen,
waarmee grote vervormingen in een vormgevingsproces efficiënter kunnen worden
gesimuleerd dan thans mogelijk is met eindige-elementen.

De eerste stap van dit onderzoek betreft de selectie van een enkele methode
uit de talrijke meshless methoden die in de loop van de tijd zijn ontwikkeld.
Voor deze vergelijkende studie zijn drie meshless shapefuncties en twee numerieke
integratieschema’s bestudeerd. De eerste conclusie volgend uit dit onderzoek is dat
diffuse meshless shapefuncties, zoals moving least squares- en local maximum entropy
functies, een hogere nauwkeurigheid geven dan simpele lineaire interpolatie gebaseerd
op driehoeken. De twee eerstgenoemde functies vergen echter wel een factor 7 tot 15
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meer rekentijd dan de laatstgenoemde voor hetzelfde aantal knooppunten. De tweede
conclusie betreft de numerieke integratie van de zwakke formulering. Het gebruik
van een Gaussiaans integratieschema resulteert in locking verschijnselen of instabiele
resultaten. Een knooppunt-integratieschema daarentegen geeft goede resultaten,
volumetrische locking is afwezig en de nauwkeurigheid op irreguliere rasters is goed.

Op basis van deze twee conclusies betreffende shapefunctie en integratieschema is
de lineaire driehoeksinterpolatie in combinatie met het knooppunt-integratieschema
gekozen voor verdere ontwikkeling. Een extensie voor grote vervormingen is
ontwikkeld voor deze combinatie. De resulterende methode, genaamd Adaptive
Smoothed Finite Elements (ASFEM), gaat uit van een wolk van knopen die een
Lagrangiaanse beschrijving van de beweging volgt, alsmede een triangulatie algoritme,
waarmee de connectiviteit tussen de knopen voor iedere tijdstap opnieuw wordt
bepaald. Doordat het constitutief gedrag wordt geëvalueerd op de posities van
de knooppunten, kan de knopenwolk opnieuw worden getrianguleerd, zonder de
toestandsvariabelen van het materiaalmodel te projecteren op de nieuwe triangulatie.

Een computerprogramma met een implementatie van de methode is ontwikkeld en
getest op de simulatie van twee vormgevingsprocessen. Ten eerste is het smeden
van een rond stuk stalen staf gesimuleerd. Aangezien de vervormingen die optreden
bij dit proces niet dermate groot zijn zoals bijvoorbeeld bij een extrusieproces,
is een Lagrangiaanse FEM berekening van hetzelfde proces uitgevoerd. Beide
simulaties komen in grote mate met elkaar overeen. Voor elke tijdstap van de
ASFEM simulatie zijn driehoeken met een optimale vorm gegenereerd en als resultaat
hiervan is de kwaliteit van de ASFEM triangulatie beter dan de mesh van de
FEM simulatie. Ten tweede is het extruderen van een vereenvoudigd aluminium
profiel gesimuleerd. Enige tijd na het opstarten van de ASFEM simulatie wordt een
‘stationaire’ toestand bereikt. De resultaten van deze toestand komen goed overeen
met een Euleriaanse FEM berekening. Afsluitend kan er worden geconcludeerd dat
in beide vormgevingsprocessen grote vervormingen succesvol zijn gesimuleerd zonder
het falen van het algoritme door problemen gerelateerd aan het gebruik van een mesh.



Nomenclature

Roman

a vector of coefficients
d displacement degrees of freedom
e residual or error
e base vector
f volume force
g vector related to Lagrangian multpliers
h average nodal spacing
n normal vector on the boundary of the domain
m vector of volumetric operator
p polynomial base vector
r base vector
s location vector
t time
t traction force on a surface
u displacement vector
v velocity vector
x location vector

B strain-displacement matrix
C tangent of constitutive law
D rate of deformation
E Young’s modulus
F force vector
F deformation gradient
G matrix related to Lagrangian multipliers
K stiffness matrix
L velocity gradient
N displacement interpolation matrix
P regression matrix
R rotation tensor
S the boundary of a domain
S norm matrix
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x

T stress matrix
U,V displacement degrees of freedom
V volume
Vi volume accompanying node i
Vijk triangle spanned by node i, j and k
W work or energy
W spin tensor
X location vector

Greek

α α-shape parameter
β, γ, µ parameters to control the domain of influence
δ prefix for a virtual quantity
δij Kronecker delta
ε linear strain tensor
ϑ inf-sup value
κ stabilisation parameter
λ Eigenvalue
λ vector of Lagrangian multipliers or Eigenvalues
ν Poisson’s ratio
φi trial shape function of node i
ψi test shape function of node i
ξ, X location vectors
σ Cauchy stress tensor
τ time
ω kernel function

Γ boundary
∆ prefix for an incremental quantity
Π energy or potential
Ω the volume of a domain
ℜn n-dimensional space

Various

{. . .} definition of a set
{. . .} , [. . .] tensors in Voigt form

ã a is a prescribed quantity
ā a is an assumed quantity
â a is an transformed quantity
ȧ material time derivative of a

| restricted by
∥ . . . ∥ norm



Nomenclature xi

∈ element in set
∀ for all elements out of set
∅ an empty set
inf infimum
sup supremum
· single tensor contraction
: double tensor contraction
× tensor cross product

∇,−→∇ ,←−∇ spatial gradient operators
d(xa,xb) Euclidean distance between point xa and xb

Cn continuity of the n-th order
. . .T transpose
. . .int internal
. . .ext external
. . .eq equivalent
. . .dev deviatoric part
. . .vol volumetric part
. . .J related to the Jaumann rate
. . .stab related to stabilisation
Nnod number of nodes in the domain
tr(a) the trace of tensor a
diag[a] sum of the diagonal terms of a
a ⇚⇛ {a} a in tensor form is equivalent to a in Voigt form
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1

Introduction

Numerical simulation tools are becoming of crucial importance in the field of
engineering. The increase in computing power and the ever more advanced and
sophisticated mathematical models have stimulated their widespread use in all
disciplines of engineering.

In many cases, the term ‘numerical simulation tools’ can simply be replaced by the
term ‘finite elements’. The Finite Element Method (FEM) is a tool that is currently
being widely used for the simulation of engineering problems. First developments on
finite elements started in the 1940s though only in the 1980s, after the widespread
accessibility to computers, the full potential of the method could be exploited.

Since their introduction, various types of elements have been developed. Examples
are shell elements, thermal elements, solid elements, beams, bars, mixed elements
and many more. Because of their sound mathematical fundament, their results can
be trusted if used in a proper manner. The finite element method has proven to be a
valuable simulation tool for a large variety of forming processes and other problems
in solid mechanics. Various commercial software programs are available, aimed at
solving problems in a specific field, for instance in solid mechanics, fluid mechanics or
thermal mechanics.

1.1 Motivation

In the field of forming processes, finite element simulations are frequently performed in
order to gain valuable knowledge on the forming process at hand. The simulations can
help to design and optimise the forming process, with the aim of producing products
without defects and within required specifications.

Unfortunately, for forming processes involving very large deformations, the use
of finite elements in a Lagrangian formulation becomes less straightforward and
successful. Simulations such as extrusion or forging can be especially problematic
as a result of the large relative motions of Lagrangian material points. Imagine for
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instance the extrusion process in which the starting geometry of the process, a massive
round billet, is converted to a final geometry, a slender long profile. This change in
shape of the material can take place only if extreme deformations are applied to the
material. The main problem with finite elements in this case is that their performance
degrades if they become distorted. A quadrilateral element is most accurate if it is
square. Making it for instance trapezoidal, has a negative effect on the accuracy of
the results. Further distortion will eventually give nonphysical outcomes as a result of
singularities or other numerical artifacts originating from the element’s formulation.

There are techniques available to solve this drawback of finite elements, of which the
main point is to decouple the deformation of the material from the deformation of
the finite element mesh. So instead of ‘etching’ the mesh into the deforming material,
which is known as the Lagrangian formulation of motion, the motion of the mesh and
of the material are decoupled. A Eulerian or ALE (arbitrary Lagrangian-Eulerian)
description aims at preserving the quality of the elements by allowing material to flow
over element boundaries, similarly as in fluid mechanics. Another option is to simply
re-mesh the domain, either locally or globally, at certain time steps. For several
reasons, however, a Lagrangian description of motion is still preferred. Expressing
the governing equations in material coordinates allows for the easy incorporation
of arbitrary material models. Drawbacks of convection or mapping algorithms as
required for ALE or re-meshing strategies are absent. Besides, keeping track of the
free boundary is straightforward.

Since the 1980s a new group of methods has emerged under the name ‘meshless
methods’. The main idea of these methods is to avoid the use of a mesh completely,
such that issues related to mesh distortion are simply of no concern. The part to be
analysed is represented by a set of nodes and the interaction between these nodes is
not defined a priori by a set of interjacent elements. These interactions or, better said,
shape functions are based on the nodal positions only. There is no need for a user-
defined mesh to determine the connectivity between the nodes. With this nodal-based
definition of the shape functions, two neighbouring nodes can be connected initially,
while they can be far apart and not connected at a later stage of the simulation.
Since finite elements base their shape functions upon a mesh which is constructed a
priori, nodes remain connected irrespective of their current position. This element-
based approach leads to the distortion problem as discussed previously. Hence, the
nodal-based formulation, which does not constrain the relative motion of nodes by
means of a shape quality criterion, is expected to be better suited for solving problems
involving very large deformations.

Several forming processes involving the simulation of very large deformations can
benefit from meshless or nodal-based methods. Examples of these processes are
forging, extrusion, injection moulding, backward extrusion, cutting, rolling and
friction stir-welding. Hence there is a large potential for a numerical method which
simulates these type of processes efficiently.
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1.2 Objective

The amount of deformation that can be simulated in a forming process in a Lagrangian
formulation is restricted by limitations related to the numerical method used. The
goal of the research as presented in this thesis is to develop a meshless or nodal-based
method aimed at solving large deformations more efficiently than currently possible
with finite elements. Not only is a good accuracy and a low computational cost
of importance in order to make a meshless method efficient, but also the amount
of deformation that can be simulated, the ease with which a model can be created
(pre-processing) and the flexibility of the method in adaptive strategies (for instance
in h-refinement) requires attention. Besides these practical demands, two other
requirements need a closer look in order to develop a method that can be applied
successfully in the simulation of forming processes.

Firstly, the forming of a product usually involves the nearly incompressible plastic
flow of the material. In order to obtain physical results for this case, the developed
method should be free of volumetric locking. Methods that suffer from volumetric
locking are of no use for the simulation of plastic flow, and hence they are not suited
for the simulation of most forming processes.

Secondly, the process time of the processes of interest are of such duration that terms
related to the dynamics of the process can be neglected. An implicit time integration
scheme is therefore the most sensible choice for the discretisation of time. As a
consequence of this choice, it should be possible to extract a good linearisation of the
force vector for this method in order to obtain convergence in a Newton–Raphson
procedure.

1.3 Outline

Firstly, Chapter 2 of this thesis will present a general introduction to meshless
methods. An overview of meshless methods will be given and the ‘building blocks’ of
the methods will be explained by their basic formulations. After this introduction it
will become clear that there are many meshless methods, and choosing the method
that is most suited for the simulation of forming processes is not trivial. Therefore
Chapter 3 will present a study which is aimed at selecting only one meshless method
from the large number of meshless methods available. The presented research focuses
on aspects of the method that are of relevance to the simulation of forming processes.
The method that is selected for further development requires a stabilisation, for
which a new strategy is proposed in Chapter 4. Whereas all previous developments
were formulated for small deformations, Chapter 5 presents an extension to large
deformations by using an updated Lagrangian formulation. The resulting method is
entitled ASFEM and its formulations required for implementation into a computer
code will be presented. Thereafter a set of small tests is performed in order to prove
the validity of the newly proposed method. Finally, the applicability of the method
in forming processes is investigated by simulating a forging and extrusion process in
Chapter 6.



4

1.4 Notation

This thesis uses the notation and the accompanying symbols from various fields of
research. For the majority of the formulas as presented in this thesis, the notation
used will correspond to the commonly used notation from the originating discipline.
However, for clarity and to avoid confusion, some remarks on the notation used are
given below.

In more mathematically oriented finite element literature, an approximated field is
usually denoted with the subscript ‘h’. In this thesis, this subscript will not be used.
An approximated displacement field is for instance simply given by u and not by
uh. If it concerns an exact field, the subscript ‘exact’ will be added. The exact
displacement field is for example denoted by uexact.

Tensors are always printed bold. A first order tensor is a bold letter of normal size.
A second or higher order tensor is denoted with a bold capital letter. A tensor in
between curly brackets { } or straight brackets [ ] is in Voigt form. See Appendix A
for details on the difference between tensor and Voigt notation. Note that sets will
be defined by curly brackets as well. From the context it will be clear whether a set
or a tensor in Voigt form is meant.

In order to avoid the use of many symbols which are all related to the same object,
one symbol will be used. The symbol Ω, for instance, can refer to the volume of a
domain (a scalar quantity), the integration boundaries of a volume integral, or the
set of points contained in a volume. From the context it will be clear what is meant.
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An Introduction to Meshless

Methods

2.1 Introduction

In this chapter, the main properties and formulations of meshless methods will be
presented and explained so that the reader is familiar with meshless concepts, which
will appear later on in this thesis. Moreover, both a chronological as well as a
categorial overview of meshless methods will be given in order to provide a view on
the current state of the meshless techniques. Firstly, however, some basic questions
regarding meshless methods will be answered. Several definitions are given in order
to pinpoint the case in which a numerical method can be called a meshless method.
Secondly, the most interesting properties of meshless methods are given which have
motivated the research in this field for the last two decades.

This chapter is structured as follows. The basic aspects of meshless methods will be
discussed in this section. The categorial and chronological overview of developments in
the meshless field is given in Section 2.2. The main constituents of meshless methods
and their accompanying formulations will be given in Sections 2.3, 2.4 and 2.5. This
chapter will end with a closure and discussion in Section 2.6.

2.1.1 What is a Meshless Method?

Various definitions are given in literature which try to answer this question. Most of
these definitions refer to the use of a mesh and the position of nodes in space. A node
is a point in space where the independent degrees of freedom are evaluated. A mesh
is a set of geometrical shapes, for instance triangles, quadrilaterals or tetrahedra, of
which the vertices coincide with the nodal positions. See Figure 2.1 for a graphical
representation of these two mathematical concepts.

5
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(a) a cloud of nodes (b) a mesh

Figure 2.1: An illustration of the two main mathematical objects used for numerical
strategies in computational continuum mechanics.

A first definition that is most trivial to define when reading the name ‘meshless
method’ is:

A meshless method is a method that does not depend on a mesh at all.

Although this definition seems to fit the term ‘meshless’ accurately, the definition is
very stringent and many methods that are generally regarded as meshless methods
do not meet this definition. Methods that do meet this definition are known by the
name of ‘truly’ meshless methods. When compared to the complete set of meshless
methods, this group is relatively small. Only a few methods operate without a mesh
at all.

A broader definition is given by Idelsohn et al. [71]. Their definition is based on the
two mathematical concepts of shape functions and nodes, where the first refers to a
function used to approximate a field quantity. Their definition is as follows:

A meshless method is a method in which the shape functions only depend
on nodal positions.

The first thing that is apparent from the definition of Idelsohn et al. is that it refers
only to the shape functions, not to any other component of the method. This can
imply that a mesh can be used, as long as it is not used to construct shape functions.
Clearly, this can be somewhat confusing since this means that a meshless method that
conforms to this definition can still use a mesh. Many meshless methods nowadays
operate in this manner. The shape functions are not defined upon a mesh, but other
routines of the method, for instance the numerical integration, are based on a mesh.
Typically, this mesh should be supplied by the user.

Several meshless methods that are of interest when simulating large deformations do
not use a user-defined mesh since this mesh can get distorted easily. This subgroup
of meshless methods conform to the following definition:
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A meshless method is a method in which the interactions of nodes only
depend on their positions.

The idea here is that there can be a mesh, as long as it is not a fixed mesh generated
by the user. A cloud of nodes is sufficient for the meshless method, and the way in
which these nodes mutually interact is up to the method, leaving the question open
as to whether there is a mesh to compute these interactions or not. As a result,
the name meshless methods does not fit this definition well. Since the formulation
of these methods is strongly dependent on the concept of nodes, the name ‘nodal-
based methods’ would be more suitable. Finite elements, for example, clearly do not
meet this definition. For a finite element simulation, the interaction between nodes is
element-based. Not only a cloud of nodes is required, but also a list of connectivity
which defines the elements.

To conclude, there is no unique definition which defines the group of meshless methods.
However, it can be stated that in general the number of meshless methods is much
larger than one may expect from the name meshless methods.

2.1.2 Why use a Meshless Method?

The first method that was regarded as a meshless method was developed in the
1980s. Since then, this group of methods has drawn considerable attention and many
new methods have been proposed. The number of meshless methods is vast and
developments are still ongoing. Below, four of the most interesting properties are
given which have motivated the research in this field for the last three decades.

Firstly, the results obtained with meshless methods are less mesh dependent than
results obtained for instance with finite elements. For this reason, meshless methods
have attracted much attention, especially for the simulation of localised phenomena.
Examples are crack analysis and the development of shearbands. The path along
which the crack or shearband develops should be as independent of the numerical
approximation as possible. The amount of literature on this topic is extensive. One
of the first developments in the field can be found in Belytschko et al. [19].

Secondly, large deformations can be simulated more easily since the shape functions
are not defined upon a mesh or at least not upon a fixed mesh. Numerical artifacts
such as element distortion or element entanglement, as occur with finite elements,
are of lesser concern. Meshless methods become especially beneficial for simulations
in which material points move non-uniformly with large displacements relative
to neighbouring points. Examples can be found for instance in hydrodynamical
problems, such as the sloshing of water or a wave rolling onto the beach. Other
problems in this category are explosive problems such as bullets hitting armour,
or birds impacting an airplane. For forming processes, research has been mainly
restricted to bulk forming processes. Examples are extrusion, forging and upsetting.
An overview of literature and accompanying references on the topic of meshless
methods and large deformations will be given in Section 2.2.

Higher-order approximants can be constructed with relative ease for some meshless
methods. Increasing the order of the approximation is straightforward. For instance,
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the analysis of shell structures can be simulated with simpler formulations. The
amount of publications on this topic is limited. One of the first developments in the
field is by Krysl and Belytschko [73].

2.2 An Overview of Meshless Methods

This section gives an overview of the major developments in the field of meshless
methods. Firstly a chronological overview of the major developments will be
presented. Thereafter an overview on developments of meshless methods in the field
of forming processes will be presented. Finally a categorial overview of meshless
methods will be given. This overview will be used in the sections thereafter in order
to explain the basic concepts and formulations of meshless methods.

2.2.1 A General Overview

The method of Smooth Particle Hydrodynamics (SPH) is regarded as the first
meshless method. Proposed in 1977 by Lucy [91], the method was initially intended
for use in astrophysical problems. However, Monaghan [92] showed in 1988 that the
method can also be used for the simulation of fluids. Especially the simulation of
highly transient fluid dynamical problems suits the method well. The application of
the method in solid mechanics, on the other hand, is limited by two drawbacks, which
are low accuracy and the lack of stability. The first drawback of the method is not
easily remedied, and therefore the most simple cure is to simply use many smooth
particles. On the second drawback, the instability, much research has been performed.
Studies and modifications have been proposed for instance by Dyka and Ingel [47],
Swegle et al. [117], Morris [94], Hicks et al. [62] and Monaghan [93]. Besides these
two drawbacks, a major advantage of the method is its low computational cost.

The concept of the method of smooth particle hydrodynamics is appealing as a result
of its simplicity and ability to handle large deformations easily. Over time, several
methods have been proposed based on this concept, but with modifications in order
to get better stability or accuracy. An example is the Reproducing Kernel Particle
Method (RKPM) by Liu et al. [89]. Much research has been undertaken to improve
this method and to apply it on the simulation of large deformations in solids, for
instance by Liu et al. [86–88] and Aluru [6]. The method of Corrected Smoothed
Particle Hydrodynamics (CSPH) was proposed by Bonet et al. [21, 22] and tries to
solve similar deficiencies of the method of smooth particle hydrodynamics in order to
get good performance in solid mechanics.

The methods that were discussed above can be regarded as ‘truly’ meshless methods.
The methods do not use a mesh, neither for their shape functions, nor for numerical
integration purposes. However, many meshless methods do not fall into this category,
and use a mesh, mostly for the purpose of numerical integration. The first method
in this category is the Diffuse Element Method (DEM) by Nayroles et al. [95]. Note
that the method should not be confused with the Discrete Element Method, which
has the same abbreviation. The diffuse element method uses shape functions which
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are comparable to the functions as used for the method of SPH, but requires a user-
defined mesh for numerical integration. The concept of the diffuse element method
was modified by Belytschko et al. [18] and was named the element-free Galerkin
method (EFG). Compared to SPH, these methods offer good accuracy and stability,
but are complex and computationally expensive. Whereas the method of SPH finds
its applications in fluid mechanics, the methods of DEM and EFG are more oriented
to solid mechanics. The amount of publications on the element-free Galerkin method
is vast. Especially the numerical integration of the equations has attracted much
attention, for instance by Beissel and Belytschko [15], Dolbow and Belytschko [43],
Kwon et al. [77], Chen et al. [33] and Puso et al. [101]. Nevertheless, accurate and
cost-effective numerical integration remains an outstanding topic. Since numerical
integration closely relates to volumetric locking, much research has been done on this
topic, for example by Dolbow and Belytschko [44], Askes et al. [10], Vidal et al. [122],
Huerta et al. [65] and Recio et al. [107, 108]. Two methods that share similarities to
the methods of DEM and EFG are the Point Interpolation Method (PIM) by Liu and
Gu [83] and the Meshless Local Petrov Galerkin Method (MLPG) by Atluri and Zhu
[12].

Whereas the methods of DEM and EFG usually use a fixed user-defined mesh, the
Natural Element Method (NEM), as proposed by Traversoni [120], uses a computer
generated mesh. Based upon this mesh, natural elements are defined which share
similarities with finite elements. Various developments have been made, for instance
by Braun and Sambridge [25], Sukumar et al. [113, 114] and Cueto et al. [37].

The Particle Finite Element Method (PFEM), as proposed by Idelsohn et al. [71],
can be positioned in the same category as the the natural element method. Very
similarly, a computer generated mesh is used to construct shape functions. Some
developments have followed thereafter, for example by Idelsohn et al. [69, 70]. The
field of applications is similar to that of the method of smooth particle hydrodynamics.

One of the latest developments in the field of meshless methods is the maximum
entropy approximation (max-ent). The first method to use a maximum entropy
principle in computational continuum mechanics is the method of max-ent polygonal
interpolants by Sukumar [112]. Thereafter, Arroyo and Ortiz [9] proposed the
local maximum entropy (local max-ent) approximation, which offers some interesting
properties for the simulation of solids. Further developments in the field have been
done by Sukumar and Wright [115] and Ortiz et al. [98, 99], among others. A high
order max-ent method for accurate simulations in solid mechanics was developed by
González et al. [55]. The same numerical integration issues exist as for the method
of EFG and DEM.

An overview of the meshless developments is presented in Table 2.1 in chronological
order. The table displays the name of the method, the abbreviation of the name to
which it is referred in literature, the year in which the method was proposed and the
authors who proposed the method. Several meshless methods other than the methods
mentioned previously have been added to the table for completeness, but will not be
discussed elsewhere in this chapter.

For the interested reader, several reviews on meshless methods can be found in
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literature. Reviews on SPH, DEM, RKPM and EFG which are the typical ‘diffuse’
meshless methods are given in Li and Liu [80], Huerta et al. [64], Duarte [45], Babuŝka
et al. [13] and Belytschko et al. [16]. An overview of developments for NEM is given
by Cueto et al. [37]. Books that discuss meshless methods are Liu [82], Li and Liu
[81] and Zienkewicz and Taylor [131] among others.
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2.2.2 Forming Processes and Meshless Methods

One of the main motivations for using a meshless method, is that meshless methods are
in general well suited to simulate large deformations. Hence, these methods have been
applied to simulate forming processes and as a result the field of meshless methods
in forming processes is not blank. Table 2.2 presents a short overview of various
developments in this field. It must be noted however, that although developments have
taken place, the application of meshless methods in practical problems as encountered
in industry is limited and not comparable with the current state of the art on finite
elements for instance. A method that is currently increasingly more popular is the
method of SPH which appears to perform successful in the simulation of highly
transient problems in fluid dynamics.

Table 2.2: An overview of literature on meshless methods in forming processes.
process method reference
upsetting, forging CSPH Bonet and Kulasegaram [21]
forging, upsetting RKPM Chen et al. [29, 31]
rolling RKPM Shangwu et al. [110]
forging, backward extrusion RKPM Wang et al. [124]
rolling, forging, backward
extrusion

RKPM Xiong et al. [126–128]

extrusion RKPM Yoon and Chen [130]
forging, backward extrusion EFG Li and Belytschko [79]
forging EFG Guedes et al. [58]
backward extrusion EFG Guo and Nakanishi [61]
upsetting SPH/EFG Kwon et al. [76, 78]
cutting, mould filling NEM Cueto et al. [37]
extrusion NEM Alfaro et al. [1, 3–5], Filice

et al. [51]
friction stir welding NEM Alfaro et al. [2]
resin transfer moulding NEM Garćıa et al. [52]
forging, backward extrusion PIM Hu et al. [63]
extrusion SPH/EFG Quak et al. [106]

2.2.3 A Categorial Overview

As stated previously, there are a vast number of meshless methods and it can be
difficult to identify the points on which the methods differ. Sometimes methods
do not even differ under certain assumptions. In order to explain and present the
main aspects and formulations of meshless methods, a categorisation will be made by
isolating the components of which a meshless method consist. For this categorisation,
a method will be subdivided in three components. Any of the meshless method
as given previously can be decomposed in these three essential features. A short
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introduction to each of these three components will be given below. Figure 2.2 gives
an illustration of the categorisation.

shape functions equilibrium boundary conditions

∑
F = mv̇

Figure 2.2: The main components of a meshless method.

The shape function is typically the most characteristic component of a meshless
method. Somehow, the infinite space containing all possible solutions is decreased
to a space of finite size which can be solved by a computer. Shape functions are
a tool for making an approximated displacement field by using a select number of
degrees of freedom, thereby creating a space of finite dimension. There are numerous
ways to construct shape functions and the most interesting techniques will be given
in Section 2.3.

Secondly, Newton’s second law should hold in the domain. For continuum mechanics,
this law results in a partial differential equation. A strategy has to be chosen in
order to enforce the equation on the domain. Some commonly used techniques will
be described in Section 2.4.

Finally, boundary conditions should be applied. This might appear trivial for readers
familiar with finite element analysis, but for many meshless methods this is not the
case. Because of the definition of the shape function, special strategies have to be
adopted to enforce prescribed displacements on the boundary of the body. The three
most commonly used techniques will be discussed in Section 2.5.

An overview of the methods that will be presented in the following sections is given
in Figure 2.3.

2.3 Discretisation of Space

In this section, various techniques for constructing meshless shape functions will
be discussed. This section is organised as follows. Firstly, in Section 2.3.1,
general definitions of commonly used symbols are given. Secondly, in Section 2.3.2,
the purpose of a shape function is briefly explained. Section 2.3.3 will discuss
required or beneficial conditions for the construction of shape functions. In all the
succeeding sections, the most commonly used techniques for constructing meshless
shape functions will be presented (Section 2.3.4 to 2.3.9). For illustrative purposes,
two commonly used finite element shape functions will be given in Section 2.3.10.
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moving least-squares

corrected convolution

diffuse approximants

point collocation

subdomain collocation

strong forms

weak forms

Galerkin

Petrov-Galerkin

continuous least-squares

transformation method

Lagrange multipliers

penalty method

natural neighbour based

direct imposition

pointwise least-squares

maximum entropy

linear regression

convolution

Sibsonian

Laplacian

shape functions equilibrium boundary conditions

Figure 2.3: A categoric overview of meshless methods.

2.3.1 Preliminary Definitions

Figure 2.4 shows a body in space. Vectors x and ξ contain the locations of arbitrary
points in the body. Vector xi points to a node. The set Γ contains all points on the
boundary. The subsets Γu and Γt contain all points out of Γ that have a prescribed
displacement or a prescribed traction respectively. Vectors ũ and t̃ contain the
prescribed quantities corresponding to the subsets Γu and Γt respectively. All points
in the body are contained in set Ω. The outward normal on Γ is given by vector n.
Note that symbols Γ and Ω will also be used to indicate the boundaries of an integral,
in the case of surface or volume integration respectively.

2.3.2 The Purpose of a Shape Function

Assume a space of points x, an approximated displacement field u(x) and a field
of displacement degrees of freedom d(x). In the case of no shape function, a set of
degrees of freedom d(x) has to be computed for every point x of the displacement
field u(x). For the complete body Ω, which contains an infinite number of points, this
requires solving an infinite number of degrees of freedom, which is clearly impossible.
Instead, the total field u(x) is approximated by a finite set of degrees of freedom
which are multiplied by a set of yet to be defined shape functions. As a result, the
degrees of freedom are not required for every point, but only for a small set of specific
points, also known as nodes xi. The resulting system is of finite size and can be solved
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x

y

x

xi

Γu

Γt

Γ

n

t̃

ũ

ξ

Ω

Figure 2.4: Some preliminary definitions on the used symbols.

by a computer. The approximated displacement field is defined as:

u(x) =

Nnod∑

i=1

φi(x)di (2.1)

where the total number of nodes in the domain is Nnod and the shape function of node
i is given by φi(x). The displacement degrees of freedom at point xi, are contained
in vector di. This vector is defined in 2D as follows:

di =
{
dix diy

}T
(2.2)

where subscripts x and y denote the directions. Note that in some of the following
derivations, the degrees of freedom are expressed as a function of the coordinates.
This is denoted by vector d(x), which contains the degrees of freedom of an arbitrary
point x. Similarly as in Equation (2.2), vector d(x) is defined as:

d(x) =
{
dx(x) dy(x)

}T
(2.3)

2.3.3 Properties of Shape Functions

Unfortunately, not all shape functions φ(x) that one can think of are of good use
for solving a partial differential equation. There are properties, either compulsory
or beneficial, which are of concern when defining a shape function. The first two
conditions that will be discussed below are obligatory. The third condition is not
obligatory, though it will be shown that meeting this condition simplifies the resulting
method considerably.
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Continuity

The term continuity is used to express the smoothness of a function. If the derivatives
to the n-th order of a function φ are continuous, the function possesses Cn continuity.
In formula form this is stated as:

if lim
x→ξ

∂nφ(x)

∂xn
=
∂nφ(ξ)

∂ξn
∀ ξ ∈ Ω then φ(x) is Cn (2.4)

The derivatives to the n-th order of function φ should be single valued for all points ξ
in the domain Ω. For instance: the first derivative of a C1 function is continuous for
all points in the domain. The second derivative of this function is not continuous. An
illustration of the concept of continuity is given in Figure 2.5. Demands on the order
of continuity of a shape function arise from the method that is used to discretise the
partial differential equation. See Section 2.4 for these methods.

x

φ(x)

x

∇φ(x)

Figure 2.5: An illustration of the order of continuity (function φ(x) is C0).

Reproducibility

The reproducibility of an approximated displacement field is the ability of this field
to reproduce polynomials. For problems in computational solid mechanics, the
conditions of zeroth and first order reproducibility are usually of concern. These
conditions are defined as follows:

Nnod∑

i=1

φi(x) = 1 ∀ x ∈ Ω (2.5)

Nnod∑

i=1

φi(x)xi = x ∀ x ∈ Ω (2.6)

Equation (2.5) is the zeroth order reproducibility condition. If this condition is
satisfied, rigid body modes of the domain can be simulated without introducing strain
in the body. Note that this condition is also known as the partition of unity. The
condition of first order reproducibility is given in Equation (2.6). The shape functions
should reproduce a linear polynomial field exactly if the condition is to hold. The
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patch test is a commonly used test to examine this condition. In general, problems
can be expected if Equations (2.5) and (2.6) are not satisfied. Note that Equations
(2.5) and (2.6) are also referred to as the consistency conditions or the completeness
conditions.

Kronecker delta Property

The Kronecker delta property is especially of interest when displacement boundary
conditions need to be prescribed. The condition is defined as:

φi(xj) =

{
1 for i = j
0 for i ̸= j

(2.7)

The value of a shape function belonging to node i is 1 at the position of this node
and is zero on all other nodes. As a result, the Kronecker delta property forces the
shape functions to have an interpolative, local character. Shape functions that do
not meet this requirement will be referred to as diffuse, non-local shape functions.
These functions overlap neighbouring nodes, thus invalidating the Kronecker delta
property. If the Kronecker delta property is satisfied, as is the case for interpolants,
prescribed boundary displacements can be easily applied. For diffuse approximations
this is not the case and a special method has to be adopted to enforce these prescribed
displacements. Section 2.5 will explain this topic in more detail.

1

0

x

φ(x)

(a) a function satisfying Equation
(2.7)

1

0
x

φ(x)

(b) a function not satisfying
Equation (2.7)

Figure 2.6: An illustration of the Kronecker delta property.

2.3.4 Convolution

The convolution technique was introduced in the first meshless method; namely the
method of smooth particle hydrodynamics by Lucy [91]. The convolution integral
constructs a smooth approximating displacement field u(x) by multiplying a window
function with the displacement degrees of freedom and integrating the result over the
domain. This is stated in formula form as follows:

u(x) =

∫

Ω

ω (x− ξ, γ)d(ξ) dΩ (2.8)
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where ξ is a coordinate over which the integration is carried out, Ω is the domain, γ is
a parameter that controls the domain of influence or footprint of the kernel function
ω and d(ξ) contains the degrees of freedom at point ξ.

Equation (2.8) states that the displacement at a certain fixed point x, is assumed to
be a function of the displacement degrees of freedom of the surrounding points ξ. As
a result of the kernel function, the approximated displacement field u is a smooth
version of the field of degrees of freedom d. As an illustration: by choosing a Dirac
delta function as kernel function ω, there is no smoothing effect of the convolution
integral, and therefore d(x) is equal to u(x). Note that ω is also referred to in
literature as window, weigh or weighting function. Appendix B gives some commonly
used kernel functions as found in literature.
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0.5 1

0

0.2

0.4

0.6

0.8

1

ω
(s

i
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si

(a) a cubic spline kernel function

h

βi = γi · h
si

xi

(b) a regular grid of nodes

Figure 2.7: An illustration of kernel function ω generated on a grid of nodes.

In Equation (2.8), vector d(ξ) contains the degrees of freedom which are required at
each point ξ. In order to have a set of degrees of freedom which is not of infinite size,
only at the nodal positions xi, d will be defined. Equation (2.8) is approximated as
follows:

u(x) =

Nnod∑

i=1

ω (x− xi, γi)diΩi (2.9)

where γi determines the domain of influence for kernel function ωi(x), Nnod is the
number of nodes in the domain and Ωi is a volume associated with node i. The shape
function φi(x), as defined in Equation (2.1) can now be expressed as:

φi(x) = ω (x− ξi, γi) Ωi (2.10)

The kernel function ω is generated on a dimensionless coordinate si as follows:

ω (x− ξi, γi) = w(si) (2.11)

where si =
∥x− ξi∥

βi
=
∥x− ξi∥
γi · h

(2.12)
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where parameter βi is an absolute measure of the footprint or domain of influence of
the kernel function of node i. It is a product of the user-set parameter γi and the
nodal spacing h such that an absolute value for the size of the footprint is obtained.
Figure 2.7 gives an example of a cubic spline kernel function being generated on a
regular grid of nodes. Figure 2.8 shows the shape function made with that same
spline function in 2D. The shape function of the node in the centre of the grid is
plotted. Note that the order of continuity of the shape function is equal to the order
of continuity of the used kernel function ω.

A benefit of shape functions constructed with the convolution integral is their low
computational cost. However, there are drawbacks to these functions, which is why
they are less preferred in continuum mechanics. Firstly, the zeroth and first order
reproducibility condition are usually not met, especially at the boundary of the
domain. The patch test is therefore not satisfied and strain can be predicted in rigid
body modes. Secondly, the Kronecker delta property is not met, which complicates the
prescription of displacement degrees of freedom at the boundary. Section 2.5 explains
the consequence of not meeting the Kronecker-Delta property and gives methods that
are used to enforce boundary conditions for this case.

(a) a regular grid of nodes (b) a convoluted spline

Figure 2.8: A convolution shape function.

2.3.5 Corrected Convolution

Improvements of the convolution integral have been proposed in order to overcome
the lack of reproducibility. The main point of these improvements is to introduce a
function C which is defined such that constant and linear polynomials are reproduced.
In formula form:

u(x) =

Nnod∑

i=1

C(x,xi)ω (x− xi, γi) Ωidi (2.13)

where C(x,xi) is a function that will be defined such that the reproducibility
conditions are met. The resulting shape function is:

φi(x) = C(x,xi)ω(x− xi, γi)Ωi (2.14)
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where coefficient C(x,xi) is computed by considering:

for fixed x find C(x,xi)

such that

Nnod∑

i=1

φi(x) = 1 (2.15)

and

Nnod∑

i=1

φi(x)xi = x

Shape functions of this type are found for instance in the method of corrected smooth
particle hydrodynamics by Bonet and Kulasegaram [21] or the reproducing kernel
particle method by Liu et al. [89]. Computational effort is required to evaluate
C(x,xi). Although the modified function reproduces constant and linear polynomials,
the Kronecker delta property is not met.

2.3.6 Moving Least Squares

Moving least squares approximations were firstly introduced in the field of
computational solid mechanics by means of the diffuse element method by Nayroles
et al. [95]. Since then, the strategy has been adopted in the element-free Galerkin
method by Belytschko et al. [18] and the meshless local Petrov–Galerkin method by
Atluri and Zhu [12]. On some occasions, the MLS shape functions are also found in
the reproducing kernel particle method, the natural element method or the method
of smooth particle hydrodynamics.

The starting point of the moving least squares approximation is the assumption that
the displacement field can be described locally by a polynomial multiplied by a set of
coefficients:

u(x, ξ) = p(ξ)Ta(x) (2.16)

where p(ξ) is a vector containing the components of a polynomial basis at the point
ξ and a(x) is the corresponding set of coefficients at point x. Equation (2.16) states
that the displacement at a fixed point x is determined by a polynomial basis in ξ

times a set of parameters which are defined for that point x. Polynomials of required
order can be included in vector p(ξ). An example of a simple linear polynomial field
and its coefficients in 2D are:

p(ξ) =
{

1 ξ η
}T

(2.17)

a(x) =
{
ao(x) a1(x) a2(x)

}T
(2.18)

The parameters a(x) belonging to the polynomial basis p(ξ) are found by minimising
a potential expressing the residual between the approximated displacement field and
the nodal displacements di, similarly to a ‘normal’ least squares fit:

Πmls(x) =

∫

Ω

ω(x− ξ, γ)
(
dx(ξ)− p(ξ)Ta(x)

)2
dΩ (2.19)
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where ω is a similar kernel function as used in Section 2.3.4. Appendix B gives several
example kernel functions.

There are two significant differences that make Equation (2.19) not a standard least
squares fit. Firstly, kernel function ω varies throughout the domain. Secondly,
coefficients a(x) are also allowed to vary throughout the domain, hence the name
‘moving’ in moving least squares. In order to compute the polynomial coefficients,
one has to specify the coordinates at which these coefficients should be obtained.
Now, instead of having an infinite set of degrees of freedom d for all points ξ, the set
is limited to only the nodal degrees of freedom di:

Πmls(x) =

Nnod∑

i=1

ω(x− xi, γi)
(
dix − p(xi)

Ta(x)
)2

Ωi (2.20)

where Ωi is usually omitted. In order to obtain coefficients a(x), the potential Πmls(x)
is minimised with respect to parameters a(x):

for fixed x find min
a(x)

Πmls (2.21)

Substitution of the coefficients a(x) for which the potential Πmls is at its minimum into
Equation (2.16) gives an expression for φ(x). The minimisation of Equation (2.21)
must be performed for location x at which the shape function values or gradients are
required.

The main benefit of shape functions constructed with the MLS technique is that
continuity and reproducibility can be of arbitrary order. The order of continuity
depends on the kernel function ω. If ω has for instance a continuity of C2, φ has a
continuity of C2. The reproducibility of the functions depends on the order of the
polynomial basis p(ξ). Figure 2.9 shows a MLS shape function for two settings of
γ. Using a high γ results in a diffuse approximation and setting γ low drives the
MLS function towards interpolation. A drawback of the shape functions is that the
Kronecker delta property is not satisfied. A second drawback is that the minimisation
of Equation (2.21) is computationally demanding.

(a) γ = 2.0 (b) γ = 1.5

Figure 2.9: A MLS shape function for various settings of γ.
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2.3.7 Linear Regression

Linear regression is a technique, that, similarly as for the convolution integral or the
least squares method, can be used to fit a field through a set of nodal values. The
point interpolation method as developed by Liu and Gu [83] uses this linear regression
to construct the shape functions. The starting formulation is very similar to that of
the method of moving least squares.

Firstly, a potential is constructed which describes the error between the field of degrees
of freedom d(ξ) and a polynomial space:

Πreg(x, ξ) = ω(x− ξ, γ)
(
dx(ξ)− p(ξ)Ta(x)

)
(2.22)

where p and a are given in Equations (2.17) and (2.18) respectively. Kernel function
ω is defined as follows:

ω(x− ξ, γ) =

{
1 for ∥x− ξ∥ ≤ γ
0 for ∥x− ξ∥ > γ

(2.23)

where γ is a parameter controlling the number of points ξ in the neighbourhood of x
that contribute to the potential Πreg for a fixed point x. The estimated displacement
at a point x is determined by considering Equation (2.22) only at the nodal locations:

Πreg(x,xi) = ω(x− xi, γi)
(
dix − p(xi)

Ta(x)
)

for i = 1...Nnod (2.24)

A set of parameters a(x) is sought for which Πreg is zero:

for fixed x find a(x) (2.25)

subject to Πreg(x,xi) = 0

Shape functions made with a linear regression satisfy the Kronecker delta property
and the reproducibility conditions. A major drawback, however, is that a unique set
of shape functions is not always obtained. An enhanced version of the linear regression
was proposed in the method of Radial Point Interpolation Method (RPIM) by Wang
and Liu [125]. These improved shape functions do not suffer from the non-uniqueness
issue. Figure 2.10 shows this shape function.

Figure 2.10: A shape function made with a linear regression.
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2.3.8 Local Maximum Entropy

The local maximum entropy approximation as proposed by Arroyo and Ortiz [9]
is derived differently than the shape functions described previously. Instead of for
instance least squares fitting, information theoretic principles are used to construct
the shape functions. The main point of the method is the assumption that there is
a variable φ, which expresses the probability of a nodal value holding at any other
arbitrary point in space. This probability distribution, which has yet to be defined,
is used to approximate the displacement field. A discrete potential containing both
an entropy term related to the probability and a potential expressing the locality of
the probability distribution is constructed. This potential is formulated as:

Πlme = βU(x,φ)−H(φ) (2.26)

with the Shannon entropy H defined as:

H(φ) =

Nnod∑

i=1

φi ln (φi) (2.27)

and the locality function:

U(x,φ) =

Nnod∑

i=1

φi · ∥x− xi∥2 (2.28)

In the potential Πlme, the parameter β is used to control the compactness of the
approximation. This parameter is related to the average spacing of nodes h and the
domain of influence parameter µ as follows:

β =
µ

h2
(2.29)

By setting µ high or low, either compact or diffuse shape functions respectively can be
obtained. The probability distribution φ or, similarly, the shape functions are found
by minimising Equation (2.26):

for fixed x find min
φi(x)

Πlme

subject to

Nnod∑

i=1

φi(x) = 1 (2.30)

Nnod∑

i=1

φi(x)xi = x

This minimisation is constrained by Equations (2.5) and (2.6) such that the zeroth and
first order reproducibility conditions are satisfied. For a detailed description of the
minimisation the reader is referred to Arroyo and Ortiz [9]. Figure 2.11 shows a local
maximum entropy shape function for two settings of µ. If µ is moved towards infinity,
the local maximum entropy shape function are identical to linear interpolation upon
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a Delaunay triangulation. Note that for degenerate cases, for instance if four nodes
are positioned in a perfect square, the triangle interpolation and the local maximum
entropy functions are not equal. For a low setting of µ, the local maximum entropy
is very similar to the moving least squares function.

An interesting aspect of local maximum entropy shape functions is their behaviour
at the boundary. The convex hull of a cloud of nodes consists of all nodes which lie
on a convex polygon enclosing the body Ω. Shape functions of nodes on this convex
hull possess the Kronecker delta property. Shape functions of internal nodes have a
value of zero at the convex hull of the domain. Nevertheless, this local behaviour
at the boundary does not prevent the shape functions from being diffuse internally.
Moreover, the shape functions are C∞ continuous on points in the domain.

(a) µ = 1.5 (b) µ = 3.0

Figure 2.11: A LME shape function for various settings of µ.

2.3.9 Natural-Neighbour Interpolants

The first meshless method using the natural-neighbour interpolation is the natural
element method as proposed by Traversoni [120]. A more recent method that uses
the natural-neighbour interpolation is the Particle Finite Element method (PFEM)
method by Idelsohn et al. [71]. Constructing shape functions by using the natural-
neighbour method is a different approach when compared to the methods presented
before. Instead of diffuse shape functions, the natural-neighbour approximations are
local and are defined upon a ‘mesh’. The main idea is to make a Voronoi tessellation
of a cloud of nodes and to use that tessellation for constructing the shape functions.
This Voronoi tessellation can be computed uniquely for any arbitrary cloud of nodes.
Hence there is no need for user involvement to build this mesh and there are no
requirements regarding the location of the nodes.

The definition of a Voronoi cell is as follows. A Voronoi cell of node j is a set of
points consisting of all points that lie closer to this node than to any other node. In
mathematical formulation for 2D, this can be stated as:

Vj =
{
x ∈ R

2 | d(x,xj) < d(x,xi) ∀ i ̸= j
}

(2.31)

where d(x,xi) is the Euclidean distance between point x and node xi. Figure 2.12
displays a Voronoi tessellation of a cloud of nodes. Figure 2.12(a) shows the cloud of
nodes. Figure 2.12(b) shows the tessellation.
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(a) cloud of nodes (b) Voronoi tessellation

Figure 2.12: A Voronoi tessellation of a cloud of nodes.

Based on the Voronoi tessellation, various shape functions can be constructed. Two
commonly used functions are the Sibson and the Laplace interpolation. Figure 2.13
gives an example of a Sibson shape function based on the Voronoi diagram of a cloud
of nodes.

Figure 2.13: A shape function made with a Sibson interpolation.

The most interesting property of the natural-neighbour interpolation is that the
Kronecker delta property is satisfied such that boundary conditions can be prescribed
easily. Furthermore, constant and linear polynomials are reproduced by the functions.

2.3.10 FEM interpolants

Formulations for finite element interpolations can be found in most books on finite
element analysis, for instance in Zienkiewicz and Taylor [131] among others. Whereas
the shape functions as discussed above depend on the positions of the nodes, finite
elements shape functions depend mainly on the mesh as supplied by the user. The
benefit of finite element shape functions is their low computational cost. A drawback
is that the functions become inaccurate and can even get singular if the mesh gets
distorted. Figures 2.14(a) and 2.14(b) show a linear triangle interpolation and a linear
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quadrilateral interpolation respectively. FEM interpolations satisfy the Kronecker
delta property and reproduce constant and linear polynomials.

(a) linear triangle interpolation (b) quadrilateral interpolation

Figure 2.14: Two finite element shape functions. To generate these functions, a
regular mesh based on the nodal grid was used.

2.4 Discretisation of Equilibrium

There are various ways to discretise a partial differential equation in order to get a set
of solvable algebraic equations. The methods as introduced in the following sections
will be presented as weighted residual methods. The main point of a weighted residual
method is to force the unbalance in the equilibrium to zero in an averaged sense. For
more detailed information on this topic, the reader is referred to Zienkiewicz and
Taylor [132] or Bathe [14]. Note that the quasi-static equilibrium equations will be
used in this section. Acceleration terms will be omitted.

The equilibrium equation which should hold for all points in the body is stated by
the following differential equation:

σ · ←−∇ + f = 0 ∀ x ∈ Ω (2.32)

where σ is the Cauchy stress tensor,
←−∇ is a vector containing the spatial gradient

operator and f is a body force. Note that in this section only the discretisation of the
equilibrium equation will be discussed. The boundary conditions to which Equation
(2.32) is subjected will be presented in Section 2.5.

Equation (2.32) represents equilibrium of forces in strong form. By multiplying this
strong form by a virtual displacement δu and integrating the product over the domain,
the weighted equilibrium equation is obtained:

∫

Ω

δu ·
(

σ · ←−∇ + f
)

dΩ = 0 ∀ δu (2.33)

where δu is the virtual displacement field. Note that Equation (2.32) and Equation
(2.33) are fully equivalent. If Equation (2.33) is satisfied for any arbitrary function δu,
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then equilibrium holds for all points x. Conversely, if all points x are in equilibrium,
Equation (2.32) will be satisfied no matter what function δu is used.

The formula as given in Equation (2.33) is known as the weighted residual. Similarly
as for the displacements, the space of virtual displacements is described by a set of
shape functions and nodal values:

δu(x) =

Nnod∑

i=1

ψi(x)δdi (2.34)

where ψi(x) are the test functions and δdi are the virtual nodal degrees of freedom.
Filling the test functions into the weighted residual equation (2.33) gives:

∫

Ω

Nnod∑

i=1

ψi(x)δdi ·
(

σ · ←−∇ + f
)

dΩ = 0 ∀ δdi (2.35)

The question remains what test functions ψi(x) should be chosen. The remainder of
this section presents several options for defining these functions. The methods that
are commonly found in literature on meshless methods are given. Firstly the most
commonly used discretisations of equilibrium are presented in Sections 2.4.1 and 2.4.2.
Discretisation schemes which are found less frequently in the field of meshless methods
are shortly discussed for completeness thereafter.

2.4.1 Point Collocation

In a point collocation method, the test function ψi is defined as the Dirac delta
function in order to force the weighted residual to zero at nodal points. In formula
form, ψi is defined as:

ψi(x) =

{
∞ if x = xi

0 for all other x
(2.36)

and:

∫

Ω

ψi(x) dΩ = 1

At a node xi, function ψi(x) goes to infinity and is zero otherwise. After some
manipulation, the weighted residual of Equation (2.35) results in the following
equation:

σ · ←−∇ + f = 0 ∀ xi ∈ Ω (2.37)

As a result, the strong form of the equilibrium equation is required to be zero only
at nodes xi. Two main points should be considered when using a discretisation of
this type. Firstly, a system of equations resulting from the test functions as defined
in Equation (2.36) is likely to allow spurious patterns in the displacement field u(x).
Stabilisation procedures have to be used in order to suppress this instability. Secondly,
since a gradient of stress appears in Equation (2.37), a second order gradient is
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required of the displacement field. Hence shape functions φ(x) should have continuity
up to second order (C2). For very similar reasons, discretising the equilibrium
equation with a collocation method poses difficulties for finding a description which
allows a general use of material models. Usually, material models relate the strain
state to the stress state and do not consider the gradient of the stress state. Having
for instance an elasto-plastic algorithm in a strong form is challenging and does not
seem to be available in literature. The collocation method is mainly found in the
methods of SPH and RKPM.

2.4.2 Galerkin

In a Galerkin procedure, weighing the weak equilibrium is done by using the same
shape functions as used to parameterise the displacement field. The space of test
functions is equal to the space of trial functions:

ψi(x) = φi(x) for i = 1...Nnod (2.38)

The weighted residual equation is as follows:

∫

Ω

Nnod∑

i=1

φi(x)δdi ·
(

σ · ←−∇ + f
)

dΩ = 0 ∀ δdi (2.39)

This integral is simplified further by using integration by parts, such that the
gradient operator on the stress tensor is eliminated. For the implementation
in a computer code, the integral resulting from the integration by parts should
be evaluated numerically. Unfortunately, the non-polynomial character of most
meshless approximations makes this numerical integration far less straightforward
when compared to finite element approximations. The patch test, for example, is
not satisfied with a limited set of integration points for a non-polynomial function.
Since the introduction of meshless methods using a Galerkin weak form, this topic
has drawn considerable attention.

Although the numerical integration of Equation (2.39) is complex, there are many
benefits of using the Galerkin weak form. Firstly, system matrices resulting from
the Galerkin weak form are symmetric, which saves computational time and storing
capacity. Secondly, material models are easily incorporated in a Galerkin scheme.
There is no gradient of the stress appearing in the equilibrium equation as is the
case for strong form methods. Continuity requirements regarding the shape functions
are in general of order C1, but can be loosened for finite elements to piecewise C0

continuity. Finally, stability is guaranteed in case of sufficiently independent shape
functions and full integration. These benefits lead to the fact that the Galerkin weak
form is used in the majority of meshless methods. Examples are the methods of DEM,
MPM, EFG, RKPM, NEM, PIM and max-ent.

2.4.3 Petrov–Galerkin

The Petrov–Galerkin method is very similar to the Galerkin method. The main
difference between is that for the Petrov–Galerkin method the test functions differ
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from the trial functions:

ψi(x) ̸= φi(x) for i = 1...Nnod (2.40)

In contrast to the test functions as used for the collocation method, the test functions
of the Petrov–Galerkin method possess sufficient continuity in order to perform
integration by parts. The Petrov–Galerkin method has in general less advantageous
properties than the Galerkin method. The main drawback of the method is that the
resulting system matrices are asymmetric. This will require more computational effort
and storage. A numerical integration scheme has to be applied on the weak form. The
MLPG method uses the Petrov–Galerkin method to discretise the equilibrium. The
same numerical integration difficulties are of concern as are the case for the Galerkin
method in Section 2.4.2.

2.4.4 Continuous Least Squares

For the method of continuous least squares, the discretisation error as given in
Equation (2.32) is squared, integrated over the domain and minimised to the degrees
of freedom. In formula form:

∂

∂di

∫

Ω

(

σ · ←−∇ + f
)

·
(

σ · ←−∇ + f
)

dΩ = 0 for i = 1...Nnod (2.41)

2.4.5 Subdomain Collocation

The subdomain collocation procedure demands the residual to be zero not for points
but for subdomains. Each node xi has a corresponding piece of the domain Ω, noted
as Ωi. An option for instance is to use a Voronoi cell Vi for Ωi. For each subdomain
the following shape functions is defined:

ψi(x) =

{
1 ∀ x ∈ Ωi

0 for all other x
(2.42)

Equation (2.35) becomes:

δdi ·
∫

Ωi

(

σ · ←−∇ + f
)

dΩ = 0 ∀ δdi (2.43)

2.4.6 Point-wise Least Squares

The formulation of the method of point least squares is comparable to its continuous
counterpart as presented previously. The main difference is that the error of the partial
differential equation is squared only at the nodes instead of squaring it for every point
over the total domain. The method is also known as least squares collocation or over-
determined collocation. In formula form the point-wise least squares discretisation of
the equilibrium gives:

(

σ · ←−∇ + f
)

·
(

σ · ←−∇ + f
)

= 0 ∀ xi ∈ Ω (2.44)



30

No integration is needed. Similar issues are of concern as given in Subsection 2.4.1
for the point collocation method.

2.5 Applying Boundary Conditions

This section discusses methods that are used to impose boundary conditions for diffuse
approximations. There is a considerable amount of research on this topic, and many
methods have been proposed. Research on the application of boundary conditions in
meshless methods can be found for instance in Gosz and Liu [57], Günther and Liu
[60], Chen and Wang [32], Pannachet and Askes [100], Fernández-Méndez and Huerta
[50] and Guedes and César de Sá [59].

The two necessary boundary conditions for a body in solid mechanics are stated as:

u(x)− ũ(x) = 0 ∀ x ∈ Γu (2.45)

σ · n− t̃ = 0 ∀ x ∈ Γt (2.46)

where ũ and t̃ are the prescribed displacements and tractions respectively. See Figure
2.4 for an explanation of the used symbols. For the remainder of this section, only
the first boundary condition as given in Equation (2.45) will be discussed. The
second condition, as shown in Equation (2.46), is in most cases straightforward to
apply. A prescribed traction is not an implicit function of the shape functions
whereas a prescribed displacement depends implicitly on the used shape function.
The succeeding sections will explain this matter in more detail.

The ease with which prescribed displacement boundary conditions can be enforced
depends on the type of shape function chosen. Shape functions which satisfy the
Kronecker delta property, also referred to as local shape functions or interpolants,
allow for a simple and straightforward application of the boundary conditions. The
reason for this simple handling of displacement boundary conditions will be explained
in more detail below. Thereafter, the same derivation is made, but then for a shape
function which does not possess the Kronecker delta property. The implications of
having such a diffuse shape function on the application of displacement boundary
conditions will be explained. The remainder of this section discusses three methods
that are commonly used to prescribe boundary conditions for these diffuse meshless
shape functions (Section 2.5.1, 2.5.2 and 2.5.3).

Local Approximants

Displacement boundary conditions are easily prescribed in the case of a method using
local shape functions. Examples of such shape functions are finite element interpolants
or natural-neighbour interpolants. These functions satisfy the Knonecker-delta
property as given in Equation (2.7).

Firstly, Equation (2.45) will be discretised by assuming that the displacement field
needs to be prescribed only at the location of the nodes. Note that it is possible to
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prescribe the displacement of any arbitrary point in the domain, but for reasons of
clarity, the derivation will be given only for the nodal positions. In formula form the
set of discretised essential boundary conditions is written as:

u(xi)− ũ(xi) = 0 for i = 1...Nnod (2.47)

Field u(x) is the approximated displacement field and consists of a set of shape
functions and nodal displacement degrees of freedom:

Nnod∑

j=1

φj(xi)dj − ũ(xi) = 0 for i = 1...Nnod (2.48)

If the shape functions used satisfy Equation (2.7), the field values of the displacement
are equal to the nodal values. Equation (2.48) can be simplified accordingly:

di − ũ(xi) = 0 for i = 1...Nnod (2.49)

Hence, displacements can be directly imposed on the nodal degrees of freedom, since
di = ũ(xi).

Diffuse Approximants

For the diffuse, non-interpolating shape functions, which are frequently found in
meshless methods, the derivation as given above is different. Since the Kronecker
delta property does not hold for these functions, there is no further simplification
possible of Equation (2.48). As a result, multiple degrees of freedom have their
influence on the displacement field at the location of a node. A special method
has to be used in order to enforce this constraint on the system. Therefore Section
2.5.1, 2.5.2 and 2.5.3, the penalty method, the method of Lagrangian multipliers and
the transformation method are discussed respectively. These methods are frequently
found whenever boundary displacements need to be prescribed in combination with
diffuse shape functions.

Assume that for the following derivations the potential energy Πint in the body is:

Πint =
1

2

∫

Ω

σ : ε dΩ (2.50)

where ε is a linear strain tensor. The symbol Πsys will be used to express the total
energy of the system, which will include the internal potential energy, but possibly also
other energy terms that relate to the method used to enforce the boundary conditions.

2.5.1 Penalty Method

The main idea of the penalty method is to modify the energy of the system by adding
an energy term related to the prescribed displacements in order to enforce Equation
(2.48) on the system. The constraint is penalised by squaring this constraint and by
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multiplying the result by a user-defined parameter αp. The resulting penalty energy
Πpen is given in formula form by:

Πpen =

∫

Γu

αp (u(x)− ũ(x)) · (u(x)− ũ(x)) dΓ (2.51)

where αp is the parameter to enforce the constraints on the system. The total energy
of the system is defined as the summation of the penalty energy and the internal
energy:

Πsys = Πint +Πpen (2.52)

By using shape functions φi, Equation (2.51) is discretised. Thereafter the solution
of the problem is found by searching for the minimum energy of the system:

min
{d}

Πsys (2.53)

where {d} is a vector containing all the displacement degrees of freedom of the body
under consideration. See Appendix A for its definition.

The main benefit of the penalty method is its low computational cost and its
simplicity. The number of degrees of freedom does not increase because of the
method. A drawback is that parameter α must be set manually. Setting α too
low will enforce the constraints insufficiently. If α is set too high, the system can
become ill-conditioned. As a result, Equation (2.48) will only be approximated and
not satisfied exactly in practice.

2.5.2 Lagrangian Multipliers

Prescribing displacement boundary conditions in combination with diffuse shape
functions by using the method of Lagrangian multipliers was introduced by Belytschko
et al. [18]. The method assumes the presence of forces on the boundary that have a
direction and a magnitude such that Equation (2.45) is satisfied. These forces cannot
be defined a priori, hence they make an extra set of degrees of freedom which have to
be solved. These forces are also known by the name ‘Lagrangian multipliers’ and are
expressed by the symbol λ. The additional energy related to these forces becomes:

Πlag =

∫

Γu

λ(x) · (u(x)− ũ(x)) dΓ (2.54)

where Πlag is the additional energy due to the Lagrangian multipliers and λ is
the vector field of the Lagrangian multipliers. The total energy in the system
is a summation of the internal energy and energy resulting from the Lagrangian
multipliers:

Πsys = Πint +Πlag (2.55)
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The solution of the problem is found by searching for the minimum energy of the
system not only for the displacement field but also for the Lagrangian multipliers.
After discretisation of both fields (u(x) and λ(x)), the minimisation is as follows:

min
{d},{λ}

Πsys (2.56)

where {λ} is a vector with all degrees of freedom related to the field of Lagrangian
multipliers λ(x).

The main benefit of using the method of Lagrangian multipliers is that Equation
(2.45) is exactly satisfied and not approximated as is the case in the penalty method.
The downside is that extra computational effort is required because of the added set
of degrees of freedom

2.5.3 Transformation Method

The transformation method was proposed by Chen et al. [30]. The main idea of this
method is to change the degrees of freedom on which it is not possible to directly
prescribe displacements, to a set on which it is possible to prescribe displacements.

First Equation (2.1) is restated for all nodes in the domain:

u(xj) =

Nnod∑

i=1

φi(xj)di for j = 1...Nnod (2.57)

The equation expresses that the shape functions multiplied by the nodal values give
the displacement field. However, it is also possible to express this equation the other
way around:

di =

Nnod∑

j=1

φ̂j(xi)u(xj) for i = 1...Nnod (2.58)

=

Nnod∑

j=1

φ̂j(xi)d̂j for i = 1...Nnod (2.59)

where φ̂j is a yet to be determined function and d̂j is a displacement degree of freedom
which is equal to the displacement field at the nodal positions. Equation (2.59) is
interesting since the field values of the displacement appear on the right-hand side
of the equation at the place where previously the nodal degrees of freedom were
positioned. The displacement field u(xj), or similarly d̂j , can be prescribed directly.

If function φ̂ is known, the field displacements d̂ can be transformed to the nodal
displacements d or vice versa.

Assume a matrix [Φ] which maps nodal degrees of freedom d onto the displacement

field d̂, and matrix [Φ̂] which does exactly the opposite. The components of the
matrices can be defined as follows:

Φij = φi(xj) and Φ̂ij = φ̂i(xj) (2.60)
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Moreover, these two matrices are related by the following equation:

[Φ̂] = [Φ]−1 (2.61)

So by constructing matrix Φ and inverting it, shape functions φ̂ can be found. By
using Equation (2.59), d can be transformed to d̂, where the latter set of degrees of
freedom can be used to prescribe the displacement field at nodal locations. Hence it
is also possible to minimise for these degrees of freedom:

min
{d̂}

Πsys (2.62)

where {d̂} contains all transformed displacement degrees of freedom in the domain.
Displacement degrees of freedom can now simply be applied on this vector. As a
result Equation (2.48) will be satisfied exactly.

For the derivations as given above, all the degrees of freedom are mapped on the
displacement field. However, a considerable computational effort is required for
the inverse operation as given in Equation (2.61). Therefore, a small set of nodes
lying close to the prescribed boundary is usually sufficient in order to prescribe the
displacement at that location exactly. A strategy for this partitioning was proposed
by Chen and Wang [32].

2.6 Closure

In this chapter, an overview on meshless methods was presented. Instead of explaining
the small details in which meshless methods differ, a categoric overview was given of
the main constituents of meshless methods. The main formulations and properties of
these constituents were presented.

After summarising and reviewing the meshless developments, it can be stated that
there are two topics that require special attention when applying or developing
a meshless method. Firstly, literature shows that the numerical integration of
equations is complex. Usually, a large number of integration points is required in
order to get sufficient accuracy and stability. This will imply a vast amount of
points where material models need to be evaluated, hence the computation time
is expected to be large. Secondly, for most of the meshless methods as discussed in
this literature review, the computational efficiency is low in general. Shape functions
are computationally demanding and the numerical integration is required to be of
a high order. The next chapter presents a study in which these two points will be
addressed.
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A Comparative Study of

Meshless Approximations

This chapter is based on a journal article by the author et al. [105].

3.1 Introduction

The goal of this thesis is to investigate and to develop a meshless method for the
simulation of forming processes. Since many meshless methods have been proposed
over time, the first question that arises is, what method or methods are best suited
for simulating forming processes? Based on literature only it is difficult to get a clear
view on whether a method is effective for these kind of simulations, and if so, how it
compares to other methods. The research presented in this chapter will try to answer
this question by quantitatively comparing a set of meshless methods.

3.1.1 Background

In Chapter 2 many meshless methods have been discussed. Examining all these
methods for their performance in a forming process would be impractical. However,
it is possible to restrict the total group of methods to a subgroup that is of interest
for further development.

A meshless method can be based on a weak form or a strong form of the equilibrium
equation (see Section 2.4). Methods using a strong form of the differential equation
are for instance the methods of Smooth Particle Hydrodynamics (SPH) and the
Reproducing Kernel Particle Method (RKPM). There is a downside to these methods,
for which they will be excluded from further research. In a strong form method,
spatial gradients of the stress appear in the equilibrium equations, making the use of
material models as commonly used in solid mechanics complicated. For instance,

35
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an elasto-plastic material model that can be used in combination with a strong
form formulation is not present in literature. For a weak form formulation this is
different. Constitutive relations based on the dependency of stress to strain are easily
implemented. Therefore, the research as presented in this chapter will focus on the
meshless methods employing a weak form only. Moreover, the Galerkin weak form
will be chosen because of its beneficial properties as given in Section 2.4.2.

Although material models can be easily incorporated into a weak form, there is a
consequence of choosing this type of discretisation of the equilibrium. The equations
resulting from the weak form require numerical integration. Since the technique used
to perform this numerical integration has a strong influence on the accuracy and
the behaviour in incompressibility, this topic requires special attention. Concerning
the first aspect, the accuracy, the numerical integration of non-polynomial meshless
shape functions has to be of a high order to obtain accurate results. The patch
test, for example, is not satisfied for a limited set of Gaussian integration points,
even if the shape functions reproduce linear polynomials. Concerning the second
point, the simulation of incompressible media, an integration rule has to be selected
carefully. The numerical artifact of volumetric locking can be equally present for
meshless methods as it is for finite elements. For a detailed description of volumetric
locking the reader is referred to Cook et al. [35], Zienkiewicz and Taylor [131] and
Bathe [14]. For these two reasons given above, the numerical integration of meshless
methods has drawn considerable attention over time. The amount of literature on
the topic is extensive and research was done for instance for the element-free Galerkin
method by Dolbow and Belytschko [43, 44], Beissel et al. [15], and by Askes et al.
[10]. An integration scheme which satisfies the patch test without using an infeasible
number of integration points and seems to be free of volumetric locking is the stabilised
conforming nodal integration scheme (SCNI) as proposed by Chen et al. [33, 34]. The
scheme has been investigated in the case of the natural element method by González
et al. [56] and by Yoo et al. [129].

Similarly, applying this nodal integration to finite elements results in a method with
interesting properties. The first concern, satisfying the patch test, is not an issue for
classical compatible finite elements since this test is satisfied by default. Volumetric
locking, on the contrary, seems to be avoided by applying this type of integration.
The first development in this field is the nodal pressure tetrahedral as proposed by
Bonet and Burton [20]. Afterwards, similar methods have been developed for instance
by Dohrmann et al. [42], Pires et al. [8], Liu et al. [84, 85], Krysl and Zhu [74], Puso
and Solberg [102] and Hung et al. [68]. The stability of nodal integration for both
meshless and finite element approximations was investigated by Puso et al. [101].

3.1.2 Objective

The objective of this chapter is to quantitatively examine the performance of meshless
approximations and their numerical integration. To investigate this performance, four
numerical tests are performed; two in elasticity, one in elasto-plasticity and one inf-sup
test.
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As explained in preceding sections, the amount of meshless shape functions as
proposed in literature is extensive. Therefore, for this study, a subset of three shape
functions are chosen such that a representative view on meshless approximations is
presented. The first shape function is the moving least squares function. This function
is one of the most commonly used approximations in the meshless field. Secondly, a
recent development, namely the local maximum entropy approximation, is included
in the analysis. This approximation possesses similar properties to the moving least
squares approximation, although it can simplify the handling of boundary conditions.
Finally a linear interpolation based on a Delaunay triangulation is included. In the
finite element method, these shape functions are commonly used for the construction
of linear triangular finite elements. The first two shape functions, the moving
least squares function and the local maximum entropy function are typical diffuse
approximations. Their shape function is based on a domain of influence instead of
a mesh. The latter shape function, the triangle interpolation, is a compact shape
function. The number of nodes that have an influence on the displacement of a
specific point is usually small when compared to diffuse approximations.

Concerning the evaluation of the weak form, two numerical integration schemes will be
tested. These are the stabilised conforming nodal integration scheme and a Gaussian
integration scheme based on a Delaunay triangulation.

Several combinations can be made by combining a shape function and an integration
scheme. Using the triangular interpolation with a Gaussian integration scheme results
in a linear triangular finite element [131]. Integrating the same shape function nodally
will give a scheme as proposed by Dohrmann et al. [42]. The scheme as proposed by
Chen et al. [33] is obtained by integrating a diffuse approximation nodally. All these
combinations will be compared in this study.

3.1.3 Outline

This chapter is organised as follows. Firstly, an introduction to the shape functions
used and the integration schemes is given in Section 3.2. A short outline of the
computer program as used for the analysis is presented. Section 3.3 gives the results
of the numerical study into the performance of all combinations of shape functions
and integration schemes. Afterwards the computational efficiency of the methods is
compared. The conclusions are given in the final section.

3.2 Governing Equations

3.2.1 General Formulations

The starting point for the derivation of nodal equilibrium is the equation of
equilibrium in the strong form:

σ · ←−∇ + f = 0 ∀ x ∈ Ω (3.1)
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where σ is the Cauchy stress tensor, f is a vector representing the body forces and
Ω is the domain under consideration. The boundary conditions for the equilibrium
equations are:

u(x)− ũ(x) = 0 ∀ x ∈ Γu (3.2)

σ · n− t̃ = 0 ∀ x ∈ Γt (3.3)

where ũ is a prescribed displacement on boundary Γu, t̃ is a prescribed traction on the
boundary Γt and n is the outward normal on the boundary. The nodal equilibrium
is obtained by applying a weighted residual formulation on the strong equilibrium of
Equation (3.1), using Galerkin’s method, and discretising the displacement field:

∫

Ω

[B]
T {σ} dΩ =

∫

Γt

[N]
T {

t̃
}
dΓ +

∫

Ω

[N]
T {f} dΩ (3.4)

{Fint} = {Fext} (3.5)

where Fint is the internal force vector and Fext is the external force vector. The study
as presented in this chapter is focussed only on the performance of the numerical
integration scheme and the shape function used. The governing equations are
therefore simplified by assuming the strain measure to behave linearly and to exclude
the effect of large geometrical changes of the body under consideration. As a result,
there is no non-linearity present in the model besides non-linearity related to the
material model chosen. The matrices N and B, which relate the nodal displacement
vector d to the field displacements and strains, are defined as:

{u} = [N] {d} (3.6)

{ε} = [B] {d} (3.7)

Matrix B contains the terms of the small strain tensor:

ε =
1

2

(−→∇u+ u
←−∇
)

(3.8)

The matricesN andB are constructed by using shape functions φ. Their formulations
are given in Section 3.2.2. The integrator

∫

Ω
... dΩ of Equation (3.4) is worked out

with two different numerical integration schemes as will be explained in Section 3.2.3.

For the constitutive equations a linear elastic model and an elasto-plastic model are
included. If the latter model is used, the nodal equilibrium represented by Equation
(3.5) is found by a Newton–Raphson iterative procedure. Within this procedure a
prediction of the displacements is made by linearising the internal force vector:

[K] =
∂

∂{d}T
{Fint} (3.9)

=

∫

Ω

[B]
T
[C] [B] dΩ (3.10)

where K is the stiffness matrix and C is the (algorithmic) material tangent matrix. In
this research, a J2 radial return elasto-plastic material model is used. The formulation
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as well as the implementation of this model, including the algorithmic tangent and the
stress update, can be found in Simo and Hughes [111], among others. The following
set of equations is solved:

[K]
{
∆dk

}
=
{
Fk

ext

}
−
{
Fk

int

}
(3.11)

where ∆dk is a vector containing the iterative displacement degrees of freedom and
index k denotes the current iteration step. The total vector of displacement degrees
of freedom is found by summation of ∆dk over all iterations k.

3.2.2 Shape Functions

Approximating the displacement field in the case of meshless methods or the finite
element method is done by a set of shape functions φ(x). The parameterised
displacement field can be represented as:

u(x) =

Nnod∑

i=1

φi(x)di (3.12)

where Nnod is the number of nodes in the model, and u is the approximated
displacement field. The vector di contains the displacement degrees of freedom of
node i and is defined for 2D as follows:

di =
{
dix diy

}T
(3.13)

Although there is a lot of freedom in defining φ, for the successful application of a
shape function in solid mechanics two properties are essential. These requirements
are the two reproducibility conditions as given in Section 2.3.3. Shape functions
which satisfy these conditions will reproduce a constant strain field exactly. In this
study, three different types of shape functions are included that satisfy both the two
conditions. Below, a short summary of their main formulations is presented.

Moving Least Squares

Moving Least Squares (MLS) approximations were first introduced in the field of
computational solid mechanics by means of the diffuse element method by Nayroles
et al. [95]. See Section 2.3.6 for the general formulations of moving least squares shape
functions. For the current study, the following polynomial will be used:

p(ξ) =
{

1 ξ η
}T

(3.14)

The kernel function used in 2D is constructed by multiplying two 1D functions ω1:

ω(x− ξ, γ) = ω1 (sx)ω1 (sy) (3.15)

where local coordinates sx and sy are defined as follows:

sx =
d(x, ξ)

β
and sy =

d(y, η)

β
(3.16)
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The distance between point ξ and x in x direction is given by d(x, ξ) and similarly,
the distance along the y direction is given by d(y, η). Note that it is assumed that
coordinate systems x and ξ have the same orientation and magnitude. Parameter
β gives an absolute measure of the domain of influence of kernel function ω. This
parameter is found by considering β = γ · h, where h is an average measure of the
spacing of nodes and γ controls the relative size of the domain of influence of the
kernel function. For the 1D kernel function ω1, a cubic spline is chosen:

ω1(s) =







2
3 − 4 s2 + 4s3 for s 6 1

2
4
3 − 4 s+ 4 s2 − 4

3s
3 for 1

2 < s 6 1
0 for s > 1

(3.17)

As a result of the choice of the kernel function ω, the MLS approximation has a
continuity of degree 2. For the current analysis, γ is chosen to be equal for all
nodes. In a regularly spaced grid, h is equal to the minimum distance between two
neighbouring nodes. If the value of parameter γ is increased, the shape functions
become more diffuse.

Local Maximum Entropy

Local Maximum Entropy (LME) shape functions were recently introduced by Arroyo
and Ortiz [9]. Information-theoretic principles are the foundations for the construction
of the shape functions. See Section 2.3.8 for the main formulations.

The compactness of the local maximum entropy approximation is controlled by a
user-defined parameter µ. By setting µ either compact or diffuse shape functions can
be obtained. For the current research, µ is chosen to be equal for all nodes in the
domain. Moving least squares shape functions with high µ-value are diffuse. Setting
µ low will force the approximation to interpolation. Because of the definition for µ
in local maximum entropy shape functions, this trend is exactly opposite. A high
µ-value gives a local approximation and a low value gives a diffuse approximation.

Linear Triangle Interpolation

LME approximations with a high µ value result in a linear interpolation on Delaunay
triangles (excluding degenerate cases). For this reason an explicit linear triangular
shape function is considered as well. A triangle spanned by vertices xi, xj and xk is
a Delaunay triangle Vijk if xc is not an empty set:

Vijk = {x ∈ conv (xi,xj ,xk)}
if: xc ̸= ∅ (3.18)

where: xc =
{
x ∈ ℜ2 | d(x,xi) = d(x,xj) = d(x,xk),

d(x,xi) < d(x,xl) ∀ l ̸= i, j, k}

where xc is the circumcentre of the Delaunay triangle. This circumcentre is defined
as the centre of a circle intersecting the three vertices of a triangle. The convex set
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is denoted by conv() and contains all points that are enclosed in a triangle. Linear
shape functions based upon triangles are well known in finite element analysis and
expressions can be found in most books on finite element technology; for instance in
Zienkiewicz and Taylor [131]:
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φj(x)
φk(x)
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x
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1






∀ x ∈ Vijk (3.19)

where xi and yi are the coordinates of node i. The most profound argument for
choosing this type of shape function is its low computational cost and its simple
formulation. Another advantage is the straightforward imposition of boundary
conditions since it possesses the Kronecker delta property for all nodes in the domain.
The order of continuity is C0, hence smooth strain fields are not obtained for limited
sets of nodes.

3.2.3 Integration Schemes

In this research, two integration schemes are used to evaluate Equations (3.4) and
(3.10) numerically. The first scheme is the well known ‘Gauss’ integration scheme that
is commonly used in finite elements. The second scheme is the stabilised conforming
nodal integration scheme, also known by the abbreviation of SCNI. Both schemes are
explained in brief below.

‘Gauss’ Integration

‘Gauss’ integration of the internal force vector is formulated as follows:

{Fint} =
∫

Ω

[B]
T {σ} dΩ

≈
Nint∑

k=1

[B(xk)]
T {σ(xk)}∆Ωk (3.20)

Nint is the total number of integration points in the body and xk is the location of
an integration point. Usually the summation

∑Nint

k=1 is split into a sum over elements
or integration cells and over integration points for such an element or cell. In this
research an integration rule within a triangle is used. The starting point is a cloud
of nodes which is triangulated by means of a Delaunay triangulation. Within each
triangle an integration rule is defined.

If, for finite elements, the integration rule is chosen in accordance with the
interpolation functions, the patch test is satisfied. Details of this test can be found
in Zienkiewicz and Taylor [131], among others. Note that non-polynomial meshless
approximations in general do not pass the patch test, even if these approximations
possess first order reproducibility. Inexact integration precludes in this case an exact
evaluation of the linear displacement field.
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Nodal Integration

Nodal integration of the internal force vector can be expressed as:

{Fint} =
∫

Ω

[B]
T {σ} dΩ

≈
Nnod∑

i=1

[B(xi)]
T {σ(xi)}∆Ωi (3.21)

where Nnod is the number of nodes, xi is the location of a node and ∆Ωi is the
volume accompanying that particular node. Matrix B is the strain-displacement
matrix which is consistent with the displacement field. Several problems arise when
using an integration scheme according to Equation (3.21). The first problem is that
the patch test is not satisfied for non-polynomial approximations. The second problem
is the lack of stability. An improved nodal integration scheme was proposed by Chen
et al. [33]. This stabilised conforming nodal integration scheme (SCNI) modifies the
definition of B in order to avoid these two problems. The essence of the method
is that an assumed displacement gradient at a node is constructed by averaging the
displacement gradient over a cell accompanying that node:

∇̄u(xi) =
1

Ωi

∫

Ωi

∇u dΩ (3.22)

The volume integral can be rewritten by means of the Gauss divergence theorem to
a surface integral:

∇̄u(xi) =
1

Ωi

∫

Γi

nu dΓ (3.23)

where n is the outward normal on boundary Γi of the cell Ωi. The assumed strain
field used for the integration becomes:

ε̄(xi) =
1

2

(
∇̄u(xi) + (∇̄u(xi))

T
)

(3.24)

Figure 3.1 gives an illustration on the nodal integration scheme. Section 3.2.5 gives a
description on the construction of the cells as displayed in Figure 3.1. The modified
B-matrix at node xi in 2D becomes:

[
B̄(xi)

]
=
[
B̄1(xi) B̄2(xi) ... B̄Nnod

(xi)
]

(3.25)

where the contribution of shape function j is defined as:

[
B̄j(xi)

]
=

1

∆Ωi

∫

Γi





φjn1 0
0 φjn2

φjn2 φjn1



 dΓ (3.26)

The resulting internal force vector becomes:

{Fint} =
Nnod∑

i=1

[
B̄(xi)

]T {σ̄(xi)}∆Ωi (3.27)
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where σ̄(xi) is the stress tensor computed with the assumed strain ε̄(xi). The stiffness
matrix becomes:

[K] =

Nnod∑

i=1

[B̄(xi)]
T [C] [B̄(xi)]∆Ωi (3.28)

Ωi

xi

(a) volume integration according to
Equation (3.22)

n

Γi

xi

(b) contour integration according to
Equation (3.23)

Figure 3.1: An illustration of the cell integration for SCNI.

An interesting aspect of integrating the weak equations nodally is that a material point
is at the location of the node. Especially if more sophisticated, history-dependent
material models are used, all data concerning the material model can be stored at
the location of the node. This can simplify, for instance, re-meshing or convecting
algorithms, such that the spatial distribution of the state variables of the material
model is optimally preserved. Note that because of nodal integration the number
of nodal connections increases: all shape functions holding a non-zero value in Ωi

contribute to B̄(xi). Matrix K will therefore become less sparse.

3.2.4 Applying Boundary Conditions

Applying the boundary conditions in case of diffuse meshless shape functions requires
a different approach than commonly used for finite elements. For finite elements
the Kronecker delta property holds, which implies that the field displacement at the
position of the node is equal to the nodal degree of freedom:

u(xi) = di (3.29)

where xi is the nodal location. As explained in Section 2.5, most diffuse meshless
approximations do not satisfy this condition. Displacements cannot be enforced by
simply prescribing entries in the nodal displacement vector d.

In this chapter, the method of Lagrangian multipliers is applied to enforce prescribed
boundary displacements in the manner of Belytschko et al. [18]. See Section 2.5.2
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for the main formulations of the method of Lagrangian multipliers. The set of nodal
degrees of freedom is expanded by a set of Lagrangian multipliers. The system of
equations with the added degrees of freedom becomes:

[
K GT

G 0

]{
∆di

∆λi

}

=

{
Fi

ext − Fi
int

g

}

(3.30)

where ∆λi is a vector containing the Lagrangian multipliers and matrix K is the
stiffness matrix as defined in Equation (3.10) or Equation (3.28) depending on the
integration scheme. Vector g and matrix G, are defined as:

{g} = −
∫

Γ

[Nλ]
T {ũ} dΓ (3.31)

[G] = −
∫

Γ

[Nλ]
T
[N] dΓ (3.32)

Equations (3.31) and (3.32) are evaluated with a nodal integration rule as used by
Pannachet and Askes [100]:

{g} = −
Nnod∑

i=1

[Nλ(xi)]
T{ũ(xi)}Γi (3.33)

[G] = −
Nnod∑

i=1

[Nλ(xi)]
T [N(xi)] Γi (3.34)

Furthermore, the shape functions related to the Lagrangian multipliers are chosen to
have the Kronecker delta property.

N j
λ(xi) =

{
1 for i = j
0 for i ̸= j

(3.35)

As a result only displacement related shape functions need to be evaluated at locations
xi.

The boundary conditions for the linear triangle interpolation are enforced by using a
simple row reduction technique as is standard in finite element analysis. Prescribed
displacements are multiplied by corresponding columns in K and added to the right-
hand side of Equation (3.11).

3.2.5 Triangulations and Tessellations

This section will discuss the triangulation and tessellation algorithm as used in the
analysis. The SCNI integration scheme requires a tessellation in order to construct
the modified strain matrix B̄. The INT shape function and the Gaussian integration
scheme are defined upon a triangulation. Moreover, this triangulation is beneficial for
the MLS and LME shape functions as well, since this data structure can be used for
efficient neighbour searching.
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The strategy to obtain these triangles and cells is as follows. First of all, a cloud
of nodes is triangulated with a Delaunay triangulation according to Equation (3.18).
Afterwards, the concept of α-shapes by Edelsbrunner et al. [48] ensures that concave
boundaries can be represented without defining each concave boundary section
explicitly. A description of the method for continuum mechanics can be found in
Cueto et al. [36] and Alfaro et al. [1].

For the SCNI integration, the most simple choice would be to use the Voronoi
tessellation [123], which is the dual of the Delaunay triangulation [40]. If the
triangulation is known, the tessellation can be obtained easily and vice versa. There is
one drawback however, which makes the use of the Voronoi tessellation troublesome.
Cells on the boundary of the domain are not properly defined and can have an infinite
volume. Therefore a tessellation technique as proposed by Chen et al. [34] is employed.
It takes the midpoints of the sides of a Delaunay triangle and the centroid of that
triangle. The cell of a node is made by connecting straight lines through these points
for all triangles connected to that particular node. Boundaries can be tessellated
without problems. If the Delaunay triangulation is known, this tessellation can be
constructed with little extra effort. Figure 3.2 gives a visualisation of the geometrical
objects as described above.

(a) cloud of nodes (b) Delaunay triangles (c) Voronoi cells (d) modified cells

Figure 3.2: Computational geometrical objects used for the analysis.

3.2.6 Overview of the Implementation

To switch easily between shape function, integration scheme, or method to apply
boundary conditions, a code was written of which the architecture will be shortly
outlined here.

Figure 3.3 displays a flowchart of the computer program. The components
named MLS, LME and INT are abbreviations of moving least squares, local
maximum entropy and linear triangular interpolation respectively. The Galerkin
weak form is integrated with the two integration schemes. These are the standard
‘Gaussian’ integration scheme and the stabilised conforming nodal integration scheme
abbreviated with STD and SCNI respectively. From a programming point of view,
the main difference between these two integration rules is that the STD integration
consists of a loop over triangles for the stiffness matrix and internal force vector and
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Figure 3.3: A schematic representation of the program as implemented in Matlab.

the SCNI integration loops over nodes for the assembly procedure. Furthermore, the
STD integration requires the gradients of the shape functions whereas for the SCNI
integration just the shape function values are required. The averaged derivatives ∇̄u
follow from the divergence theorem.

The method to apply the boundary conditions is selected depending on which shape
function is chosen. Lagrangian multipliers will be used for the LME and MLS
functions. For the INT function the row reduction technique is employed, resulting
in the reduced stiffness matrix Kred.

3.3 Numerical Performance

3.3.1 Introduction

In this section the numerical performance of the shape functions and integration
schemes will be examined. First of all, a test in linear elasticity is performed
to examine the accuracy and convergence properties of the shape functions and
integration schemes. An infinite plate with a hole is used as test problem. Secondly,
an analysis is done to examine the performance of various combinations in elasto-
plasticity. The effect of the type of integration, the order of the Gaussian integration
and the compactness of the diffuse approximations will be investigated. Finally the
computational efficiency of the implementation will be assessed.

For the MLS and LME approximations, parameters γ and µ have to be set.
These parameters are set such that the shape functions have a similar domain of
influence and that a sufficient number of nodes is included in these domains. For
the MLS approximation γ = 2.6, and for the LME approximation µ = 1, unless
stated otherwise. Figure 3.4 gives a visualisation of the shape functions with these
parameters. These settings for the domain of influence were found to give a stable
response in most cases. Making the shape functions too compact, for instance, can
result in failure of the shape function algorithm.
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Figure 3.4: The shape functions as used for the analysis.
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Figure 3.5: The geometry of the infinite plate with a hole problem.



48

3.3.2 Infinite Plate with a Hole

In this test the accuracy and convergence of all combinations of shape functions and
integration schemes are tested on the problem of an infinite plate with a hole. Figure
3.5 shows the geometry of the infinite plate at the left-hand side, and the modelled
part of the plate at the right-hand side. The infinite plate is loaded in horizontal
direction with a uniform traction. The geometry is simplified by using symmetry
conditions and only evaluating a small part of the plate close to the location of the
hole. At the symmetry lines the appropriate displacement boundary conditions are
imposed, and at the free boundary the known exact stress field is applied. The exact
solution of the problem can be found for instance in Timoshenko and Goodier [119].
The exact stress field is:

σxx(r, θ) = 1− 1

r2

(
3

2
cos 2θ + cos 4θ

)

+
3

2 r4
cos 4θ (3.36)

σyy(r, θ) = −
1

r2

(
1

2
cos 2θ − cos 4θ

)

− 3

2 r4
cos 4θ (3.37)

σxy(r, θ) = −
1

r2

(
1

2
sin 2θ + sin 4θ

)

+
3

2 r4
sin 4θ (3.38)

and the corresponding displacement field is:

ux(r, θ) =
1

8µ

(

r (κ+ 1) cos θ +
2

r
((1 + κ) cos θ + cos 3θ)− 2

r3
cos 3θ

)

(3.39)

uy(r, θ) =
1

8µ

(

r (κ− 3) sin θ +
2

r
((1− κ) sin θ + sin 3θ)− 2

r3
sin 3θ

)

(3.40)

Parameters κ and µ are defined for the plane strain case as:

κ = 3− 4ν (3.41)

µ =
E

2 (1 + ν)
(3.42)

The Young’s modulus and the Poisson’s ratio are E = 10 and ν = 0.3 respectively. For
the STD integration scheme a three-point integration rule within a triangle is used.
The SCNI integration scheme employs a two-point Gauss rule on each of the facets of
a cell. To compare the accuracy of a combination of shape function and integration
scheme, an error norm on the displacement is used. The error norm is a discrete
version of the ∥ · ∥L2-norm and samples the displacement error only at the nodes.
This norm is used to avoid the problem of introducing errors in the computation of
the integrand of the ∥ · ∥L2 error norm, as was pointed out by González et al. [56].
The error is given by:

∥eu∥2 =
1

Nnod

√
√
√
√

Nnod∑

i=1

∥u (xi)− uexact (xi) ∥2 (3.43)
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The location of a node is given by xi, the exact solution is uexact, and Nnod is the
total number of nodes.

Figure 3.6 shows three nodal grids from coarse to fine as used for this test. The
number of nodes for the grids in the order from coarse to fine are 63, 248 and 993
respectively.

(a) coarse (b) medium (c) fine

Figure 3.6: Three nodal grids for the plate with a hole problem.
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Figure 3.7: The ∥eu∥2 error norm for the plate with hole problem.

Figure 3.7 shows the ∥eu∥2 error for the integration schemes and the three shape
functions. First of all, it can be stated that for all combinations, convergence is
obtained. Irrespective of the combination of methods chosen, the exact solution is
likely to be obtained by increasing the number of nodes. Secondly, when comparing
the shape functions it can be seen that, regardless of the integration scheme used, the
two diffuse approximations are more accurate than the linear interpolation. The error
norms for the MLS and LME shape functions are two to three times smaller than the
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error norm for the INT function. The error for the MLS and LME approximation
is found to be nearly identical as a result of the selection of parameters γ and µ.
Thirdly, the two integration schemes give approximately the same accuracy and rate
of convergence for a specific shape function. Compared to the Gaussian integration,
integrating the INT function with the SCNI scheme increases the accuracy.

3.3.3 Distortion Analysis

In the following test, the combinations of shape functions and integration schemes
are tested on their behaviour on distorted grids. The problem used to analyse this
behaviour is the pure bending of a square piece. The details of the problem are
given in Figure 3.8. At the right-hand side of the square, a traction in x-direction
is prescribed varying linearly between 7.5 and −7.5. The problem is discretised by
five different nodal grids as shown in Figure 3.9. Small irregularities and substantial
distortions are applied to a regular grid with increasing severity. The energy error
norm is monitored over the five grids. This norm is defined as:

∥eu∥2E =

∫

Ω

(ε− εexact) : C : (ε− εexact) dΩ (3.44)

where εexact is the exact strain field. The exact stress field of the problem can be
found by simply considering the prescribed traction on the right-hand side of the
square piece of material:

σxx(x) =
3

2
y (3.45)

σyy(x) = 0 (3.46)

σxy(x) = 0 (3.47)

By using the constitutive behaviour, the exact strain field of the problem can be
found:

εxx(x) =
3E(1− ν)

2(1 + ν)(1− 2ν)
y (3.48)

εyy(x) =
3Eν

2(1 + ν)(1− 2ν)
y (3.49)

εxy(x) = 0 (3.50)

The integral in Equation (3.44) will be evaluated by the two integration schemes given
in Section 3.2.3 depending on which integration scheme is used to evaluate the weak
form.

Figure 3.10 shows the results for the two integration schemes and the three shape
functions. Several conclusions can be drawn from the figures. First of all, for low
amounts of distortion (grids 1 and 2), the most accurate results are obtained by
employing an MLS or LME shape function with a Gaussian integration scheme.
Increasing the amount of distortion for the Gaussian integration scheme increases
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the error in the energy norm. For grid 5, the most severely distorted grid, the MLS
and LME shape functions could not be constructed for every location x. For the
MLS functions, for instance, parameters a(x) cannot be determined uniquely at these
points. Therefore, Figure 3.10 does not include the energy error norm on grid 5 for
these approximations. The domain of influence of these shape functions has to be
increased, such that sufficient neighbours are present to define these shape functions
properly. The Gaussian integrated triangular interpolation is inaccurate both on the
regular grid as well as on the irregular grids.

The SCNI integrated solutions seem to be less affected by the distortion in general.
Although the MLS function on grid 4 is found to be inaccurate, overall a smaller
influence of the distortion is found. Similar to the Gaussian integrated solutions,
problems were encountered with the MLS and LME functions on grids 4 and 5. It can
be seen that the performance of the INT function improves considerably by employing
the SCNI integration.

10

10

7.5

-7.5

x

y

ν = 0.3

E = 10

t̃x

Figure 3.8: The model to examine distortional effects.

grid 1 grid 2 grid 3 grid 4 grid 5

Figure 3.9: The grids used to examine the influence of distortion.

3.3.4 Tapered Bar Analysis

In this section the performance of the shape functions and integration schemes is
investigated in an elasto-plastic analysis. Two potential problems can be envisaged
for a numerical method in plasticity. Firstly there is the problem of volumetric
locking. If a numerical scheme suffers from volumetric locking, the response will
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Figure 3.10: The energy error norm with increasing distortion.

become nonphysically stiff in plastic deformation and the pressure associated with
this deformation will be overestimated largely. Secondly, the transition from elastic
to plastic will lead to a locally high gradient in the strain field. This interface should
be distinct and not nonphysically diffuse as one might expect with diffuse meshless
approximations.

Figure 3.11(a) shows the model used for the analysis. The tapered bar is loaded at
the right-hand side with a prescribed traction. The problem is simplified by using a
plane strain assumption and symmetry along the centre line of the bar. A von Mises
yield criterion is used in combination with linear hardening:

σf = σ0 + Cεeq (3.51)

Variables σf and εeq are the flow stress and equivalent plastic strain respectively. The
constants for the hardening law and the elastic part of the deformation are given in
Table 3.1. After applying the total load of 120 MPa on the bar, the right-hand side of
the bar will have deformed plastically, whereas the left-hand side is still in the elastic
domain. Hence it should be possible to observe an elastic-plastic transition region
within the bar. Because of the non-linear material response, Equation (3.5) is solved
with an iterative-incremental strategy. The stress update is performed with a fully
implicit return mapping algorithm.

Table 3.1: Constitutive parameters for the tapered bar problem.

elastic properties E 210 000 MPa
ν 0.3 -

plastic properties C 100 MPa
σ0 100 MPa

For the STD integration a three-point and a one-point integration rule is used. For
the SCNI integration a two-point Gauss rule is used on each of the facets of the cell.
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The nodal grid for the meshless approximations is shown in Figure 3.11(b). The grid
has 4 nodes over the height and 11 along the length. The results of the meshless
analysis are compared to a reference finite element solution. A dense mesh of linear
quadrilateral selective reduced integrated (SRI) finite elements are used to get an
accurate prediction of the stress and strain fields. This mesh has 14 elements over
the height and 40 along the length and is shown in Figure 3.11(c).

66.6

120

y

x

10

(a) model (b) cloud of nodes (c) quadrilateral mesh

Figure 3.11: The tapered bar problem and the models for the meshless and reference
finite element computations. Dimensions are given in millimetres

Influence of Integration

The first test is the simulation of the tapered bar problem with all shape functions
and the two integration schemes. For the STD integration scheme a three-point and
a one-point integration rule are used. The strain component εxx is monitored along
the symmetry line (y = 0). Figure 3.12 shows the results for the three cases where
the horizontal axis displays the x coordinate along the line of symmetry.

Figure 3.12(a) shows the results with the three-point STD integration rule. It can be
seen that the plastic deformation at the right-hand side of the bar is underestimated
by the linear interpolation shape function. As a result of the incompressibility of
this plastic deformation, the numerical artifact of volumetric locking deteriorates
the results. Since a linear triangular shape function in combination with Gaussian
integration rule makes a linear triangular finite element, this poor behaviour in
incompressibility is expected. The MLS and LME approximations underestimate
the strain εxx slightly but approach the reference finite element solution quite well for
the small number of nodes.

If the number of volumetric constraints is reduced by selecting a lower order
integration rule, results as shown in Figure 3.12(b) are obtained. For linear
interpolation (INT), selecting either a three-point integration rule, or a one-point
integration rule does not affect the results. Of course, this is expected for a constant
strain field within a triangle. For the LME and MLS approximations the scheme
responds spuriously due to the reduced integration. With the chosen parameters to
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control the domain of influence of these functions, a one-point integration rule is
insufficient.

Figure 3.12(c) shows the results for the nodally integrated approximations. It can
be seen that independent of the shape function used, an accurate prediction of the
strain is obtained. Even the linear interpolation, known for its poor behaviour in
incompressibility in the finite element method, gives good results. At the point x = 8
there is a minor overestimation of the strain but in general a good agreement is
obtained. Furthermore, despite the use of diffuse shape functions, a distinct transition
from the elastic region to the plastic region is predicted.
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Figure 3.12: Strain in x direction along the symmetry axis.

Influence of Compactness

As shown in Figure 3.12(a), the MLS and LME functions give locking-free results
whereas the INT function shows locking when integrated with a standard integration
rule. The compactness of the LME shape function is controlled by parameter µ.
Increasing parameter µ will make the LME functions equal to the INT functions
(excluding degenerate triangulations). Decreasing parameter µ makes the LME
functions similar to the MLS functions. Hence it is possible to move from the locking
behaviour of the INT function to the non-locking result of the MLS function by setting
µ. To examine this effect the tapered bar problem is analysed for three different
settings of µ. These settings are µ = 1, µ = 2 and µ = 3.

Figure 3.13(a) shows the shape functions of the node lying on the symmetry axis at
the location (x, y) = (5, 0). It can be seen that the local maximum entropy shape
function changes shape from the moving least squares function to the interpolation
by increasing µ. Figure 3.13 shows the result of the tapered bar analysis for the two
integration schemes. Figure 3.13(b) shows that the functions can be moved out of the
locking domain by decreasing the compactness. A very similar effect was observed in
the case of the element-free Galerkin method by Dolbow and Belytschko [44] and by
Askes et al. [10]. In Figure 3.13(c) the results of the same test are given but now for
the nodal integration scheme. No effect of the compactness on the results is found.
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There is no locking, nor is there influence of the compactness of the approximation
on the distribution of the strain. The nodal integration scheme gives accurate results
for all shape functions.
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Figure 3.13: The strain in x direction along the symmetry axis for various settings
of µ.

Full Field Results

As shown in the previous analysis, the nodal integration scheme gives an accurate
prediction of the strain on the symmetry line. In the following analysis the strain is
examined outside this symmetry line by presenting contour plots of the equivalent
plastic strain. Furthermore, the distribution of the pressure in the domain is
investigated as well. For an accurate prediction of the elastic part of the deformation,
this pressure should be physical and without numerical artifacts.

For the meshless computations, the INT function in combination with the SCNI
integration scheme is used. A finite element computation is made for reference
purposes. Both simulations use the same nodal grid, which has 10 nodes over the
height and 31 nodes along the length, as shown in Figure 3.14.

The finite element result and the meshless result are plotted in Figure 3.14(a) and
Figure 3.14(b) respectively. The equivalent plastic strain of the nodal integration
scheme is plotted directly on the nodes. The integration point values of the finite
element solution are presented in a contour plot without using nodal averaging.
In general it can be seen that the two distributions correspond to a good extent.
An accurate prediction of the equivalent plastic strain is obtained with the nodal
integration scheme and the linear triangular interpolation.

Secondly, the distribution of the pressure is investigated. The results for the two
simulations are shown in Figure 3.15. Again the patterns are found to be similar
for the two simulations. Although the quadrilateral elements with selective reduced
integration can suffer from pressure oscillations, these are not observed for this
problem. The nodal integration scheme is showing very small oscillations in the
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plastic regime at the right-hand side of the bar. In the following section the inf-
sup test will be performed in order to examine these oscillations and the locking-free
behaviour.

Finally, note that besides the pressure and the equivalent plastic strain, other
quantities such as normal stresses and strains were comparing closely between both
two simulations. In general it can be concluded that the results of nodal integrated
interpolation scheme can be trusted in this example.
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Figure 3.14: A contour plot of the equivalent plastic strain.
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Figure 3.15: A contour plot of the pressure in MPa.

3.3.5 The Inf-Sup Test

For the successful application of a numerical method in incompressibility, the inf-sup
test (or Ladyzhenskaya-Babuška-Brezzi (LBB) test) should be satisfied. The main
formulation of this test can be found in Chapelle and Bathe [28] and Bathe [14],
among others.

For Gaussian integrated solutions, inf-sup tests can be found in the literature. For
instance, a Gaussian integrated triangle interpolation is known to fail the inf-sup test,
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as is shown in [28]. For moving least squares approximations Dolbow and Belytschko
[44] reported on monitoring the inf-sup value. The approximation appeared to be
locking. Huerta et al. proposed a modification of the MLS function in order to
satisfy the inf-sup test [65]. This method is called the pseudo divergence-free EFG
method. Since the LME approximation is performing similar to the MLS function,
no differences for the inf-sup test are expected.

For nodal integrated solutions locking-free responses have been reported, though they
have not been confirmed by a numerical inf-sup test. In this section, the locking-free
response as observed in the tapered bar problem will be examined.

General Formulations

First, two matrices Sp and Su are defined, which correspond to the norm on the
pressure field and the displacement field respectively:

∥u∥2 =

∫

Ω

(∇̄u)2 dΩ = {d}T [Su] {d} (3.52)

∥p∥2 =

∫

Ω

p2 dΩ = {P}T [Sp] {P} (3.53)

where vectors {d} and {P} contain the displacement and pressure degrees of freedom
respectively. A matrix Kup is defined which expresses the volumetric energy resulting
from the pressure and displacement field:

[Kup] =

∫

Ω

[B̄]T{m} [Np] dΩ (3.54)

where vector Np contains the shape functions for the pressure space. For the SCNI
a constant pressure is defined within a cell. Np is therefore simply 1. Vector m is
defined as:

{m} = { 1 1 0 }T (3.55)

The goal of the numerical inf-sup test is to examine matrix Kup on locking and
spurious pressure oscillations. Therefore, the numerical condition as proposed by
Chapelle and Bathe [28] is considered:

inf
W

sup
V

{W}T [G] {V}
√

{W}T [G] {W}
√

{V}T [Su] {V}
= ϑ ≥ ϑb > 0 (3.56)

where ϑ is the inf-sup value that should be bounded by a constant ϑb away from zero
in order to satisfy the condition. Vectors W and V contain the nodal displacements,
and matrix G is defined as:

[G] = [Kup] [Sp]
−1

[Kup]
T

(3.57)
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Parameter ϑ can be found by solving the following eigenproblem:

[G] {V} = λ [Su] {V} (3.58)

and taking the square root of the smallest non-zero eigenvalue in the vector of
eigenvalues λ:

ϑ =
√

λk (3.59)

The index k of this smallest non-zero eigenvalue in vector λ can be used to determine
the number of spurious pressure oscillations. If nu and np are the numbers of degrees
of freedom in the displacement and pressure vectors respectively, then the number of
oscillations kpm is found by evaluating:

kpm = k − (nu − np + 1) (3.60)

Applying Displacement Boundary Conditions

To perform the numerical inf-sup test, a set of displacement degrees of freedom has
to be prescribed. However, two of the shape functions do not possess the Kronecker
delta property. To avoid adding degrees of freedom in the case of the Lagrangian
multipliers, the nodal displacements will be mapped on the field displacements with
a strategy as proposed by Chen et al. [30]. The field displacements can be prescribed
directly on the system by row-reduction techniques. See Section 2.5.3 for details on
the transformation method.

A mapping matrix R is constructed by sub-matrices Φij which are defined as follows:

R =








Φ11 Φ12 . . . Φ1N

Φ21 Φ22 . . . Φ2N

...
...

. . .
...

ΦN1 ΦN2 . . . ΦNN








where Φij =

[
φj(xi) 0

0 φj(xi)

]

(3.61)

The nodal displacements can be mapped to the field displacements of the nodes by
the following equation:

{d̂} = [R] {d} (3.62)

where vector {d̂} contains the field displacements at the locations of the nodes and
d contains the nodal displacement degrees of freedom. Matrices Kup and Su are
rewritten to the field degrees of freedom as follows:

[K̂up] = [R]
-T

[Kup] (3.63)

[Ŝu] = [R]
-T

[Su] [R]
-1

(3.64)

Suppressed displacements can be directly prescribed by row-reduction techniques on
matrices K̂up and Ŝu.
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Numerical Results

Figure 3.16 shows the problem as proposed by Chapelle and Bathe [28]. Figure 3.17
shows the nodal grids as used for the test. Both regular grids and irregular grids of
various densities are used.

Figure 3.16: Model for the inf-sup test.

(a) 3x3 (b) 5x5 (c) 9x9 (d) 17x17 (e) 33x33

(f) 3x3 (g) 5x5 (h) 9x9 (i) 17x17 (j) 33x33

Figure 3.17: Nodes sets for the inf-sup test. Figures (a) to (e) show the regular
grids. Figures (f) to (j) show the irregular grids.

The results of the inf-sup test on the regular grid are given in Figure 3.18(a). Similarly,
the results of the irregular grid are given in Figure 3.18(b). It can be seen that for the
regular grid as well as the irregular grid the inf-sup test is passed. The ϑ-parameter
remains bounded and does not decrease on nodal grids with increasing density. Based
on this test it can be concluded that matrix Kup does not over-constrain the system
of equations. Volumetric locking is likely to be absent based on the results of this
test.
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Although locking appears to be not an issue for the SCNI integration, spurious
oscillations are of concern. For all the regular grids, matrix Kup is rank-deficient.
For the diffuse approximations, one zero eigenvalue is detected. The same holds
for the triangular interpolation, although here two eigenvalues are zero. Figure 3.19
shows one of the detected checkerboard patterns in the pressure field for the INT
function. For the irregular grid, no rank deficiency was detected of matrix Kup.
Nevertheless, for instance the same oscillation as shown in Figure 3.19 is present
though its corresponding eigenvalue is not zero. To conclude, matrix Kup appears not
to be over-constraining the system, but stable pressure fields cannot be guaranteed.
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(a) regular grid, SCNI integration
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(b) irregular grid, SCNI integration

Figure 3.18: ϑ - parameter plots.

p < 0 p ≈ 0 p > 0

Figure 3.19: A pressure oscillation as detected on the regular grid.
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3.3.6 Computational Efficiency

In the following test, the computational efficiency of the components as shown in
Figure 3.3 is investigated. To examine this efficiency, two aspects of the code will be
monitored. The first aspect is the time to build the stiffness matrix and the second is
the required memory allocation for this matrix. The plate with a hole problem with
the cloud of nodes as shown in Figure 3.6(b) is used for this test.

The time to build the stiffness matrix includes the computations of the shape
functions, setting-up of the integration rule and assembly of all local stiffness matrices
in the global stiffness matrix. These local stiffness matrices are constructed per
cell or per triangle depending on whether the nodal integration scheme or the
Gaussian scheme is selected respectively. The time does not include the neighbour
search as it is required for the MLS and LME shape functions, nor is the time for
the construction of the Lagrangian multipliers or performing the triangulation or
tessellation included. These components were found to be of small influence on the
total computation time for this set of nodes. The meshless code is programmed in
Matlab and the simulations are performed on a dual-core 2.3 GigaHertz computer.
Although computational times of a computer code are depending on many factors,
for instance the skill of the programmer, the trends of the analysis are expected to be
representative.

Table 3.2 shows the results for the shape functions and integration schemes in seconds.
Several trends can be observed in the table. Firstly, it can be seen that the MLS and
LME shape function use considerably more computing time than the simple INT
approximation. This could be expected since the INT function requires only a few
computations in order to obtain φ and the local stiffness matrices of this function
are considerably smaller in size. Therefore fewer multiplications are performed in the
assembly procedure. Secondly, the SCNI integration scheme is computationally more
demanding than the STD integration. For both integration schemes, constructing
the tessellation and the triangulation is left out of the analysis. Therefore it can
be concluded that the assembly procedure and the construction of the assumed
gradient makes the SCNI integration computationally more demanding. The extra
computational effort is of little importance for the diffuse approximations. For the
INT approximation, however, the type of integration is of relatively more influence
on the computation time.

Table 3.2: The time in seconds for constructing K for the plate with hole problem .

MLS LME INT
STD 4.589 4.124 0.307
SCNI 7.268 6.099 0.909

Table 3.3 shows the number of non-zero elements in the stiffness matrix for the shape
functions and the integration schemes. The total size of the stiffness matrix K is 496
by 496. The stiffness matrix does not include the Lagrangian multiplier matrices G
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and furthermore the stiffness matrix K is defined as symmetric and sparse. The table
shows that the memory allocation for the INT shape function is less than for the
diffuse shape functions. The diffuse character of the LME and MLS approximations
has a big influence on the sparseness of the stiffness matrix. Furthermore the number
of non-zero elements in K increases by employing the stabilised nodal integration. As
a result of the compact character of the INT shape function this effect is relatively
more pronounced than for the other two shape functions. This will also influence the
solution time of the system of equations, especially if the models are large.

Table 3.3: The number of non-zeros in K for the plate with hole problem.

MLS LME INT
STD 30028 26476 2802
SCNI 49064 53500 9299

Two remarks have to be made on the results of the timings. Solving the system of
equations, the triangulations and the neighbour search routine were found to have a
negligible influence on the total computation time. These parts of the algorithm scale
more than linear with the number of nodes and therefore their relative contribution to
the total computation time will increase compared to the building time of the stiffness
matrix. Secondly, in the case of geometrical or material non-linearity, shape functions
are required per iteration to build the stiffness matrix and the internal force vector. By
storing the shape functions and ‘re-using’ them over the increment, the relative cost of
the computationally more demanding shape functions can be reduced. For the MLS
and LME functions this can be a time-reducing approach. The difference between the
linear interpolation and the MLS and LME approximations as shown in Table 3.2 is
expected to be smaller in that case. A drawback of this implementation strategy is
that memory has to be allocated to store the gradients of the shape functions.

3.4 Conclusions

In this chapter a numerical analysis was performed on three meshless approximations
and two integration schemes. The performance in linear elasticity and in elasto-
plasticity was investigated.

It was shown that diffuse shape functions, like the moving least squares function
and the local maximum entropy function, offer better accuracy when compared to
the linear triangle interpolation in elasticity. The error reduced approximately by a
factor of two to three when using the MLS or LME approximation instead of a linear
triangle interpolation for the same number of nodes. However, the computational
effort for these two diffuse approximations is higher. The stiffness matrix becomes
less sparse and the time for building this matrix is higher. The local maximum
entropy approximation and the moving least squares approximation were found to
perform very similarly if used with the same domain of influence. Furthermore it
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was observed that the SCNI integration scheme is less sensitive to distortion than the
Gaussian integration scheme.

A test in elasto-plasticity showed that using a Gaussian integration rule gives results
that depend strongly on the order of the integration rule and the compactness of the
diffuse approximations. Spurious deformation modes as well as volumetric locking
can be present, depending on the choices in the integration rule or the compactness
of the shape function. The SCNI integration scheme, on the contrary, gives excellent
results when compared to a Gaussian integration rule. No trace of volumetric
locking is observed. The meshless solutions match the reference solution accurately
and the results were found to be nearly independent of the type of shape function
used. Moreover, the compactness of the shape function has a negligible influence
on the results. To give a more fundamental background of the observed locking-free
response of the SCNI integration, the numerical inf-sup test was performed. The
SCNI integration appears locking-free, however spurious oscillations were detected.

To conclude, it can be stated that the SCNI integration is the most sensible option
for use in combination with incompressible material models, leaving the choice for
the shape function open. Simply using a Gaussian integration scheme proves to be
not optimal for use in incompressibility. For these cases, the extra computational
effort for the SCNI integration is easily justified. For a robust and fast simulation,
the method of SCNI in combination with triangle interpolation (INT) is shown to be
a very efficient computational scheme.





4

A Simple Enriched Nodal

Averaging Strategy

4.1 Introduction

As seen in the previous chapter, the stabilised conforming nodal integration technique
has beneficial properties for the simulation of large deformations. The numerical
artifact of volumetric locking is absent and the method is relatively insensitive to
distortions. Moreover, as a result of the nodal integration of the weak form, data
related to the material history can be elegantly stored at the nodes.

The essence of the stabilised conforming nodal integration scheme is a nodal averaging
technique used to build an assumed strain field. This strain field is used thereafter
in the evaluation of the constitutive behaviour. The method of nodal averaging has
been applied to the finite element method as well as meshless methods. Both will
be shortly reviewed below. Firstly the developments on the finite element side are
discussed and thereafter the developments in the meshless field are summarised.

The first development in the field of nodal averaging is the introduction of an
averaged nodal pressure tetrahedral by Bonet and Burton [20]. The starting point of
their derivations is a linear four-node tetrahedral finite element. A nodal averaging
operation is applied to the volumetric part of the deformation whereas the deviatoric
part of the deformation remains unmodified. The reason for this split of the
deformation is to avoid the problem of volumetric locking, which is of concern for
these elements. Afterwards, the method has been extended for the simulation of large
deformations in combination with explicit time integration by Bonet et al. [23]. For
implicit time integration, formulations are presented by Pires et al. [8]. All three
articles present locking-free results. An observed drawback, however, is that the
pressure prediction can be nonphysically oscillatory.

The developments as given above, employ the nodal averaging operation only on the
volumetric part of the deformation. Similarly, schemes have been developed which
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average the complete deformation. This type of nodal averaging was proposed by
Dohrmann et al. [42]. Their scheme applies nodal strain averaging both on triangular
and quadrilateral finite elements. Thereafter the nodal averaging strategy has been
applied to various types of other finite elements. For instance to linear tetrahedral
elements by Puso and Solberg [102] or to a wide selection of linear and quadratic
elements by Krysl and Zhu [74]. The stability and accuracy of nodally averaged finite
elements has been studied and improved by for instance Liu et al. [84], Hung et al.
[68], Puso and Solberg [102], Broccardo et al. [26], Puso et al. [101], Gee et al. [53], and
Nguyen-Xuan [97]. An application of nodal averaged FEM in visco-elastoplasticity is
presented by Nguyen-Thoi et al. [96]. A study of strain smoothing for finite elements
and extended finite elements can be found in Bordas et al. [24].

The first meshless method employing a nodal averaging strategy was introduced by
Chen et al. [33]. Their method is entitled the stabilised conforming nodal integration
scheme (SCNI) and was investigated extensively in the preceding chapter. An
extension of this method to geometrical non-linearity is proposed by Chen et al.
[34]. Afterwards developments have taken place in the natural element method by
González et al. [56] and by Yoo et al. [129]. Research on developing a variational
form for the strain averaging operator was done by Sze et al. [118].

To summarise, developments in nodal averaging have taken place for finite elements as
well as for meshless methods. Besides the advantages of employing a nodal averaging
strategy, there are also two drawbacks. The first drawback is the low accuracy,
especially of the displacement field, as shown in Chapter 3. The second drawback
is the lack of stability. Stress fields, for instance, can be spurious under certain
circumstances. In this chapter an enriched nodal averaging scheme is proposed which
overcomes these issues.

This chapter is organised as follows. Firstly, an introduction to the nodal averaging
operation is given in Section 4.2. Secondly, Section 4.3 will propose an enriched nodal
averaging. The formulations of the method will be explained and the aspects required
for implementation are given afterwards. Section 4.4 presents the results of three tests
examining the proposed method. Finally, the conclusion and discussion are given in
Section 4.5.

4.2 General Formulations

The starting point for the following derivations is the weak formulation of equilibrium
as given in Equation (3.4). To restate this equation in tensor form:

∫

Ω

δε : σ dΩ−
∫

Ω

δu · f dΩ−
∫

Γt

δu · t̃dΓ = 0 ∀ δu (4.1)

In order to present the new methodology more clearly, the deformations of the body
are assumed to be small. Moreover, for the constitutive model, a linear relation
between the small strain tensor and the Cauchy stress is assumed (σ = C : ε), and
the change of the geometry resulting from the deformation is neglected.
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For the current study, the displacement field u will be constructed by triangulating
a cloud of nodes by means of a Delaunay triangulation and defining a linear shape
function within each triangle. A formulation of this shape function can be found
in Section 3.2.2. The displacement field and the virtual displacement field will be
approximated as follows:

u(x) =

Nnod∑

i=1

φi(x)di and δu(x) =

Nnod∑

i=1

φi(x)δdi (4.2)

See Figure 4.1 for a visualisation of the linear interpolation based upon the Delaunay
triangulation. The shape function of the node at the centre of the grid is plotted.
Note that the method presented in this chapter is applicable to any shape function
and is not restricted to the linear triangle interpolation. Diffuse approximations,
such as the moving least squares function or the local maximum entropy function as
given in Section 3.2.2 and 3.2.2, can be used in combination with the methodology as
presented in this chapter.

(a) a grid of nodes (b) shape function φ(x) for the centre node

Figure 4.1: Linear interpolation based on a Delaunay triangulation.

4.2.1 Classical Compatible Strain

After defining shape functions φ, it is possible to discretise Equation (4.1). Matrices
N and B are constructed, which relate the field displacements and strains to the nodal
displacement vector d. The strain and the virtual strain in the body are defined by
the gradient of the displacement field:

ε(x) =
1

2

(−→∇u+ u
←−∇
)

and δε(x) =
1

2

(−→∇δu+ δu
←−∇
)

(4.3)

The matrices in Voigt form become:

{u} = [N] {d} {δu} = [N] {δd} (4.4)

{ε} = [B] {d} {δε} = [B] {δd} (4.5)
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where matrices N and B contain the function values and gradients of shape function
φ respectively. Writing Equation (4.1) in Voigt form, and requiring it to hold for all
virtual nodal displacements, gives:

∫

Ω

[B]
T
[C] [B] dΩ {d} =

∫

Γt

[N]
T {

t̃
}
dΓ +

∫

Ω

[N]
T {f} dΩ (4.6)

4.2.2 Nodally Averaged Strain

The method of nodal averaging constructs an assumed strain field which is different
from the symmetric gradient of the displacement field. This assumed strain field is
constructed as follows:

ε̄(x) =
1

Ωi

∫

Ωi

ε(ξ) dΩ ∀ x ∈ Ωi for i = 1...Nnod (4.7)

where ε̄ is the nodally averaged strain field, ξ is a coordinate used for integration and
Ωi is a set containing all points in the cell corresponding to node i. Figure 4.2 shows
an illustration of the used cells Ωi. Moreover, a triangulation is shown on which the
shape functions are defined.

The approximation spaces in Voigt form become:

{ε̄} =
[
B̄
]
{d} {δε̄} =

[
B̄
]
{δd} (4.8)

where B̄ is the strain-displacement matrix of the smoothed strain field, and δε̄ is the
virtual smoothed strain field. The B-matrix is constructed according to Equation
(4.7) as follows:

B̄(x) =
1

Ωi

∫

Ωi

B(ξ) dΩ ∀ x ∈ Ωi for i = 1...Nnod (4.9)

where matrix B is the compatible strain-displacement matrix as given in Section 4.2.1.
Finally, Equation (4.1) is modified as follows:

∫

Ω

[
B̄
]T

[C]
[
B̄
]
dΩ {d} =

∫

Γt

[N]
T {

t̃
}
dΓ +

∫

Ω

[N]
T {f} dΩ (4.10)

As mentioned previously, the nodally smoothed strain field has some interesting
features. However, there are also two drawbacks which will be addressed in brief
below.

The first concern when using the nodal averaged strain field is that, irrespective
of the used shape function, its accuracy is of the same order as for a standard
Gaussian integrated scheme. A linear triangle finite element is as accurate as its
nodally averaged counterpart in the displacement error norm. See Section 3.3.2 for
this comparison. Linear triangle finite elements are known for their inaccuracy and
are therefore not widely used in engineering practice.
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(a) a grid of nodes (b) a set of triangles used
to construct N

(c) a set of cells used to
construct B̄

Figure 4.2: The two geometrical concepts used in the method of smoothed finite
elements.

The second and main drawback of the nodally averaged strain field is the lack of
stability of the resulting weak form. This stability problem was firstly discussed by
Puso and Solberg [102]. For regular grids extending to infinity, or infinitely fine
regular grids, the weak form is not elliptic. Their main derivations will be discussed
in brief below. Firstly, the bilinear form of the problem is defined:

ah(u,u) =

∫

Ω

ε̄(u) : C : ε̄(u) dΩ (4.11)

where ah gives twice the energy in the body Ω for a displacement field u. Subscript h
denotes the dependency of the bilinear form to the nodal spacing h. The magnitude
of the displacement field is measured by the first order Sobolev norm which is defined
in tensor form as:

∥u∥21 =

∫

Ω

(u · u+
−→∇u :

−→∇u) dΩ (4.12)

Let Vh be a space containing all displacement fields u for which this Sobolev norm
exists, but excluding all rigid body modes. The ellipticity condition is given as:

inf
u∈Vh

ah(u,u)

∥u∥1
> 0 (4.13)

This condition states that the energy in the body, divided by the norm, is not allowed
to be smaller than or equal to zero for non-zero displacement fields u. As was shown by
Puso and Solberg the ellipticity condition is violated for regular grids with increasing
density. In formula form, the condition is violated as follows:

lim
h→0

inf
u∈Vh

ah(u,u)

∥u∥1
= 0 (4.14)

For an infinitely fine regular mesh, ellipticity does not hold, and for finite meshes
ellipticity holds only very weakly. Figure 4.3 gives an illustration for the 1D case in
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which the displacement field u makes the bilinear form ah(u,u) zero. Although the
displacement field and the compatible strain field are larger than zero, the assumed
strain field is zero. As a result, the stiffness matrix of the system is rank deficient. This
is nonphysical and a method has to be employed in order to counter this numerical
artifact.

nodes elements cells

u

ε

ε̄

−∞

−∞

−∞

∞

∞

∞

Figure 4.3: An illustration of the instability of the nodal averaging.

4.3 Enriched Nodal Averaging

In this section, the formulations of the enriched nodal averaging strategy will be
presented. The essence of this method is a least squares fit between the compatible
strain field and the assumed strain field. Instead of directly explaining the enriched
nodal averaging scheme, firstly this least squares fit is explained by using it to
derive the formulations of the ‘standard’ nodal averaging as given in the preceding
section. Section 4.3.1 will present these derivations. Subsequently, the enriched nodal
averaging is presented in Section 4.3.2. Section 4.3.2 will give an illustrative example
on the method for enrichments with increasing complexity.

To enhance readability, all further derivations are made for one single cell. After the
formulations for one cell are found, the descriptions are re-cast in a form which is
applicable to the whole assumed strain field. Figure 4.4 shows a cloud of nodes and
the cell under consideration which will be used for further derivations. The volume of
a cell is given by V . For the following derivations, coordinate systems x and ξ, which
have an equal orientation and magnitude, will be used.
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(a) set of nodes

x, ξ

y, η

V

(b) nodal averaging cell

Figure 4.4: An illustration of a single nodal averaging cell used for further
derivations.

4.3.1 Constant Cell Strain

In this paragraph, the well known formula for nodal averaging will be derived by using
a least squares fit. As in the preceding sections, the compatible strain field is given
by ε and the assumed strain field is given by ε̄. This latter field is supposed to be
unknown beforehand and an explicit formulation for the field as given in Equation
(4.7) is not available. Leaving the choice for this field open, it is still possible to define
a least squares fit between ε and ε̄:

Πls =

∫

V

(ε(ξ)− ε̄(ξ))
2
dV (4.15)

where ξ is the local coordinate used for integration purposes, V is the volume of the
cell as shown in Figure 4.4(b) and Πls is a potential expressing the error between the
two strain fields. In Equation (4.15), the choice for the assumed strain field ε̄ is left
open. The most simple choice is to assume this field constant within the cell V :

ε̄ = 1 · ε0 (4.16)

where ε0 is a set of coefficients corresponding to the constant term of the polynomial
expansion. Note that ε0 is a second order tensor but is not a function of the coordinate
vector ξ. The least squares fit between the compatible strain field and the assumed
strain field can now be expressed as:

Πls =

∫

V

(ε(ξ)− ε0)
2
dV (4.17)

This potential is minimised with respect to variables ε0:

min
εo

Πls (4.18)
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The most simple way to find this minimum is to require the derivatives of the potential
to be zero:

∂Πls

∂ε0
= −2

∫

V

(ε(ξ)− ε0) dV = 0 (4.19)

Rearranging this result gives the well-known form for nodal averaging:

∫

V

ε0 dV =

∫

V

ε(ξ) dV (4.20)

ε0 =
1

V

∫

V

ε(ξ) dV (4.21)

This equation holds for a single arbitrary cell in the domain. In order to get an
expression for the complete field, Equation (4.21) is rewritten in a general form by
considering V = Ωi. The expression for the complete assumed strain field is given by:

ε̄(x) =
1

Ωi

∫

Ωi

ε(ξ) dΩ ∀ x ∈ Ωi for i = 1...Nnod (4.22)

To summarise, the definition of the assumed strain field as given in Equation (4.7)
can be found by using a least squares fit between the assumed strain field and the
compatible strain field.

4.3.2 Linear Cell Strain

In the derivation given above, only a constant term was included in the least squares
fit. The onset of the loss of ellipticity is a result of the choice for this simple polynomial
basis. Therefore, in the following derivation the nodal strain is expanded by including
linear terms in the assumed strain field. The start of the derivations is the following
assumed strain field:

ε̄(ξ) = ε0 + εξξ + εηη (4.23)

where εξ and εη are the coefficients of the polynomial expansion in the direction of ξ
and η respectively. For further derivations, location vector ξ is defined with its origin
in the centre of gravity of the cell V . As a result, the coefficients ε0, εξ and εη can
be fitted to the compatible strain field ε per coefficient separately. Figure 4.5 gives
an illustration of the location vectors used. The centre of gravity of cell V is given by
xc.

Similarly as in Equation (4.17), a least squares potential is constructed which gives a
magnitude of error between the two strain fields:

Πls =

∫

V

(ε(x)− ε̄(ξ))
2
dV (4.24)

=

∫

V

(ε(x)− ε0 − εξξ − εηη)
2
dV (4.25)
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(a) set of nodes

x

y

xc

ξ

η

V

(b) nodal averaging cell

Figure 4.5: An illustration of a single nodal averaging cell with shifted axis.

The goal is to minimise this potential, now for the three coefficients ε0, εξ and εη:

min
εo,εξ,εη

Πls (4.26)

The choice for coordinate system ξ allows this minimisation to be performed per
coefficient independently. The cross terms in the least squares fit are zero because of
the orthogonal polynomials in V :

∫

V

ε0 · εξξ dV =

∫

V

ε0 · εηη dV =

∫

V

εξξ · εηη dV = 0 (4.27)

As a result, the following set of equations is obtained:

∂Πls

∂ε0
= −2

∫

V

(ε(ξ)− ε0) dV = 0 (4.28)

∂Πls

∂εξ
= −2

∫

V

ξ (ε(ξ)− εξξ) dV = 0 (4.29)

∂Πls

∂εη
= −2

∫

V

η (ε(ξ)− εηη) dV = 0 (4.30)

By rearranging the results, the coefficients can be found:

ε0 =
1

∫

V
1 dV

∫

V

ε(ξ) dV (4.31)

εξ =
1

∫

V
ξ2 dV

∫

V

ε(ξ)ξ dV (4.32)

εη =
1

∫

V
η2 dV

∫

V

ε(ξ)η dV (4.33)

Since all derivations given above are only for an arbitrary single cell V , an expression
is constructed for the total field as follows:

ε̄(x) = εi0 + εiξξi + εiηηi ∀ x ∈ Ωi for i = 1...Nnod (4.34)
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where εi0, ε
i
ξ and εiη are the coefficients of cell i. The local coordinate axes for this

cell are given by ξi and ηi.

Figure 4.6 shows the enriched nodal strain field for the unstable spurious mode as
given before in Figure 4.3. It can be seen that the block pattern of the spurious
strain field ε is captured in the assumed strain field εξ. To conclude, it is possible to
construct a linear strain in a cell, and to find expressions with which the linear terms
can be computed.

−∞

−∞

−∞

−∞

∞

∞

∞

∞

u

ε

ε0

εξ

Figure 4.6: An illustration of the enriched cell strain for the spurious mode.

4.3.3 Higher Order Cell Strains

As shown in the section above, it is possible to define a linear strain in a cell which
can be used to stabilise the weak form. For further developments presented in this
chapter, this linear expansion will prove efficient in suppressing the spurious mode
and in improving the accuracy. However, for academic purposes, it is interesting to
examine the case in which the order of this expansion is increased. This section will
investigate that case by raising the order of the polynomial basis beyond a linear
basis.

Assume a predefined strain field ε as shown in Figure 4.7(a). At the left-hand side of
the graph (0 < x < 5), this strain field is defined as a block pattern. It is the pattern
on which the ellipticity condition is violated for the standard nodal averaging. At the
right-hand side of the graph (5 < x < 10) a parabolic part is prescribed. Assumed
strains with increasing polynomial order will be fitted to this compatible strain field.
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The cell strains are shown in Figure 4.7 for various polynomial bases. Figure 4.7(a)
shows the standard nodal averaged strain field as defined in Equation (4.22). Figure
4.7(b) shows the result for one linear term (Equation (4.34)). The oscillatory left-
hand side of the strain field is captured in the assumed strain field. Figures 4.7(c)
and 4.7(d) show a cubic expansion and octic expansion respectively. The compatible
strain field is approximated with increasing accuracy. However, because of Runge’s
phenomenon, the compatible strain field cannot be retrieved exactly in the limit.
Overshoots will remain at the discontinuities in the compatible strain field. Therefore
the potential Πls will not be exactly zero, unless a different basis is chosen for the
strain in a cell.

For the compatible strain field, it is known that the use of this field results in a stable
elliptic weak form. On the contrary, the assumed strain field with only a constant
enrichment is unstable, as was demonstrated in Section 4.2.2. As a consequence,
it can be concluded that by increasing the polynomial order of the cell strain, it is
guaranteed that a stable weak form is retrieved. Since the complexity of the method
increases with each added polynomial term in the strain of a cell, only linear terms
will be included for the following sections. The stability of the resulting scheme will
be investigated in Section 4.4.
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Figure 4.7: Higher order polynomial expansions for cell strains.
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4.3.4 System Matrices

In this section, the system matrices resulting from the linear cell strain approximation
as given in Section 4.3.2 will be presented. Firstly, the total stiffness matrix is defined
as the sum of the sub-stiffness matrices [K]i:

[K] =

Nnod∑

i=1

[K]i (4.35)

where the index i refers to node or cell i. The sub-stiffness matrix for this node is
defined as:

[K]i =

∫

Ωi

[
B̄
]T

i
[C]
[
B̄
]

i
dΩ (4.36)

where [B]i is the strain-displacement matrix for cell i. This assumed strain is defined
as:

ε̄(x) = εi0 + εiξξi + εiηηi (4.37)

= ([B0]i + [Bξ]iξi + [Bη]iηi){d} (4.38)

where matrices [B0]i, [Bξ]i and [Bη]i correspond to the strain coefficients of node i.
Substituting these three matrices into Equation (4.36) and using the property that
the matrices are mutually orthogonal gives the following derivation:

[K]i =

∫

Ωi

([B0]
T
i + [Bξ]

T
i ξi + [Bη]

T
i ηi)[C]([B0]i + [Bξ]iξi + [Bη]iηi) dΩ (4.39)

= [B0]
T
i [C][B0]iΩi + [Bξ]

T
i [C][Bξ]i

∫

Ωi

ξ2i dΩ + [Bη]
T
i [C][Bη]i

∫

Ωi

η2i dΩ (4.40)

= [K0]i + [Kξ]i + [Kη]i (4.41)

Before Equation (4.41) is used for a simulation, two modifications are made. First
of all, the method of standard nodal averaging gives a stiffness matrix (K0) that is
locking-free. Adding terms related to a linear strain to this stiffness matrix will add
one volumetric constraint to the system per term. In the case of an incompressible
material, this system will lock and is therefore useless for the simulation of these
materials. To avoid this problem, not the full material response C is used for matrices
Kξ and Kη, but only the deviatoric part. This deviatoric part of the material tangent
is denoted by Cdev and is defined as:

[Cdev] = [M][C][M] where: [M] =





0.5 −0.5 0
−0.5 0.5 0
0 0 1



 (4.42)

The volumetric part of the deformation is not considered for the linear strain terms.
As a result, the number of volumetric constraints is the same as in the case of standard
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nodal averaging. Secondly, a parameter κ will be introduced to control the number
of linear terms in matrix K. The final equation becomes:

[K]i = [K0]i + κ([Kξ]i + [Kη]i) (4.43)

where:

[Kξ]i = [Bξ]
T
i [Cdev][Bξ]i

∫

Ωi

ξ2i dΩ (4.44)

[Kη]i = [Bη]
T
i [Cdev][Bη]i

∫

Ωi

η2i dΩ (4.45)

Appendix C presents details for the implementation of these matrices.

4.4 Numerical Examples

In this section several numerical examples are presented to show the performance of
the enriched nodal averaging. First a test is presented in Section 4.4.1 to investigate
the influence of the κ-parameter. Section 4.4.2 will investigate the accuracy of the
scheme for an infinite plate with hole. The stability of the enhanced nodal averaging
will be examined in Section 4.4.3.

4.4.1 Beam Stretching and Bending

In this test, four aspects of the enriched nodal averaging will be studied. First of all a
check is performed to establish whether the patch test is satisfied for regular as well as
irregular grids. A beam will be subjected to a uniform tensile load in order to study
this first order reproducibility. Secondly the accuracy of the scheme will be tested
for the case in which the beam is subjected to a pure bending moment. Thirdly, the
influence of the linear terms is studied by varying parameter κ and finally the artifact
of volumetric locking will be investigated.

Figure 4.8(a) shows the geometry of the beam and the applied load cases. Load case
1 corresponds to the patch test and case 2 corresponds to the pure bending of the
beam. A linear elastic material will be used with a Young’s modulus of E = 75 and
a Poisson’s ratio of ν = 0.0. A plane strain assumption applies to the model. Figures
4.8(b) and 4.8(c) give the two nodal grids. To give a magnitude of error, the L2 norm
will be used on the error of the displacement field u. This norm is expressed as:

∥eu∥L2 =

√
∫

Ω

∥u(x)− uexact(x)∥2 dΩ (4.46)

The exact displacement field for the beam under tension is:

ux =
7.5(1 + ν)(1− ν)

E
x (4.47)

uy = −7.5ν(1 + ν)

E
y (4.48)
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and the exact displacement for the pure bending of the beam is:

ux(x) =
3(1− ν2)

2E
xy (4.49)

uy(x) = −
3(1− ν2)

4E
x2 − 3ν(ν + 1)

4E
y2 (4.50)

10

2

load load

case 1 case 2

7.5 1.5

-1.5

x

y

E = 75

ν = 0.0

(a) beam model

(b) regular node set (c) irregular node set

Figure 4.8: The geometry and nodal grids for the beam problem.

Table 4.1: The L2 error in the displacement for the stretching of the beam.

∥eu∥L2 κ = 0 κ = 0.5 κ = 1.0
regular 3.054 · 10−14 8.719 · 10−14 1.880 · 10−13

irregular 1.792 · 10−13 2.125 · 10−13 3.268 · 10−13

Table 4.2: The L2 error in the displacement for the bending of the beam.

∥eu∥L2 κ = 0 κ = 0.5 κ = 1.0
regular 9.732 · 10−2 1.271 · 10−2 5.129 · 10−2

irregular 1.547 · 10−1 7.376 · 10−2 2.588 · 10−2

Table 4.1 gives the displacement error for load case 1. This patch test should be
satisfied for any numerical method in computational solid mechanics. For both the
regular and the irregular grid, the error in the displacement field is in the order of
the machine precision. Hence, the patch test is satisfied independently of the setting
for κ.

Table 4.2 presents the results for load case 2. Parameter κ is set to 0.0, 0.5 and 1.0.
It can be seen that by adding linear terms in the expansion, the error is reduced. An
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increase in accuracy in the order of one decade in the L2 norm can be obtained.
Unfortunately, this minimal error comes for different settings of κ depending on
whether the regular or the irregular grid is used.
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Figure 4.9: The tip displacement of the beam bending problem for various settings
of ν and κ.

For the following test, the artifact of volumetric locking of the enriched nodal
averaging will be investigated. The beam is discretised with four nodal grids with
increasing density. The grids are randomly perturbed similarly as the grid shown in
Figure 4.8(c). The number of nodes in x and y direction are 11x3, 21x5, 41x9 and
81x17. The error in the displacement will be monitored at point (x, y) = (10, 0) for
load case 2 and is defined as:

etip =
{

0 1
}
(u(xtip)− uexact(xtip)) (4.51)

where: xtip =
{

10 0
}T

(4.52)

The Poisson’s ratio is moved from fully compressible (ν = 0.0) to nearly
incompressible (ν = 0.4999). Linear terms in the strain field are excluded (κ = 0) or
included (κ = 1.0) in the computation.

Figure 4.9 shows the results of the analysis. It can be seen that for all settings of
ν the tip displacement of the beam is most accurately approximated by using the
enriched cell strain. Especially for the results made with the compressible material
behaviour, the enriched cell strain approximates the displacement accurately for
limited sets of nodes. Secondly, the artifact of volumetric locking seems absent.
The nodal averaging gives locking-free results and the same holds for the enhanced
nodal averaging. There is no spurious stiffening of the response of the beam for
setting ν near the incompressible limit of 0.5. Finally, it is observed that the
nodal averaged solution overestimates the tip displacement whereas the enriched
nodal averaging underestimates this displacement. For nodal averaging, it is known
that the approximation overestimates the displacements [84]. The addition of the
stiffness terms related to the linear polynomials as shown in Equation (4.43) makes



80

the response of the beam more stiff if κ = 1. The displacement, however, is not
underestimated for all nodal grids, but is also overestimated for two grids as can be
seen in Figure 4.9(a). The incompatibility of the strain field is likely to cause this
non-monotonic convergence to the exact solution.

4.4.2 Infinite Plate With a Hole

The enhanced scheme will be tested on the infinite plate with a hole problem. See
Section 3.3.2 for the details of this problem, including the exact displacement field,
the loading conditions, the material parameters and the dimensions. Four nodal grids
will be used to examine the rate of convergence of the scheme in the L2 error norm.
The nodal grids are displayed in Figure 4.10. Parameter κ is set to 0.0, 0.5 and 1.0.
The L2 error as given in Equation (4.46) is computed by using the exact displacement
field.

Nnod = 63 Nnod = 248 Nnod = 993 Nnod = 3967

Figure 4.10: Four node sets as used for the plate with a hole problem.

Figure 4.11 shows the results of the test. It can be seen that the rate of convergence is
approximately 2 for all three settings. For an approximation which reproduces linear
polynomials in the displacement field, the quadratic terms of the exact displacement
field are not reproduced by the approximating field and hence they contribute to the
error. The rate of convergence of order 2 is therefore expected. A second conclusion
that can be drawn from Figure 4.11 is that the unmodified nodal averaging (κ = 0)
is the least accurate. By adding linear strain terms to the approximation, the error
is reduced by approximately a factor of 7 for the setting of κ = 0.5.

4.4.3 Pinched Bar

In the following test, the stability of the scheme is tested. Standard nodal averaging
can suffer from spurious modes in the displacement, especially on regular grids as
explained in Section 4.2.2.

To examine the stability of the enriched cell strain, the problem shown in Figure
4.12(a) will be analysed. The bar is modelled with a regular grid of nodes as depicted
in Figure 4.12(b) such that the spurious mode shown in Figure 4.3 can manifest itself
easily. The grid has 5 nodes over the height and 21 nodes along the length. The bar
is pinched between two supports on the top surface of the bar and one support on the
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Figure 4.11: Error plots for the plate with a hole for various settings of κ.

bottom surface of the bar. The displacements of the two supports on the top of the
bar are prescribed downwards and are fixed horizontally. The support at the bottom
is prescribed upwards and fixed horizontally also. The magnitude of the prescribed
displacement ũy is 0.2. A plane strain assumption applies to the bar, and the Young’s
modulus and Poisson’s ratio are set to E = 10 and ν = 0.3 respectively. To examine
the performance of the developed scheme, the vertical displacements of the nodes
lying in the centreline of the bar (y = 0) will be monitored.

20

1.0

3

ũy

ũy

x

y

(a) pinched bar model (b) cloud of nodes

Figure 4.12: The model and the nodal grids for the pinched bar problem. The grey
nodes are prescribed.

Figure 4.13 shows the vertical displacement of the nodes lying on the horizontal
centreline of the bar. Clearly, the unmodified nodal averaging is spurious. The
oscillation is triggered at the supports and damps out towards the end of the bar. For
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a bar of infinite length, this oscillation will not diminish and will progress identically
as shown in Figure 4.3. By adding linear polynomials to the cell strain, the results
improve and the spurious mode is suppressed. Setting κ = 0.5 or κ = 1.0 eliminates
the spurious mode and gives an elliptic response as is expected for this problem.
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Figure 4.13: The vertical displacement of the nodes at the centreline y = 0 of the
pinched bar problem.

It can be stated that the displacement field in the centreline of the beam improves
considerably by employing the enriched nodal averaging strategy. To inspect the
stress field, the stress is monitored over a coarse and fine grid for two settings of κ.
Figure 4.14 shows contour plots of the von Mises stress field. The plot is constructed
by interpolating the stress field resulting from the constant strain terms ε0 on the
Delaunay triangles.

Figures 4.14(a) and 4.14(b) show the nodal averaged results. Figures 4.14(c) and
4.14(d) show the enriched nodal averaged results. It can be seen that the stress
prediction for the nodally averaged results are too low in general and are especially
incorrect on the coarse grid. The stress is close to zero throughout the domain and
the displacement field is highly oscillatory. For the finer grid, the stress levels become
higher and focus around the supports, but the displacements remain oscillatory and
small oscillations are present in the stress field. The enriched responses show firstly
a stable response in the displacement, independent of the used grid. Secondly, the
stress prediction is more smooth and forms the expected stress bands from the top
supports to the bottom support.
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Figure 4.14: Contour plots of the von Mises stress on a coarse and fine grid for two
settings of κ.
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4.5 Conclusions

In this chapter the stability of the nodal averaging technique was improved by an
enriched nodal averaging strategy. The essence of the proposed method is to include
linear polynomials in the strain of a cell accompanying a node. It was shown that
the proposed scheme improves the stability of the results while remaining free of
volumetric locking. Moreover, results indicate that not only the stability of the result
improves, but also the accuracy. A numerical parameter κ was introduced to control
the amount of stabilisation terms added to the system. It can be concluded that
setting this parameter between 0.5 and 1.0 gives satisfactory results as the stability
and accuracy improve. The following chapter will propose an extension of the method
for use in geometrical non-linearity with implicit time integration.
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Adaptive Smoothed Finite

Elements in Large

Deformations

5.1 Introduction

Finite element simulations of large deformation processes, like extrusion or forging,
can fail as a result of element distortion. Either many re-meshing steps or a Eulerian
formulation is required to avoid this problem. For both solutions, state variables of
material points have to be mapped or convected, which reduces the accuracy of the
solution.

The nodally averaged triangular finite element was investigated in the previous two
chapters and was shown to have favourable properties for the simulation of bulk
forming processes. The essence of the method is an assumed strain field which is
constructed by a nodal averaging procedure. By this nodal averaging of the strain,
the constitutive behaviour is evaluated per node instead of per ‘Gaussian’ integration
point. A consequence is that if nodal positions are kept Lagrangian, the material point
in which the constitutive behaviour is evaluated remains at the nodal location. As
long as no rearrangement of the nodes takes place, there is no need to convect or map
data concerning the material model. The evaluation of the material model is thereby
no longer dependent on the linear triangle shape functions. Hence, the cloud of nodes
can be re-triangulated without modifying the material data of a point. It is possible
to revise the mesh with a Delaunay triangulation for every step in the simulation.
By definition, a Delaunay triangulation of a cloud of nodes produces triangles with
optimal shape for that set of nodes. If nodes start moving, the triangulation will alter
such that distortional effects are minimal.

Nodally averaged finite elements are known by the name of Smoothed FEM (SFEM).
Since the proposed method revises the mesh for every step, the method will be named
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the Adaptive Smoothed Finite Element Method (ASFEM). This chapter presents the
formulations for ASFEM for large deformations. An updated Lagrangian description
is chosen in order to easily incorporate the triangulation which alters in time.

This chapter is organised as follows. Firstly the basic governing equations of a body
undergoing large deformations are given in Section 5.2. The approximation spaces for
the ASFEM method are defined and the equation of virtual work is given. Section 5.3
presents details for the implementation of the method. In Section 5.4 the proposed
method is used to simulate several test cases in order to prove its validity in large
deformations.

5.2 Governing Equations

The goal of this section is to present the main governing equations of a body being
subjected to large deformations and to define the approximation spaces for the
ASFEM method. For more detailed information of large deformations in general,
the reader is referred to the work of Huétink [66] or Belytschko et al. [17].

Figure 5.1 shows an illustration of a body subjected to large deformations. The
volume of the body in the undeformed and deformed state are given by Ω0 and Ω
respectively. The spatial location of a point is given by its Eulerian coordinates x.
The location of that point in the undeformed configuration is given by its Lagrangian
coordinates X. The Eulerian coordinates of a material point are a function of the
Lagrangian coordinates X and the time t, and are therefore expressed as x(X, t).
As an illustration, at t = 0 the Eulerian coordinates are equal to the Lagrangian
coordinates (x(X, 0) = X). Note that for further derivations also the symbol τ will
be used to indicate time.

X

x(X ),t

t

Ω0

Ω

Figure 5.1: A schematic picture of deforming material.
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5.2.1 Motion

The motion of an arbitrary point X in the body Ω can be expressed in a general way
by integrating the velocity of that point over time:

x(X, t) = X+

∫ t

0

v(X, τ) dτ (5.1)

where vector v contains the velocity of a point X at time τ .

The velocity field as given in Equation (5.1) will be discretised by a set of shape
functions. For the proposed method, the shape functions for the scheme are chosen to
be simple linear triangular interpolations defined upon the Delaunay triangulation of
the cloud of nodes. This triangulation can be constructed either by using the Eulerian
coordinates, or the Lagrangian coordinates of the nodes. If the Lagrangian coordinates
are used, only one Delaunay triangulation is sufficient since the triangulation will
not alter throughout the simulation. If the Eulerian coordinates are used, the
triangulation will alter in time. If the nodes move in space, their Eulerian coordinates
will change (contrary to their Lagrangian counterpart). Figure 5.2 shows a Delaunay
triangulation based on the two coordinate sets. Figure 5.2(a) shows the trajectory of a
Lagrangian point traveling in space and the triangulation on which the shape functions
are defined. Since the triangulation does not alter, this point remains situated within
one triangle, as is the case for classical compatible finite elements. Figure 5.2(b)
shows the trajectory of a point and the triangulation based on Eulerian coordinates.
In time, the point will ‘travel’ through several triangles. Hence its shape function
values alter in time.

t

x(X ),t

(a) the triangulation based on Lagrangian
coordinates

t

x(X ),t

(b) the triangulation based on Eulerian
coordinates

Figure 5.2: A Delaunay triangulation based on two sets of coordinates.
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Leaving the choice for the definition of the triangulation algorithm open, the
approximation of the velocity field can be expressed in a general form as follows:

v(x) =

Nnod∑

i=1

φi(x(X, t))ḋi (5.2)

where ḋi are the nodal velocities of node i and φi(x(X, t)) are the shape functions of
the same node as a function of the Eulerian coordinates at time t. The movement of
a point in the approximated velocity field is expressed as:

x(X, t) = X+

∫ t

0

Nnod∑

i=1

φi(x(X, τ))ḋi dτ (5.3)

This equation states that the deformed configuration is dependent on the shape
functions and the nodal velocities of all previous times t. In the remainder of this
section, expressions for the deformed configuration will be derived firstly for the
Lagrangian triangulation and thereafter for the Eulerian triangulation.

If the shape functions are defined on a Lagrangian Delaunay triangulation, the
following equation holds:

φi(x(X, t)) = φi(X) for i = 1...Nnod (5.4)

This equation states that the values of the shape functions for a Lagrangian point are
equal for the deformed configuration x and the undeformed configuration X. This
gives a formulation as is commonly used for finite elements. Equation (5.3) can be
simplified as follows:

x(X, t) = X+

∫ t

0

Nnod∑

i=1

φi(X)ḋi dτ (5.5)

= X+

Nnod∑

i=1

φi(X)di (5.6)

where φi(X) is a shape function dependent on the Lagrangian coordinates and di are
the nodal displacements which are defined as:

di =

∫ t

0

ḋi dτ (5.7)

So in order to calculate the location of any point in the body, the shape functions can
be computed at X and simply be multiplied by the nodal displacements. A downside
is that if the body deforms severely, the Delaunay triangulation will become distorted
and results degrade, as is the case for finite elements.

If the shape functions are defined upon the Eulerian Delaunay triangulation, φ will
be dependent on x and hence implicitly on time t. Equation (5.4) does not hold:

φi(x(X, t)) ̸= φi(X) for i = 1...Nnod
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As a result, Equation (5.3) can not be simplified further. The first implication of this
equation not being satisfied is that, in order to compute a point’s current location
x, the contributions of all shape functions φi that are, or were, non-zero on the
trajectory of that point X have to be considered. The second implication concerns the
triangulation algorithm. For a minor change in the nodal positions, the triangulation
can alter. See section 5.3.6 for more details on this discrete behaviour of the Delaunay
triangulation algorithm. Since the shape functions are defined upon this triangulation,
their values will change accordingly. Hence the shape functions are in this case C−1

continuous in time, which can cause convergence problems in implicit computations.
Both implications can be resolved by using a stepwise evaluation of Equation (5.3).
Section 5.3.1 will discuss this approximation and will show that the ‘optimal’ Eulerian
triangulation can be used without the issues envisaged above.

5.2.2 Deformation

For the case of nodal averaging, the rate of deformation is assumed to be different
than simply the symmetric gradient of the velocity field. The assumed field is used to
describe the deformations of the body and to weigh the strong form of the equilibrium.
Whereas in the previous chapters the symbol ( ¯ ) was used on all assumed variables,
this will be dropped for readability, except for the yet to be defined smoothed gradient
operator ∇̄.
To start, the smoothed gradient operator for large deformations will be defined. If
Ωi is the volume of a cell corresponding to node i in the deformed configuration, the
smoothed gradient is defined as:

∇̄... = 1

Ωi

∫

Ωi

∇... dΩ ∀ x ∈ Ωi i = 1...Nnod (5.8)

The assumed velocity gradient L can be computed by using the smoothed gradient
operator on the velocity field:

L = (∇̄v)T (5.9)

The assumed velocity gradient incorporating the approximation for the velocity field
is defined as:

L =

(

∇̄
Nnod∑

i=1

φi(x(X, t))ḋi

)T

(5.10)

This equation shows that the velocity gradient depends on the smoothed gradient ∇̄,
on the nodal velocities ḋ and on the shape functions φ. Section 5.3 will propose a
numerical approximation of this equation.

If the velocity gradient is known, the rate of deformation and the spin can be computed
as follows:

D =
1

2
(L+ LT) and W =

1

2
(L− LT) (5.11)
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5.2.3 Virtual Work

In the preceding chapters, a set of nodal displacements, with which the nodal
equilibrium was satisfied, was easily found as a result of several simplifications made.
The strains were assumed small, the change of the geometry caused by deformation
was neglected and a linear elastic constitutive model was chosen. For simulations in
large deformations, these assumptions cannot be justified since the change of geometry
is likely to be the purpose of the simulation and the constitutive model and the strain
definitions are non-linear. As a result, the nodal equilibrium is non-linear, and the
search for a set of displacements for which nodal equilibrium holds requires a special
strategy.

In this research a Newton–Raphson scheme will be used in order to find this
equilibrium within a predefined small time step (an increment). This scheme
iterates towards the nodal equilibrium by varying the nodal displacements. For one
iteration, a linearisation of the force vectors is required in order to predict new nodal
displacements. The governing equations required for the Newton–Raphson process
will be derived in a general form in this section. Thereafter Section 5.3.3 will extend
these derivations by incorporating the discretisation of space.

The principle of virtual work can be found by rewriting Equation (4.1) for large
deformations:

δW =

∫

Ω

δD : σ dΩ

︸ ︷︷ ︸

−
∫

Ω

δv · f dΩ−
∫

Γ

δv · t̃ dΩ
︸ ︷︷ ︸

= 0 ∀ δv (5.12)

δWint δWext

where δW is the virtual work and δD is the virtual rate of deformation tensor. The
internal and external virtual work are given by δWint and δWext respectively.

The rate of the virtual work, also known as the virtual power, will be used for the
linearisation of the force vectors later on. The internal virtual power is found as
follows:

δẆint =
d

dt

∫

Ω

δD : σ dΩ (5.13)

=

∫

Ω

∂

∂t
(δD : σ) dΩ +

∫

Γ

(δD : σ)v · n dΓ (5.14)

=

∫

Ω

∂

∂t
(δD : σ) dΩ +

∫

Ω

(δD : σ)∇ · v + v · (∇ (δD : σ)) dΩ (5.15)

=

∫

Ω

d

dt
(δD : σ) dΩ +

∫

Ω

(δD : σ)∇ · v dΩ (5.16)

=

∫

Ω

δḊ : σ dΩ +

∫

Ω

δD : σ̇ dΩ +

∫

Ω

δD : σ tr(D) dΩ (5.17)

where σ̇ is the rate of the Cauchy stress and tr() is the trace operator on a tensor.
Note that if t̃ and f in Equation (5.12) are kept constant in time, the external virtual
power δẆext is zero. Hence this term does not need to be linearised.
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The Cauchy stress tensor should be objective. This implies that the tensor, expressed
in a corotational frame, should remain constant for a point undergoing pure rotation.
In order to make the stress objective, the Jaumann rate will be adopted. This rate is
expressed as:

σ̇ = CJ : D+W · σ − σ ·W (5.18)

where CJ is the tangent of the constitutive behaviour. By filling Equation (5.18)
into Equation (5.17), the resulting virtual power can be simplified further. This
simplification is quite involving and the reader is referred to Huétink [66] for a detailed
derivation. The resulting equation of virtual power becomes:

δẆint =

∫

Ω

(δLT · L− 2δD ·D) : σ dΩ +

∫

Ω

δD : CJ : D dΩ +

∫

Ω

δD : σ tr(D) dΩ

(5.19)

Section 5.3.3 gives the system matrices and vectors for the discretised equation of
virtual work and its rate form.

The constitutive behaviour is expressed in a rate form. The virtual work, however, is
a function of the stress tensor and not of its rate. So in order to compute the stress
tensor at time step t, the rate form of the stress needs to be integrated in time:

σ(t) =

∫ t

0

(
CJ : D+W · σ − σ ·W

)
dτ (5.20)

Section 5.3.2 will discuss an algorithm in order to compute this integral.

5.3 Implementation Aspects

This section will present numerical evaluations of the governing equations as given in
Section 5.2. Aspects required for the implementation of the method in a computer
code are given.

Firstly, incremental formulations for the velocity field and the rate of deformation will
be proposed in Section 5.3.1. Section 5.3.2 will give the used stress-update algorithm.
The system matrices, the stabilisation procedure and a definition of the Newton–
Raphson method are given in Sections 5.3.3, 5.3.4 and 5.3.5. The triangulation and
the tessellation algorithm are given in Section 5.3.6.

5.3.1 Incremental Formulations

For a Newton–Raphson procedure to converge successfully, four conditions need to
be satisfied. Firstly, the time step under consideration should be of reasonable size.
Convergence is guaranteed only if the initial prediction for the algorithm is sufficiently
close to final solution. Secondly, the tangent for the predictor step should be consistent
with the force vector for optimal convergence. For convergence in general, which is
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not necessarily optimal, the tangent used should be sufficiently close to the consistent
tangent. Thirdly, the weak form of the method under consideration should be stable.
Non-ellipticity can cause divergence. Finally, and most importantly, the space of the
nodal forces is at least smooth with respect to the degrees of freedom. For instance,
loads that are C−1 continuous with respect to the nodal displacement degrees of
freedom within the increment can cause serious convergence problems. Especially for
contact mechanics, these type of problems can occur; imagine a node moving in and
out of contact over subsequent iterations.

Using a Delaunay triangulation based on Eulerian coordinates results in an internal
force vector which can be C−1 continuous with respect to the nodal degrees of freedom.
Convergence problems can be envisaged. To avoid this problem, the triangulation will
be computed only at the start of the increment and will remain unaltered during the
increment. For the following derivations, index k will be used as incremental counter.
The coordinates of a point in the last converged configuration at time step tk are
referred to as xk. The coordinates of a point at time step tk+1 are referred to as
xk+1. Note that the configuration denoted with this subscript is not necessarily a
converged configuration. The motion of the points in the body as given in Equation
(5.3) will be simplified by using the assumption as given above:

xk+1 = xk +

∫ tk+1

tk

Nnod∑

i=1

φi(x)ḋi dτ (5.21)

≈ xk +

∫ tk+1

tk

Nnod∑

i=1

φi(xk)ḋi dτ (5.22)

≈ xk +

Nnod∑

i=1

φi(xk)∆di (5.23)

where φi(xk) is the shape function that is only depending on xk. The incremental
nodal displacements ∆di are defined as:

∆di =

∫ tk+1

tk

ḋi dτ (5.24)

To summarise, the shape functions are computed only at the start of the increment
and are used to compute the displacement field for that increment. The integral form
of Equation (5.3) is resolved by a piecewise constant approximation and the total
displacement can be found by summing all incremental displacements.

For the smoothed gradient, similar issues are of concern as for the velocity field.
Therefore, the smoothed gradient operator ∇̄ will be computed only at the start of
the increment. The assumed gradient towards the last converged increment is defined
as:

∇̄k... =
1

Ωi(tk)

∫

Ωi(tk)

∇k... dΩ ∀ x ∈ Ωi(tk) for i = 1...Nnod (5.25)

where Ωi(tk) is the volume of the cell accompanying node i at time step tk. Operator
∇k contains the gradients to the coordinates of the last converged step xk. In order
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to obtain the averaged gradient at any intermediate configuration, the gradient can
be easily pushed forward by using the incremental deformation gradient:

∆Fk =
(
∇̄kxk+1

)T
(5.26)

= 1+

(

∇̄k

Nnod∑

i=1

φi(xk)∆di

)T

(5.27)

The current coordinates xk+1 are given in Equation (5.23) and these coordinates are
computed by using the triangulation at the last converged configuration xk. The
smoothed gradient at any intermediate configuration is computed as:

∇̄k+1 = ∆F-T
k ∇̄k for tk < t < tk+1 (5.28)

To summarise, during the increment the triangulation and the smoothed gradient
operator will not alter. Since the configuration is not updated for each iteration,
but only for each increment, this approach could be best described as an incremental
updated Lagrangian approach. If the first three criteria for good convergence of
the Newton–Raphson are met (sufficiently small step, consistency, stability), the
developed method should converge.

5.3.2 Stress Update Algorithm

The equations governing the constitutive behaviour of the material are defined in a
rate form. Equation (5.18) shows the form relating the rate of stress to the rate of
deformation. In order to compute the value of the stress tensor at a certain time step
tk+1, the rate form of the stress as given in Equation (5.18) has to be integrated in
time. The integrand of the rate form over one increment is given by:

∫ tk+1

tk

σ̇ dτ =

∫ tk+1

tk

(
σJ +W · σ − σ ·W

)
dτ (5.29)

The numerical evaluation of this equation is not straightforward, and numerical
artifacts can be present in case of inaccurate approximations. This section will briefly
discuss the used stress update. For more details on the algorithm, the reader is
referred to Simo and Hughes [111].

The strain computed per increment should be numerically approximated such that it
is zero in case of rigid rotations. An accurate numerical approximation of this tensor
is obtained by using the spatial derivatives of the configuration halfway the increment.
This approach is simple and very effective for finding both accurate rotations as well
as accurate rotation free strains. In the following derivations, firstly the incremental
rotation will be determined. Thereafter the formulas for the incremental strain and
the complete constitutive response are given.

Firstly, the time integral of the velocity gradient over the increment, here denoted by
∆Lk, is determined:

∆Lk = 2 (∆Fk − 1) · (∆Fk + 1)−1 (5.30)
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where ∆Lk is the spatial derivative of the incremental displacement towards the
midpoint configuration. See Appendix D for the derivation of this equation. The
incremental rotation ∆Rk is determined by using the Hughes and Winget update
[67]:

∆Rk =
1

2
(1−∆Wk)

−1 · (1+∆Wk) (5.31)

where: ∆Wk =
1

2

(
∆Lk −∆LT

k

)

Secondly, the incremental strain, denoted by ∆Dk, is computed as follows:

∆Dk =
1

2

√

∆Rk ·
(
∆Lk +∆LT

k

)
·
√

∆Rk

T
(5.32)

where the square root of the incremental rotation is implicitly defined as:

∆Rk =
√

∆Rk ·
√

∆Rk (5.33)

Finally, by using the incremental strain and the incremental rotation, the numerical
counterpart of Equation (5.29) can be constructed:

σk+1 = ∆σk(∆Dk) + ∆Rk · σk ·∆RT
k (5.34)

The stress update as given above is accurate and simple. A drawback, however, is that
the virtual power as given in Equation (5.19) is not consistent with this algorithm.
In practice, quadratic convergence in the Newton–Raphson procedure will not be
obtained. Luckily, if the increments are not too large, the continuum tangent will be
close enough to the consistent tangent in order to give good convergence. A consistent
tangent incorporating a full linearisation of the stress update algorithm as given above
does not seem to be available in literature.

5.3.3 System Matrices

The derivations for the virtual work were performed in tensor form and did not
incorporate the approximation fields as given in Section 5.2.1 and 5.2.2. In this
section these discretisation spaces will be used in order to recast the virtual work and
the virtual power into the nodal force vector and the stiffness matrix respectively.
The final equations are given in Voigt form in order to allow for easy implementation
in a computer program. As in the preceding chapters, matrices B and N relate the
nodal velocities to the approximation spaces D and v and the virtual approximation
spaces δD and δv as follows:

{v} = [N] {ḋ} {δv} = [N] {δḋ} (5.35)

{D} = [B] {ḋ} {δD} = [B] {δḋ} (5.36)

Note that matrix B is constructed by using the derivatives at the current step (∇̄k+1).
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Firstly, the internal and external force vector will be given in Voigt notation. Equation
(5.12) is rewritten as follows:

∫

Ω

[B]T{σ}dΩ
︸ ︷︷ ︸

−
∫

Ω

[N]T{f}dΩ−
∫

Γ

[N]T{t}dΩ
︸ ︷︷ ︸

= 0 (5.37)

{Fint} {Fext}

where Fint is the internal force vector and Fext is the external force vector.

For each iteration, a tangent of the force vector, also known by the name stiffness
matrix, is required in order to predict a new configuration. Instead of consistently
linearising the force vector Fint, which would also require a linearisation of the stress
update algorithm, the continuum tangent is used. This tangent can easily be found by
considering the virtual power as was given in Equation (5.19). The stiffness matrix is
most easily implemented in a computer code when it is expressed in Voigt form. The
equation of virtual power, on the contrary, is expressed in tensor form. In Appendix
D a derivation is given in which the virtual power is rewritten into the Voigt form.
In the remainder of this section, the virtual power in Voigt form will be discretised
by using the approximation spaces. Do note that it is not necessary to convert the
equations from tensor to Voigt form. This conversion is only given since it allows for
a simple implementation into a computer code.

The internal stiffness matrix follows from the internal virtual power in Voigt form as
given in Equation (D.23) and the application of the discretisation spaces. This matrix
is denoted by Kint and is defined as:

[Kint] =

∫

Ω

[B]T[Ctot][B] + [Bnl]
T[T][Bnl] dΩ (5.38)

Stiffening effects related to the stress in the body are accounted for in matrix T as
follows:

[T] =







σ11 σ12 0 0
σ21 σ22 0 0
0 0 σ11 σ12
0 0 σ21 σ22







(5.39)

The tangent of the material response is denoted by Ctot and contains the effects of
straining, rotating, and the change of the volume on a point:

[Ctot] = [CJ]− [Cspin] + [Cvol] (5.40)

where CJ is the tangent of the stress-strain relation, Cspin contains terms related to
the spin, and Cvol accounts for the volume change at the position of a point. The
first matrix is defined by the stress-strain relation chosen. The latter two matrices
are defined as:

[Cspin] =





2σ11 0 σ12
0 2σ22 σ12
σ12 σ12

1
2 (σ11 + σ22)



 [Cvol] =





σ11 σ11 0
σ22 σ22 0
σ12 σ12 0



 (5.41)
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5.3.4 Stabilisation Matrices

In this section an updated Lagrangian implementation of the stabilisation scheme as
given in Chapter 4 is proposed. The goal of the scheme is to stabilise the method
with limited computational cost. Note that index i to indicate a node is dropped for
readability.

The total stiffness matrix K and force vector F including the stabilisation terms
become:

[K] = [Kint] + [Kstab] {F} = {Fint}+ {Fstab} (5.42)

where Kstab is the stabilisation stiffness matrix which is defined as:

[Kstab] = κ([Kξ] + [Kη]) (5.43)

Matrices Kξ and Kη are implemented according to Chapter 4 as follows:

[Kξ] = [Bξ]
T[Cstab][Bξ]

∫

Ω

ξ2 dΩ (5.44)

[Kη] = [Bη]
T[Cstab][Bη]

∫

Ω

η2 dΩ (5.45)

The goal now is to define a stabilisation matrix Cstab that stabilises the method
without causing volumetric locking. Choosing the constitutive tangent as stabilisation
tangent (Cstab = CJ) adds two additional volumetric constraints per node. A small
test in incompressibility or a simple constraint count demonstrates that the resulting
method is locking. Clearly, the volumetric part of CJ should be removed from Cstab

or at least decreased to a size in which it is not over-constraining the system. The
latter option is chosen in the current research: not the complete volumetric tangent is
used, but only a scaled down part of it. The proposed stabilisation matrix is defined
as:

[Cstab] = [CJ
dev] +

diag[CJ
dev]

diag[CJ
vol]

[CJ
vol] (5.46)

where operator diag[ ] sums the terms on the diagonal of a matrix and CJ
dev is defined

according to Equation (4.42). The volumetric part is found as follows:

[CJ
vol] = [CJ]− [CJ

dev] (5.47)

The stabilisation force vector is computed per increment as follows:

{Fstab} = [Kstab]{∆d} (5.48)

As a result, the stabilisation is a simple linear computation within the increment.
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5.3.5 Newton–Raphson

In the sections above, the force vector F and the accompanying continuum tangent
were defined. The Newton–Raphson strategy uses a number of iterations, in order
to find a set of displacement degrees of freedom for which the unbalance in the force
vectors is of acceptable magnitude. Index k, which previously referred to the number
of the increment, is dropped in order to improve the comprehensibility. In formula
form, the iterative strategy within one increment is defined as:

find {∆d} such that
∥{F} − {Fext}∥

∥{F}∥ = e ≤ etol

by solving for every m: [K]{∆d}m = {F} − {Fext} (5.49)

where: {∆d} =
Niter∑

m=1

{∆d}m

where m is the index of the current iteration, etol is a user-defined tolerance on the
residual and Niter is the number of iterations which is not known a priori. For each
increment, the procedure as given above is repeated. If the relative residual e is
smaller than etol, the scheme converged and the next increment is considered.

5.3.6 Triangles and Cells

For the shape functions, a Delaunay triangulation of the cloud of nodes is required.
For the nodal averaging, a tessellation is used in order to nodally average the rate
of deformation. For each time increment in the process, this triangulation and
tessellation have to be computed. Computer algorithms for these purposes are widely
available [27, 103], although they cannot be used straight away. Below, two problems
associated with these algorithms will be addressed and a solution to them will be
proposed. See Figure 5.3 for an example geometry to be analysed and a cloud of
nodes which is used to discretise this geometry.

(a) model (b) cloud of nodes

Figure 5.3: A model and a cloud of nodes of that model.



98

Triangulations

The first aspect that requires attention is the Delaunay triangulation algorithm [40].
The triangulation of a cloud of nodes always gives a convex triangulation. Therefore,
for convex bodies, triangulation algorithms can be used straight away. However, for
practical problems in which concave boundary sections are present, the algorithm has
to be modified in order to correctly represent these sections. Figure 5.4 shows the
Delaunay triangulation of a cloud of nodes which clearly includes a part outside of
the intended domain as shown in Figure 5.3(a).

Figure 5.4: A Delaunay triangulation of the cloud of nodes.

A commonly used technique for defining a boundary on an arbitrary cloud of nodes is
the method of α-shapes by Edelsbrunner et al. [48]. A ball with a radius of size α is
rolled along the cloud of nodes and all nodes that touch the ball are on the boundary.
The method has been introduced in the field of meshless methods by Cueto et al.
[36]. Figure 5.5 gives an illustration of the method. The actual value of α has to be
set by a user such that the intended contour is obtained. The α-shape criterion can
easily be computed by using the Delaunay triangulation as given in Equation (3.18).
If the radius of the circumscribed circle of a Delaunay triangle is larger than the value
of α, this triangle is outside the domain. If xi, xj and xk are the three vertices of a
Delaunay triangle and xc is the triangle its circumcentre, the body Ω is defined by
the α-shape criterion as follows:

{
Vijk ∈ Ω if d(xc,xi) ≤ α
Vijk /∈ Ω if d(xc,xi) > α

(5.50)

where: Vijk = conv (xi,xj ,xk)

where conv contains all points in the convex hull of the three points in its argument
list. All points in a Delaunay triangle that have a circumscribed circle with a radius
larger than α are not in the body Ω. Triangles with a smaller radius are contained in
the body. Hence this subdivision of internal an external points implicitly defines the
boundary Γ. Figure 5.5(b) shows this boundary. Figure 5.5(c) shows the Delaunay
triangulation that has been modified with the α shape criterion in order to represent
the concave section properly.

For simulations in large deformations, the α shapes can be computed based on the
Eulerian coordinates of the nodes, or on the Lagrangian coordinates. If the first
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α

(a) circles with a radius of α (b) computed boundary (c) modified triangulation

Figure 5.5: An illustration of the α-shape criterion and the modified Delaunay
triangulation.

strategy is chosen, nodes that were initially at the boundary Γ can be in the domain
Ω at a later time step and vice versa. If the second method is used, all nodes on the
boundary remain on the boundary and internal nodes remain internal. In Chapter 6,
both two strategies will be used.

Tessellations

The Voronoi tessellation, as introduced by Voronoi [123], is a commonly used
technique for subdividing a domain into a set of cells. In Section 3.2.5, a simplified
tessellation technique was used in order to avoid difficulties related to the Voronoi
tessellation. The cells were based on the centroids and midpoints of the Delaunay
triangles.

A downside of this technique is that if the nodes are positioned on a regular grid, the
volume of the cells are unequally distributed as a result of the degenerate Delaunay
triangulation. If nodes move such that the degenerate case is resolved, the volume of
a cell accompanying a node can change drastically. See Figure 5.6 for an illustration
on a degenerate Delaunay triangulation. Figure 5.7(a) shows a grid of nodes in simple
shear such that a degenerate situation occurs. Figure 5.7(b) displays the centroid-
based cells during the shearing. The volume of the cells changes if the degenerate
case is ‘passed’.

A Voronoi tessellation is independent of the degenerate cases of the Delaunay
triangulation. Where the triangulation can be non-unique, the Voronoi tessellation
is unique. However, constructing Voronoi cells at the boundary of a domain can be
complicated. For nodes lying on the boundary of the domain, their accompanying
cells can be undefined or have an infinite volume. A Voronoi tessellation including
several undefined cells at the boundary is shown in Figure 5.8(a). In order to avoid



100

(a) an unique triangulation (b) a degenerate triangulation; both
triangulations are equally valid

Figure 5.6: A Delaunay triangulation of four nodes.

t

(a) Delaunay triangulation

t

(b) centroid based cells

Figure 5.7: An illustration of a Delaunay triangulation and the centroid-based cells
during the pure shear of a 2x2 grid of nodes.
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this issue, the Voronoi tessellation will be modified such that it always consists of
properly defined cells. The modification consist of two steps which will be explained
below.

Firstly, the vertices of a Voronoi cell will be modified. The vertices of the cells are
defined by the circumcentres of the Delaunay triangulation. Equation (3.18) gives a
definition of the circumcentre of a Delaunay triangle. The circumcentre of a Delaunay
triangle can be located outside that triangle and thus also outside the domain. For
this case a cell will overlap the boundary and trimming this cell on the boundary is
a complicated task. To avoid this situation completely, the vertex of the cell for that
triangle is not defined as the circumcentre, but as the midpoint of the triangle’s side
closest to the circumcentre. Two midpoints are added to the triangle’s opposing facets
such that the rest of the tessellation remains unaltered. As a result, no vertex point
of a cell can be located outside the domain. Figure 5.8(b) shows this modification on
the Voronoi diagram.

Secondly, cells that are on the boundary can be closed easily by adding the
corresponding nodal location to the list of vertices of the cell. Figure 5.8(c) shows the
modified tessellation with properly defined cells on the boundary. Figure 5.9 shows
the alternating circumcentre-midpoint cells for the pure shear of the 2x2 grid of nodes.

(a) Voronoi tessellation (b) modification of the vertices (c) closing of the contour

a triangle with modified cell vertices

modified vertex (circumcenter)

added midpoint to vertices

added node to vertices

Delaunay triangulation

tessellation

Figure 5.8: Modification of the Voronoi tessellation in order to correctly represent
the boundary.

A downside of the tessellation algorithms as discussed above is that the volume
assigned to the nodes is redistributed during the process. This redistribution will
be discussed in brief below. Firstly a derivation is made for the case in which the
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t

Figure 5.9: An illustration of the alternating circumcentre-midpoint cells.

volume of a cell is changing as a result of its Lagrangian motion. Thereafter the case
is discussed in which the volume change is due to re-tessellation of the domain.

Assume that the volume of a cell is given by V and that the boundary of the cell is
given by S. The volume of a cell can be computed by a contour integral along the
boundary of a cell:

V =

∫

S

x · n dS (5.51)

where n is the outward normal on the boundary of the cell. If the cell is moving
according to the motion of the material, the contour integral as given above can be
simplified. The contour, the coordinates and the outward normals are for this case a
function of the Lagrangian coordinates, such that S(x(X)), x(X) and n(x(X)). The
volume of the cell can be simplified as follows:

VX =

∫

S(x(X))

x(X) · n(x(X)) dS (5.52)

=

∫

V0

det (F) dV0 (5.53)

where symbol VX is reserved for the case in which a cell follows a Lagrangian motion.

Secondly, the cells can be computed with the tessellation algorithm on an arbitrary
time step. The input of the algorithm is the current location of the nodes and the
output is a list with vertices of a cell. Consequently, the contour and the normal
of a cell depend only on the Eulerian nodal coordinates. The dependency of the
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contour and the normal on the nodal coordinates is expressed as S(x(xi)) and n(x(xi))
respectively. The volume of a cell becomes:

Vx =

∫

S(x(xi))

x · n(x(xi)) dS (5.54)

The symbol Vx is used for the case in which the cell is determined only by the
tessellation algorithm. This subdivision of the volume is purely algorithmic and does
not incorporate the kinematics of the body on which it is used. The contour and
the normal do not necessarily move in a Lagrangian motion. The circumcentre of a
triangle for instance is not a Lagrangian point. The derivation given previously in
Equation (5.53) can not be made. As a result, there can be a flux ∆V over the edges
of a cell:

VX = Vx +∆V (5.55)

This flow term can be non-zero, depending on the displacements of nodes xi. For
instance, if nodes move uniformly (a rigid body mode), the nodal flux ∆V is trivially
zero. However, for non-uniform displacements this is not necessarily the case. Figure
5.10 illustrates the change of the geometry of a cell in time. For the current study,
the nodal volume will be based on the tessellation algorithm after each converged
increment.

t

VX Vx

Figure 5.10: An illustration of the difference in the cell definition Vx or VX.

5.4 Numerical Examples

The goal of the ASFEM method is to solve forming processes in an efficient manner.
However, before moving on to simulate these processes, several basic aspects of
the method will be examined. For any numerical scheme used to simulate large
deformations of solids, the following aspects need to be investigated in order to prove
the scheme’s physical validity:
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• Since the rate of deformation is used as a measure of strain, the logarithmic
strain should be obtained in uniaxial tension.

• There should be no straining in rigid rotation.

• Stresses should be rotated correctly in rotation.

• The tangent should give acceptable convergence for increments of reasonable
size.

These four points will be addressed in the tests presented below. Firstly, in Section
5.4.1, a non-linear patch test will be performed in which the measure of strain and
the convergence properties are examined. Secondly, the scheme is investigated in
finite rotations by straining and rotating a tensile bar in Section 5.4.2. Finally, an
illustrative example on the functioning of the method is given in Section 5.4.3. For
all results presented in this section the stabilisation is on (κ = 1.0) unless stated
otherwise. The material is assumed hypo-elastic and the 3d case is simplified to 2d
by using the plane strain assumption.

5.4.1 Non-Linear Patch Test

Figure 5.11 shows the set-up for the patch test. The left-hand side of the geometry is
supported. The right-hand side of the square workpiece is prescribed by a horizontal
displacement. The sample is stretched by half its original length. As a result of this
large deformation, the strain measure will make the problem non-linear and hence
several iterations have to be performed. The accuracy of the strain approximation
and the convergence characteristics are examined by running four simulations in which
the the total load step will be divided over 1, 2, 4 and 8 increments respectively. The
accuracy of the approximated strain will be compared with the exact strain tensor,
which can be easily computed for this problem. To investigate the convergence, the
trend of the residual e for subsequent iterations is examined. The tolerance to stop
the iterations is set to etol = 10−10.

The exact logarithmic strain in x-direction of this problem is easily found because of
the simple geometry and the loading condition. It can be computed by integrating
the rate of deformation over the total simulation time as follows:

εxx =

∫ t

0

Dxx dt =

∫ t

0

ṽx
L0 + ũx

dt = ln

(
L0 + ũx
L0

)

where εxx is the logarithmic strain and the initial length of the sample is given by L0.
Filling in the known quantities results in a logarithmic strain of εexactxx = 0.405465108.
The error between this exact strain and the approximated strain is defined as:

eε =
∥εxx − εexactxx ∥
∥εexactxx ∥ × 100% (5.56)

Table 5.1 shows the error in percentages for the non-linear patch test. It can be seen
that by subdividing the total load over multiple increments, the error in the strain



Adaptive Smoothed Finite Elements in Large Deformations 105

ũx = 2

E = 10

ν = 0.3

4

4

x

y

(a) model (b) set of nodes

Figure 5.11: The model and set of nodes for the non-linear patch test.

approximation is decreased and starts to approximate the exact strain. Moreover,
even for a large loading step, the error in the strain is only around 1%. Table 5.2
gives the values of the stress σxx for five nodes of the grid. Irrespective of the non-
uniform distribution of the nodes, the patch test is satisfied. The deviations between
the values of the stress are of the same magnitude as the machine precision.

Table 5.1: The error in the logarithmic strain for the non-linear patch test in
percentages.

Nincr 1 2 4 8
eε[%] 1.33898 0.3514 0.08215 0.01482

Table 5.2: The stress σxx for five nodes of the grid.

node position (x, y) σxx
11 (2.0, 0.0) 4.4531231680510
12 (2.2, 1.2) 4.4531231680510
13 (2.0, 2.0) 4.4531231680509
14 (1.8, 2.8) 4.4531231680509
15 (2.0, 4.0) 4.4531231680509

The convergence behaviour of the method is examined in the following test. Similarly
to the above, four simulations are performed, each with a different number of
increments over which the total load is divided. The residual e and the logarithm
of e will be plotted against the iteration number for one increment out of each
simulation. Figure 5.12 shows the results. It can be seen in Figure 5.12(a) that
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the tolerance on the residual etol is reached more quickly by increasing the number
of increments. However, Figure 5.12(b) shows that, irrespective of the number of
increments, quadratic convergence is not obtained. Nonetheless, it can be stated that
the algorithm converges well for a limited set of increments.
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Figure 5.12: Convergence plots of the non-linear patch test for various number of
increments. Line equadr indicates the slope of optimal quadratic convergence.



Adaptive Smoothed Finite Elements in Large Deformations 107

5.4.2 Rotation of a Tensile Bar

In this test several aspects of the code relating to rotations are examined. Firstly, the
assumed rate of deformation as defined in Equation (5.11) should be zero or at least
reasonably close to zero in rigid rotations. Secondly, the Cauchy stress tensor should
be objective in rigid rotations. In this example it will be demonstrated that these two
conditions are met. Figure 5.13 shows the tensile bar problem. Figure 5.13(a) and
5.13(b) show the geometry and the node set respectively. The Young’s modulus and
the Poisson’s ratio for the elastic material are E = 1 and ν = 0.3 respectively. The
tolerance for the simulations is set to etol = 10−6.

110

70

42

30 20
Ω

Γa
u

Γb

u

E = 1
ν = 0.3

(a) geometry (b) cloud of nodes

Figure 5.13: The model of the tensile bar.

Three simulations will be performed on the tensile bar, each with a different loading
path. These different loading stages are shown in Figure 5.14. Firstly, the tensile
bar will be rotated 90 degrees by prescribing the left-hand side of the bar (Γa

u) only.
This test is performed to check whether there is any nonphysical straining in rotation.
Secondly, a test will be performed in which the bar is first stretched and then rotated.
The displacements at both the left-hand side and the right-hand side of the bar are
prescribed. Stresses that are introduced in the body during stretching should be
rotated correctly to the final configuration. Finally, the bar will be stretched and
rotated simultaneously. The simultaneous stretching and rotating of the bar should
give the same final result as the previous test in which these two deformations are
applied sequentially. For all three simulations the prescribed rotation is 90 degrees
counterclockwise. For the latter two tests, the bar is stretched by 16.5 length units in
total. The rotational load is applied over 5 increments. The stretching load is applied
in 3 increments. The combined stretching and rotation load, as used for the second
test, is distributed over 5 increments.

The results for the three simulations are given in Figure 5.15. The components of
the stress tensor are plotted in the global coordinate axis. The contour plots are
given for the first and third simulation after the first step (Figure 5.15(a) and Figure
5.15(c)), and for the second simulation after the first and the second loading stage
(Figure 5.15(b)). It can be seen that for test one, in the case of a pure rotation
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(a) load case 1: rotating
without stretching

2

1

(b) load case 2: stretching
before rotating

1

(c) load case 3: stretching and
simultaneous rotating

Figure 5.14: Three load cases for the tensile bar problem.

without any prescribed stretching, the body remains free of stress. Moreover, the
geometry of the sample is equal in rotated and un-rotated configuration. The contour
plots of the second and third test show that, independent of the order of the loading
steps, the results are equal. It can be concluded that the stress and strain measures
are accurately approximated in rotations and stretching, independent of the order in
which the loading steps are applied.
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Figure 5.15: Contour plots of the stress for the three load cases.
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5.4.3 Non-Proportional Loading

The current test will give an illustration of the Delaunay triangulation algorithm
that is running for every increment in the ASFEM method. Figure 5.16(a) shows
the model. The left-hand side of the block is clamped. The right-hand side of the
square is prescribed according to the displacement pattern given in Figure 5.16(b).
The problem is solved in 30 increments divided over the total loading path.
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(a) workpiece model (b) non-proportional loading path
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t = 5

Figure 5.16: The non-proportional loading of a square block.

The computation of the material response, which for finite elements is carried out
per integration point, is carried out per node for the nodal smoothed FEM. Since
nodal locations are Lagrangian, no mapping algorithm is used for the simulation.
Figure 5.17 shows a contour plot of the σxx stress for the same four deformed states.
Although the triangulation altered throughout the simulation, the spatial distribution
of the stress is reasonably smooth. Do note that because of the path dependency of
the strain measure, the shear stress, for instance, is not equal to zero for this loading
path.

−0.1500 0.0167 0.1833 0.3500

σxx

t = 0 t = 1 t = 3 t = 5

Figure 5.17: Contour plots of the stress σxx for four deformed states of the square
block.
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How the triangulation altered can be seen in Figure 5.18. The triangulation is depicted
on the deformed states of the workpiece for 4 frames out of the total simulation, as
indicated in Figure 5.16(b). In the figure the current coordinates of the nodes and
the current triangulation are plotted. It can be seen that during deformation, the
triangulation alters. The triangulation changes according to the deformation pattern
such that it is optimal in the sense that aspect ratios of the triangles are minimal.

t = 0 t = 1 t = 3 t = 5

Figure 5.18: A plot of the deformed configuration and the Delaunay triangulation
for four deformed states of the square block.

5.5 Closure

In this chapter, a smoothed finite element method with adaptive shape functions
was introduced and validated. Two of the main constituents of the method, namely
the shape function and the strain smoothing were presented for large deformations.
Incremental approximations were introduced in order to avoid issues related to
convergence in a Newton–Raphson process. Since the shape function is defined
upon a triangulation and the strain smoothing is defined upon a tessellation, these
geometrical concepts were elaborated. The Delaunay triangulation and Voronoi
tessellation were used as starting point and were modified in order to correctly
represent the boundary of the domain.

In several examples, the performance in geometrical non-linearity was investigated.
Various combinations of stretching and rotating of a tensile bar were analysed in
order to verify the correctness of the proposed method. The convergence of the
method was shown to be good though not quadratic. A final example showed
the alternating triangulation during non-proportional loading of a square workpiece.
Large deformations were simulated and the re-triangulation of the domain took place
without mapping the material model data.
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Applications

6.1 Introduction

In this chapter, two forming processes will be simulated with the ASFEM method
proposed in the previous chapter. Finite element simulations of the same two processes
will be used as a reference. The goal of the two applications presented in this chapter
is to examine the performance of the ASFEM method.

The first forming process that will be simulated is the forging of a circular rod. A
history-dependent material model is chosen to model the constitutive behaviour. The
second forming process that is simulated with the ASFEM method is the extrusion
of an aluminium profile. This process should serve as an ideal benchmark for the
newly developed method because of the extreme deformations that take place. Both
simulations are in 2D and are simplified by using a plane strain assumption and
by assuming the deformation to be isothermal. Since the simulations will involve
the plastic flow of material, an plasticity algorithm is required. For the research as
presented in this chapter, an implicit J2 radial return plasticity algorithm will be used
in combination with a von Mises yield surface. The formulations of this algorithm
can be found in Simo and Hughes [111], among others. For both simulations, the
mesh will be revised on every time step. In order to describe contact between the
deformable body and the tools, a simple penalty formulation is chosen. The tools are
modelled by rigid frictionless analytical bodies.

For the FEM computations, the in-house developed finite element computer code
DiekA [41] is used. This code is well-suited for simulating large deformation problems
in combination with implicit time integration. For the ASFEM computations, a newly
developed code, named CruncH is used. This code incorporates the formulations
presented in Chapter 5. CruncH is mainly based on the open-source finite element
code FeaTure [49] and uses the Qhull [103] library for its triangulation algorithm.
All results presented in this chapter are post-processed in GiD [54].

In the post-processing stage, the contour plots of the finite element simulation are
constructed as follows. Firstly, the integration point values of, for instance, the stress

111
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or strain are extrapolated to the nodes. Secondly, these values are averaged for each
node. This ‘nodal averaging’ is a commonly used technique in order to obtain a smooth
field from integration point data which is usually less smooth. The formulation can be
found in most books on finite element analysis; for instance in Cook et al. [35]. The
contour plots of the ASFEM method are constructed by plotting the nodal quantities
directly on the nodes and interpolating the values over the triangles. There is no
smoothing operation in the post-processing stage. This difference should be borne in
mind when comparing FEM and ASFEM results.

The extrusion application presented in this chapter has been analysed previously with
the method of Smooth Particle Hydrodynamics (SPH) and the Element-Free Galerkin
(EFG) method by Quak et al. [106]. For preliminary results of the application of
ASFEM and ALE finite elements on friction stir welding, the reader is referred to van
der Stelt et al. [121]. An application of the ASFEM method on the indentation of a
square workpiece was performed by Quak and van den Boogaard [104].

6.2 Forging of a Circular Rod

Model

In this application, a circular rod will be compressed between two flat rigid tools.
The rod is compressed until its final height is 50% of its original diameter of 20 mm.
Figure 6.1 shows the geometry of the setup and the two models used to simulate the
forging. The bottom tool will be fixed in space. The tool at the top will be lowered
by 10 mm. The friction between the tools and the deformable body is neglected and
the simulation is assumed isothermal.

�20 mm

ũy

(a) geometry (b) FEM model (c) ASFEM model

Figure 6.1: The forging model. The FEM model consists of 2392 elements and 2518
nodes. The ASFEM model starts with 1783 nodes

The finite element simulation is performed with linear four-node quadrilateral finite
elements by using DiekA. The quad4 elements employ a mean dilatation formulation
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in order to counter volumetric locking, and are used in a Lagrangian formulation
without re-meshing or ALE strategies. The mesh used for the simulation is depicted
in Figure 6.1(b). For the ASFEM method, a nodal grid serves as the starting point
for the simulation. This grid is depicted in Figure 6.1(c). Based on this node set, the
contour is detected by the α-shape criterion at the first increment, and is maintained
on all increments thereafter.

For the constitutive relation, an elasto-plastic material model is used with a von Mises
yield surface and a Ludwik–Nadai hardening curve. This hardening curve is expressed
as:

σy = C (ε0 + εeq.)
n (6.1)

where σy is the flow stress and ε0, C and n are parameters following from an
experiment. For this application, an hypothetical low alloyed deformation steel is
chosen of which the parameters are given in Table 6.1. The initial flow stress of the
material is 200 MPa.

Table 6.1: Constitutive parameters for the forging simulation.

elastic properties E 210 000 MPa
ν 0.28 -

plastic properties C 600 MPa
ε0 2.137 · 10−4 -
n 0.13 -

Results

Firstly, the deformation patterns during the simulation are examined. Contour plots
of the equivalent plastic strain rate for both methods will be compared at 25%, 37.5%
and 50% compression of the rod. In these contour plots, the location and the rate
at which the material is deforming plastically can be examined. Figure 6.2 shows
six contour plots for the two methods on the three stages of compression. It can be
seen that depending on the amount of compression, a number of shear bands appear.
The FEM and ASFEM simulation show very good agreement. The patterns and
also the magnitude of the equivalent plastic strain rate correspond well. The contour
plot of the finite element model shows two shear bands in perpendicular setup at
25% compression. For the ASFEM simulation these bands are also visible, though
they have already started splitting in order to arrive at the four-band configuration
depicted in Figure 6.2(d). Figures 6.2(e) and 6.2(f) shows the equivalent plastic strain
rate at the final stage of the process. A configuration with 6 shear bands is obtained.
The bands of the ASFEM simulation appear to be sharper and more detailed when
compared to the FEM bands which are more diffuse. This effect can be caused by
the severe distortion of the finite element mesh, or the nodal averaging in the post-
processing stage. However, there is good agreement in general. For more details on
inhomogeneous deformation in compression tests, Rietman [109] can be read.
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(a) 25.0% compression (b) 25.0% compression

(c) 37.5% compression (d) 37.5% compression

(e) 50.0% compression (f) 50.0% compression

0.00 0.22 0.44 0.66 0.88 1.10

ε̇eq.pl.(sec
−1)

Figure 6.2: Contour plots of the equivalent plastic strain rate for the two methods for
three steps in the process. On the left-hand side the FEM results. On the right-hand
side the ASFEM results
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Figure 6.3: The tool force plotted versus its vertical displacement.
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Secondly, the force required to compress the rod is examined. Especially for this
application, in which a nearly incompressible material model is used, the force should
not be nonphysically high as a result of volumetric locking. Figure 6.3 shows a graph
of the force of the top tool versus its displacement. The curves of both methods
correspond well.

(a) FEM (b) ASFEM
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σvm(MPa)

Figure 6.4: The von Mises stress for the two methods at 25% compression.

(a) FEM (b) ASFEM
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Figure 6.5: The σyy stress for the two methods at 25% compression.

Thirdly, the quality of the stress prediction is examined. Generally, linear elements
do not give an accurate stress prediction in the integration points. Therefore typically
post-processing steps are employed in order to ‘smoothen’ these fields. For the finite
element simulation this is a nodal averaging scheme. For the ASFEM simulation
there are no post-processing operations. Figure 6.4 shows the von Mises stress for
both simulations at the intermediate stage of 25% compression. The von Mises stresses
compare well. The FEM field appears to be smoother, though as mentioned this can
be a result of post-processing. Note that close to the free surface at the left and
right-hand side of the compressed rod, a close to zero von Mises stress is predicted as
a result of the outward bending of these regions. Whereas the material has deformed
plastically almost everywhere, at these regions, the material remains elastic.

Figure 6.5 shows a plot of the σyy stress at the same configuration. Clearly, the
stress prediction with the ASFEM method appears to be more rough, whereas the
finite element results are smooth. The reason for the less smooth results for the
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(a) 25.0% compression (b) 37.5% compression (c) 50.0% compression

Figure 6.6: An illustration of the change of connectivity between the steps depicted.
Grey indicates an area where the triangulation altered.

ASFEM method is as follows. In Chapters 3 and 4 studies on the stability of nodally
averaged methods were presented. The weak forms related to the deviatoric part
and the volumetric part of the deformation were investigated. In order to stabilise
the weak form related to the deviatoric part of the deformation, a stabilisation was
proposed in Chapter 4. The volumetric part, which involves the pressure prediction,
was shown to be unstable in the inf-sup test. Since the stress tensor depends both
on the deviatoric stress and the pressure, an oscillatory field is retrieved, as can be
seen in Figure 6.5(b). Do note, however, that quad4 plane strain finite elements also
contain spurious pressure modes which can be very similar to the ones observed for
the ASFEM method. However, this checkerboard mode is effectively erased by the
post-processing step which averages the element values to nodal values. Based on the
visualised results, the stress field appears to be smooth, though in reality this is not
necessarily the case.

For the finite element simulation, one single mesh was used throughout the simulation.
For the ASFEM method on the other hand, a new mesh was constructed for every
increment of the simulation such that it was optimal for the cloud of nodes of that
specific increment. In this paragraph, the change of the mesh will be investigated as
follows. Between the configuration at the start of the simulation, and the configuration
at 25% compression, the nodal connectivity has changed. Triangles that changed
the nodal connectivity will be marked and the result will be plotted by means of
a contour plot. Figure 6.6(a) shows the difference in triangulation between the
0% and 25% configuration in grey. Figures 6.6(b) and 6.6(c) depict the change in
connectivity between the configuration at 25% and 37.5% compression and 37.5%
and 50.0% compression respectively. In general it can be stated that in regions of
large deformations, most triangles have been redefined. Figure 6.2(b), for example,
shows the equivalent plastic strain rate at the configuration at 25% compression.
Although this rate is determined over a single increment, whereas Figure 6.6(a) shows
the differences over the configuration between 0% and 25%, it can be seen that the
patterns observed in the two figures are comparable.

Figure 6.7 shows the mesh at the final step for the finite element and the adaptive
smoothed finite element simulation. It is clear that the finite element mesh contains
zones of badly shaped elements. The triangles of the ASFEM method appear to
be reasonably shaped although a more quantitative comparison would be useful.
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Therefore, an error criterion will computed for each triangle or quadrilateral in order
to compare the quality of the two meshes. This criterion is defined similarly as in the
GiD user manual [54] as follows:

etri = 1− 4 ·
√
3 · Vtri

s21 + s22 + s23
equad = 1− max

i=1..4

{
2 · ∥sil × sir∥
∥sil∥2 + ∥sir∥2

}

(6.2)

where the error criterion for a triangle and quadrilateral are given by etr and equad
respectively, Vtri is the volume of the triangle and si is a side of the triangle. Vector
sil and sir are vectors along the sides of the quadrilateral for node i. See Figure 6.8
for an illustration of the symbols used. For each shape, this criterion is computed.
If the criterion is 0, the triangle or quadrilateral is optimally shaped. For a triangle
this implies that it is an equilateral triangle. A quadrilateral is in this case a square.
In the case e is 1, the shape is a sliver. For values between zero and one, the error
measures can not be compared quantitatively. Therefore a qualitative comparison
based on histograms is used.

(a) FEM mesh

(b) ASFEM mesh

Figure 6.7: The mesh of the two methods at 50.0% compression.



118

x1 x2

x3

s1

s2s3

Vtri

(a) triangle criterion

x1 x2

x3

x4

s
1
r

s
1

l s
3

l

s
3
r

(b) quadrilateral criterion

Figure 6.8: An illustration of the symbols used to compute the shape criterion.

Figure 6.9 shows the histograms for the FEM computation and the ASFEM
computation for the initial configuration and the final configuration. As an
illustration, a histogram is added for the case in which the ASFEM simulation is
performed without using the re-triangulation on each time step. On the horizontal
axis of the histogram the shape criterion is plotted with intervals of 0.04. The vertical
axis gives the number of shapes within an interval. Firstly it can be seen that the
initial meshes of the FEM and ASFEM simulation, as shown in Figures 6.9(a) and
6.9(c) respectively, are of good quality. Most shapes have a criterion of 0 and a few
shapes have a higher value, although not higher that 0.35.

After the total deformation has been applied, it can be seen in Figure 6.9(b) that the
shape of the finite elements is far from optimal. Shapes are present with a value of
0.8. The ASFEM results are given in Figure 6.9(d). Although the shape criterion
used for quadrilaterals is different than the triangle criterion, it is possible to state
that more triangles are located close to the optimal value of 0 in comparison with
the FEM computation. If no re-triangulation is used for the ASFEM method, Figure
6.9(e) is obtained. Clearly, the quality of the mesh of this configuration is worse than
for the simulation in which there were re-triangulations. Overall it can be stated that
the ASFEM method uses the best shaped mesh.
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Figure 6.9: Histograms of the shape quality of the triangles and quadrilaterals.
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6.3 Extrusion of Aluminium

The extrusion process is commonly used to produce aluminium profiles with arbitrary
cross-sections. During the forming process, the deformations are generally of such an
order that finite elements are not preferred in a Lagrangian formulation. Elements
based on a Eulerian or ALE formulation are more successful since the elements
are completely or partly decoupled from the deforming material. Mesh distortion
problems are avoided completely or at least reduced. Examples of the modeling of
the extrusion process with finite elements based on a Eulerian or ALE formulation
can be found for instance in Lof [90], Koopman [72] and Assaad [11]. In this section,
the ASFEM method will be compared with a Eulerian finite element simulation in a
simplified extrusion problem.

Model

Figure 6.10 shows the model of the extrusion process. An aluminium billet with a
width of 30 mm is reduced to a profile of 10 mm in width. A plane strain assumption
applies to the model. On the dashed line, symmetry boundary conditions are enforced.
The tools are modelled frictionless except for the top surface denoted by Γstick. Here
a full stick boundary condition is applied. Material in the top right corner of the
container is known to be fixed in its motion. The boundary condition on Γstick ensures
the nearly zero flow in this corner.

Figure 6.10(b) shows the analysis domain for the finite element simulation. The finite
element mesh is fixed in space and the material will move through this mesh. On the
surface of the billet that is in contact with the container, boundary conditions are
applied according to the description as given above. Along the bottom of the billet
(the surface denoted by Γin), an inflow velocity of 1 mm/s is prescribed. At Γout there
is a free outflow of material. The total simulation is divided into 200 time steps of
0.005 second, resulting in a total simulation time of 1 second. During this simulation
time, the steady state solution is obtained and further simulation is superfluous.

The analysis domain for the ASFEM simulation is depicted in Figure 6.10(c). The
ram will be moved upwards with a prescribed velocity of 1 mm/s. For the ASFEM
model, the method of α-shapes is used for each increment of the simulation. Whereas
for Section 6.2 the boundary was preserved on all time steps, this approach is not
adequate as will be demonstrated later on in the results section. For the ASFEM
computation, 400 time steps of 0.015 seconds each, are used. The resulting total
simulation time is 6 seconds. Within this simulation time, a significant amount of the
billet will have been extruded.

For the constitutive behaviour an elasto-viscoplastic material model is used with a
Sellars–Tegart flow rule. This law is given by:

σy =
1

α
sinh−1

((
ε̇eq.
A

exp
Q

RT

) 1
n

)

(6.3)
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Figure 6.10: Illustration of the geometry and models used to simulate the extrusion
problem. All dimensions are given in millimetres.

Table 6.2: Constitutive parameters for the extrusion simulation.

elastic properties E 40 000 MPa
ν 0.3 -

plastic properties α 0.052 1/MPa
Q 153 000 J/mol
R 8.314 J/mol K
T 700 K
A 2.39 · 108 1/sec
n 2.976 -
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where α, A, Q, R and n are variables following from an experiment, T is the absolute
temperature and ε̇eq. is the equivalent strain rate. The parameters for the aluminium
billet are given in Table 6.2 and are taken from Assaad [11]. The temperature will be
fixed throughout the process at 700 K.

Results

The deformed geometry, the boundary description for the ASFEM method, the
velocity field, the ram force and the mass conservation will be investigated in this
section. For the finite element simulation, the steady state situation is used for
comparison. This steady state is reached after approximately one second of simulation
time. The ASFEM simulation on the contrary, is a transient simulation. A specific
time step out of the total simulation has to be chosen for the comparison. Therefore,
the configuration at six seconds is used unless stated otherwise. Note that, looking for
instance at contour plots of the equivalent plastic strain rate from a spatial Eulerian
viewpoint, a steady state appears to be reached after around two seconds of simulation
time.

(a) t = 1.5 (b) t = 3.0 (c) t = 4.5 (d) t = 6.0

Figure 6.11: The deformed shapes of the billet for four time steps using the method
of α-shapes for every increment.
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Firstly the deformed geometry of the ASFEM simulation will be examined. Figure
6.11 shows the node sets for four stages out of the extrusion process. Several aspects
can be observed from the four figures. The dead metal zone in the top right corner
is clearly visible. At the line of symmetry, the aluminium is stretched vertically
considerably. A distinct band forms diagonally from the container wall to the die
radius. In this shear band, nodes are moving towards the die radius and eventually
end up on the right-hand side edge of the exiting profile. The α-shape criterion, which
retrieves the boundary for each time frame, marks these nodes as boundary nodes.
Hence new boundary can form or disappear as a result of this criterion. This is also
the reason that the right-hand side of the extruded profile is not completely straight,
but appears somewhat ‘ragged’.

In continuum solid mechanics, it is common to keep internal nodes internal and
boundary nodes on the boundary. However, if this strategy is adopted and the
boundary is not updated during the simulation, problems will occur. Figure 6.12
shows a simulation in which nodes on the boundary are kept on the boundary and
internal nodes remain internal. All nodes are subjected to contact conditions with the
container wall. After a set of steps, as a result of the boundary strategy, material is
excessively being stretched over the die radius, as can be seen in Figure 6.12(b). Two
neighbouring nodes, of which one is at the dead metal zone and the other is already
exiting the die, will cause this situation. Finally the Newton–Raphson algorithm failed
to converge. The method of α-shapes used on every increment of the simulation is
clearly preferred for the extrusion process.

(a) t = 0.75

die

aluminium

(b) t = 2.25. The dashed line indicates the
boundary of the aluminium.

did
not

converge

(c) t = 3.0

Figure 6.12: The deformed shapes of the billet for four time steps using the method
of α-shapes on the first increment only.
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Secondly, the ram force is examined. Figure 6.13 shows the ram force plotted
versus the simulation time. The simulation time for the ASFEM computation is
6 seconds. The FEM simulation reaches a steady state after 1 second. The ram force
remains constant thereafter. The ASFEM simulation approaches the FEM simulation
accurately. Note that if a method is suffering from volumetric locking, the ram force
would be severely overestimated, which is clearly not the case here.
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FEM
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Figure 6.13: The ram force plotted for the time of the simulation

The material used in the extrusion simulation is nearly incompressible because of
the high modulus of elasticity in comparison to the low flow stress. Using a method
that does not suffer from volumetric locking is essential for obtaining correct forces
and stresses. A downside of using a method that does not lock can be that the
volumetric constraint is not sufficiently enforced. Especially for non-polynomial
meshless approximations, this can be a concern and volume might not be conserved
during a simulation. In this section the volume conservation is examined for both
simulations. For each method, an error criterion is introduced. For the FEM
simulation the error in volume conservation evol is computed as follows:

evol =
fout − fin

fin
× 100% where: fin =

∫

Γin

v · n dΓ (6.4)

and: fout =

∫

Γout

v · n dΓ

where n is the outward normal on the boundary Γ. For the ASFEM method, the
error is computed as follows:

evol =
Ω− Ω0

Ω0
× 100% (6.5)

where Ω0 is the initial volume and Ω is the volume at the end of the simulation (t = 6).

Table 6.3 gives the error in the volume conservation in percentages. It can be seen
that the volume is conserved excellently for both methods. For the finite element
simulation an insignificant amount of material is gained whilst for the ASFEMmethod
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a negligible amount is lost. The latter method redetermines the boundary (hence
implicitly the volume of the body) for each increment by means of the α-shape
criterion, however no significant error is observed in the volume conservation.

Table 6.3: The error in the volume conservation for the extrusion process in
percentages.

FEM ASFEM
evol(%) 0.0178 -0.0867

Finally, contour plots between the two simulations will be compared. Figure 6.14 gives
the contour plots of the magnitude of the velocity for both methods. Figure 6.14(a)
gives the FEM results and 6.14(b) gives the ASFEM results. No significant differences
in the velocity fields are observed. A contour plot of the equivalent plastic strain rate
is given in Figure 6.15. Overall, the contour plots correspond well. The FEM results
show a slightly higher rate at the die radius, which can be a result of the dense FEM
mesh at the die radius. Besides this difference, it can be stated that although the two
methods employ very different formulations, good agreement is obtained.

6.4 Conclusions

In this chapter, the performance of the ASFEM method was examined on two forming
processes.

Firstly, the ASFEM method was successfully applied on the forging of a circular rod.
The mesh was revised for every increment at the areas where most deformation took
place. No mapping of the material data was required. It was demonstrated that the
mesh of the ASFEM method is of better quality than the FEM mesh. Having no
re-triangulations for the ASFEM simulation results in mesh of lesser quality. Finally
it was shown that the results of the two methods are in very close agreement.

Secondly, the extrusion of a profile was simulated with the ASFEM method in a
Lagrangian formulation. The results were compared with a finite element simulation
based on a Eulerian formulation. The deformation patterns and the ram force compare
well. It was shown that the volume is conserved to a good extent. The method of
α-shapes proved to be essential in order to simulate the process.

It can be concluded that results made with the proposed method are in general
comparing well to reference solutions made with finite elements. Hence, it can be
expected that the results of the ASFEM method can be trusted, when simulating
comparable forming processes.
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(a) Eulerian FEM (b) ASFEM
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Figure 6.14: A contour plot of the magnitude of the velocity for the two simulations
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(a) Eulerian FEM (b) ASFEM
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Figure 6.15: A contour plot of the equivalent strain rate for the two simulations
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Conclusions

In this thesis, a nodal-based method is developed which is aimed at simulating large
deformations as occur in forming process. Preceding this development, a comparative
study on the performance of meshless and nodal-based methods was performed in
order to select the most promising method in the field. In this comparative study,
two diffuse meshless shape functions, a linear triangle interpolation and two numerical
integration schemes were compared. Based on this research, it can be concluded that:

• diffuse meshless shape functions, such as moving least squares or local
maximum entropy, are more accurate than linear triangle interpolation but are
computationally expensive. Brief remarks about this are made in literature,
however this thesis presents quantitative results on this issue and shows that
the difference in computational efficiency can be in the order of up to fifteen.

• regardless of the shape function, using a Gaussian integration scheme in
incompressibility results either in volumetric locking or in instabilities. A nodal
integration scheme, on the other hand, gives locking-free results and gives good
accuracy on highly irregular nodal grids. A drawback is that the pressure field
cannot be guaranteed to be stable.

• based on the conclusion above, it can be said that selecting a good numerical
integration scheme is more important than selecting a shape function.

• the linear triangle interpolation in combination with the nodal integration
scheme gives a simple, efficient and reasonably accurate numerical scheme.

Taking the last conclusion as given above into consideration, the linear triangle
interpolation in combination with a nodal integration scheme was chosen for further
development. A formulation for large deformations was proposed, of which the key
two aspects are a cloud of nodes following a Lagrangian description of motion, and
a triangulation algorithm which re-triangulates the domain for each increment. The
resulting method was named the adaptive smoothed finite element method (ASFEM).
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The analysis of a forging and extrusion process showed good agreement between
the ASFEM simulations and reference solutions made with finite elements. In the
forging example, it was shown that the triangulation used for the ASFEM simulation
is of better quality than that of the finite element simulation. For the extrusion
problem, the ASFEM results compared well to a reference solution made with Eulerian
finite elements. To conclude, it can be stated that with the proposed method, large
deformations can be simulated in a Lagrangian formulation without running into mesh
distortion problems.



8

Recommendations

In Chapter 3 an investigation on the stability of the pressure prediction for methods
using a nodal averaging strategy was presented. It was shown that for nearly
incompressible materials, the pressure prediction contains a nonphysical oscillatory
mode. No modifications of the formulation have been introduced in order to counter
this deficiency. Numerical methods that do not suffer from locking and give a stable
pressure prediction require a specific combination of pressure and displacement fields.
For finite elements, for instance, it is known which combinations work and which
do not. For meshless and other nodal-based methods, this is to some extent an
open topic. Apparently, the discontinuous pressure field as resulting from the nodal
averaging strategy leave the pressure field with too much freedom. Research into
different types of pressure fields (for instance continuous fields) is required in order
to find the combination that gives proper pressure predictions.

A formulation for large deformation of the linear triangle interpolation in combination
with a nodal averaging scheme was given in Chapter 5. One of the key aspects of the
resulting method is the Delaunay triangulation algorithm on which it relies to great
extent. In the current study, the triangulation is constructed on every increment
of the simulation, even if there is no need for a new triangulation. Luckily, for the
current study the computational cost of the triangulation algorithm is found to be
small with respect to the total computation time. However, in 3D and for larger
node sets, it is known that the computational effort required for the triangulation
algorithm becomes larger as a result of its complexity. Therefore, it is interesting to
investigate the option in which only at certain time steps and at certain regions the
triangulation is revised. With ‘triangle-flipping’ algorithms, for instance, it is possible
to adapt the triangulation locally. Clearly, the equivalent plastic strain rate gives a
good indication of the locations which require an updated triangulation (see Section
6.2).

In Chapter 6, the method of α-shapes was used to determine the boundary of the
domain for the extrusion process. The method performed well in this application.
The volume of the domain was preserved accurately and a reasonable description
of the boundary was obtained. There is, however, no physical theorem supporting
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the method since it is based purely on geometrical concepts. For the extrusion
simulation, results indicate that the boundary computed with the α-shape criterion
consists of nodes that were initially in the interior of the billet. This gives rise to
the question of whether this ‘boundary creation’ is observed in practice as well. A
detailed investigation should give an answer to this question.

The simulation of the extrusion problem showed especially around the die corner large
deformations locally, while in the rest of the billet the deformations were relatively
small. Clearly, the regular grid of nodes with which the simulation is started, is
not the most suitable arrangement for accurately approximating this highly irregular
distribution of deformation. Ideally, more nodes are required around the die radius
and everywhere besides this region, the nodal distribution should be coarse. An
interesting aspect of the developed method is that nodes can be inserted and removed
relatively easily, when compared to finite elements for instance. If one detects the
region subject to large deformations, additional nodes can be inserted into that
region, and eventually be removed afterwards. Data concerning the material state
of a newly added node can be initialised by simply using the data of the neighbouring
nodes. Mapping algorithms as required for re-meshing in the finite element method
are not required. Within the project as presented in this thesis, a study on the topic
of adaptivity and the ASFEM method has been performed by M. Dekker [39]. In
this study a detection algorithm (where to refine), an insertion algorithm (how to
refine) and a projection algorithm (how to initialize data for new nodes) have been
implemented and tested thereafter on academical problems. Clearly, due to the nodal-
based formulation of the method, the refinement procedure is remarkably simple and
is worth further investigation and development in order to use it in the simulation of
industrial forming processes.
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Selected Topics on Tensors

x

y

x

e1

e2

r1

r2Γ

Ω

Figure A.1: The two sets of base vector for a specific point x.

Assume a body in space as shown in Figure A.1. For a specific point x, two sets
of orthogonal base vectors are defined. Base vectors {e1, e2}, are aligned with the
coordinates axis x and y respectively. Base vectors {r1, r2} are a rotated set of vectors
{e1, e2}. Tensor quantities expressed in set {r1, r2} are denoted with the breve accent
(̆.). The derivations given in this appendix are given for the 2D case.

Voigt Notation

Throughout this thesis, tensors are frequently expressed in Voigt form. Equations
appearing in finite element analysis are more comprehendible in this form, and allow
for the direct implementation in a computer code. First and second order tensors in
Voigt form are given in curly brackets { } and fourth order tensors are given in straight
brackets [ ]. Below is a listing of the Voigt forms and the equivalent tensor form of
some commonly used tensors. The symbol ⇚⇛ is used to indicate this equivalence.
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The difference between these two ways of notation is as follows:

v = viei =

{
v1
v2

}

⇚⇛ {v} =
{
v1
v2

}

(A.1)

σ = σijeiej =

[
σ11 σ12
σ21 σ22

]

⇚⇛ {σ} =







σ11
σ22
σ12






(A.2)

ε = εijeiej =

[
ε11 ε12
ε21 ε22

]

⇚⇛ {ε} =







ε11
ε22
2ε12






(A.3)

L = Lijeiej =

[
L11 L12

L21 L22

]

⇚⇛ {L} =







L11

L12

L21

L22







(A.4)

C = Cijkleiejekel = . . . ⇚⇛ [C] =





C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212



 (A.5)

where subscripts 1 and 2 correspond to the x and y directions along the e1 and e2
base vectors respectively. Note that the constitutive tensor C is rewritten in Voigt
form using the plane strain assumption as is frequently used throughout this thesis.
For plane stress, the terms contained in the Voigt form are different.

Note that if the nodal velocity tensor d is expressed in curly brackets, the vector of
all nodal velocities is meant. The equivalence is as follows:

di = dijej =

{
di1
di2

}

for i = 1...Nnod ⇚⇛ {d} =







d1

d2

d3

...
dNnod







(A.6)

where Nnod is the number of nodes in the domain, i is the index related to node i
and di1 is the nodal degree of freedom along the x direction (e1) of node i. The force
vectors are defined similarly:

Fi =

{
F i
x

F i
y

}

for i = 1...Nnod ⇚⇛ {F} =







F1

F2

F3

...
FNnod







(A.7)

Please note that the symbol F refers here to the force vector and not to the
deformation gradient.
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Spatial Gradients

The pre-gradient is defined as:

−→∇ . . . = ej
∂

∂xj
. . . (A.8)

taking the pre-gradient for instance towards the velocity field gives:

−→∇v = ej
∂

∂xj
viei (A.9)

= vi,jejei (A.10)

The post-gradient is defined as:

. . .
←−∇ =

∂

∂xj
. . . ej (A.11)

applying this post-gradient on the velocity field gives:

v
←−∇ =

∂

∂xj
vieiej (A.12)

= vi,jeiej (A.13)

which is the transpose of the taking the pre-gradient:

−→∇v = (v
←−∇)T (A.14)

In this thesis also a gradient is used without a prefix. This gradient is simply equal
to the pre-gradient defined as:

∇v =
−→∇v (A.15)

Hence the rate of deformation can be expressed as:

D =
1

2
(
−→∇v + v

←−∇) or D =
1

2
(∇v + (∇v)T) (A.16)

The equilibrium equation in tensor form, as used many times in this thesis, can be
reduced to a more familiar form as follows:

σ · ←−∇ + f =
∂

∂xk
σijeiej · ek + fiei (A.17)

= σij,jei + fiei (A.18)

Rotating Tensors

The values of any tensor are expressed by the directions of the base vectors. These
vectors can be chosen freely, and expressions can be constructed in which sets of base
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vectors are related. The rotation between two sets of base vectors, for instance, is
given as:

ri = Rijej (A.19)

Rotating a first order tensor to a different set of base vectors is as follows. The velocity
vector is used as an example.

v = viei = v̆jrj (A.20)

= v̆jRjiei (A.21)

Simplifying the result and writing it in Voigt form gives:

vi = Rjiv̆j ⇚⇛ {v} = [R]T{v̆} (A.22)

where matrix [R] rotates the first order tensor in Voigt form:

[R] =

[
R11 R12

R21 R22

]

(A.23)

Rotating a second order tensor, in this example the stress tensor, is as follows:

σ = σijeiej = σ̆klrkrl (A.24)

= σ̆klRkieiRljej (A.25)

giving:

σij = Rkiσ̆klRlj ⇚⇛ {σ} = [P]{σ̆} (A.26)

where matrix [P] rotates the second order stress tensor in Voigt form:

[P] =





R2
11 R2

21 2R11R21

R2
12 R2

22 2R22R12

R11R12 R21R22 R11R22 +R12R21



 (A.27)



B

Some Kernel Functions

The most frequently used kernel, window or weighting functions will be given in this
appendix. Firstly, the kernel functions are given for the 1D case. Thereafter, two
methods are presented in order to extend these functions for use in 2D or 3D.

Table B.1 gives the name and the formulation of some commonly used kernel functions.

Table B.1: Some commonly used kernel functions.

name formulation

exponential kernel ω1(s) =

{
exp(−( s

α
)2)

0
for

0 ≤ s ≤ 1

s > 1

quadratic spline ω1(s) =

{
1− s2
0

for
0 ≤ s ≤ 1

s > 1

cubic spline ω1(s) =







2
3 − 4 s2 + 4s3

4
3 − 4 s+ 4 s2 − 4

3s
3

0

for

s 6 1
2

1
2 < s 6 1

s > 1

quartic spline ω1(s) =

{
1− 6s2 + 8s3 − 3s4

0
for

0 ≤ s ≤ 1

s > 1

quintic spline ω1(s) =







(1− s)5 − 16( 12 − s)5
(1− s)5
0

for

0 ≤ s ≤ 1
2

1
2 < s ≤ 1

s > 1
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The first technique in order to use one of the kernel functions as given above in 2 or
3D is to use a a circular footprint. The dimensionless coordinate s will be defined as:

s =
d(x, ξ)

β
(B.1)

where d(x, ξ) is the Euclidean distance between two points:

d(x, ξ) = ∥x− ξ∥ (B.2)

The absolute size of the footprint β is found by considering:

β = γ · h (B.3)

where parameter h is an average value of the nodal spacing and γ is a relative size of
the footprint. See Figure 2.7 for an illustration on parameters β, γ and h. The kernel
function in any dimension can be found using Equation (B.1) to evaluate ω1:

ω(x− ξ, γ) = ω1(s) (B.4)

where s =
d(x, ξ)

γ · h (B.5)

The second technique presented in this appendix is to use a square footprint. Instead
of using the Euclidean distance, two dimensionless coordinates sx and y will be
computed. The kernel in 2D becomes a multiplication of the two splines as a function
of these two coordinates:

ω(x− ξ, γ) = ω1(sx) · ω1(sy) (B.6)

where sx =
d(x, ξ)

γ · h and sy =
d(y, η)

γ · h (B.7)

Whereas the previous technique results in a shape function with a circular footprint,
the footprint made with this technique has the shape of a square.



C

Enriched Nodal Averaging

Implementation Details

This appendix gives aspects regarding the implementation of the enriched nodal
averaging scheme. Equations (4.31), (4.32) and (4.33) need to be numerically
evaluated. All three equations consist of a volume integral over arbitrarily shaped
polygons. In order to compute these integrals, they will be rewritten as contour
integrals. The contour integral can easily be evaluated by numerical integration over
the boundary. See Figure C.1 for an illustration on the indices used in the following
derivations. Note that the index i previously used to indicate a node is dropped for
reasons of clarity.

V V1

V2
V3

V4

V5

V6 S1

n1

Figure C.1: An illustration of the used indices for implementing the enriched cell
strains.

First of all the origin of the location vector ξ for each cell has to be found. The centre
of gravity of a cell is found by:

xc =
1

V

∫

V

x dV (C.1)
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where V is the volume of the cell belonging to a node.

Secondly, Equation (4.31) will be worked out numerically. The shape function used
in Chapter 4 is a linear triangle interpolation. The gradient of this shape function
is constant within a triangle and discontinuous over the boundaries of the triangles.
Using this knowledge of the displacement field, Equation (4.31) can be simplified as
follows:

[B0] =
1

∫

V
1 dV

∫

V

[B(ξ)] dV (C.2)

=
1

V

Ntri∑

j=1

[B]jVj (C.3)

where Ntri is the number of triangles attached to the node under consideration, Bj is
the strain matrix of triangle j attached to this node, and Vj is the volume of subcell
j. The volume of this subcell can be found by converting the volume integral to a
boundary integral:

Vj =

∫

Sj

ξ · nxj dS (C.4)

where Sj is the boundary of subcell Vj and nxj is the normal on this boundary in the
direction of x. The total volume of the cell can be computed by considering:

V =

Ntri∑

j=1

Vj (C.5)

Thirdly, evaluating Equation (4.32) will prove to be somewhat more laborious. The
equation will be divided in parts:

[Bξ] =
1

∫

V
ξ2 dV

︸ ︷︷ ︸

a

∫

V

[B(ξ)]ξ dV

︸ ︷︷ ︸

b

(C.6)

The first term in the denominator of part a can be computed as:

∫

V

ξ2 dV =

Ntri∑

j=1

∫

Vj

ξ2 dV (C.7)

=

Ntri∑

j=1

∫

Sj

1

3
ξ3 · nxj dS (C.8)

where the divergence theorem has been used to derive Equation (C.8) from Equation
(C.7). The second term, part b, can be computed as follows:

∫

V

[B(ξ)]ξ dV =

Ntri∑

j=1

[B]j

∫

Sj

1

2
ξ2 · nxj dS (C.9)
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The last term of this equation is the area moment of subcell Vj .

To conclude, all terms appearing in the scheme can be computed with simple boundary
integrals on the boundary of the subcells Vj . A two-point integration rule is sufficient
to compute the terms exactly. For computational speed a lower order rule can be
used.





D

Derivations for Large

Deformations Accompanying

Chapter 5

The Gradient towards the Midpoint Configuration

The stress update algorithm as given in Section 5.3.2 uses spatial gradients taken
towards an intermediate or ‘midpoint’ configuration in order to give an accurate
prediction of the strain and the rotation. In this section, the midpoint gradient
shown in Equation (5.30) will be derived. To enhance readability, indices related to
the increment under consideration will be dropped. Instead, only an initial and final
set of coordinates are considered, given by X and x respectively.

These two sets of coordinates are related as follows:

x = X+ u (D.1)

where u is the displacement. The coordinates at the intermediate configuration are
given by X , and are exactly halfway the step, hence the name ‘midpoint’ rule:

X = X+
1

2
u (D.2)

The spatial gradient of for instance a vector field u towards this intermediate set of
coordinates is given by:

∂u

∂X =
∂u

∂X
︸︷︷︸

a

· ∂X
∂X
︸︷︷︸

b

(D.3)
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Term b can be found by considering:

∂X
∂X

=
∂X+ 1

2u

∂X
(D.4)

= 1+
1

2

∂u

∂X
(D.5)

=
1

2
(F+ 1) (D.6)

Term a is simply found by the following relation:

∂u

∂X
= F− 1 (D.7)

Substitution of Equations (D.6) and (D.7) into (D.3), yields:

∂u

∂X = 2(F− 1) · (F+ 1)−1 (D.8)

System Matrices

In this section, Equation (5.38) will be derived from Equation (5.19). The only
difference between the two equations, besides the fact that the latter already
incorporates the approximation spaces, is the fact that the former is in tensor form
and the latter is in Voigt form.

Firstly, Equation (5.19) is restated below in order to divide it into separate terms:

δẆint =

∫

Ω

(δLT · L) : σ
︸ ︷︷ ︸

a

dΩ− 2

∫

Ω

(δD ·D) : σ
︸ ︷︷ ︸

b

dΩ+

∫

Ω

δD : CJ : D
︸ ︷︷ ︸

c

dΩ +

∫

Ω

δD : σ tr(D)
︸ ︷︷ ︸

d

dΩ (D.9)

Choosing the same base vectors for all tensors appearing in part a, and using the
property that the contraction of two bases vectors results in the Kronecker delta (
δij = eiej), gives the following derivation:

(δLT · L) : σ = (δLjieiej · Llkelek) : σmnemen (D.10)

= δLjiσikLjk (D.11)

the equivalent Voigt form of the equation above becomes:

(δLT · L) : σ ⇚⇛ {δL}T[T]{L} (D.12)

where {L} is defined according to Equation (A.4) and [T] is given by:

[T] =







σ11 σ12 0 0
σ21 σ22 0 0
0 0 σ11 σ12
0 0 σ21 σ22







(D.13)
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The Voigt form of part b can be derived using the same procedure as used above. The
result, including the coefficient in front of the integral, is given by:

2(δD ·D) : σ ⇚⇛ {δD}T[Cspin]{D} (D.14)

where tensor D in Voigt form is defined in a similar way as the linear strain tensor in
Equation (A.3):

{D} =
{
D11 D22 2D12

}T
(D.15)

and matrix Cspin is defined as:

[Cspin] =





2σ11 0 σ12
0 2σ22 σ12
σ12 σ12

1
2 (σ11 + σ22)



 (D.16)

Part c is rewritten in Voigt form as:

δD : CJ : D ⇚⇛ {δD}T[CJ]{D} (D.17)

where CJ, for instance for linear elasticity under plane strain assumption, is defined
as:

[CJ] =
E

(1 + ν)(1− 2ν)





1− ν ν 0
ν 1− ν 0
0 0 1− 2ν



 (D.18)

Part d is written in Voigt form as follows:

δD : σtr(D) ⇚⇛ {δD}T[Cvol]{D} (D.19)

where:

[Cvol] =





σ11 σ11 0
σ22 σ22 0
σ12 σ12 0



 (D.20)

The internal virtual power can now be rewritten:

δẆint =

∫

Ω

{δL}T[T]{L}
︸ ︷︷ ︸

a

dΩ−
∫

Ω

{δD}T[Cspin]{D}
︸ ︷︷ ︸

b

dΩ+

∫

Ω

{δD}T[CJ]{D}
︸ ︷︷ ︸

c

dΩ +

∫

Ω

{δD}T[Cvol]{D}
︸ ︷︷ ︸

d

dΩ (D.21)

By combining the C-matrices as follows:

[Ctot] = [CJ]− [Cspin] + [Cvol] (D.22)

the rate of internal work can be simplified accordingly:

δẆint =

∫

Ω

{δD}T[Ctot]{D}dΩ +

∫

Ω

{δL}T[T]{L} dΩ (D.23)
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discusiones en el tema métodos sin malla. Muchas de las ideas y conceptos utilizados

159



160

en el desarrollo de esta tesis se originaron durante ese peŕıodo.

Mijn promotietijd is een tijd waar ik met veel plezier aan zal terugdenken en de
collega’s van de groepen Technische Mechanica en Productie Technologie hebben hier
voor een groot deel aan bijgedragen. Naast de werkgerelateerde zaken, heb ik toch ook
zeker de activiteiten buiten werktijd met veel plezier beleefd en wil ik hiervoor mijn
collega’s bedanken. De ESAFORM2011 conferentie met daaropvolgend een roadtrip
door Ierland zal ik niet snel vergeten. Of de waterski-sessies in het Rutbeek, de
mountainbike trips in het Teutoburgerwald, de pokeravonden, enzovoort, enzovoort....

Voor een ieder die ik vergeten ben te noemen, hierbij mijn oprechte excuses. Verder
wens ik diegenen van de groep die nog bezig zijn met hun promotie een succesvolle
afronding toe en de rest,... gewoon het beste!

Wouter Quak
Enschede, september 2011



UNIVERSITY OF TWENTE.
group of applied mechanics


	Summary
	Samenvatting
	Nomenclature
	Table of contents
	Introduction
	Motivation
	Objective
	Outline
	Notation

	An Introduction to Meshless Methods
	Introduction
	What is a Meshless Method?
	Why use a Meshless Method?

	An Overview of Meshless Methods
	A General Overview
	Forming Processes and Meshless Methods
	A Categorial Overview

	Discretisation of Space
	Preliminary Definitions
	The Purpose of a Shape Function
	Properties of Shape Functions
	Convolution
	Corrected Convolution
	Moving Least Squares
	Linear Regression
	Local Maximum Entropy
	Natural-Neighbour Interpolants
	FEM interpolants

	Discretisation of Equilibrium
	Point Collocation
	Galerkin
	Petrov–Galerkin
	Continuous Least Squares
	Subdomain Collocation
	Point-wise Least Squares

	Applying Boundary Conditions
	Penalty Method
	Lagrangian Multipliers
	Transformation Method

	Closure

	A Comparative Study of Meshless Approximations
	Introduction
	Background
	Objective
	Outline

	Governing Equations
	General Formulations
	Shape Functions
	Integration Schemes
	Applying Boundary Conditions
	Triangulations and Tessellations
	Overview of the Implementation

	Numerical Performance
	Introduction
	Infinite Plate with a Hole
	Distortion Analysis
	Tapered Bar Analysis
	The Inf-Sup Test
	Computational Efficiency

	Conclusions

	A Simple Enriched Nodal Averaging Strategy
	Introduction
	General Formulations
	Classical Compatible Strain
	Nodally Averaged Strain

	Enriched Nodal Averaging
	Constant Cell Strain
	Linear Cell Strain
	Higher Order Cell Strains
	System Matrices

	Numerical Examples
	Beam Stretching and Bending
	Infinite Plate With a Hole
	Pinched Bar

	Conclusions

	Adaptive Smoothed Finite Elements in Large Deformations
	Introduction
	Governing Equations
	Motion
	Deformation
	Virtual Work

	Implementation Aspects
	Incremental Formulations
	Stress Update Algorithm
	System Matrices
	Stabilisation Matrices
	Newton–Raphson
	Triangles and Cells

	Numerical Examples
	Non-Linear Patch Test
	Rotation of a Tensile Bar
	Non-Proportional Loading

	Closure

	Applications
	Introduction
	Forging of a Circular Rod
	Extrusion of Aluminium
	Conclusions

	Conclusions
	Recommendations
	Selected Topics on Tensors
	Some Kernel Functions
	Enriched Nodal Averaging Implementation Details
	Derivations for Large Deformations Accompanying Chapter 5
	Bibliography
	Nawoord

