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Abstract

Meyniel conjectured the cop number c(G) of any connected graph G

on n vertices is at most C
√

n for some constant C. In this paper, we prove
Meyniel’s conjecture in special cases that G has diameter at most 2 or G is
a bipartite graph with diameter at most 3. For general connected graphs,
we prove c(G) = O( n

2
(1−o(1))

√
log2 n

), improving the best previously known

upper-bound O( n

ln n
) due to Chiniforooshan.

1 Introduction

The cop(s)-robber game is played by two players (denoted by C and R) on
the board of a simple connected graph G on n vertices. Initially, C first puts c

pebbles (called cops) on vertices of G, then R put one pebble (called the robber)
on some vertex. Two players play moves alternatively. At C’s turn, he (or she)
can have each cop stay at its current position or move to its neighbor vertex.
Multiple cops are allowed to be placed on the same vertex. At R’s turn, he
(or she) can do nothing or move the robber to a neighbor vertex of its current
position. Whenever a cop meets the robber at the same vertex, C wins. Both
players have the complete information of the game board (the graph G and the
current positions of cops and the robber). If C has a winning strategy using
c cops, then we say G is c-searchable . The cop number c(G) is the minimum
integer c so that G is c-searchable.

The cop-robber game was first studied by Nowakowski and Winkler [9], and
by Quilliot [10]. In both case they classified all graphs on which one cop can
win. Aigner and Fromme [1] introduced the concept of the cop number c(G)
and proved c(G) ≤ 3 for any connected planar graph G. Since then, many good
upper bound on c(G) for special classes of graphs were discovered (see Alpach’s
survey paper [2]).

Little is known for the cop number of the general connected graph. Meyniel
made the following conjecture in personal communication to Frankl [8].
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Meyniel’s conjecture: There is a constant C so that the cop number of any
connected graph G on n vertices satisfying

c(G) ≤ C
√

n.

In this paper, we prove two special cases of Meyniel’s conjecture.

Theorem 1 Let G be a connected graph on n vertices. If the diameter of G

is at most 2 or G is a bipartite graph with diameter at most 3, then the cop

number c(G) satisfies

c(G) ≤ 2
√

n − 1.

This result is tight up to a constant multiplicative factor. The constant 2

here can not replaced by
√

2
2 as shown by this following example.

For q a power of some prime, it is well-known that the projective plane of
order q exists. View the projective plane as a bipartite graph G with points
and lines as vertices and incidence relations as edges. Then G is a q + 1-regular
bipartite graph on n = 2(q2 + q + 1) vertices (lines and points) with girth 6. It
is also clear that the diameter of G is 3. Aigner and Fromm [1] proved that if
G has girth at least 5 then

c(G) ≥ δ,

where δ is the minimum degree of G. Thus, the cop number of G is at least

c(G) ≥ q + 1 >
√

2
2

√
n.

The first sub-linear upper bound for general connected graph G is due to P.
Frankl [8], who proved

c(G) ≤ (1 + o(1))
n ln ln n

ln n
. (1)

This bound was recently improved by Chiniforooshan [7]:

c(G) ≤ O(
n

ln n
). (2)

For the random graphs G(n, p), Bollobás, Kun and Leader [6] shows

c(G(n, p)) = O(
√

n log n)

if p ≥ 2.1 log n

n
.  Luczak-Pra lat [12] further determined c(G(n, p)) up to a poly-

log-n multiplicative factor.
In this paper, we proved

Theorem 2 For any connected graph G, we have

c(G) ≤ n2−(1−on(1))
√

log2 n. (3)

The paper is organized as follows. In section 2, necessary notations and
lemmas are introduced. In section 3, we examine the cop number of graphs
with diameter 2 or bipartite graphs with diameter 3. Theorem 2 on general
graphs will be proved in section 4.
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2 Notations and Lemmas

Let G = (V, E) be a finite, simple and connected graph. For any two vertices
u, v, let dG(u, v) be the graph distance between u and v. For any i ≥ 1 and any
set S, we define the i-th open and closed neighbors of S as

ΓG
i (S) = {u|∃v ∈ S, dG(u, v) = i}

NG
i (S) = {u|∃v ∈ S, dG(u, v) ≤ i}.

When the graph G is clear in the context, we omit the superscript of G and
simply write d(u, v), Γi(S), and Ni(S). In the case S = v, we simply write Γi(v)
for Γi({v}) and Ni(v) for Ni({v}). We also omit the subscript i when i = 1.

We say a cop can control a set S means, after a finite number of moves, if
the robber moves onto S at any time t, he will be caught at time t + 1 by this
cop. For example, a cop can control N(v) — the set consisting of the neighbors
of v and v itself. Ailgner-Fromme [1] proved the following useful lemma.

Lemma 1 (Aigner-Fromme [1]) If P is a shortest path between u and v in

G, then one cop can control P .

The following lemma is a variation of Hall’s matching theorem.

Lemma 2 Let H be a bipartite graph with the vertex partition V (H) = L ∪ R.

Then there exists a set S ⊂ L and a matching M satisfying

1. S = ∅ or |Γ(S)| < |S|.

2. M covers all vertices in L \ S.

Proof: If |Γ(T )| ≥ |T | for any T ⊂ L. Then we set S = ∅. In this case, by
the Hall’s Theorem, we have a matching M covers L. Otherwise, there is some
T such that |Γ(T )| < |T |. Then we take S be a maximal one with respect to
inclusion. (In general S is not unique.) We have |Γ(S)| < |S|.

Claim: |Γ(W )| ≥ |W | for any W ⊂ L \ S.

If it is not true. Then there is some W ⊂ L \ S such that |Γ(W )| < |W |. So
we have

|Γ(S ∪ W )| = |Γ(S) ∪ Γ(W )| ≤ |Γ(S)| + |Γ(W )| < |S| + |W | = |S ∪ W |.

The last equality follows from W ⊂ L \S. Hence S ⊂ S ∪W , which contradicts
the maximality of S. By the Hall’s theorem, there is a matching M covers L\S.
�.

Let ∆ be the maximum degree and D be the diameter of G. The Moore
bound says

n ≤ 1 +
D

∑

i=1

∆(∆ − 1)i.
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So the diameter D and the maximum degree ∆ can not be both less than
(1 + o(1)) ln ln n

ln n
. Put one cop to control a set S as large as possible (so |S| >

(1 + o(1)) ln ln n
lnn

). Let GS̄ be the induced graph of G on the complement set
S̄. GS̄ may be disconnected. The robber is confined into the the connected
component (denoted by G′) of GS̄ . Now send the rest of cops to G′. It is clear
that

c(G) ≤ 1 + c(G′).

Frankl’s result (1) is a consequence of this greedy algorithm.

3 Graphs with small diameter

In this section, we assume G has diameter at most 2 or G is a bipartite graph
with diameter at most 3. We will prove Meyniel’s conjecture holds in this case.

First, we will prove the following lemma. A graph H is called k-degenerated

if every subgraph of H has a vertex with degree at most k.

Lemma 3 Suppose H is a k-degenerated subgraph of a connected graph G. A

variation of the cop-robber game is played on G so that cops are allowed to move

along the edges of G while the robber is only allowed to move along the edges of

H. Initially the robber is on some vertex of H. Suppose that G has diameter at

most 2 or G is a bipartite graph with diameter 3. Then k cops can capture the

robber after finite steps.

Remark: This lemma is tight (k can not be replaced by k − 1). Let G be the
bipartite graph for finite projective plane of order q. Then G is a q + 1-regular
graph with diameter 3. We have shown that

c(G) ≥ q + 1.

Apply this lemma to the subgraph H = G. Clearly H is q + 1-degenerated. We
note q + 1 cops can capture the robber after finite steps. So we have

c(G) = q + 1.

Proof of Lemma 3: We will prove by induction on the order of H .
If H has at most k vertices, the statement holds trivially. Just send k cops

to cover all vertices of H .
Suppose k cops can capture the robber after finite steps for any k-degenerate

subgraph H of order up to m.
Now consider a k-degenerated subgraph H of order m+ 1. By the definition

of k-degenerated graph, H has a vertex v of degree at most k. It is clear that
H \ {v} is also k-degenerated. If the robber never moves to the vertex v, he is
restricted to the subgraph H \ {v}. By the inductive hypothesis, it is captured
by k cops after finite steps. After a while, the robber is forced into the position
of v. At this moment, say the cops are at the vertices u1, u2, . . . , uk. Say the
neighbors of v in H are v1, v2, . . . , vl (l ≤ k). If for some i, j, ui = vj , then the
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next step move the cop at ui to v and catch the robber. Now we assume ui 6= vj

for any 1 ≤ i ≤ k and 1 ≤ j ≤ l.
When the diameter of G is at most 2, for each i, there is a path Pi of length

at most 2 connecting ui to vi. (Here, note that the cops are allowed to move
along the edges of G.) For 1 ≤ i ≤ l, move i-th cop at ui along the path Pi one
step toward vi. Each vi is now under the control of i-th cops. The robber has
no way to escape from v.

When the diameter of G is 3 but G is bipartite, extra movements are needed.
Say V (G) = L∪R is the bi-partition. Without loss of generality, say v ∈ L. All
its neighbors v1, v2, . . . , vl are in R. There are three cases:

Case 1: At least l cop positions say u1, u2, . . . , ul are in R. For each i, there
is a path Pi of length at most 2 connecting ui to vi. For 1 ≤ i ≤ l, move
i-th cop at ui along the path Pi one step toward vi. Each vi is now under
the control of i-th cops. The robber has no way to escape from v.

Case 2: There are k− 1 cop positions in R and one cop position in L (say uk).
If l < k, then the case is covered by case 1. Assume l = k. Since both
v and uk are in L, there is a path P of length 2 connecting uk and v.
The middle point of this path P is a neighbor of v, say vk. The robber
can not move into vk, which is controlled by uk. Since other cops at
u1, u2, . . . , uk−1 ∈ R, for each i ≤ k − 1, there is a path Pi of length at
most 2 connecting ui to vi. For 1 ≤ i ≤ l, move i-th cop at ui along the
path Pi one step toward vi. Each vi is now under the control of i-th cops.
The robber has no way to escape from v.

Case 3: This is the remaining case that cops can be anywhere. Move all k

cops to some vertices u′
1, u

′
2, . . . , u

′
k in R. If the robber is still at v, then

it will be captured by case 1. So the robber moves into a neighbor of v,
say vk ∈ R. Send one cop to chase the robber and other cops stay. The
robber has to move into a vertex in L. From now on, we maintain the
property “at least k − 1 cops are on the different part of the robber”. If
the robber never returns to v, then will be captured in H \ v by induction
hypothesis. In both case 1 and case 2, we can capture the robber while
keep k− 1 cops to stay on the other side of the robber. So eventually, the
robber moves back to v while there are k− 1 cops in the other side R. By
case 1 and 2, the robber will be cornered at v in the next move.

After at most two more steps, the robber is captured at v. The induction
step is finished. �.

In the following proof, we will use the concept “k-core”. The k-core of a
graph G is the maximum subgraph of G with minimum degree at least k. The
k-core is unique and can be obtained by sequentially deleting all vertices with
degrees less than k.
Proof of Theorem 1: Fix a small constant ǫ > 0 and an integer k. Let
p = ǫ

k+1 be a probability. Let G0 = G and H0 be the k-core of G0. Now, for
each vertex v in H0, we put one cop with probability p independently. Delete
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the vertices occupied by these cops and their neighbors from H0. Denote the
remaining graph by G1. Now let H1 be the k-core of G1.

For each i, let Hi be the k-core of Gi. For each vertex v of Hi, with probabil-
ity p independently, put one cop at vertex v. Now delete the vertices occupied
by these cops and their neighbors from Hi. Denote the remaining graph by
Gi+1. Repeat this process until Gi or Hi is the empty graph.

Let H be the induced subgraph of G on ∪i≥0(Gi \Hi). Note that all vertices
in V (G) \ V (H) are controlled by cops. (Each vertex is either occupied by a
cop or one of its neighbors is occupied by a cop.) The robber is forced to move
along the edges of H . From the construction, it is clear H is a k−1-degenerated
subgraph. Apply Lemma 3, extra k − 1 cops can capture the robber in finite
steps.

It remains to estimate the total number of the cops needed. For i ≥ 0, the
expected number of cops needed at i-th step is by pE(|V (Hi)|). The probability
that a vertex v of Hi is survived at Gi+1 is at most

(1 − p)1+dHi
(v) ≤ (1 − p)k+1 < e−p(k+1).

Thus the expected number of vertice in Hi+1 is

E(|V (Hi+1)|) ≤ E(|V (Gi+1)|)
≤ e−p(k+1)E(|V (Hi)|)
≤ · · ·
≤ e−(i+1)p(k+1)E(|V (H0)|)
≤ e−(i+1)p(k+1)n.

The expected number of cops needed in total is at most

k − 1 +
∑

i≥0

e−ip(k+1)np.

There is a random instance so that the total cops needed is at most the expected
number. We have

c(G) ≤ k − 1 +
∑

i≥0

e−ip(k+1)np

= k − 1 +
np

1 − e−p(k+1)

= k − 1 +
ǫ

1 − e−ǫ

n

k + 1
.
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Let f(x) = x
1−e−x . Choose k = ⌈

√

f(ǫ)n⌉ − 1 to minimize the value. We have

c(G) ≤ k − 1 + f(ǫ)
n

k + 1

≤ ⌈
√

f(ǫ)n⌉ − 2 + f(ǫ)
n

⌈
√

f(ǫ)n⌉
≤

√

f(ǫ)n − 1 + f(ǫ)
n

√

f(ǫ)n

= 2
√

f(ǫ)n − 1.

It holds for any ǫ > 0. Let ǫ → 0. We have f(ǫ) → 1. Thus we get

c(G) ≤ 2
√

n − 1.

�

4 General graphs

We will prove the following theorem first. Here we make no effort to get the
best constant or to remove log-factors.

Theorem 3 Suppose G is a connected graph on n vertices. For any positive

integer k < n, let Mk = minv∈V (G) |N2k−1(v)|. Then we have

c(G) ≤ 8k

(

ln n

Mk

)
1
k

n.

In particular, if the diameter of G is at most 2k−1, we have Mk = n. Thus,

c(G) ≤ 8kn
k−1

k ln
1
k (n).

Remark: Note that, M1 = δ + 1, where δ is the minimum degree of G. So Mk

can be viewed as a generalization of δ.
Proof: When k = 1, we have for any vertex v,

|N(v)| ≥ M1.

Choose p = ln n
M1

. For each vertex v, with probability p, mark v as a cop position
independently. Send cops to these cop positions. A vertex v is not controlled
by these cops if N(v) contains no cop position. Send additional cops to cover
vertices which are not controlled by cops at cop positions. The expected number

7



of total cops needed is np +
∑

v(1 − p)|N(v)|. We have

c(G) ≤ np +
∑

v

(1 − p)|N(v)|

≤ np +
∑

v

(1 − p)M1

≤ np + ne−pM1

≤ n
ln n

M1
+ 1

< 8n
ln n

M1
.

So there is a random instance such that c(G) ≤ 8n lnn
M1

. The statement holds in
this case.

From now on we assume k ≥ 2. If 8k
(

lnn
Mk

)
1
k

> 1, the statement is trivial

since c(G) ≤ n. We can assume 8k
(

ln n
Mk

)
1
k ≤ 1. Let p = 4

(

ln n
M

)
1
k ≤ 1

2k
be a

probability. The player C define a set of cop positions R randomly. For each
vertex v, with probability p, independently mark v as a cop position. Move these
cops into cop positions. After finite steps we may assume each cop position is
covered by k cops. We form k groups of cops so that each cop position has one
cop in each group. (The remaining cops is not used in the later game.)

Suppose the robber is at the vertex u. Let T1(u) = ΓG(u). We define a bad
event F0(u) to be that du ≥ 2

p
ln n and there is no cop in NG(u) = T1(u)∩ {u}.

Then,

Pr(F0(u)) = (1 − p)1+du ≤ e−pdu ≤ 1

n2
.

Except for the bad event F0(u), we have

|T1(u)| = du <
2

p
ln n.

The second group of cops try to control vertices in T1(u) as much as possible
after one step. In order to control T1(u) after 1 step, of course, only the cops
in N2(T1(u)) are useful in this purpose. Consider an axillary bipartite graph
H1 with the partition T1(u) ∪ (N2(T1(u)) ∩ R). For any vertex v ∈ N1(u) and
y ∈ (N2(T1(u)) ∩ R), vy is an edge in H1 if and only if dG(u, v) ≤ 2. Apply
Lemma 2 to H1. There is a matching from N2(T1(u))∩R to T1(u)\S1(u). Here
S1(u) ⊂ Γ(v) satisfying

|N2(S1(u)) ∩ R| < |S1(u)|.

Each edge in the matching of H is actually a path of length at most 2 connecting
a vertex in N2(T1(u))∩R and a vertex in T1(u). Move the second group of cops
on some vertices N2(T1(u))∩R along these paths by one step. They can prevent
the robber from entering the vertices in T1(u) \ S1(u).
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For any S ⊂ T1(u), we say S is bad if |N2(S)| > 8
p2 ln n and |N2(S)∩R| < |S|.

Let X = N2(S) ∩ R, which follows the binomial distribution B(|N2(S)|, p).
Apply the following Chernoff inequality to X with a = E(X) − |S|. We have

Pr(X < |S|) = Pr(X < E(X) − a)

≤ e
− a2

2E(X)

= e
− (E(X)−|S|)2

2E(X) .

Note that

|S| ≤ |T1(u)| <
2

p
ln n <

1

4
E(X).

and then

E(X) − |S| >
3

4
E(X).

So we have

Pr(X < |S|) ≤ e
− (E(X)−|S|)2

2E(X)

< e
− ( 3

4
E(X))2

2E(X)

< e−
9
32E(X).

We define a bad event F1(u) to be the event there exists a bad subset S =
S1(u) of T1(u). Then

Pr(F1(u) \ F0(u)) ≤ 2|T1(u)|e−
9E(X)

32

= e−
9E(X)

32 +ln 2|T1(u)|

< e−( 9
4−2 ln 2) ln n

p

<
1

n2
.

At the last step, we apply p ≤ 1
2k

≤ 1
4 .

Except for the bad events F0(u) ∪F1(u) (with Pr(F0(u)∪F1(u)) ≤ 2
n2 ), we

have

|N2(S1(u))| ≤ 8

p2
ln n.

The robber has to go through some vertex from S1(u) in order to escape
from u. Let G1 = G \ (T1(u) \S1(u)). Let T2(u) = ΓG1

3 (u) be the set of vertices
which can be used by the third group of cops to control the neighbors of S1(u)
after one step.

For 1 ≤ i ≤ k − 1, we can recursively define graphs Gi, sets Ti(u) , Si(u)
and bad events Fi(u) as follows.

Ti(u) = Γ
Gi−1

2i−1 (u).

We define a bad event Fi(u) to be the event that there is a subset S ∈ Ti(u)

such that N2i+1(S) > 2 4i+1

pi+2 ln n and |N2i+1(S) ∩ R| < |S|.
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The i + 1-th group of cops can control Ti(u) in 2i − 1 steps except for a
subset Si(u) ⊂ Ti(u) satisfying

|N2i(Si(u)) ∩ R| < |Si(u)|.

Now we set Gi = Gi−1 \ (Ti(u) \ Si(u)).
Claim For any i = 1, . . . , k − 1, except for the bad event ∪i

j=0Fi(u) (with

Pr(∪i
j=0Fi(u)) < i+1

n2 ), we have

|Ti(u)| ≤ 2
4i−1

pi
ln n;

|N2i(Si(u))| ≤ 2
4i

pi+1
ln n.

We will use the induction on i to prove the claim. It holds for i = 1. Now
we assume that it holds for i. For i + 1, we have

Ti+1 = ΓGi

2i+1−1(u) ⊂ N2i(Si(u)).

Thus,

|Ti+1| ≤ |N2i(Si(u))| ≤ 2
4i

pi+1
ln n.

For any S ⊂ Ti+1, we say S is bad if |N2i+1(S)| > 2 4i+1

pi+2 ln n and |N2i+1(S)∩
R| < |S|. Let X = N2i+1(S) ∩ R, which follows the binomial distribution
B(|N2i+1(S)|, p). Note that

E(X) = |N2i+1(S)|p > 2
4i+1

pi+1
ln n > 4|S|.

Apply Chernoff’s inequality to X with a = E(x) − |S| > 3
4E(x).

Pr(X < |S|) = Pr(X < E(X) − a)

≤ e
− a2

2E(X)

≤ e−
9
32E(X).

Suppose |Ti+1| ≤ 2 4i

pi+1 ln n, the probability that there exists a bad subset S is
at most

2|Ti+1|e−
9
32E(X) < e

−( 9
4−ln 2)2 4i

pi+1 ln n
<

1

n2
.

Thus, we have

Pr(∪i+1
j=0Fj(u)) = Pr(∪i

j=0Fj(u)) + Pr(Fi+1(u) \ ∪i
j=0Fj(u))

<
i + 1

n2
+

1

n2

=
i + 2

n2
.
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Except for the bad event ∪i+1
j=0Fj(u), we have

|N2i+1(Si+1)| ≤ 2
4i+1

pi+2
ln n.

The inductive step is finished.
The last step i = k − 1 is special. Since for any u, |N2k−1(u)| ≥ Mk. From

the choice of p, we have

Mk >
4k

pk
ln n >

2

p
|Tk−1(u)|.

Let Fk(u) be a bad event that there exists v ∈ Tk−1(u) with |N2k−1(v) ∩ R| <

|Tk−1(u)|. The claim reads, except for the bad event ∪k−1
i=0 Fk(u),

|N2k−1(v)| ≤ 2
4k−1

pk
ln n.

Apply the Chernoff’s equality to the random variable X = N2k−1(v)∩R, which
is a sum of some independent 0 − 1 random variables. Note

E(X) = |N2k−1(v)|p ≥ 4k

pk−1
ln n.

Choose λ = 2 4k−1

pk−1 ln n so that

E(X) − λ > |Tk−1(u)|.

We have

Pr(∪k
j=0Fj(u)) = Pr(∪k−1

j=0Fj(u)) + Pr(Fk(u) \ ∪k−1
j=0Fj(u))

<
k

n2
+ Pr(X < |Tk−1(u)|)

<
k

n2
+ Pr(X < E(X) − λ)

<
k

n2
+ e

− λ2

2E(X)

<
k

n2
+ e

− 4k−1

2pk−1 ln n

=
k + 1

n2
.

At the last step, we applied

4k−1

2pk−1
≥ 2

p
≥ 2

since p ≤ 1
4k

and k ≥ 2.
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Except for the bad event ∪k
i=0Fi(u), for all v ∈ Tk−1(u),we have

|N2k−1(v) ∩ R| > |Tk−1(u)|.
We suppose Tk−1(u) = {v1, v2, . . . , vt}. For each i, we can find a cop ui from

N2k−1(vi) ∩ R \ {u1, u2, . . . , ui−1} to move toward vi. Therefore, for any vertex
of Tk−1, there is a cop from k-th group can control it in less than 2k−1 steps.
No exception set exists. We have

Sk−1 = ∅.
Let U = {u} ∪ ∪k−1

i=1 (Ti(u) \ Si(u)). Every vertex v in U can be controlled
by a cop before the robber reaches v. Let K = ∪k−2

i=1 N2i(Si(u)). Then K forms
a cut of a graph G and the robber is in restricted to move inside it. Clearly,

∪k−2
i=1 N

Gi−1

2i (Si(u)) ⊂ ∪k−2
i=1 N2i(Si(u)).

For this fixed vertex u, except for the bad event ∪k−1
i=0 Fi(u), we have

|K| ≤
k−2
∑

i=1

|N2i(Si(u))|

≤
k−2
∑

i=1

2
4i

pi+1
ln n

≤ k
4k−1

pk−1
ln n

= kp
4k−1

pk
ln n

< kp
4k

pk
ln n

= knp.

The expected number of cops we used is knp. With Chernoff inequality, it is
clear the number of cops is at most 2knp with probability at least 1 − 1

n
.

Next, we show the strategy for the player cop R to catch the robber using
2kp cops. Clearly, after less than 2k−1 steps, all vertices in U is under control
of cops using at most knp cops. Let these cops stay at their current position
and let other cops to sweep M . Here, |M | < knp guarantee the player cop R is
able to do that. Then, after finite steps, the robber will be caught.

With any choice of u, the total probability of bad events is

∑

u

Pr
(

∪k−1
i=0 Fi(u)

)

+
1

n
≤ k + 1

n
< 1.

With positive probability, there is a set of cop position R so that the cops
can capture the robber in a finite steps. Thus we have

c(G) ≤ 2knp = 8

(

ln n

M

)
1
k

≤ 1

2k
.
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If the diameter of G is at most 2k−1, then we have Mk = n. The last
statement in the theorem follows straightforward. �

Proof of Theorem 2 : We use Theorem 3 to prove it. Let f(x) = 8k
(

ln x
x

)
1
k x.

Here, take k =
√

log2 x. We prove c(G) ≤ f(n) by induction on n, the number
of vertices of G.

When n = 2. Then k = 1 and M1 = 2. By Theorem 3, we have c(G) ≤ 8 ln 2.
Trivially, it is true.

Suppose it is true for all G such that |G| < n.
When |G| = n. If the diameter of G is at most 2k−1. Then by Theorem 3,

we have c(G) ≤ f(n) = 8n
√

log2 n( ln n
n

)
1√

log2 n .
If the diameter of G is greater that 2k−1. Then we have a shortest path,

say P , with length 2k−1. At the beginning of the game, we let one cop move
along P . By Lemma 1, after finite steps, the robber is forbidden to enter this
path. We delete P and continue the game on the resulted graph G−P . By the
induction hypothesis, we have

c(G) ≤ c(G − P ) + 1.

Applying the induction hypothesis, we have

c(G) ≤ c(G − P ) + 1 ≤ f(n − 2k−1) + 1 ≤ f(n).

Here, the last inequality follows from

f(x) − f(x − 2
√

log2 x−1) = f ′(θ)2
√

log2 x−1(where x − 2
√

log2 x−1 < θ < x)

> f ′(x)2
√

log2 x−1 > 1.

when x ≥ 3. Clearly, f(n) = O( n

2(1−o(1))
√

log2 n
) when n large enough. We

completed the proof of Theorem 3. �

Acknowledgement: The first author thanks Anthony Bonato and Pawe lPra lat
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[11] A. Quilliot, A short note about pursuit games played on a graph with a
given genus, J. Combin. Theory B 38 (1985), 89–92.

[12] T.  Luczak and P. Pra lat, Chasing robbers on random graphs: zigzag theo-
rem, preprint.

14


